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Sums of Possibly Associated Bernoulli
Variables: The Conway–Maxwell-Binomial

Distribution

Joseph B. Kadane

Abstract. The study of sums of possibly associated Bernoulli random variables
has been hampered by an asymmetry between positive correlation and negative
correlation. The Conway–Maxwell-Binomial (CMB) distribution gracefully models
both positive and negative association. This distribution has sufficient statistics
and a family of proper conjugate distributions. The relationship of this distribution
to the exchangeable special case is explored, and two applications are discussed.
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multiplicative binomial, correlated binomial, beta-binomial.

1 Sums of possibly associated Bernoulli variables

There often are reasons to suggest that Bernoulli random variables, while identically
distributed, may not be independent. For example, suppose pots are planted with six
seeds each, where each pot has seeds from a unique plant, but different pot’s seeds came
from different plants. Suppose that success of a seedling is well-defined. If genetic simi-
larity is the dominant source of non-independence, it is reasonable to suppose positive
association between seeds in the same pot. However, if competition for nutrients and
sunlight predominates, association could be negative. Hence, it makes sense to find a
functional form that gracefully allows for either positive or negative association.

“Association” here means something more general than correlation. Correlation is
a particular measure of association, familiar because of its connection with the normal
distribution, and its simple relationship to certain expectations. However, there is no
particular reason why correlation should be used in non-normal situations if it has
undesirable properties.

The desire for a functional form that allows for both positive and negative association
in a symmetric way runs into the following familiar fact, which is well-known, but for
completeness is proved in Appendix A:

Proposition 1. Suppose X1, . . . , Xm have (possibly different) means and variances and
common pairwise correlations ρ. Then ρ ≥ −1/(m− 1).

There are (at least) three different possible strategies for dealing with the asymmetry
between positive and negative correlation revealed by the proposition:
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(a) abandon correlation as a measure of association

(b) abandon exchangeability of the Bernoulli random variables (exchangeability of
order two implies identical one-and two-dimensional distributions)

(c) model the sum directly, without fully specifying the distribution of the underlying
Bernoulli random variables.

Some light on strategies (b) and (c) is shed by the following proposition, also proved
in Appendix A.

Proposition 2. Suppose X1, . . . , Xm take values on {0, 1}. Let P{W = k} = pk ≥ 0,
where

∑m
k=0 pk = 1. Then there exists a unique distribution on X1, . . . , Xm such that

X1, . . . , Xm are exchangeable of order m, and
∑m

i=1 Xi has the same distribution as
does W .

Proposition 2 is reassuring with respect to strategy (c), since the set of distribu-
tions on the X’s corresponding to an arbitrary distribution on their sum is non-empty.
However, it also shows that one can assume m-exchangeability among the X’s without
restricting the distribution of their sum, so strategy (b) is superfluous. (This fact is also
a consequence of Galambos’ (1978) Theorem 3.2.1.)

The distribution studied in this paper pursues strategies (a) and (c) simultaneously.

The remainder of this paper is organized as follows: Section 2 reviews the litera-
ture on two-parameter extensions of the binomial distribution. Section 3 introduces the
Conway–Maxwell-Binomial distribution and displays some of its mathematical proper-
ties. Section 4 gives sufficient statistics and discusses a conjugate prior family. Section 5
displays some examples, and gives expressions for its generating functions. The ex-
changeable case is examined is Section 6, and some applications are shown in Section 7.

2 Two-parameter generalizations of the binomial
distribution

2.1 The beta-binomial distribution

Skellam (1948) proposed to endow the parameter p of the binomial distribution with a
beta distribution with hyperparameters α and β. Then the probability mass function
of the resulting distribution is

Pr{W = k} =

(
m

k

)
B(α+ k, β +m− k)/B(α, β), k = 0, 1, . . . ,m, (1)

where B(α, β) = Γ(α)Γ(β)/Γ(α+β). This distribution is widely used; see, for example,
Chatfield and Goodhart (1970); Griffiths (1973) and Williams (1975).

At first it was believed that the beta-binomial could model positive association
(α > 0, β > 0), but not negative association, However, Prentice (1986) shows, to the
contrary, that an extension of the beta-binomial can model negative association as well.
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A family of distributions is marginally compatible if the marginal distributions are
in the same family. De Finetti’s Theorem (1980) shows that mixtures of binomial distri-
butions are marginally compatible. So the beta-binomial as a beta mixture of binomials
is marginally compatible.

The beta-binomial distribution is not in the exponential family, which means it
does not have sufficient statistics (except the whole sample). This implies that it is less
computationally convenient than members of the exponential family, but still feasible
using methods of George et al. (1993).

2.2 The multiplicative binomial model

This model is the first two terms in a log-linear model (Bishop et al., 1975). In a
convenient parameterization, the probability mass function is

P{W = k} =

(
m

k

)
pkqm−kθk(m−k)/f(θ, p) (2)

where f(θ, p) =
∑m

j=0

(
m
j

)
pjqm−jθj(m−j).

This model smoothly accommodates both positive (θ < 1) and negative (θ > 1)
association. As discussed in Altham (1978), the multiplicative binomial model is not
marginally compatible. This behavior is criticized in the context of a particular appli-
cation, and a remedy proposed, by Verducci et al. (1988).

Since it is a member of the exponential family, the multiplicative binomial model
has sufficient statistics and is computationally convenient.

2.3 The additive binomial model

Altham (1978) and Kupper and Haseman (1978) proposed this model, based on Lan-
caster (1969) definition of additive interaction in contingency tables (Darroch, 1974). It
also has antecedents in the work of Lazersfeld and Bahadur (Bahadur, 1961). The ran-
dom variables X are marginally B(1, p), have correlation ρ and have zero higher-order
additive interactions.

The probability mass function is

P{W = k} =

(
m

k

)
pk(1− p)m−k

[
1 +

ρ{(k −mp)2 + k(2p− 1) +mp2}
2p(1− p)

]
, (3)

−2

m(m− 1)
min

(
p

1− p
,
1− p

p

)
≤ ρ ≤ 2p(1− p)

(m− 1)p(1− p) + 0.25− γ0
and

γ0 =
min

0 ≤ k ≤ m

[
{k − (m− p)− 1/2}2

]
.1

1This corrects an error in the Kupper and Haseman (1978) paper (their equation (4)). Rudolfer
(1990) correctly gives the probability mass function, but fails to report that Altham’s “additive binomial
model” and Kupper and Hasemen’s “correlated binomial model” are identical.
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Although Kupper and Haseman refer to this model as the “correlated binomial
model”, this paper refers to it as the “additive binomial model”, in order to reserve the
name for another model, discussed next.

2.4 The correlated binomial model

Madsen (1993); Luceño (1995); Luceño and De Ceballos (1995) and Diniz et al. (2010)
discuss the correlated binomial model. If B(m, p) denotes a binomial distribution with
probability p of success in each of m independent trials, the correlated binomial proba-
bility mass function can be expressed as follows:

W |Z = 0 ∼ B(m, p), (4)

W |Z = 1 ∼ mB(1, p),

Z ∼ B(1, ρ).

Application of Proposition 2 shows that there is a unique m-exchangeable distribution
on the X’s that has the specified distribution for their sum, W . Simple calculations
conditioning on Z show that the X’s have a B(1, p) distribution, marginally, and the
correlation of pairs of X’s is ρ.

This model requires ρ ≥ 0, so it does not accommodate negative association. While
it is not a member of the exponential family, Diniz et al. (2010) show that posterior com-
putation can be accomplished using Tanner and Wong’s (1987)’s “data augmentation”
(which is an unfortunate name, “parameter augmentation” would be more apt).

The correlated binomial model satisfies marginal consistency.

Another possibility is to generate dependent Bernoulli random variables using dis-
crete copulas. For an arbitrary exchangeable copula C(u1, . . . , um) and in particular
any Archimedean copula, Xi = I(Ui ≤ p) gives suitably dependent Bernoulli variables
with success probability p. This construction is used most prominently with Gaussian or
multivariate-t copulas in quantitative risk management (see McNeil et al. (2005, Chap-
ter 5). Genest and Nešlehová (2007) discuss difficulties in estimating such models, but
Smith and Khaled (2012) demonstrate methods of overcoming those issues.

3 The Conway–Maxwell-Binomial distribution

The Conway–Maxwell-Binomial distribution (CMB) is a convenient two-parameter fam-
ily that generalizes the binomial distribution and models both positive and negative
association among the Bernoulli summands.

The probability mass function of a random variable W having the CMB distribution
is given by

P{W = k} =
pk(1− p)m−k

(
m
k

)ν
S(p, ν)

, k = 0, 1, . . . ,m (5)

where
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S(p, ν) =

m∑
k=0

pk(1− p)m−k

(
m

k

)ν

.

Here 0 ≤ p ≤ 1 and −∞ ≤ ν ≤ ∞ (see Shmueli et al. (2005, Eq. (13))). Of course, when
ν = 1, the binomial distribution results.

When ν > 1, the center of the distribution is upweighted relative to the binomial
distribution and the tails downweighted. In the limit as ν → ∞, W piles up at m/2 if
m is even, and at �m/2� and 	m/2
 if m is odd. Thus the component Bernoulli random
variables are negatively related. Conversely, when ν < 1, the tails are upweighted relative
to the binomial distribution, and the center downweighted. In the limit as ν → −∞,
(5) puts all its probability on W = 0 and W = m, which is the extreme case of positive
dependence (all X’s have the same value). Thus, ν measures the extent of positive
or negative association in the component Bernoulli random variables. Figure 1 (from
Kadane and Naeshagen (2013)) illustrates these points.

Figure 1: Examples of CMB when m = 5.

The name “Conway–Maxwell” comes from its relationship to the Conway and Max-
well (1962) generalization of the Poisson distribution, CMP (λ, ν):

P{W = x} =
λx

(x!)ν M(λ, ν)
, x = 0, 1, . . . (6)

where M(λ, ν) =
∑∞

j=0 λ
j/(j!)ν .

Shmueli et al. (2005) show that if X ∼ CMP(λ1, ν) and Y ∼ CMP(λ2, ν), X and Y
independent, then
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X | X + Y ∼ CMB

(
λ1

λ1 + λ2
, ν

)
, (7)

generalizing the familiar relationship between the Poisson and binomial distributions,
when ν = 1.

4 Sufficient statistics and a conjugate prior family

Imagine n samples from a CMB distribution, each with respect to a common m. Then
the likelihood for p and ν is governed by the data k1, . . . , kn, and is given by

p(k1, . . . , kn | p, ν) =
∏n

i=1 p
ki(1− p)m−ki

(
m
ki

)ν
[S(p, ν)]

n . (8)

Provided n is considered known and fixed, the denominator is constant in the data,
so it can be ignored. Then

p(k1, . . . , kn | p, ν) ∝ (1− p)mn
n∏

i=0

(
p

1− p

)ki m!νn

(ki!(m− ki)!)ν

∝ exp

{( m∑
i=1

ki

)
(log(p/1− p))− ν

n∑
i=1

log[ki!(m− ki)!]

}

= eS1 log(p/(1−p))−νS2 (9)

where S1 =
∑n

i=1 ki and S2 =
∑n

i=1 log[ki!(m − ki)!]. Thus the CMB distribution is
a member of the exponential family. Consequently, it has a conjugate prior family. To
find a convenient form for this family, start over with the likelihood

pk(1− p)m−k

(
m

k

)ν/ m∑
k=0

pk(1− p)m−k

(
m

k

)ν

. (10)

We may take out the inessential factors of (1− p)m(m!)ν , yielding(
p

1− p

)k
1

[k!(m− k)!]ν

/ m∑
k=0

(
p

1− p

)k
1

[k!(m− k)!]ν
.

Let ψ = log(p/(1− p)) and t(k) = − log(k!(m− k)!).

Then the probability mass function is

p(k|ψ, ν) = exp{ψk + νt(k)−M(ψ, ν)} (11)

where exp(M(ψ, ν)) =
∑m

k=0 exp{ψk + νt(k)}.
Let θ = (ψ, ν). Then (11) expresses the likelihood in the form of a natural exponential

family.

I now explore the propriety of two different families of prior distributions, the first
of which is the natural conjugate family associated with (11). Propriety of the prior
distribution implies propriety of the posterior distribution, which is important for two
reasons:
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1. The usual argument for updating prior to posterior in conjugate families depends
on the constant of proportionality being finite.

2. The proper behavior of numerical algorithms for computing posterior distribu-
tions, such as grid methods and Markov chain Monte Carlo (MCMC), also depend
on the propriety of the posterior.

Since m is finite, M(θ) < ∞ for all θ, so the natural parameter space for θ is R2.
The standard conjugate prior (Diaconis and Ylvisaker, 1979, Eq. (2.3)) is then

π((ψ, ν)|a, b, c) ∝ exp{ψa+ νb− cM(ψ, ν)}. (12)

Theorem 1. The distribution in (12) is proper if and only if

(i) 0 < a/c < m

and

(ii)− log(m!) < b/c < t(�a/c�) + (a/c− �a/c�)t(	a/c
)− t�a/c�). (13)

The proof of Theorem 1 is given in Appendix B.

When propriety holds, updating is accomplished by

a′ = a+ k, b′ = b+ log(k!(m− k)!) and c′ = c+ 1. (14)

Suppose one wanted to center the prior distribution on the symmetric binomial
distribution B(m, 1/2), which corresponds to ψ = 0 and ν = 1. One way to find ap-
proximate values for a, b, and c that do this is to observe that the mode of π satisfies

∇M(ψ, ν) = (a/c, b/c). (15)

Recalling that the gradient of M gives the expected values of the sufficient statistics
k and t(k), we have

a/c = m/2 (16)

and

b/c =
−
∑m

k=0 log[k!(m− k)!]
(
m
k

)
∑m

k=0

(
m
k

) (17)

=
−
∑m

k=0 log[k!(m− k)!]
(
m
k

)
2m

.

Furthermore, the referee suggests the following result, whose proof is in Appendix B.

Theorem 2. The natural conjugate prior is symmetric around 0 if and only if

a/c = m/2.

Another way is to notice that one can multiply the prior in (12) by any probability
density g(ψ, ν) that leads to a proper distribution, and the result will be closed under
sampling, with the same updating formulas. The following theorem gives a class of g’s
leading to a proper such prior:
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Theorem 3. Let g(ψ, ν) be a probability distribution defined on R2 with a finite moment
generating function J . Then the prior proportional to

exp(ψa+ νb− cM(ψ, ν)g(ψ, ν)) (18)

is proper for all a, b, and c.

The proof of Theorem 3 is in Appendix B.

With the family (18), one can choose any distribution g(ψ, ν) whose mean vector is
(0, 1), with a = b = c = 0, and in particular

g(ψ, ν) = φ(ψ)φ(ν − 1), (19)

where φ is the standard normal probability density function, to center at B(m, 1/2).

5 Understanding the CMB distribution

One way to understand a distribution is to look at some representative examples of it.
Figure 1 offers a matrix of such examples, for different values of p and ν.

Another way to understand a distribution is by way of its generating functions.
These are derived next. Reconsider

S(p, ν) =
m∑

k=0

(
m

k

)ν

pk(1− p)m−k

= (1− p)m
m∑

k=0

(
m

k

)ν (
p

1− p

)k

(20)

= (1− p)mT

(
p

1− p
, ν

)
,

where T (x, ν) =
∑m

k=0 x
k
(
m
k

)ν
.

Then the probability generating function of the CMB distribution can be expressed
as

E(tx) =

m∑
k=0

tkpk(1− p)m−k

(
m

k

)ν/
S(p, ν)

= (1− p)m
m∑

k=0

(
tp

1− p

)k (
m

k

)ν/
S(p, ν) (21)

= T (tp/(1− p), ν)
/
T (p/(1− p), ν).

Similarly, the moment generating function and the characteristic function are, respec-
tively,

E(etx) = T (etp
/
(1− p), ν)

/
T (p/(1− p), ν) (22)

and
E(eitx) = T (eitp

/
(1− p), ν)/T (p

/
(1− p), ν). (23)
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6 Exchangeability of order 2

The CMB distribution is a distribution on the sum of m (possibly dependent) Bernoulli
components without specifying anything else about the joint distribution of those com-
ponents. This section explores the consequences of assuming in addition that those
components are exchangeable of order 2.

To establish notation, let

p1,...,im = P{X1 = i1, X2 = i2, . . . , Xm = im}, (24)

where each ijε{0, 1}. Let π be a permutation of (i1, . . . , im). Then the random variables
X are called m-exchangeable just in case

p1,...,im = pπ(i1,i2,...,im) (25)

for all permutations π.

Let s(
,m) be the set of sequences (ii, . . . , im) with exactly 
 1’s, i.e., satisfying∑m
j=1 ij = 
. There are

(
m
�

)
such sequences in s(
,m). The following theorem is given

in the literature (see Diaconis (1977, Theorem 1) and the references cited there):

Theorem 4. The set Em of m-exchangeable sequences is a convex set whose extreme
points are eo, . . . , en, where e� is the measure that puts probability 1/

(
m
�

)
on each element

of s(
,m) and 0 otherwise. Each point x ∈ Em has a unique representation as a mixture
of the m+ 1 extreme points.

Viewed in this light, the m-exchangeable set of CMB distributions specifies a partic-
ular two parameter family, with parameters p and ν, of weights on the extreme points
eo, . . . , em.

Because m-exchangeability applies to every permutation of length m, it implies m′

exchangeability for each m′ < m. Hence as m increases, m-exchangeability becomes
increasingly restrictive. In the limit at m = ∞, de Finetti’s Theorem shows that sums
of exchangeable random variables are mixtures of Binomial random variables. Because
the marginal distribution of each component is Bernoulli, interest centers on the joint
distribution of pairs of such variables. By exchangeability of order 2, every pair has
the same distribution as every other pair, so concentrating on (X1, X2) suffices. Ex-
changeability of order 2 implies that P{X1 = 0, X2 = 1} = P{X1 = 1, X2 = 0},
so there are really three probabilities to consider jointly, p00 = P{X1 = 0, X2 = 0},
p01 = p10 = P{X1 = 0, X2 = 1}, and p11 = P{X1 = 1, X2 = 1}. Diaconis (1977, p. 274)
introduces a convenient way of graphing these quantities. The graph is reminiscent of
barycentric coordinates, only here the constraint is slightly different:

p00 + 2p01 + p11 = 1; pij ≥ 0. (26)

Figures 2 and 3 display the possible values of the exchangeable CMB distribution for
specified values of m and ν, as p varies from 0 to 1.

In Figure 2, which is computed at m = 3, the curve for ν = 4 is the highest,
showing, as expected, more weight on p01 = p10. The curve ν = 1 is in the middle; this
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Figure 2: Possible values for P{X1 = i,X2 = j} when m = 3.

Figure 3: Possible values for P{X1 = i,X2 = j} when m = 5.

one corresponds to independence, and is known to be p(1 − p). The curve for ν = 0 is
lowest. As ν → −∞, this curve descends to the p00 to p11 line, indicating that all the
probability is at the extremes.

Figure 3 shows the same curve, when m = 5. The main difference is that the ν = 4
curve is flatter. Indeed, as m → ∞, this curve will collapse to the ν = 1 curve.

7 Applications

7.1 An agricultural experiment

Diniz et al. (2010) use a correlated binomial model to analyze data from an experiment
on soybean seeds.

The data come from having planted six seedlings in each of 20 pots, and using the
judgment of an expert as to which seedlings were successful. The goal was to examine
the extent to which competition among the seedings affected the outcomes. The raw
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data given by Diniz et al. (2010) is reported in Table 1. They use an MCMC with data
augmentation to fit the correlated binomial model to this data set.

# of “good” plants # of pots observed
0 0
1 2
2 2
3 5
4 5
5 3
6 3

Table 1: Observed frequency of “good” plants from Diniz et al. (2010).

To employ the CMB model, I choose to use the prior specified by (19), with a = b =
c = 0. This prior is centered on a Binomial model with p = 1/2 (which implies ψ = 0),
which seems reasonable.

The contours of the resulting posterior distribution are shown in Figure 4. The
maximum posterior point is ψ̂ = 0.30 and ν̂ = 0.52, with inverse Hessian∑

=

(
0.028 0019
0.019 0065

)
.

In view of the elliptical shape of the contours in Figure 4, it is reasonable to approximate
the posterior with a normal distribution with mean (ψ̂, ν̂) and covariance Σ, as would be
suggested by the asymptotic distribution of posterior distributions from conditionally
independent models.

Figure 4: Contour plot of the CMB posterior distribution.

Extending Table 1, Table 2 below reports the estimated fitted values of each model.

The CMB and CB fits are from the maximum posterior point; the others are from
maximum likelihood estimates. Table 2 shows that at least for this data set and this
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measure of fit, the CMB has a smaller sum of squared errors than the other models.
The CMB and binomial numbers are those of Diniz et al. (2010).

It is notable that the CMB estimate of ν is less than 1, indicating positive association
in the soybean seeds. This suggests that competition for nutrients is not the dominant
phenomenon in this data set. Further investigation and experimentation might then be
warranted to discover the reasons for this positive association.

# of “good” plants observed data B CB BB MB AB CMB
0 0 0.06 1.19 0.37 0.37 0.19 0.37
1 2 0.61 0.79 1.31 1.31 1.17 1.25
2 2 2.46 2.73 2.71 2.69 2.89 2.72
3 5 5.28 5.03 4.10 4.10 4.10 4.27
4 5 6.37 5.21 4.83 4.90 4.80 4.97
5 3 4.10 2.87 4.30 4.37 4.68 4.18
6 3 1.09 2.17 2.39 2.26 2.17 2.23

Sum of squared errors 8.96 4.16 4.01 4.32 5.86 3.73

Key: B = Binomial
CB = Correlated Binomial
BB = Beta-Binomial
MB = Multiplicative Binomial
AB = Arithmetic Binomial
CMB = Conway–Maxwell-Binomial

Table 2: Fits of various models to the soybean data.

7.2 Killings in medieval Norway

In Norway just after the Viking Period, the law distinguished a killing from a murder.
In both, there was somebody dead. However, in the former, the killer went to the King’s
representative within 24 hours and confessed. (Absent such prompt confession, it would
be a murder, punishable by execution or banishment). The King’s representative would
write a letter to the killer stating that the killer was under the protection of the King.
An investigation would ensue, resulting in a second letter to the killer, specifying how
much was owed to the King, and how much to the family of the deceased. There would
then be receipts to the killer for the payments (two more letters), and a final letter from
the King’s representative to the killer saying that it was all over. Thus the killer would
have received five letters.

Several hundred of these letters have survived in the intervening centuries, and a
complete list of those found is available. Additionally, there are mentions of killings in
other documents such as private letters, Bishop’s records, etc. A simple representation
of the data is a 6× 2 matrix, where the first dimension records the number of letters to
the killer that survive, and the second is whether or not the killing is mentioned in other
sources. Of course, there is the (0, 0) cell of killings for which no letters survive and for
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which there are no other mentions. To estimate this cell, and hence the total number

of killings, Kadane and Naeshagen (2013, 2014) resort to a dual-systems estimate.

Since there’s no obvious reason why the survival of letters in the killer’s archive

should be related to whether the killing is mentioned in the other sources, an indepen-

dence assumption between the two dimensions seems reasonable. To model the number

of letters from a given killing that might survive, a first thought might be a binomial

model. However, since all five letters went to the killer, and were likely stored together,

at least at first, it is reasonable to suppose that the event of the survival of a given

letter to the killer would be positively associated with the event of the survival of the

other letters to the same killer. Thus one would expect ν ≤ 1 in the CMB, and Kadane

and Naeshagen imposed a prior on ν putting zero probability on the space ν ≥ 1. As

it happened, the data favors ν > 1, so the posterior piled up at ν = 1, the binomial

model.

Nonetheless, this was a successful application of the CMB, in that it allowed for (and

rejected) what appeared to be the biggest reasonable threat to the binomial model.

8 Conclusion

This paper explores the properties of the Conway–Maxwell-Binomial (CMB) distribu-

tion. Table 3 gives a summary of the properties of this distribution in comparison to

other two-parameter generalizations of the binomial distribution.

BB MB AB CB CMB
1. Positive and Negative Association Y Y Y N Y
2. Exponential Family N Y N N Y
3. Marginally Compatible Y N Y Y N

Table 3: Summary of properties of one-parameter generalization of binomial distribu-
tion.

It is not surprising that the distributions (CMB and MB) that are members of

the exponential family are exactly those that are not marginally compatible. To be

marginally compatible for all sample sizes requires (by de Finetti’s Theorem) that the

distribution be a mixture of binomials, which (except for the trivial case) prevents it

from being in the exponential family.

The Conway–Maxwell distribution is an alternative that deserves to be in a statis-

tician’s toolbox.

Appendix A. Proof of Propositions 1 and 2

Suppose X1, X2, . . . , Xm have the same means and variances, and identical correla-

tions ρ. Then ρ ≥ −1/(m− 1).
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Proof of Proposition 1. Let Yi = (Xi−E(Xi))/σ(Xi), i = 1, . . . ,m. Then Y1, Y2, . . . , Ym

satisfy E(Yi) = 0 and Var(Yi) = 1. Because correlations are unaffected by location and
scale changes, they still have common covariance ρ. Now

0 ≤ Var(
m∑
i=1

Yi) = E(
m∑
i=1

Yi)
2 − (E(

m∑
i=1

Yi))
2

= E(
∑

Yi)
2 = E

m∑
i=1

Y 2
i +

m∑
i=1

m∑
j=1

i �=j

EYiYj

= m+m(m− 1)ρ

from which the desired result follows immediately.

Remark. If the correlation between Xi and Xj is ρi,j (not necessarily equal), the same
proof shows that the average of the ρi,j ’s is bounded below by −1/(m− 1).

Proof of Proposition 2. For each k, there are
(
m
k

)
different arrangements of k 1’s and

m− k 0’s. Let each of them have probability pk/
(
m
k

)
. Then P{

∑m
i=1 Xi = k} = pk and

the X’s are exchangeable of order m.

To show uniqueness, if the sum of the probabilities of the sequences with exactly
k 1’s is not pk, the sum condition is violated. If their probabilities are not equal, ex-
changeability of order m is violated.

Appendix B: Proofs of Theorems 1, 2, and 3

Proof of Theorem 1. Let μ be a measure on R2 that puts mass 1/(m+1) on each of the
points (k, t(k)). Then (12) is the natural exponential family thus generated. According
to Theorem 1 of Diaconis and Ylvisaker (1979), (12) is proper if and only if (a, b)/c
lies in the interior H of the convex hull H̄ of the points (k, t(k)), k = 0, . . . ,m.

At integer points

k = 0, . . . ,m, −t(k) = log(k!(m− k)!) = log Γ(k + 1) + log Γ(m− k + 1). (B.1)

Since the log-gamma function is strictly convex (i.e., has positive second derivative), so is
−t(k). Therefore, t(k) is strictly concave. Consequently each of the points (k, t(k)), k =
0, . . . ,m is an extreme point of H̄. Therefore, the boundary of H̄ consists of the line
segments joining t, t(k)) and (t+ 1, t(k + 1)), k = 0, . . . ,m− 1 and the segment joining
(0, t(0)) and (m, t(m)).

Since t(0) = t(m) = − log(m!), the line segment joining (0, t(0)) and (m, t(m)) takes
the constant value − log(m!) when 0 ≤ t ≤ m. Furthermore, m!et(k) =

(
m

k,m−k

)
so t(k)

is minimized at t(0) = t(m). The line segment joining (k, t(k)) and (k + 1, t(k + 1)) is

t(k) + (x− k)[t(k + 1)− t(k)] for k ≤ x ≤ k + 1.
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Therefore, the elements of H, namely the elements of H̄ that are not boundary points,
are those triples (a, b, c) satisfying

0 < a/c < m

and
− log(m!) < b/c < t�a/c�+ (a/c− �a/c�)(t	a/c
 − t(�a/c�))

Proof of Theorem 2. The condition for symmetry around ψ = 0 is, for all ψ and some ν,

aψ − cM(ψ, ν) = a(−ψ)− cM(−ψ, ν). (B.2)

Now

M(−ψ, ν) = log

(
m∑

k=0

e−ψk+νt(k)

)
.

Let j = m− k. Then

M(−ψ, ν) = log

⎛
⎝ m∑

j=0

e−ψ(m−j)+νt(m−j)

⎞
⎠ .

But t(m− j) = t(j), so

M(−ψ, ν) = −mψ + log

⎛
⎝ m∑

j=0

eψj+νt(j)

⎞
⎠ = −mψ +M(ψ, ν).

Therefore, (B.2) becomes

aψ − cM(ψ, ν) = a(−ψ)− c(−mψ +M(ψ, ν)),

or
(a+ a− cm)ψ = 0.

Therefore,
a/c = m/2.

Proof of Theorem 3. For large absolute values of ψ and ν,M(ψ, ν) is asymptotically
linear. Consequently, for fixed values of a, b, and c, π is proper if g has a finite moment
generating function.
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