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A Two-Component G-Prior for Variable
Selection

Hongmei Zhang∗, Xianzheng Huang†, Jianjun Gan‡, Wilfried Karmaus§,
and Tara Sabo-Attwood¶

Abstract. We present a Bayesian variable selection method based on an ex-
tension of the Zellner’s g-prior in linear models. More specifically, we propose a
two-component G-prior, wherein a tuning parameter, calibrated by use of pseudo-
variables, is introduced to adjust the distance between the two components. We
show that implementing the proposed prior in variable selection is more efficient
than using the Zellner’s g-prior. Simulation results also indicate that models se-
lected using the method with the two-component G-prior are generally more favor-
able with smaller losses compared to other methods considered in our work. The
proposed method is further demonstrated using our motivating gene expression
data from a lung disease study, and ozone data analyzed in earlier studies.

Keywords: Bayes factor, measurement error, mean squared loss, pseudo
variables, tuning parameter.

1 Introduction

The present work is motivated by a genetic and epidemiologic study related to the
severity of ideopathic pulmonary fibrosis (IPF). IPF is a chronical lung disease charac-
terized by scarring of the supporting framework of lungs. The incidence and mortality
continue to increase with more men being afflicted than women. However, reasons for
this gender difference are unclear. The goal of that study is to identify genes whose
expression levels are associated with the severity of IPF, or genes such that the as-
sociation is gender-specific. For this type of applications, variable selection on linear
regression models is commonly used. Besides the classical methods such as those built
on Akaike information criterion (AIC) and Bayesian information criterion (BIC), many
other variable selection methods have been proposed to select variables. For example,
the adaptive LASSO in Zou (2006) is aimed to reduce the estimation bias in the orig-
inal LASSO developed in Tibshirani (1996) to achieve the oracle properties, meaning
that the method will correctly select the model as if the correct submodel were known.
Another variable selection method also enjoying the oracle properties is the nonconcave
penalized likelihood method developed by Fan and Li (2001), where a smoothly clipped
absolute deviation (SCAD) penalty is introduced.
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Bayesian methods for variable selection are discussed rigorously in the literature as
well. In this work, we focus on variable selection in this framework. Compared to the
frequentist approaches for variable selection, one major advantage of Bayesian meth-
ods exists in their ability to incorporate prior knowledge into the selection process. In
addition, rather than selecting a unique set of variables as in frequentist approaches,
Bayesian methods estimate the posterior probabilities for all models under considera-
tion. Most work in this area uses g-priors proposed in Zellner (1986) and the spike and
slab models (Mitchell and Beauchamp, 1988) for the prior distribution of regression co-
efficients (George and McCulloch, 1993, 1997, 1999; George and Foster, 2000; George,
2000; Smith and Kohn, 1996; Fernández et al., 2001; Lee et al., 2003; Ishwaran and Rao,
2005a,b). In this article, our focus is on the g-prior, a multivariate normal distribution
with mean zero and covariance being a proportion g to the covariance of regression
coefficient maximum likelihood estimators.

Choosing either too big or too small g will lead to exclusion of important variables
(Lindley, 1957). This Lindley’s paradox of Zellner’s g-prior in variable selection confesses
the importance of proper choice of g (Lindley, 1957; Bartlett, 1957). To this end, Liang
et al. (2008) proposed using mixtures of g-priors in variable selection. Maruyama and
George (2011), in light of an appropriate distribution of prior information on different
variables, advocated a generalized g-prior based on the singular value decomposition
of the design matrix. However, a single g is a global shrinkage factor that applies to
all predictors and will equally shrink each coordinate. This choice is reasonable if we
do not know anything about the predictors or if they are equivalent in some sense
as noted in a recent study (Som et al., 2014). In this article, we extend the Zellner’s
g-prior from a single g to a diagonal matrix G to incorporate information in the pre-
dictors. We introduce a tuning parameter to optimize the prior. This tuning parameter
is adaptively selected with the help of carefully created pseudo-variables. Compared
to the existing methods, a major contribution of this study exists in the extension
of the classical g-prior and the inclusion of pseudo-variables to optimize the extended
g-prior.

It is not unusual that gene expressions are measured with error (Rocke and Durbin,
2001). Given the high impact of measurement errors on inference and variable selection
as discussed in Higgins et al. (1997), Carroll et al. (2006), Liu and Wu (2007), Liang
and Li (2009), Ma and Li (2010), among others, we extend the method by incorporating
measurement error modeling into the selection process.

The structure of the article proceeds as follows. In Section 2, we present a two-com-
ponent G method for variable selection. The formulation of a two-component G-prior,
the efficiency of the prior in terms of variable selection, the prior distributions of other
parameters, and the posterior distributions are discussion in this section. An adaptive
method to determine the value of a tuning parameter is presented in Section 3. The
extension of the method with measurement error accounted for is discussed in Sec-
tion 4. In Section 5, simulations are used to demonstrate and evaluate the proposed
method, and comparisons among different variable selection methods are discussed.
We apply our method to the motivating gene expression data and a data set related
to ozone levels in Section 6. Finally, we summarize and discuss our findings in Sec-
tion 7.
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2 The Two-Component G Method

Denote by Yi, i = 1, . . . , n, the response from individual i,Xi = (X1i, . . . , Xki, . . . , Xpi)
T

a vector of predictors. We consider variable selection via the following classical linear
regression model,

Yi = XT
i β + εi, i = 1, . . . , n,

where β = (β1, . . . , βp)
T and εi ∼ N(0, σ2). Since intercept is not involved in the

process of variable selection, without loss of generality, we assume that the data are
centered and henceforth the intercept is excluded from the model. For the purpose of
variable selection, we introduce parameter γ, a vector of length p composed of 1s and
0s indicating the inclusion or exclusion of a variable, respectively. Denote by Λγ = γT1
the size of a model determined by γ. To infer γ and other parameters of interest, we
propose a fully Bayesian approach.

2.1 Prior Distributions

In this section, we focus on the prior distribution of β. The prior and hyper-prior dis-
tributions of other parameters are listed at the end of this section with details included
in Appendix A.

Zellner’s g-prior is defined as β|g, σ2 ∼ N(0, g(XTX)−1σ2), where g is an unknown
scalar parameter to be specified (Zellner, 1986). In the literature, various studies have
discussed the selection of g in Zellner’s prior, for instance, AIC, BIC, or risk inflation
criterion (RIC) proposed in Foster and George (1994) are commonly used to calibrate g.
George and Foster (2000) applied empirical Bayes to select g based on a marginal likeli-
hood of g. Fernández et al. (2001) compared a variety of choices of g and recommended
choosing g as max(

√
n, p). Liang et al. (2008) inferred g by introducing hyper prior

distributions to g. In all these methods, the (variable selection) functionality of g is
fulfilled through its overall influence on the variance components in the prior of nonzero
coefficients β.

In this article, we extend Zellner’s g-prior and construct the prior distribution of β
in two steps. We first extend Zellner’s g-prior to a two-component g-prior. We assume
that g in the prior is distributed following a mixture of two point masses, i.e., p(g) =
qI({g = gl}) + (1− q)I({g = gs}), where I(·) is an indicator variable and I(·) = 1 if (·)
is true, q is the probability of g = gl, and gl, gs > 0 such that gl = bf1(n), gs = bf2(n)
with f1(n) = O(n), f2(n) = O(nψ), 1/2 < ψ < 1, implying f2(n) = o(f1(n)) as n → ∞.
We thus have, as n → ∞, gs → ∞, gl → ∞, while gs/gl → 0. Both f1(n) and f2(n)
are assumed to be known. For instance, we can take f1(n) = n, and f2(n) = n0.55. The
definitions of f1(n) and f2(n) follow the generic suggestion for the choice of g as stated
in Fernández et al. (2001). The parameter b > 1 is a tuning parameter. For a given
f1(n) and f2(n), b determines the distance between gl and gs. Next, instead of using
one g to shrink all, we extend the application of p(g) to each coordinate and define G
as G = diag(g1, . . . , gp), a diagonal matrix such that each gk is chosen according to
p(gk) = qkI({gk = gl}) + (1− qk)I({gk = gs}), k = 1, . . . , p. The prior distribution of β
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now is a two-component G-prior,

βγ |Xγ ,γ, σ
2,G ∼ N

{
0, σ2

[(
XγG

−1
γ

)T (
XγG

−1
γ

)]−1
}
,

= N
{
0, σ2Gγ

(
XT

γ Xγ

)−1
Gγ

}
(1)

where Xγ is an n×Λγ model matrix with columns chosen by γ, and Gγ is a Λγ ×Λγ

diagonal matrix. Note that βγ instead of β is used in (1) to indicate the dependence
of β on γ. Only coefficients of selected variables are in βγ , and the coefficients of
unselected variables are zeros with probability 1 (George and McCulloch, 1997). Let
c = (c1, . . . , cp) be a vector of 1s and 0s denoting the choice between gl and gs, re-
spectively. Thus we have gk = glck + gs(1 − ck), k = 1, . . . , p, with p(ck = 1) = qk.
If gk = gs for all k = 1, . . . , p, then the prior is essentially the Zellner’s g-prior,
N(0, g2s(X

TX)−1σ2); so is the situation if gk = gl for all k’s. The ultimate functional-
ity of b in the extended prior (1) is to optimize gk to eliminate unimportant variables.
The choice of b is discussed in detail in Section 3. We denote this approach as the “two-
component G” method. The following proposition indicates that using a two-component
G can be more efficient in identifying truly important variables than when a scalar g is
used.

Proposition 1. Denote by Mt the underlying true model and Mu a model such that
Mu �= Mt. Define Ru,t(gs) = Pr(Mu|Y ,X, gs)/Pr(Mt|Y ,X, gs), the ratio of posterior
model probabilities (Mu over Mt) under the Zellner’s g-prior with gk = gs for all k, k =
1, . . . , p, and Ru,t(Gγ) = Pr(Mu|Y ,X,Gγ)/ Pr(Mt|Y ,X,Gγ), the ratio of posterior
model probabilities using the proposed prior as opposed to the Zellner’s g-prior. Assume
XTX/n → ΣX as n → ∞ with ΣX being the covariance of X and ΣX positive definite.
As n → ∞, the ratios Ru,t(gs) and Ru,t(Gγ) (conditional on X) satisfy Ru,t(gs) → 0,
Ru,t(Gγ) → 0, and Ru,t(Gγ) = o(Ru,t(gs)).

Proof. See Appendix B.

The ratios in Proposition 1, Ru,t(gs) and Ru,t(Gγ), are Bayes factors when taking
uniform priors for both models Mu and Mt. In summary, Proposition 1 states that,
compared to the ratio of posterior model probability formulated in Zellner’s g-prior, the
one built upon two-component G converges in probability to zero more quickly for any
model Mu other than the true model Mt.

The priors of the remaining parameters are vague priors and are listed below:

γk ∼ Ber(πk) with π = (π1, . . . , πp), πk∼uniform (0, 1),

ck ∼ Ber(qk) with q = (q1, . . . , qp), qk ∼ uniform (0, 1), k = 1, . . . , p,

σ2 ∼ Inv-Gam(δσ,1, δσ,2),

where we assume that the hyper-parameters (δσ,1, δσ,2) in the inverse gamma distribu-
tions are small and known. Detailed discussions on the choices of these priors are given
in Appendix A.
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2.2 The Joint Posterior Distribution and Its Computation

Let θ = (β,γ, c, σ2,π, q) denote a collection of parameters. The joint posterior distri-
bution of θ is, up to a normalizing constant,

p(θ|Y ,X, b) ∝ p(Y |Xγ ,βγ ,γ, σ
2)p(βγ |Xγ ,γ, σ

2, c, b)p(γ|π)p(c|q)p(σ2)p(π)p(q).
(2)

Posterior inference of θ is obtained by successively simulating values from their full con-
ditional posterior distributions through the Gibbs sampling scheme. These distributions
are presented next. The full conditional posterior distribution of βγ is

p(βγ |Y ,Xγ ,γ, σ
2,Gγ) = N(ΣβγX

T
γ Y /σ2,Σβγ ),

Σβγ = σ2(XT
γ Xγ +G−1

γ XT
γ XγG

−1
γ )−1, (3)

where we assume XT
γ Xγ + G−1

γ XT
γ XγG

−1
γ is positive definite. Note that (3) is for

selected variables; for unselected variables, the coefficients are zero and thus not included
in the model.

Each component in the vector γ will be sampled sequentially. The full conditional
posterior distribution of γk is, up to a normalizing constant,

Pr(γk|Y ,Xγ ,βγ ,γ(−k), σ
2, c, b, πk)

∝ p(Y |Xγ ,βγ , γk,γ(−k), σ
2)p(βγ |Xγ , γk,γ(−k), σ

2, c, b)Pr(γk|πk)

∝ p(βγ |Xγ , γk,γ(−k), σ
2, c, b)Pr(γk|πk),

(4)

where γ(−k) is with dimension p − 1 resulting from the exclusion of γk from γ. The
independence of (4) on Y is due to the hierarchical structure where γ influences Y only
through β (Morris, 1987; George and McCulloch, 1993). This implies Pr(γk|Y ,Xγ ,βγ ,
γ(−k), σ

2, c, b, πk) ∝ Pr(γk|Xγ ,βγ ,γ(−k), σ
2, c, b, πk). It is worth noting that the full

conditional posterior distribution of γk depends on gk. This implies that controlling
the variation of nonzero coefficients influences the inclusion of variables. Since γk only
takes value 0 or 1, the full conditional posterior distribution of γk is Bernoulli, so is the
conditional posterior distribution of ck. Their probability parameters in the Bernoulli
distribution are given in Appendix A.

The full conditional posterior distribution of σ2 is

p(σ2|Y ,Xγ ,βγ ,γ) = Inv-Gam

(
n

2
+ δσ,1,

SG

2
+ δσ,2

)
,

SG = (Y −Xγβγ)
T (Y −Xγβγ), (5)

which is an updated inverse gamma distribution from the prior of σ2.

Since πk ∼ uniform(0, 1) is conjugate to the Bernoulli prior selected for γk given
πk, the full conditional posterior distribution of πk only depends on γk and is given by
p(πk|γk) = Beta(γk+1, 2−γk). The full conditional posterior distribution of qk is in the
same format, p(qk|ck) = Beta(ck +1, 2− ck). The independence of the full conditionals
of γ, π, and q on Y allows for faster convergence of the sampling process.

A Markov chain Monte Carlo (MCMC) sequence will be obtained by repeatedly
sampling from the full conditional posterior distributions. All the aforementioned con-
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ditional posterior distributions are standard, which facilitates easy sampling and quick
convergence compared to non-standard distributions. Following the suggestions in Gel-
man et al. (2003), multiple chains will be simulated for the purpose of convergence
evaluation and parameter inferences.

3 Calibration of b

We calibrate b by controlling Bayesian false model selection rate with respect to unim-
portant variables. In what follows, we define Bayesian false-model selection rate and
outline the tuning steps.

3.1 Definition of Bayesian False-Model Selection Rate

A Bayesian false-model selection rate (BFSR) is defined as the relative frequency of
selecting models that contain unimportant variables during the MCMC process. BFSR
is defined utilizing the irreducibility property of MCMC simulations on stationary dis-
tributions such that the stochastic process walks through the state space of all possible
models; models containing unimportant variables are likely to be visited less frequently
than models with important ones.

The calculation of BFSR is rooted in Wu et al. (2007). Let T denote the number of
MCMC iterations, out of which TU iterations visited models that include real unimpor-
tant variables. BFSR is defined as the ratio between TU and T , BFSR = TU/T . Following
Wu et al. (2007), we estimate BFSR by use of pseudo-variables satisfying the following
two properties: (A1) the inclusion of pseudo-variables does not affect the inclusion of real
important variables, and (A2) the probability of selecting pseudo-variables is the same
as the probability of including real unimportant ones, that is, E{IP (b)} = E{IU (b)},
where b is the unknown parameter determining the distance between gs and gl, IP (b)
is an indicator denoting the inclusion of any pseudo-variables given the value of b, and
IU (b) denotes the inclusion of any real unimportant variables. Property (A2) states
that if a model includes a real unimportant variable, then it is equally likely that the
model also has a pseudo-variable. Since E{IP (b)} = E{IU (b)} (A2), with T fixed, it is
easy to verify E(BFSR) = E(TP /T ), where TP is the number of models with pseudo-
variables included among the T iterations. An estimator of BFSR can then be defined

as ̂BFSR = TP /T .

Wu et al. (2007) proposed an approach using X to generate pseudo-variables with
the above two properties asymptotically held. Their approach is adopted here. It starts
from the permutation of the rows of X design matrix. Denote by PX the new ma-
trix. The pseudo-variables are then formed by the residuals through regressing PX on
X. Specifically, the values of the pseudo-variables are given by (I − HX)PX with
HX = X(XTX)−1XT . Permuting the rows of X maintains correlations between dif-
ferent variables in the generated pseudo-variables and ensures (A2) held asymptoti-
cally. Projecting PX through I − HX reduces the effect of pseudo-variables on the
selection of real important variables and thus makes (A1) approximately satisfied. Af-
ter introducing the pseudo-variables, data (Y ;X) is augmented to (Y ;X,RP ) with
RP = (I −HX)PX .
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3.2 The Adaptive Calibration of b and the MCMC Simulation
Process

The proposed adaptive selection process is motivated by the work of Browne and Draper
(2006), in which an adaptive approach is introduced at the beginning of MCMC posterior
sampling to select variances for jumping proposals. In our work, we use this idea to
select b. Due to the indirect influence of b noted earlier on the inclusion of variables, b
is calibrated to achieve a tolerable BFSR. Assume that the target BFSR is ω and the
initial value of b is b0. Usually b0 takes a relatively small value to potentially include
more variables. We list the tuning procedure as follows:

Step 1. Assume the current value is bm,m = 0, . . . ,M .

• At iteration t = 1, . . . , T , posterior samples of parameters are drawn using
the methods described in Section 2.2. Define It = 1, if at least one pseudo-
variable is selected, and It = 0 otherwise.

• Estimate BFSR as ̂BFSR =
∑T

t=1 It/T .

Step 2. If ̂BFSR is greater than zero but lower than a pre-specified tolerance bound,
ω+ω0, then set b = bm. The value of ω0 is a pre-specified positive small number.

If ̂BFSR > ω+ω0, then increase the value to bm+1 = bm{2−(1−̂BFSR)/(1−ω)}
to increase the distance between gs and gl in the two-component G method.

This is to potentially decrease ̂BFSR. Increase m by 1 and go to Step 1.

The tolerance bound is constructed such that being slightly away from the targeted
BFSR does not severely disturb the variable selection process. The targeted BFSR
can be set at 0.5, indicating random inclusion of unimportant variables. For the same
tolerance bound, the tuning process is expected to be longer if a smaller ω is chosen.
Alternatively, ω and ω0 can be combined to represent one single threshold if no interest
is in the target BFSR. We require BFSR be strictly positive to avoid the occurrence
of too large gk values. Once b is tuned, it is fixed. We then monitor the variation of
̂BFSR at the selected b value for a certain number of iterations to check the stability
of BFSR. After this step, the pseudo-variables are removed from the pool of candidate
variables and the MCMC simulation then starts the usual burn-in process; after the
burn-in the MCMC simulation continues to draw samples for the purpose of posterior
inferences. The motivation of calibrating b indicates that the above procedure can also
be applied to tune gk = g in the Zellner’s g-prior. Zellner’s g-prior with g tuned is used
as a competing method in the section of simulations.

4 Dealing with Measurement Errors

As noted earlier, the motivating example is to identify genes whose expression levels
are associated with lung functions. It is known that measurement errors are common in
gene expression levels (Vannucci et al., 2012). Ignoring measurement errors can cause
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biased inferences and consequently impact the selection of variables (Higgins et al., 1997;
Carroll et al., 2006; Liu and Wu, 2007; Liang and Li, 2009; Ma and Li, 2010). Under this
consideration, we further generalized the method by incorporating a measurement error
model into the variable selection process. The measurement error model is defined as

Wij = Xi +Uij , i = 1, . . . , n, j = 1, . . . , Ji,

where Wi = (Wi1, . . . ,WiJi)
T is a matrix containing corresponding observed values

of Xi measured at time j = 1, . . . , Ji for subject i, and Uij is the measurement error.
We assume Uij ⊥ Xi and Uij ∼ N(0,Σu) with Σu being an diagonal matrix. The
reliability ratio is defined as Σxx/(Σxx+Σuu) (Carroll et al., 2006), where Σxx and Σuu

denote the diagonal elements of corresponding covariance matrices of X and U . The
lower the reliability ratio, the severer the measurement errors will be. Assuming the
measurement error is non-differential, the updated likelihood function becomes

p(θ,Xγ |Y,W , b) ∝ p(Y |θ,Xγ)p(W |θ,Xγ)p(Xγ |θ),

where Xi ∼ N(0,ΣX) with ΣX = diag(σ2
x1
, . . . , σ2

xp
) and θ is expanded with param-

eters Σu and ΣX included. The priors for each component of Σu and that of ΣX are
inverse gamma with known parameters. Then following the similar procedure, we can
derive the full conditionals of all parameters. Details are given in Appendix C. Note that
since Uij ⊥ Xi, Proposition 1 given earlier and the method to generate pseudo-variables
still apply. The only difference is that, in this case, the pseudo-variables are formed by
projecting PW through I −HW , where PW is the matrix obtained by permuting the
rows of W , and HW = W (W TW )−1W T .

5 Simulations

Through simulations, in this section we demonstrate the proposed variable selection
approach and compare its performance with four competing methods corresponding to
four different settings of gk. In all these four settings, gk takes the same value for all
k’s, gk = g0. In the first setting, g0 = 10 as in Smith and Kohn (1996). The second
setting follows the suggestion in Fernández et al. (2001) and takes g0 = max(

√
n, p).

In the third setting, instead of fixing g0 at a specific value, we calibrate g0 using the
procedure listed in Section 3.2. The fourth competing method is recommended in Liang
et al. (2008), where a hyper-g-prior with parameter a in the prior taken as a = 3.
In addition to these four competing methods, we also compared our method with the
generalized g-prior recently proposed by Maruyama and George (2011), where a Bayes
factor is used for variable selection. In total, we compare our proposed method with five
competing ones.

5.1 Simulation Design

Example 1. Data in this example are simulated roughly following the study design in our
motivating example. A data set of size n is generated. Five uncorrelated variables X are
generated from N(0, I), among which the first one is important with coefficients β1 = 1.
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This variable also interacts with a two-level categorical variable and the coefficient for
the interaction part is 2, which gives β = (1,01×5, 2,01×4). For the two-level categorical
variable, half of the n observations are assigned to level 1. The variance of the random
error is σ2 = 1.

Example 2. This is to demonstrate the performance of the method when the number of
covariates is relatively large and those covariates are correlated. A data set of size n with
20 candidate variables is simulated, among the 20 variables, the first 4 are important
with regression coefficients (β1, . . . , β4) = (1, 1.5, 2, 1.8). The correlation between every
two candidate variables is 0.6|i−j|, i, j = 1, . . . , 20. Other settings are the same as in
Example 1.

We consider various sample sizes n = 30, 100, 200, 400, and 600 for each example,
and for each sample size, 1000 data sets were simulated. Sample size of 30 is similar
to that in our motivating example. In Example 1, after including pseudo variables,
the maximum number of covariates is 22. In Example 2, when n = 30 the number
of true candidate variables plus that of the pseudo-variables exceed the sample size.
In this case, the conventional all-subsets regression strategies for variable selection are
not feasible (Miller, 2002; George and McCulloch, 1993). In all the simulated data, the
pseudo-variables are generated based on the criteria described in Section 3.

The following statistics are recorded and used to evaluate the performance of the
methods:

1. The proportions of correct/over-fitted/under-fitted models in 1000 simulated data
sets. Correct models are defined as models that only include all truly important
variables; over-fitted models are the models that include all important variables
plus at least one unimportant variable; and under-fitted models are those that
include a subset of the important variables. The sum of the three proportions is 1.

2. Mean squared loss (MSL) assesses the estimation power of a selected model and is

defined as MSL = 1
n (β̂γ−βγ)

TXT
γ Xγ(β̂γ−βγ), where β̂γ is the posterior mean of

βγ . In the proposed method, for large n, the distribution of MSL is approximately
proportional to χ2

Λγ
with Λγ degrees of freedom.

5.2 Results and Comparisons

We applied the proposed methods to the above simulated data sets. For each data set,
two Markov chains are simulated for the purpose of convergence assessment (Gelman
et al., 2003). Each chain starts from a certain number of iterations with an initial value
of b0. This is then followed by the process of calibrating b as described in Section 3.2 with
the target BFSR set at ω = 0.5 and the tolerance upper bound at ω+ω0 = 0.6. After b

is selected, we continue to run 20,000 MCMC iterations to monitor the change of ̂BFSR.
After the tuning process, the MCMC simulation process runs for 20,000 iterations with
10,000 iterations used as burn-in.

Based on one simulated data set of each example, Figure 1 is an illustration of the

tuning (TP) and monitoring processes (MP). The figure displays the trend of ̂BFSR
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with the change of b, where each ̂BFSR is calculated based on T = 1000 iterations for a
given b. As indicated in the figure, b can be quickly tuned when the number of variables is
small (Example 1). When the number of variables is large, it may take a large number of
MCMC iterations to find an appropriate b (Example 2). In addition, the results from the

monitoring process indicate that once b is selected, ̂BFSR is relatively stable, implying
that we are ready for the regular MCMC sampling. The posterior inferences discussed
below are based on 10,000 posterior samples from one chain after 10,000 burn-in of two
chains.

Figure 1: Illustration of the tuning process of b in the two examples (n = 400). The
transformed b is calculated as

√
log(b), “TP” denotes “tuning process” and “MP” de-

notes “monitoring process”, and the solid horizontal line indicates the tolerance upper
bound of BFSR.

As indicated in Table 1, the findings based on finite samples are consistent with
the asymptotical property given in Section 2.1, in that the proposed method selects
the correct models more efficiently compared to other competing methods built upon a
scalar g0. In these simulations, we take f1(n) = n, and f2(n) = nψ with ψ = 0.55. As
noted in Proposition 1, the asymptotical property holds as long as f1(n) = O(n), f2(n) =
O(nψ), 1/2 < ψ < 1. This was also supported by our additional simulations (results
not shown). Overall, the method based on the two-component G-prior gives higher
percentages of correct selections and lower losses. These patterns are observed as well
when the number of predictors increased from 11 to 20 (see Figure 2).

5.3 Accounting for Measurement Errors

Due to the motivating example of the proposed method, we further extended the ap-
proach to incorporate measurement errors as discussed in Section 4. To examine its
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n = 30 g0 = 10 g0 = max(
√
n, p) g0 Ggl,gs Hyper-g Generalized g

% correct 32.4 36.1 68.8 61.9 54.6 65.2
% overfit 58.0 54.6 9.0 3.4 38.0 32.0
Med. b – – 224.12 164.15 – –

Med. MSL 0.137 0.133 0.073 0.092 0.125 0.30
n = 100 g0 = 10 g0 = max(

√
n, p) g0 Ggl,gs Hyper-g Generalized g

% correct 40.4 44.9 88.7 98.1 63.9 85.3
% overfit 59.6 55.1 11.2 1.8 36.1 11.2
Med. b – – 157.97 114.11 – –

Med. MSL 0.031 0.028 0.016 0.014 0.027 0.085
n = 600 g0 = 10 g0 =

√
n g0 Ggl,gs Hyper-g Generalized g

% correct 43.9 64.9 89.9 98.1 78.8 95.2
% overfit 56.1 35.1 10.1 1.9 21.2 3.1
Med. b – – 145.02 86.11 – –

Med. MSL 0.010 0.006 0.003 0.004 0.003 0.012

Table 1: Variable selection statistics for Example 1: Med. b, median of the tuning pa-
rameter; Med. MSL, Median mean squared loss.

Figure 2: Patterns of percentages of correct selection on important variables (a) and
mean squared losses (b) across different sample sizes. In both figures, g l, g s represents
the two-component G-prior.

performance, we modify the simulation scenario of Example 2 by adding noise onto X.
Specifically, we consider Σu = 0.25I and 0.11I, corresponding to reliability ratios of
a = 0.8 and 0.9, respectively. We compare the two-component G method with four of
the competing methods where the measurement errors are incorporated. The general-
ized g-prior is not considered in this comparison as it selects a model via Bayes factors
not designed for predictors with measurement errors. A recently developed frequentist
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approach for variable selection in partially linear measurement error models is consid-
ered instead and included as the fifth competing method (Liang and Li, 2009). It utilizes
modified least squares combined with the SCAD penalty to perform variable selection.
The modified least squares is built upon mis-measured predictors and yields consistent
estimators. In that method, a tuning parameter critical to the inclusion of a variable
is selected using BIC pretending no measurement errors. It has been shown that with
an appropriately chosen tuning parameter, their proposed method will yield a variable
selection procedure that enjoys the celebrated oracle property.

We summarize our findings in Figure 3 for percentages of correct selections and
Figure 4 for mean squared loss. Results related to percentages of over-fitting along
with other statistics are given in Appendix D. In terms of variable selection, both the
proposed method and the method of Liang and Li (2009) have finite sample performance
consistent with the asymptotical properties in variable selection. However, the proposed
method more often produces the highest percentages of correct selection among all the
methods.

Figure 3: Patterns of percentages of correct selection on important variables across
different sample sizes at different reliability ratios: (a) a = 0.8; (b) a = 0.9. In both
figures, g l, g s represents the two-component G-prior.

6 Applications

In this section, we apply the method to two real data sets: gene expression and lung
function data, and ozone data. The first data set has 12 variables with sample size of 27,
representing a situation of small sample size with relatively large number of candidate
predictors. Also, the gene expression levels were measured twice for the purpose of
measurement error correction. The second data set has a larger number of variables
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Figure 4: Patterns of mean squared losses across different sample sizes at different
reliability ratios: (a) a = 0.8; (b) a = 0.9. In both figures, g l, g s represents the two-
component G-prior.

(44 variables) with sample size of 330. In both applications below, we take the same
setting of f1(n) and f2(n) as in simulations.

Application 1. The gene expression and lung function data, which motivated our
study, were provided by tissues from the Lung Tissue Research Consortium (LTRC).
It was from an association study examining whether IPF severity (measured by forced
vital capacity, FVC) is associated with age, gender, expression of five genes, and their
interaction with gender. The five genes are CCR3, Collagen IIIα1, GMCSF, IL 6, and
Tenascin C. All of these gene targets are recognized to play a role in the pathogenesis
of pulmonary fibrosis and are particularly related to immune and extra cellular matrix
(ECM) remodeling processes (Sabo-Attwood et al., 2011). Collagen IIIα1 is a major
component of the ECM, and Tenascin C is a glycoprotein involved in matrix turnover.
Genes IL 6, GMCSF and CCR3 are regulators that govern the functions of the immune
system by modulating pulmonary recruitment of immune cells (Knight et al., 2003;
Christensen et al., 2000; Huaux et al., 2005). In total n = 27 subjects are involved in
the study. The expression of each gene is the mean of two repeated measures for each
subject, denoted below as “true” measures.

The model to be evaluated includes all main effects of the five genes, gender, and age
along with the gene and gender interaction effects, which results in 12 variables. Pseudo-
variables are generated using the method given in Section 3, and data are centered
(treating all variables as continuous variables). We fit the data using the two-component
G method along with the five competing approaches discussed in Section 5. Table 2 lists
the top two models selected by each approach along with the posterior probabilities
of each selection (Bayes factor is provided for the method by Maruyama and George
(2011)).
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Models Selected variables Selection statistics
Post. prob. of selection

g = 10
1 Collagen IIIα1, GMCSF × gender 0.13
2 Tenascin C, Collagen IIIα1 × gender, 0.07

GMCSF × gender, IL 6 × gender

g = 12
1 Collagen IIIα1, GMCSF 0.10
2 GMCSF, Tenascin C 0.07

g tuned
1 Collagen IIIα1, GMCSF × gender 0.12
2 Collagen IIIα1 0.11

G
1 Collagen IIIα1 0.26
2 Collagen IIIα1, GMCSF × gender 0.21

hyper-g-prior
1 Collagen IIIα1, GMCSF × gender 0.0049
2 Collagen IIIα1, GMCSF, GMCSF × gender 0.0041

Bayes Factor (log(BF ))

generalized g-prior
1 Collagen IIIα1, GMCSF × gender 4.52
2 Collagen IIIα1, GMCSF 4.31

Table 2: Selected top two models for the two-component G and 5 competing methods.
The models are sorted by posterior probabilities of selection or Bayes factor.

The two-component G method and the method by tuning a single gk = g select the
same top two models, and both models are with similar posterior probabilities of selec-
tion. As seen in the simulations, these two methods select the correct models more often
with the two-component G method enjoying the highest correctness rates. All methods
except for taking g = max(

√
n, p) select a model which includes Collagen IIIα1 and the

interaction of GMCSF with gender. With g = 10, it has the tendency to select more
variables, while taking g = max(

√
n, p) selects two models both with main effects only.

Based on our simulations, the correctness rates of these two approaches are low and
they also tend to over fit the data. These observations combined with the findings from
simulations indicate that it is likely that, among all the genes, Collagen IIIα1 is the
most important, and it is likely that GMCSF interacts with gender to influence the
lung function. The findings in previous studies support the selection of Collagen-IIIα1;
Collagen-IIIα1 has shown to be highly upregulated in rodent models of pulmonary fibro-
sis (Sabo-Attwood et al., 2011) and is differentially expressed in patients with idiopathic
pulmonary fibrosis compared with control subjects (Brass et al., 2007). However, the
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interaction of GMCSF with gender was not identified before, which deserves further
investigation to exclude the effect of other risk factors such as occupation and environ-
mental factors. It is worth noting that the variables listed in Table 2 are selected by
treating each interaction variable as a variable independent from others. In practice,
the hierarchical rule in variable selection is suggested to be followed, e.g., in the model
selected by most methods that involves the interaction GMCSF×gender, both GMCSF
and gender should be included in the model as well.

Given the availability of two repeated measures of gene expression levels for each
gene, we performed the selection procedure by use of two repeated measures of gene
expression level for each gene and each subject, using the method discussed in Sec-
tion 4, which has the ability to account for measurement errors. We compare the results
from the proposed method with the results from all other methods including Liang
and Li (2009) except for the generalized g-prior as noted in Section 5.3. Utilizing the
repeated measures of gene expression levels, we estimated the reliability ratios of each
gene which range from 0.88 to 0.95 using the method stated in Section 4.4.2 (p. 70–72)
of Carroll et al. (2006). With measurement error incorporated, for the two-component
G method, the top two models are the same as those when “true” measures are used.
The posterior probabilities are 0.23 (Model 1) and 0.15 (Model 2), respectively. The
method by tuning a single g also identified the same top models (with posterior prob-
abilities 0.10 for Model 1 and 0.16 for Model 2, respectively), plus a model with a
comparable posterior probability of 0.11 that includes main effects of two genes, Col-
lagen IIIα1 and GMCSF. The most popular model including Collagen IIIα1 and the
interaction of GMCSF with gender is kept by the method utilizing hyper-g-prior as
the top 1 model (posterior probability 0.028). In addition, it identified a second best
model which includes a main effect of GMCSF, and interaction effects of GMCSF with
gender and Collagen IIIα1 with gender (posterior probability 0.02). The selection re-
sults from other methods based on a scalar g are far from being consistent with those
based on “true” measures, which is likely to reflect their low correctness rates as seen
in the simulations. Regarding the frequentist approach in Liang and Li (2009) designed
for variable selection in measurement error models, it selected a model that includes
the main effect of Collagen IIIα1 and interaction effect of GMCSF with gender, which
is Model 2 by use of the two-component G method. Overall, in the situation of mea-
surement errors, the methods based on the two-component G prior, the g-prior with g
tuned, the hyper-g-prior, and the frequentist approach identified the same best model.
Only the two-component G method showed consistent findings with the situation of
measurement error free.

Application 2. This application is to select variables associated with ozone levels.
The data was analyzed and discussed in different studies (Breiman and Friedman, 1985;
Casella and Moreno, 2006; Miller, 2002; Liang et al., 2008). It consists of daily mea-
surements of the maximum ozone concentration near Los Angeles and 8 meteorological
variables (a description of the variables is in Appendix E). As done in other studies
(Miller, 2002; Casella and Moreno, 2006; Liang et al., 2008), the full linear regression
model contains the 8 meteorological variables, two-way interactions, and squares of each
variable. This gives in total 44 possible predictors. We applied the proposed method to
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Selected variables Selection statistics R2

Full model 0.789

Post. prob. of selection
g = 10

temp, ibh, humid*temp, humid*dpg, humid*ibt, 0.033 0.775
temp*ibh,temp*vis, ibh*ibt, ibh*vis, ibt*vis,

vh2, humid2, dpg2

g = 44
humid, dpg, vh*ibt, humid*ibh, humid*ibt, 0.066 0.767

temp*ibt, dpg2,

g tuned
vh*ibt, humid*ibh, humid*ibt, temp*ibt 0.333 0.756

G
vh*ibt, humid*ibh, humid*ibt, temp*ibt 0.527 0.756

hyper-g-prior
dpg, ibt, vh*ibh, humid*dpg, humid*ibt, 0.0008 0.771

temp*ibt, ibh*vis, humid2, dpg2

Bayes Factor (log(BF ))

generalized g-prior#

ibh, humid*temp, humid*ibh, temp*ibt, 208.60 0.750
ibh*ibt

#Due to the large number of possible models, exhaustive search based on Bayes factor
is practically impossible. Candidate predictors are chosen such that these variables are
selected by at least one of the other five methods.

Table 3: Selected top two models along with the posterior probabilities of selection. The
models are sorted by posterior probabilities of selection.

the data, and compared the results with those from the 5 competing approaches dis-
cussed in Section 5. Besides the posterior probabilities of selection or Bayes factors for
the best model selected, we also calculated R2 for each selected model and the full
model that includes all 44 variables. As shown in Table 3, the two-component G-prior
selected a model that includes four terms and has R2 = 0.756, close to R2 = 0.775
from the full model. Compared to the models selected by other methods, except for
the method using g-prior with g tuned which identified the same model, all the other
methods selected complex models with slightly higher R2 (except for the generalized
g-prior, which gives lower R2). As in Application 1, we suggest that in practice the
final model determination follow the hierarchical rule, e.g., for the model selected us-
ing the two component G-prior, it should also include the main effects of each variable
selected.
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7 Discussion

We proposed a Bayesian variable selection approach in linear regressions based on an
extension of the Zellner’s g-prior. Instead of using a universal single g as in the classic
Zellner’s g-prior, we recommended the use of two different gk’s (the two-component G-
prior) to distinguish important variables from unimportant ones. The distance between
the two components was adjusted by a tuning parameter b. The tuning parameter was
selected adaptively by controlling a Bayesian false-model selection rate. The impact of
measurement errors on parameter inferences and the availability of repeated measures
in real data motivated us to further extend the method to incorporate measurement
errors in variable selection.

We theoretically justified the efficiency of the proposed method and further demon-
strated and evaluated the method via simulations. The simulation results showed that
the proposed method can efficiently identify the correct models regardless of the exis-
tence of measurement errors. We compared the method with five methods developed
based on traditional g-priors and one additional method constructed in the frequen-
tist framework. In general, the competing methods tend to over-fit the data and the
proposed method performs the best especially with respect to the correct selection
rates.

The two real data applications further strengthened the findings from simulations
and demonstrated that the proposed method has the ability to choose parsimonious
models with R2 close to that from the full model. In our first real data application, by
use of the proposed method, we also performed variable selection with measurement
error ignored. No difference was observed in terms of variables selected. However, as in-
dicated in Liang and Li (2009), any appropriate variable selection procedures may falsely
classify important variables if one ignores measurement errors. To further strengthen
this statement, we simulated a data set using the scenario in Example 2 but set the
first 4 important regression coefficients as (β1, . . . , β4) = (1, 0.5, 2, 1.8). For the purpose
of illustration, we only considered reliability ratio a = 0.8 and sample size n = 200.
Our results from the two-component G method indicated that ignoring measurement
error does have a potential to cause false variable selection. Specifically, out of 1000
simulated data sets, the percentage of correct selection when ignoring measurement er-
rors was 66% and the percentage increased to 72% if measurement error was addressed.
In most cases, the second variable with coefficient 0.5 was classified as an unimpor-
tant variable and consequently caused the low correctness rate. For large effect sizes
(β1, . . . , β4) = (1, 1.5, 2, 1.8) as in our Example 2, with a = 0.8, such increase in cor-
rectness rate after accounting for measurement error was not observed. However, it is
expected that when measurement error is severe, the need of accounting for measure-
ment error will be more obvious even in the situation of large effect sizes. In real data
applications, because the effect size in general is unknown and measurement error can
be large, it is safer to correct for measurement errors whenever possible. Additionally,
in this article, we only considered two components in G. However, moderately impor-
tant variables may exist. In this case, a multi-component G-prior may perform better.
A potential challenge in this direction is how to deal with the complexity of the model
and consequently prevent from potential power loss due to the increase of the number
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of components. This is our ongoing research work. Finally, it is worth noting that the
methods can be easily extended to other types of statistical models including general-
ized linear models and models applied to survival data analysis, although the posterior
distributions may be more involved.

Appendix A

The Prior Distributions The prior distributions of γk and ck are both selected to be
independent Bernoulli distributions, γk ∼ Ber(πk) with π = (π1, . . . , πp) and ck ∼
Ber(qk) with q = (q1, . . . , qp). Parameter πk indicates the prior probability of including
a variable in the model, and qk is the prior probability of choosing gl.

We infer πk based on information in the data and thus assume a vague prior dis-
tribution, πk ∼ uniform (0, 1). The same choice of hyper prior distribution is applied
to q.

The Posterior Distributions The conditional posterior distribution of γk is Bernoulli
with

Pr(γk = 1|Y ,Xγ ,βγ ,γ(−k), σ
2, c, b, πk) =

a0
a0 + b0

,

a0 = p(βγ |Xγ , γk = 1,γ(−k), σ
2, c, b, πk)Pr(γk = 1|πk),

b0 = p(βγ |Xγ , γk = 0,γ(−k), σ
2, c, b, πk)Pr(γk = 0|πk).

Note that in the calculations of a0 and b0, for each γ given (with γk = 1 in the calculation
of a0 and γk = 0 in the calculation of b0), the coefficients for variables not included in
the model are zeros with probability 1, and do not contribute to the determination of
a0 and b0.

The construction of the full conditional for c follows the same way as that for γ,

Pr(ck = 1|Xγ ,βγ ,γ, σ
2, c(−k), b, qk) =

a1
a1 + b1

,

a1 = p(βγ |Xγ ,γ, σ
2, ck = 1, c(−k), b, qk)Pr(ck = 1|qk),

b1 = p(βγ |Xγ ,γ, σ
2, ck = 0, c(−k), b, qk)Pr(ck = 0|qk).

Appendix B

To prove the Proposition presented in Section 2.1, we need the following lemma:

Lemma 1. Assume XT
γ Xγ/n → ΣXγ with ΣXγ being the covariance of Xγ and ΣXγ

positive definite. As n → ∞, given all other parameters, ck = 0 with probability 1 if
βk �= 0.

Proof. In all the proofs in this Appendix, the limits are taken with respect to n, i.e.,
n → ∞.



H. Zhang, X. Huang, J. Gan, W. Karmaus, and T. Sabo-Attwood 371

To show that ck taking the value of 0 with probability 1 given the values of all
other parameters is equivalent to showing Pr(ck = 0|Xγ ,βγ ,γ, σ

2, c(−k), b, qk) → 1 as
n → ∞. Recall when ck = 1, gk = gl and gl → ∞ as n → ∞. The natural logarithm of
the conditional posterior of ck is

log(Pr(ck|Xγ ,βγ ,γ, σ
2, c(−k)), b, qk) = C0 −

1

2
log |Gγ(X

T
γ Xγ)

−1Gγ |

−
βT
γG

−1
γ (XT

γ Xγ)G
−1
γ βγ

2σ2

+ ck log qk + (1− ck) log(1− qk), (6)

where qk is the prior probability of ck = 1 and C0 is a constant. Simplifying the second
term,

− 1

2
log |Gγ(X

T
γ Xγ)

−1Gγ | = −1

2
log

{
|Gγ |2|XT

γ Xγ |−1
}

= −1

2
log

⎧⎨
⎩
⎡
⎣∏
k′ �=k

g2k′

⎤
⎦ g2k|XT

γ Xγ |−1

⎫⎬
⎭

= −
∑
k′ �=k

log gk′ − log gk +
1

2
log |XT

γ Xγ |. (7)

Simplifying the third term by highlighting information related to the kth variable, we
have

−
βT
γG

−1
γ (XT

γ Xγ)G
−1
γ βγ

2σ2

= C1 −
βkg

−1
k (

∑
k′ �=k X

T
γ Xγ [k, k

′]βk′g−1
k′ ) + β2

kg
−2
k XT

γ Xγ [k, k]

2σ2
, (8)

where C1 is constant with respect to the kth variable.

Based on (7) and (8), assuming βk �= 0, we have

log(Pr(ck = 1|Xγ ,βγ ,γ, σ
2, c(−k), b, qk))− log(Pr(ck = 0|Xγ ,βγ ,γ, σ

2, c(−k), b, qk))

= log(gs/gl)−
(g−1

l − g−1
s )βk(

∑
k′ �=k X

T
γ Xγ [k, k

′]βk′g−1
k′ )

2σ2

−
(g−2

l − g−2
s )β2

kX
T
γ Xγ [k, k]

2σ2
. (9)

In (9), as n → ∞, log(gs/gl) → −∞ in the speed of log(na0) with a0 < 1. The
numerator of the second term is

(g−1
l − g−1

s )nβk(
∑
k′ �=k

XT
γ Xγ [k, k

′]/nβk′g−1
k′ )

= βk{
∑
k′ �=k

XT
γ Xγ [k, k

′]/nβk′(n/(gk′gl)− n/(gk′gs))}.
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Similarly, the third term in (9) is (n/g2l − n/g2s)β
2
kX

T
γ Xγ [k, k]/n. Since gl → ∞ in the

order O(n), gs → ∞ in the order of O(nψ) with 1/2 < ψ < 1, and XT
γ Xγ/n → ΣXγ

with ΣXγ positive definite, the last two terms in (9) are finite. Thus

log(Pr(ck = 1|Xγ ,βγ ,γ, σ
2, c(−k), b, qk))

− log(Pr(ck = 0|Xγ ,βγ ,γ, σ
2, c(−k), b, qk)) → −∞

as n → ∞. This implies that if variable k is important, then gk takes the value of gl
with probability approaching to 0 as n → ∞. Consequently, if βk �= 0, then conditional
on other parameters, ck = 0 (that is, gk = gs) with probability approaching to 1 as
n → ∞.

Following the above conclusion, it is straightforward that

Pr(γk = 0|Y ,Xγ ,βγ ,γ(−k), σ
2, ck = 1, c(−k), b, πk) → 1

as n → ∞, which implies that if a variable k takes gk = gl, then this variable is more
likely to be treated as an unimportant variable and will be excluded from the model.
The choice between gl and gs will be determined by the data.

Now we prove Proposition 1.

Proof. Let θ0 = (βγ , σ
2) denote a collection of parameters for a given model determined

by γ. The joint distribution of θ0 and Y conditional on Xγ and Gγ is

p(θ0,Y |Xγ ,γ,Gγ) = p(βγ |Y ,Xγ ,γ, σ
2,Gγ)p(σ

2|Y ,Xγ ,γ,Gγ)p(Y |Xγ ,γ,Gγ).
(10)

Note that by taking gk = gs in Gγ , (10) is reduced to the setting under the Zellner’s
g-prior.

The first term is the full conditional posterior distribution of βγ and is given in (3).
The second part is marginal posterior distribution of σ2 under a specific model. It is
obtained by integrating out β from (10)

p(σ2|Y ,Xγ ,γ,Gγ) ∝ (σ2)−(1+n/2) exp
{
−Y TQγY/(2σ

2)
}

= Inv-Gam

(
n

2
,
Y TQγY

2

)
,

Qγ = I −Xγ(X
T
γ Xγ +G−1

γ XT
γ XγG

−1
γ )−1XT

γ .

The last term in (10) is related to the calculation of Bayes factor:

p(Y |Xγ ,γ,Gγ) ∝ (Y TQγY )−n/2
|G−1

γ (XT
γ Xγ)G

−1
γ |1/2

|XT
γ Xγ +G−1

γ (XT
γ Xγ)G

−1
γ |1/2

. (11)

From Lemma 1, if variable k is important, then for a given σ2 under a model defined
by γ, ck takes the value of 0 with probability 1 as n → ∞, equivalently, gk = gs with
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probability 1 as n → ∞ if βk �= 0. Thus if γ specifies the true model t, then gk → gs
in probability 1 for all k in model t as n → ∞. Thus we have Pr(Mt|Y ,X,Gγ) −
Pr(Mt|Y ,X, gs) → 0 as n → ∞. We denote this as Result A.

Define Ru(Gγ , gs) as

Ru(Gγ , gs) =
Pr(Mu|Y ,X,Gγ)

Pr(Mu|Y ,X, gs)
∝ Pr(Y |Xγ ,γ,Gγ)

Pr(Y |Xγ ,γ, gs)
.

From (11),

Ru(Gγ , gs) =

[
Y TQγ,gsY

Y TQγ,GγY

]n/2 |XT
γ Xγ |1/2(1 + g−2

s )k0/2

(g−1
s )k0 |XT

γ Xγ |1/2
|G−1

γ XT
γ XγG

−1
γ |1/2

|XT
γ Xγ +G−1

γ XT
γ XγG

−1
γ |1/2

≤
[
Y TQγ,gsY

Y TQγ,GγY

]n/2 |XT
γ Xγ |1/2(1 + g−2

s )k0/2

|XT
γ Xγ |1/2 + |G−1

γ XT
γ XγG

−1
γ |1/2

(g−1
l )m(g−1

s )k0−m

(g−1
s )k0

=

[
Y TQγ,gsY

Y TQγ,GγY

]n/2
(g−1

l )mgms
1 + (g−1

l )m(g−1
s )k0−m

(1 + g−2
s )k0/2, (12)

where Qγ,gs is Qγ by taking all gk = gs, Qγ,Gγ is Qγ by using the two-component G,
and we assume model Mu has k0 variables. The inequality in (12) is due to the fact that

|XT
γ Xγ +G−1

γ XT
γ XγG

−1
γ |1/2 =

[
|XT

γ Xγ +G−1
γ XT

γ XγG
−1
γ |1/n

]n/2
,

and by the Minkowski determinant theorem (Marcus, 1992)

|XT
γ Xγ +G−1

γ XT
γ XγG

−1
γ |1/n ≥ |XT

γ Xγ |1/n + |G−1
γ XT

γ XγG
−1
γ |1/n.

Let

Ags =
1

1 + g−2
s

Xγ(X
T
γ Xγ)

−1XT
γ , and AGγ = Xγ(X

T
γ Xγ +G−1

γ XT
γ XγG

−1
γ )−1XT

γ .

Combined with the conditional posterior mean of βγ , we can see that Y T (I−AgsAgs)Y
and Y T (I − AGγAGγ )Y are the sum of squared errors under the model with gk = gs
and the model with Gγ , respectively. Write AGγ as

AGγ = Xγ(X
T
γ Xγ + g−2

s diag(1, gs/gl)X
T
γ Xγdiag(1, gs/gl))

−1XT
γ ,

with diag(1, gs/gl) denoting the diagonal elements of Gγ/gs. Since gs/gl approaches
zero as n → ∞, we have as n becomes large, Y T (I−AgsAgs)Y < Y T (I−AGγAGγ )Y .
Consequently, we have Y T (I − Ags)Y < Y T (I − AGγ )Y , because XT

γ Xγ in Ags and

(XT
γ Xγ +G−1

γ XT
γ XγG

−1
γ ) in AGγ are positive definite. Bringing this inequality to the

first factor in (12), we have
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[
Y TQγ,gsY/(Y

TQγ,GγY )
]n/2 → 0,

as n → ∞. For the second factor in (12),

(g−1
l )mgms /

(
1 + (g−1

l )m(g−1
s )k0−m

)
= (gs/gl)

m/
(
1 + gk0

s (gs/gl)
m
)
→ 0,

as n → ∞. The last factor in (12), (1 + g−2
s )k0/2, is clearly finite given k0 < ∞. The

results of these three factors indicate that Ru(Gγ , gs) → 0 as n → ∞. We denote this

as Result B.

Combining Results A and B, we have as n → ∞,

Ru,t(Gγ)/Ru,t(gs) =

[
Pr(Mu|Y ,X,Gγ)

Pr(Mt|Y ,X,Gγ)

]
/

[
Pr(Mu|Y ,X, gs)

Pr(Mt|Y ,X, gs)

]
→ 0,

that is, Ru,t(Gγ) = o(Ru,t(gs)).

From Fernández et al. (2001), we have Ru,t(gs) → 0 as n → ∞. Finally, since

Ru,t(Gγ) = o(Ru,t(gs)), it is straightforward that Ru,t(G) → 0 asymptotically.

Appendix C

The Prior and Joint Posterior Distribution with Measurement Errors in X Incorpo-
rated When measurement error presents, prior distributions for X andΣu are needed.

Following Carroll et al. (2006), the prior distribution of Xi is given by Xi ∼ N(0,ΣX)

with ΣX = diag(σ2
x1
, . . . , σ2

xp
). The hyper-prior distribution of σ2

xk
, k = 1, . . . , p, is

assumed to be an inverse gamma distribution, σ2
xk

∼ Inv-Gam(δσxk
,1, δσxk

,2) with

small δσxk
,1 and δσxk

,2. In this article, we assume independent measurement errors and

Σu = diag(σ2
u1
, . . . , σ2

up
) with σ2

uk
∼ Inv-Gam(δσu,1, δσu,2). Caution should be given to

the choices of small shape and scale parameters. As Gelman (2006) pointed out, if the

sample size is small or values of the variance are small, posterior inferences will become

sensitive to the choice of the shape and scale parameters, and these prior distributions

will be nowhere noninformative.

Let θ = (β,γ, σ2, c,ΣX ,Σu, πk, qk) denote a collection of parameters. The joint

posterior distribution of θ and X is, up to a normalizing constant,

p(θ,Xγ |Y,W , b) ∝ p(Y |θ,Xγ)p(W |θ,Xγ)p(θ,Xγ)

= p(Y |βγ ,γ, σ
2,Xγ)p(βγ |γ, σ2, c, b,Xγ)p(W |Xγ ,Σu)

· p(Xγ |ΣX)p(σ2)p(ΣX)p(Σu)p(γ|π)p(c|q)p(π)p(q).

In the following, we only list the full conditional posterior distributions that depend

on mis-measured candidate variables. The full conditional posterior distributions of σ2
xk
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and σ2
uk

are

p(σ2
xk
|Xk) = Inv-Gam

(
n

2
+ δσxk

,1,
XT

k Xk

2
+ δσxk

,2

)
,

p(σ2
uk
|Wk,Xk) = Inv-Gam

{
nJ

2
+ δσu,1,

(Wk −Xk)
T (Wk −Xk)

2
+ δσu,2

}
,

where Wk and Xk denote the observed and true measure of variable k, respectively, and

J denotes the number of repeated measures. The full conditional posterior distribution

of Xi is

p(Xk,i|Y ,W ,βγ ,γ, σ
2, σ2

xk
, σ2

uk
) = N(μk,i, σ

2
k),

σ2
k = 1/(β2

k/σ
2 + 1/σ2

xk
+ J/σ2

uk
),

μk,i = σ2
k

⎧⎨
⎩βk/σ

2(Yi −
∑
l �=k

Xl,iβl) + JW k,i/σ
2
uk

⎫⎬
⎭ ,

W =

J∑
j=1

Wj/J.

Appendix D

Measurement Error Incorporated Variable Selection Summary Statistics

n = 30 g = 10 g =
√
n g G Hyper-g Liang & Li

% correct 6.3 16.5 39.9 37.2 40.9 4.8
% overfit 76.3 71.5 52.5 50.3 49.5 21.3
Med. b – – 672.67 1599.83 – –

Med. MSL 6.060 0.271 1.62 1.002 0.59 2.837
n = 200 g = 10 g =

√
n g G Hyper-g Liang & Li

% correct 7.8 12.8 50.7 58.7 60.5 8.2
% overfit 92.2 87.2 49.3 41.3 39.3 90.7
Med. b – – 2090.94 1286.88 – –

Med. MSL 0.099 0.205 0.407 0.048 0.172 0.153
n = 600 g = 10 g =

√
n g G Hyper-g Liang & Li

% correct 3.4 14.3 64.9 82.9 71.5 47.8
% overfit 96.6 85.7 35.1 17.1 23.2 52.2
Med. b – – 2107.47 1331.63 – –

Med. MSL 0.063 0.121 0.153 0.009 0.133 0.037

Table 4: Variable selection statistics for Example 2 (n = 30, 200, 600), reliability ratio
0.8. Med. b, median of the tuning parameter; Med. MSL, Median mean squared loss.
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n = 30 g = 10 g =
√
n g G Hyper-g Liang & Li

% correct 6.8 16.3 31.7 51.7 66.0 0.8
% overfit 87.7 79.7 51.1 45.1 32.1 63.3
Med. b – – 769.77 469.52 – –

Med. MSL 0.090 0.228 0.543 0.371 0.202 1.551
n = 200 g = 10 g =

√
n g G Hyper-g Liang & Li

% correct 10.4 19.4 97.8 99.9 83.2 25.2
% overfit 89.6 80.6 2.2 0.1 16.8 74.8
Med. b – – 662.94 436.32 – –

Med. MSL 0.044 0.037 0.026 0.025 0.026 0.066
n = 600 g = 10 g =

√
n g G Hyper-g Liang & Li

% correct 11.6 33.4 98.8 99.9 88.5 73.8
% overfit 88.4 66.6 1.2 0.1 11.5 26.2
Med. b – – 627.21 355.39 – –

Med. MSL 0.019 0.011 0.007 0.006 0.008 0.019

Table 5: Variable selection statistics for Example 2 (n = 30, 200, 600), reliability ratio
0.9. Med. b, median of the tuning parameter; Med. MSL, Median mean squared loss.

Appendix E

Description of the Variables in the Ozone Data

ozone Daily ozone concentration (maximum one hour average, parts per million) at
Upland, CA;

vh Vandenburg 500 millibar pressure height (m);

wind Wind speed (mph) at Los Angeles International Airport (LAX);

hum Humidity (percent) at LAX;

temp Sandburg Air Force Base temperature (F ◦);

ibh Inversion base height at LAX;

ibt Inversion base temperature at LAX;

dpg Daggett Pressure gradient (mm Hg) from LAX to Daggett, CA;

vis Visibility (miles) at LAX.
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