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A. Philip Dawid† and Monica Musio‡

Abstract. We are deeply appreciative of the initiative of the editor, Marina
Vanucci, in commissioning a discussion of our paper, and extremely grateful to all
the discussants for their insightful and thought-provoking comments. We respond
to the discussions in alphabetical order.
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Grazian, Masiani and Robert

Clara Grazian, Ilaria Masiani and Christian Robert (henceforth GMR) point to a num-
ber of potential difficulties in our approach.

Calibration We are not sure what GMR mean by the expression “very loosely relates
to a loss function.” A proper scoring rule S(x,Q) is very strictly a loss function,
where the state is the value x of X, and the decision is the quoted distribution Q
for X. Moreover (see, for example, Dawid (1986)), given an essentially arbitrary
decision problem, with state-space X , decision space A, and loss function L(x, a),
we can define S(x,Q) := L(x, aQ), where aQ denotes a Bayes act with respect
to the distribution Q for X; and this is readily seen to be a proper scoring rule.
That is, essentially every decision problem is equivalent to one based on a proper
scoring rule. If you take some specified decision problem seriously, you should use
the associated proper scoring rule. There is then no problem of calibration.

Dependence on parametrisation GMR are correct in noting that, if we apply a
scoring rule after first transforming the state space, we will generally get a non-
equivalent result (the log-score is essentially the only exception to this.) However,
there will be a new scoring rule for the transformed problem that is equivalent to
the original rule for the original problem; see Parry et al. (2012, Section 11) for
how a homogeneous score such as that of Hyvärinen transforms. We cannot give
any definitive guidance on how to choose an appropriate transformation, though
Example 11.1 of the above-mentioned paper suggests that some consideration of
boundary conditions may be relevant.

Dependence on dominating measure This is not the case: when constructing the
Hyvärinen (or other homogeneous) score, the formula is to be applied to the
density with respect to Lebesgue measure.
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Arbitrariness There is indeed a very wide variety of homogeneous proper scoring rules,
any one of which will achieve our aim of eliminating the problematic normalising
constant. At this point we can do little more than reiterate what we said towards
the end of Section 3 of our paper.

Consistency Whether or not a person, lay or otherwise, finds consistency a compelling
desideratum is probably a very personal matter. We do find it so. In a related
point, we do not see why, in their first paragraph, GMR dismiss the implications
of our expansion (4) so uncritically. Indeed, the near identity of the red lines in
the four subplots of their own Figure 2, which correspond to very different prior
variances, lends support to our conclusion, from (4), that “the dependence of the
Bayes factor on the within-model prior specifications is typically negligible.”

GMR correctly point out that there are continuous distributions, such as the Laplace
distribution, to which we cannot apply the Hyvärinen (or other homogeneous) score.
This point deserves further attention. But for discrete models there is a different class
of homogeneous proper scoring rules that are appropriate and can be used to the same
end of eliminating the normalising constant; see Dawid et al. (2012).

GMR’s simulation studies are interesting. In contrast to our own analysis, they ap-
pear to show consistency of model selection based on the multivariate version of the
Hyvärinen score. We should not complain if our method behaves even better than ex-
pected, but we confess we find this puzzling. We must also take issue with their assertion
that “the log proper scoring rule tends to infinity [approximately four times] more slowly
than the Bayes factor or than the likelihood ratio.” It is simply not appropriate to com-
pare absolute values across different scoring rules, since each can be rescaled by an
arbitrary positive factor without any consequence for model comparison.

GMR point to the alternative approach of Kamary et al. (2014). However, it seems
to us that the part of that paper that relates to handling improper priors could just as
readily be applied directly to the Bayes factor. For example, if we are comparing two
location models, we might use the identical improper prior (with the identical value for
its arbitrary scale factor) for the location parameter in both. Then this scale factor will
cancel out in the Bayes factor, so leading to an unambiguous answer. But in any case,
this approach is not available unless there are parameters in common between all the
models being compared. Our own approach has no such constraint.

Hans and Perrugia

Christopher Hans and Mario Perrugia (HP) only consider “models” without any un-
known parameters, so do not directly address our main concern, which was to devise
methods for comparing parametric models having possibly improper prior distributions.

They focus on two main issues:

1. Comparisons between the Hyvärinen score and the log-score.

2. Robustness to outliers.
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With regard to point 1, HP consider in particular cases where the two scores are
linearly related. While we fail to see why this property should be of any fundamental
importance (and will pass up their invitation to characterise it), it is worthy of some
attention. We do note, however, that, in their analysis of a general covariance stationary
Gaussian process, HP err when they say “σ2

Pi
and σ2

Qi
are constant in i.” Recall that

σ2
Pi

is not the unconditional variance of Xi under P , but its conditional variance, given
(X1, . . . , Xi−1). Their asserted constancy property will hold for an AR(p) process only
for i > p; while for a general process it will fail, although a limiting value will typically
exist.

HP’s specific applications do have this constancy property (at least for i > 1). In the
case they consider of different means and equal variances, the Hyvärinen incremental
delta score is just a constant multiple of that for the log-score, and this property extends
to the cumulative scores. Since an overall positive scale factor is irrelevant, the two scores
are essentially equivalent in this case.

For the other case HP consider, of equal means and different variances, even after
rescaling the incremental delta scores will differ by an additive constant, c say. The
cumulative scores, to time n, will thus differ by nc, which tends to infinity—an effect that
might seem to jeopardise the consistency analysis in our paper. However, the following
analysis shows that this is not so. Using HP’s formulae, and setting ξ = τ2P /τ

2
Q, consider

first the log-score. The incremental delta log-scores are, under P , independent and
identically distributed, with expectation 1

2 (ξ − 1 − log ξ) > 0 and finite variance, so
that the difference between the cumulative prequential score for Q and that for P tends
to infinity almost surely—so favouring the true model P . Likewise Q will be favoured
when it is true. Now consider the Hyvärinen score. Again the incremental delta log-
scores under P are independent and identically distributed with finite variance, now
with expectation τ−2

q (ξ + ξ−1 − 2) > 0; so once again, the true model is consistently
favoured.

HP ask whether there is any principled reason for applying the cut-off value 0 to the
difference in prequential scores. Well, it seems natural to us to choose the model whose
predictions have performed best so far, so indicating that this might continue into the
future—although, as the advertisers of financial products are obliged to point out, past
success cannot be taken as an infallible guide to future performance. We further note
the essential equivalence of this recipe to the machine learning technique of “empirical
risk minimisation” in Statistical Learning Theory, which has developed an extensive
theory, extending well beyond the case of parametric models, characterising when this
will be effective; see Rakhlin et al. (2015); Rakhlin and Sridharan (2015) for application
to the general case of dependent sequential observations.

In any case, should one wish to use a cut-off different from 0, there is no impediment
to doing so—this would not affect the consistency properties we have investigated, which
only rely on the difference of cumulative scores tending to infinity. How the choice of
cut-off could relate to differential prior probabilities and utilities is a topic that deserves
further consideration.

Turning to HP’s point 2, their simulations appear to show that the Hyvärinen score
is less robust to additive outliers than the log-score (though we note that in their
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example the outlier only affects 2 of the 100 summands of the overall score.) Issues of
the robustness of minimum score inference have been considered by Dawid et al. (2015),
where it is shown that (in an estimation context) certain proper scoring rules do enjoy
good robustness properties (generally better than straightforward likelihood). However,
these do not include the Hyvärinen score or other homogeneous scores. Thus there may
indeed be a conflict between the aim of our current paper, which is to overcome problems
associated with improper distributions, and the very different aim of protecting against
outliers.

Katzfuss and Bhattacharya

Matthias Katzfuss and Anirban Bhattacharya (KB) are particularly concerned with
the question of whether our approach can be tweaked to yield a “pseudo-Bayes factor”,
where a general score takes the place of log-likelihood. While it would be very nice
if this were so, we are a little dubious. As KB point out, there are serious problems
related to the arbitrary scaling of a general score. These are compounded when, as for
the homogenous cases we consider, the score is a dimensioned quantity. Thus if the basic
observable X has the dimension of length, L, then the Hyvärinen score has dimension
L−2, so any scale factor, such as λ in their (1.1) or (3.1), would have to have dimension
L2. Otherwise put, whether we are measuring X in nanometers or in parsecs will affect
the absolute value of the score (though not the comparisons that form the basis of our
method).

There is no reason why our method should not be used to compare a finite number
of models, rather than just 2. However, when the number is countably infinite, or grows
with sample size, even likelihood-based model selection can fail to be consistent. In that
case the problem can sometimes be solved by regularisation, essentially equivalent to
introducing prior probabilities over models and selecting on the basis of the posterior
model probabilities. Perhaps some analogue of this device might work for more general
proper scoring rules.

References
Dawid, A. P. (1986). “Probability Forecasting.” In: S. Kotz, N. L. Johnson, and
C. B. Read (eds.), Encyclopedia of Statistical Sciences, volume 7, 210–218. New York:
Wiley-Interscience. MR0892738. 517

Dawid, A. P., Lauritzen, S., and Parry, M. (2012). “Proper Local Scoring Rules
on Discrete Sample Spaces.” The Annals of Statistics, 40: 593–608. MR3014318.
doi: http://dx.doi.org/10.1214/12-AOS972. 518

Dawid, A. P., Musio, M., and Ventura, L. (2015). “Minimum Scoring Rule Inference.”
Scandinavian Journal of Statistics, submitted for publication. arXiv:1403.3920 520

Kamary, K., Mengersen, K., Robert, C., and Rousseau, J. (2014). “Testing Hypotheses
as a Mixture Estimation Model.” arXiv:1412.2044 518

http://www.ams.org/mathscinet-getitem?mr=0892738
http://www.ams.org/mathscinet-getitem?mr=3014318
http://dx.doi.org/10.1214/12-AOS972
http://arxiv.org/abs/arXiv:1403.3920
http://arxiv.org/abs/arXiv:1412.2044


A. P. Dawid and M. Musio 521

Parry, M. F., Dawid, A. P., and Lauritzen, S. L. (2012). “Proper Local Scoring
Rules.” The Annals of Statistics, 40: 561–92. MR3014317. doi: http://dx.doi.org/
10.1214/12-AOS971. 517

Rakhlin, A. and Sridharan, K. (2015). “On Martingale Extensions of Vapnik–
Chervonenkis Theory with Applications to Online Learning.” In: V. Vovk,
H. Papadopoulos, and A. Gammerman (eds.) Measures of Complexity:
Festschrift in Honor of Alexey Chervonenkis, Chapter 15. Heidelberg: Springer-
Verlag, in press. http://www-stat.wharton.upenn.edu/~rakhlin/papers/

chervonenkis chapter.pdf 519

Rakhlin, A., Sridharan, K., and Tewari, A. (2015). “Sequential Complexities and Uni-
form Martingale Laws of Large Numbers.” Probability Theory and Related Fields,
161: 111–153. MR3304748. doi: http://dx.doi.org/10.1007/s00440-013-0545-5.
519

http://www.ams.org/mathscinet-getitem?mr=3014317
http://dx.doi.org/10.1214/12-AOS971
http://dx.doi.org/10.1214/12-AOS971
http://www-stat.wharton.upenn.edu/~rakhlin/papers/chervonenkis_chapter.pdf
http://www-stat.wharton.upenn.edu/~rakhlin/papers/chervonenkis_chapter.pdf
http://www.ams.org/mathscinet-getitem?mr=3304748
http://dx.doi.org/10.1007/s00440-013-0545-5

	References

