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Exact and Approximate Bayesian Inference
for Low Integer-Valued Time Series Models

with Intractable Likelihoods

Christopher C. Drovandi∗, Anthony N. Pettitt†, and Roy A. McCutchan ‡

Abstract. In this paper we develop a likelihood-free simulation methodology in
order to obtain Bayesian inference for models for low integer-valued time series
data that have computationally demanding likelihood functions. The algorithm
fits within the framework of particle Markov chain Monte Carlo (PMCMC) meth-
ods and uses a so-called alive particle filter. The particle filter requires only model
simulations and, in this regard, our approach has connections with approximate
Bayesian computation (ABC). However, an advantage of using the PMCMC ap-
proach in this setting is that simulated data can be matched with data observed
one-at-a-time, rather than attempting to match on the full dataset simultane-
ously or on a low-dimensional non-sufficient summary statistic, which is common
practice in ABC. For low integer-valued time series data, we find that it is of-
ten computationally feasible to match simulated data with observed data exactly.
The alive particle filter uses negative binomial sampling in order to maintain
a fixed number of particles. The algorithm creates an unbiased estimate of the
likelihood, resulting in exact posterior inferences when included in an MCMC al-
gorithm. In cases where exact matching is computationally prohibitive, a tolerance
is introduced as in ABC. This paper further develops the alive particle filter by
introducing auxiliary variables so that partially observed and/or non-Markovian
models can be accommodated. We demonstrate that Bayesian model choice prob-
lems involving such models can be handled with this approach. The methodology
is illustrated on a wide variety of models for simulated and real low-count time
series data involving a rich set of applications.

Keywords: approximate Bayesian computation, branching process, INARMA
model, Markov process, particle filter, particle Markov chain Monte Carlo,
pseudo-marginal methods.

1 Introduction

In this paper we develop a simulation methodology to perform exact and approximate
Bayesian inference on model parameters for data of low integer-valued time series. The
approach relies on simulation from the likelihood to avoid likelihood evaluations, which
can be cumbersome or even intractable for some integer-valued time series models in the
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literature (e.g. Markov process and integer autoregressive moving average (INARMA)
models). Our approach involves a novel application of the method of Jasra et al. (2013)
(see also Persing and Jasra (2014)), who utilise the so-called alive particle filter within
a Metropolis–Hastings algorithm to create a new particle Markov chain Monte Carlo
(Andrieu et al., 2010) approach.

The motivation for Jasra et al. (2013) and Persing and Jasra (2014) is to estimate
the posterior distribution of the static parameter of a state space model. Our motivation
for the development of this methodology is different and is to derive a general method
for estimating the parameters of complex low integer-valued time series models where
previous approximate Bayesian approaches have been used in more limited settings (we
discuss such methods and limitations later in this section). To greatly increase the set
of models and inference problems our method can be applied to, such as partially ob-
served and non-Markovian models, we extend the alive particle filter to include auxiliary
variables. This auxiliary information may include values of missing variables and/or in-
formation required to create a Markovian model from a non-Markovian model when
necessary.

We demonstrate that the alive particle filter is very useful in the context of low
integer-valued time series models as we are able to repeat model simulations until a
‘match’ is obtained with the observed data and this matching is performed sequentially,
one-observation-at-a-time. The alive particle filter includes negative binomial sampling
until a certain number of matches are obtained whereas a standard particle filter uses
binomial sampling, which may result in no matches. In some cases we show it is possible
to perform exact matching between simulated data and observed data. Since the alive
particle filter still produces an unbiased estimator of the likelihood for a fixed model
parameter, its incorporation within a Metropolis–Hastings algorithm produces a Markov
chain that has the correct posterior as its limiting distribution. In other cases it is
only computationally feasible to generate close matches. In these situations our method
targets an approximate posterior but it is important to note that we are always using
the full data so avoiding the need to choose a summary statistic (see Blum et al. (2013))
within a usual approximate Bayesian computation (ABC) algorithm.

Furthermore, we demonstrate that we are able to perform fully Bayesian low integer-
valued time series model comparisons using an efficient pseudo-marginal reversible jump
(RJ) MCMC algorithm. In one of the examples, we were unable to develop an RJM-
CMC algorithm on the joint space of parameter and latent variables. However, a viable
RJMCMC algorithm was possible via our pseudo-marginal approach.

There are a few other Bayesian methods in the literature that are able to handle
some of the inference problems considered in this paper. White et al. (2015) re-structure
the full posterior distribution into a form that involves a product of posteriors for sin-
gle observations. Each component is estimated via simulation with density estimation,
and then the components are combined to give an overall posterior approximation. The
approach is only applicable for Markov models where all variables in the model are
observed. The method of Barthelmé and Chopin (2014) is another summary statistic
free ABC method that may be applicable. The method is very fast as it is based on an
expectation propagation approximation. However, the method is restricted to posterior
distributions that are in the exponential family (an assumption that is difficult to inves-
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tigate for complicated inference problems). Furthermore, the method of Barthelmé and
Chopin (2014) requires further development if some of the variables are unobserved or if
the process is non-Markovian. Finally, McKinley et al. (2014) develop pseudo-marginal
algorithms for a certain class of stochastic epidemic models. McKinley et al. (2014)
propose a matching strategy where auxiliary variables of the model are constrained to
be consistent with the observed data. The method adopted here is more generic and is
thus applicable to a wider range of models.

The methodology is demonstrated on a rich set of models for simulated data as well
as several real datasets. One type of model considered is multivariate Markov processes.
The first example is for nosocomial (hospital-acquired) pathogen transmission. This
application is mainly for illustrative purposes since for low-valued integer counts the
exact likelihood is computationally feasible using the matrix exponential (Moler and
van Loan, 2003; Sidje, 1998). However, with these types of models the likelihood com-
putation grows exponentially as more random variables are added to the model (see,
for example, Drovandi and Pettitt (2008)). This is illustrated on an example involving
an autoregularity gene network, which contains four species.

The second model type considered highlights the utility of developing a pseudo-
marginal RJMCMC algorithm. Here the application is to infer the maximum number of
offspring that an individual can produce in a branching process when only the population
size at each generation is observed. For a fixed upper bound on the offspring distribution,
latent variables involving the number of individuals that produce a certain number of
offspring at each generation can facilitate a Gibbs sampler. However, it does not appear
feasible to move between latent variables of different dimensions. Employing a pseudo-
marginal approach allows us to avoid this issue.

The third and final type of model is the integer autoregressive moving average (IN-
ARMA) model. The INAR(p) model with order p = 1 has a tractable likelihood,
but becomes computationally intensive for higher orders. Additionally, our approach
can accommodate a moving average component unlike White et al. (2015). Neal and
Subba Rao (2007) develop a component-wise Bayesian MCMC algorithm for INARMA
models by completing the likelihood with auxiliary variables. This is extended by Enciso-
Mora et al. (2009) to an RJMCMC algorithm for model selection between competing
INARMA models. Our approach mimics that of an algorithm on the parameter of in-
terest and can therefore avoid potentially poor mixing of the MCMC sampler on the
joint space of the model indicator, parameter and latent variables.

This paper is organised as follows. In Section 2, the algorithm is presented. Section 3
considers the examples specified above. Section 4 contains the discussion together with
the limitations of the algorithm.

2 Methodology

We denote the observed data (possibly vector) at time t ∈ {1, . . . , T} as yt where T
is the number of observations. The data represents a low-valued discrete time series.
Our approach, similar to ABC, is a simulation based approach that requires simulation
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from the model and comparison of this simulated data with the observed data. The
difference with the common ABC approach is that we match on observations one-at-
a-time, making it plausible to exactly or closely match simulated with observed data
for the low integer-valued time series data. When exact matching is not feasible, we
require an auxiliary variable, st, which is the simulated version of yt. Exact matching
may not be computationally feasible if the proposed model is mis-specified, there are
outliers in the data or the observation yt has several components. Additional auxiliary
information in the particle filter is given by xt, which is used to facilitate sequential
simulation from the model of interest. In this paper we use xt to create a Markov
model from a non-Markov model and also to represent unobserved variables in a Markov
model. The parameter of the model is θ with prior density p(θ). The likelihood, p(y|θ),
where y = (y1, . . . ,yT ), is combined with the prior, p(θ), to produce the posterior,
p(θ|y) ∝ p(y|θ)p(θ). In situations where exact matching is not feasible, we define an
approximate likelihood pε(y|θ) where ε is an ABC tolerance. An expression for this
term, which we refer to as the ABC likelihood, is provided later in this section. In such
a situation, our approach targets pε(θ|y) ∝ pε(y|θ)p(θ). Through the introduction of the
auxiliary variables st and xt, our approach is able to encompass a rich set of models
and problems to provide either exact (excluding Monte Carlo error) or approximate
Bayesian inferences.

Firstly, the particle filter developed to estimate the likelihood (or approximate like-
lihood) unbiasedly for the set of models considered in this paper is presented. For com-
pleteness, the PMMH algorithm of Andrieu et al. (2010) is also shown in this section.

Finally, following Andrieu and Roberts (2009), we describe how a pseudo-marginal
RJMCMC algorithm can be developed for performing fully Bayesian model choice for
these types of models. Alternatively, we present an importance sampling estimator of
the evidence that can also be used for model comparisons.

2.1 The Alive Bootstrap Particle Filter with Auxiliary Variables

In the most general situation where auxiliary variables are required to create a Markov
model and exact matching is not feasible, we define the following (approximate or proxy)
likelihood

pε(y|θ) =
∑
s0

· · ·
∑
sT

∑
x0

· · ·
∑
xT

T∏
t=1

p(st,xt|st−1,xt−1,θ)1(||st − yt|| ≤ εt),

where εt controls the acceptable level of distance between the observed, yt, and simu-
lated, st, data, || · || is a suitably chosen norm (which we discuss later), xt is the extra
auxiliary variables that may be required and 1(·) is the indicator function that is equal
to one if the argument of the function is true and is equal to zero otherwise. In the
following, we present a generic particle filter that is able to efficiently obtain an unbi-
ased estimate of the (approximate) likelihood for a fixed θ by matching data (within
the ABC tolerance) one-at-a-time.

For models with computationally difficult likelihoods, an attractive particle filter is
the bootstrap particle filter (Gordon et al., 1993). In this particle filter, only sequential
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simulation of the data is required and no transition probabilities need to be evalu-
ated. We make use of auxiliary information, xt, in our particle filter to facilitate such
sequential simulation when required.

Our implementation of the particle filter maintains exactly N particles throughout
via negative binomial resampling until N + 1 ‘matches’ are obtained (the rationale for
requiring N + 1 matches is provided below). This type of approach is suggested by
Le Gland and Oudjane (2006) in order to avoid degeneracy in the particle filter. The
method is referred to as the alive particle filter in Jasra et al. (2013). The natural
implementation of this type of filter (resampling until N matches, as done in Le Gland
and Oudjane (2006)) results in a biased estimate of the likelihood. However, Jasra et al.
(2013) propose a correction to produce an unbiased estimate, which is attractive when
using the resulting estimate within an MCMC algorithm (Andrieu and Roberts, 2009).
We apply this correction in our paper. The correction involves producing N+1 matches
and not including the (N + 1)th match in the particle set. More specifically, denote nt

as the number of simulations from this conditional distribution required to obtain N+1
‘matches’ for the tth observation. An unbiased estimate of the approximate likelihood
is obtained by

p̂ε(y|θ) =
T∏

t=1

N

nt − 1
.

It is more numerically stable to sequentially estimate this quantity on the log-scale by
considering the following formula

log p̂ε(y|θ) = T log(N)−
T∑

t=1

log(nt − 1).

The generic particle filter is shown in Algorithm 1. When exact matching is not
plausible and other auxiliary variables are required, then particles need to be defined
for st and xt as appropriate. We define these as {sit}Ni=1 and {xi

t}Ni=1. The particle filter
keeps track of an approximation to the posterior distribution of the current st and/or
xt conditional on the current and previous matches to the observed data that have been
performed and the value of θ via the set of particles.

The particle filter consists of a series of updating and resampling steps. The particle
values get updated in light of matching on the next observation. After each iteration the
particles are resampled. Due to the uniform ABC discrepancy function employed, the
particle weights are always proportional to a constant and do not need to be maintained
throughout the algorithm. It is worth noting that even though our particle filter makes
use of auxiliary variables, they are only needed to facilitate estimation of the likelihood,
which is then used in the MCMC pseudo-marginal sampler detailed in Section 2.2.

We have the following additional remarks about our particle filter:

Remark 1. If exact sequential matching between observed and simulated data is feasible
for observation t, then the auxiliary variable st is not required in the algorithm. If the
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Algorithm 1 The alive bootstrap particle filter with auxiliary variables. When ε = 0
the algorithm produces an estimate of the true likelihood. When the process is Marko-
vian and exact matching can be performed on all observed variables, the algorithm is
technically not a particle filter and Line 8 is not required.

Input: A particular value of the parameter, θ, the number of particles, N , and the
time series data, y, of length T

Output: log p̂ε(y|θ) (i.e. the log of the estimated ABC likelihood)
1: Initialise log p̂ε(y|θ) = T log(N)
2: Obtain initial auxiliary simulated data, si0, and extra auxiliary variable information,

xi
0, for i = 1, . . . , N if necessary

3: for t = 1 to T do
4: Set nt = 0
5: for k = 1 to N + 1 do
6: matched = ‘no’
7: while matched == ‘no’ do
8: Resample an index r from the set {1, . . . , N} with equal weights
9: Generate s∗t and x∗

t from p(st,xt|srt−1,x
r
t−1,θ)

10: Set nt = nt + 1
11: if ||s∗t − yt|| ≤ εt then
12: Set skt = s∗t , x

k
t = x∗

t and matched = ‘yes’
13: end if
14: end while
15: end for
16: Set log p̂ε(y|θ) = log p̂ε(y|θ)− log(nt − 1)
17: end for

model is Markovian and all the variables of the model are observed, then the set of
auxiliary variables xt for t = 0, . . . , T is not required. If the model is Markov and
exact matching is feasible across all time points then the resampling step in Line 8
of Algorithm 1 is not required. In this situation, each probability component in the true
likelihood, p(yt|yt−1,θ), is estimated by negative binomial sampling until N+1 matches
are generated and then corrected to ensure the estimate is unbiased. This is the case for
the partially observed branching process example in Section 3.2.

Remark 2. If the model is Markovian and all the variables of the model are observed (so
that the auxiliary variables xt for t = 0, . . . , T are not required), then a slightly different
implementation is possible when exact matching is not computationally feasible. Instead
of making use of the auxiliary variables st for t = 0, . . . , T , they can be avoided by always
simulating forward to time t + 1 using the observed yt (rather than from the auxiliary
variable st). The implementation of this approach is much simpler, but we note that the
target distribution will be altered. Although in both implementations the target will not
be the true posterior as ε > 0. We apply this more straightforward implementation in
Section 3.2.

Remark 3. For a very poor parameter proposal, the model may have very little chance
of generating simulated data close to observed data and the particle filter could take an
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Algorithm 2 PMMH algorithm of Andrieu et al. (2010) to simulate from the ABC
target. When ε = 0 exact inferences are obtained.

Input: θ0 and iters
Output: MCMC output θ1, . . . ,θiters

1: Compute φ0 = p̂ε(y|θ0) (using Algorithm 1)
2: for i = 1 to iters do
3: Propose θ∗ ∼ q(·|θi−1)
4: Compute φ∗ = p̂ε(y|θ∗) (using Algorithm 1)

5: Compute α = min
(
1, φ∗p(θ∗)q(θi−1|θ∗)

φi−1p(θi−1)q(θ∗|θi−1)

)
6: if U(0, 1) < α then
7: Set φi = φ∗ and θi = θ∗

8: else
9: Set φi = φi−1 and θi = θi−1

10: end if
11: end for

excessively long time or could get stuck. We suggest implementing an intervention in
the algorithm which checks the value of nt in Algorithm 1 and if it becomes excessively
large then reject that value of θ in the PMCMC method specified in Algorithm 2. This
could create some bias depending on the problem.

Remark 4. For time series of low integer values, a reasonable discrepancy function
is the L1-norm (the sum of the absolute differences between every component of the
observed and simulated data, since yt is possibly vector-valued). The L1-norm has a
simple interpretation here; it is the total number of integer units that the simulated data
differs from the observed data. In this sense it is easier to test the sensitivity of the
results to a change in εt; a unit increase in εt allows the simulated data to be away
from the observed data by an additional integer unit. An extension of this would be
to define a discrepancy function that depends relatively on the observation, e.g. for a
scalar observation ||st − yt|| = |st − yt|/(yt + 1), to naturally account for a potentially
higher variability for larger counts. It is possible that the optimal discrepancy function
is problem dependent and this requires further research.

2.2 Particle Marginal Metropolis-Hastings Algorithm

The pseudo-marginal algorithm we use is the PMMH algorithm of Andrieu et al. (2010).
For completeness, this method is shown in Algorithm 2. The use of MCMC is critical
for this approach. A good MCMC proposal distribution will not propose too often
parameter values that have a very small chance of generating simulated data close to
the observed data, even one-at-a-time as we do here.

A drawback of our approach is that for computational feasibility, a reasonable start-
ing value, θ0, is required. A very poor starting value will require too much time to
generate simulated data close enough to the observed data. In this paper, when the
true value of the parameter was unknown, we trialled several starting values until we
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found one that produced simulated data that ‘matched’ the observed data. We found
this approach feasible for the relatively low dimensional models dealt with in this paper.
Alternatively, our method with an increased tolerance matching condition may be used
as a pilot run to find a useful part of the parameter space or an adaptive MCMC scheme
may be developed that slowly decreases the tolerance. We provide more discussion about
this point in Section 4.

The algorithm is based on model simulation and hence is somewhat ‘plug-and-play’
(He et al., 2010). However, there are some problem specific implementation consider-
ations such as specifying the required auxiliary variables. This becomes clearer in the
examples section below. The computational cost of the algorithm is mostly consumed
within the particle filter. Therefore, we suggest using a low level implementation (e.g.
C, Fortran) of this part of the algorithm.

2.3 Model Choice

Andrieu and Roberts (2009) demonstrate that efficient RJMCMC algorithms can be
developed using pseudo-marginal approaches. One advantage of this approach is that
it eliminates the need to find a suitable and efficient proposal distribution for a trans-
dimensional latent variable, which is very difficult to obtain in complex problems. Sec-
ondly, working with an approach that mimics an algorithm on the marginal space of
the parameter of interest means that adjacent models are closer in dimension, making it
more efficient to jump between them. Drovandi et al. (2014) present a recent application
of the utility of performing such marginalisation within RJMCMC algorithms. In this
paper we demonstrate that this is also quite a useful approach in dealing with fully
Bayesian model choice problems for low integer-valued time series models.

We extend the notation to handle Bayesian model choice problems. We consider
a finite set of M models indexed by m, m ∈ {1, . . . ,M}. The prior probability of
model m is denoted by p(m). The parameter relating to model m, θm, has a prior
distribution p(θm|m). The (ABC) likelihood for model m is pε(y|θm,m) (the true
likelihood is obtained when ε = 0). Interest is in the (approximate) posterior model
probabilities, pε(m|y), and also in the posterior distributions of the parameter for each
model, pε(θm|m,y), for m = 1, . . . ,M .

The RJMCMC algorithm (see Green (1995), and Hastie and Green (2012) for a re-
cent tutorial) can be used for sampling over a transdimensional parameter space. The
RJMCMC algorithm that we apply involves both within-model and between-model
moves. In our context, within-model moves may be performed as shown in Algorithm 2.
The between model move also uses an unbiased estimate of the target based on a pro-
posed parameter value at the proposed model. Andrieu and Roberts (2009) demonstrate
that this RJMCMC approach has as its limiting distribution the desired posterior dis-
tribution. Care needs to be taken when computing the Metropolis–Hastings ratio, which
we detail in Section 3 for the relevant applications as required.

For low dimensional problems, a simpler approach may be to use an importance
sampling estimator of the evidence where the importance weights involve an unbiased
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estimate of the ABC likelihood. Dropping the dependence on m for notational conve-
nience, draw B independent samples from an importance sampling density, g(θ), as θi,
i = 1, . . . , B. An unbiased estimate of the (approximate) evidence, pε(y) is given by

p̂ε(y) =
1

B

B∑
i=1

p̂ε(y|θi)p(θi)

g(θi)
, (1)

where pε(y) =
∫
θ
pε(y|θ)p(θ)dθ. The reader is referred to Tran et al. (2013) for a

justification.

3 Examples

The method is demonstrated below on several models and applications. Where appro-
priate, our approach is compared with a gold standard to provide a validation of the
method. To test for evidence against convergence of our PMCMC algorithm, we used
the Heidelberg and Welch diagnostic tests within the Coda R package (Plummer et al.,
2006). The diagnostics consist of a stationarity test and a halfwidth test. We found that
for all our examples there was no evidence against convergence.

The tuning involved in pseudo-marginal methods is slightly more involved than usual
MCMC as the number of particles in the particle filter has to be chosen as well as the
MCMC proposal distribution. We performed some pre-runs to obtain tuning parameters
that led to reasonable MCMC mixing that was assessed visually. Table 1 in Appendix G
of the Supplementary Material (Drovandi et al., 2015) shows the specific details of the
proposal distributions that were used for all our examples (both in this paper and the
Supplementary Material) for completeness.

3.1 Spread of Nosocomial Pathogens

Drovandi and Pettitt (2008) consider a stochastic model to help explain the spread
of the pathogen Methicillin-resistant Staphylococcus aureus (MRSA) within a hospital
ward. The model suggests that the colonisation of MRSA in patients is facilitated by
health-care workers through possible lack of hand hygiene. The model consists of random
variables for the number of colonised patients, Yp(t), and colonised health-care workers,
Yh(t), and assumes a constant ward size of R and a patient to health-care ratio of unity.
The data consist of weekly incidence (the number of new cases) of colonisation within
the ward, which can be routinely collected by hospitals. These data for a 184 week period
at the Princess Alexandra Hospital, Brisbane, Australia are shown in Figure 1(a). The
model of Drovandi and Pettitt (2008) includes a counter variable N(t) for the incidence
so that there is a correspondence between the model and the data. Note that N(t) is
reset to 0 at the beginning of each time interval.

To simplify the model, McBryde et al. (2007) consider a so-called pseudo-equilibrium
approximation (also applied in Drovandi and Pettitt (2008)) where the mean of the
colonised health-care worker population is considered and the rate of change of this
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Figure 1: (a) Weekly incidence counts of MRSA colonisation in patients in a hospi-
tal ward at the Princess Alexandra Hospital, Brisbane, Australia. (b) Autocorrelation
function with estimated 95% CI as solid horizontal lines.

population is set to 0. This provides an equation that deterministically relates the dis-
crete colonised patient variable to the now-continuous colonised health-care population.
Drovandi and Pettitt (2011) show that this provides a good approximation. This reduces
the original trivariate stochastic process to a bivariate one involving (Yp(t), N(t)). Given
the current values of the states, Yp(t) = i and N(t) = k, and a small time interval Δt,
the probabilities of various combinations of the states at time t+Δt are given by

P (Yp = i+ 1, N = k) = μσ(R− i)Δt + o(Δt),

P (Yp = i+ 1, N = k + 1) = f(Ȳh)(R− i)Δt + o(Δt),

P (Yp = i− 1, N = k) = μ′(1− σ)iΔt + o(Δt),

(2)

where μ′ = 1/10.6 and μ = 1/4 are the per-capita colonised and uncolonised patients
discharge rates, respectively, σ = 0.03 is the probability that a patient is colonised upon
admission, f(Ȳh) models the transmission process and Ȳh is the approximated colonised
health-care worker population. Lee et al. (2015) consider two different models for the
transmission process. The first is a standard mass action assumption that f(Ȳh) = φsȲh

(referred to as the Standard model) and the second uses the assumption of Greenwood
(1931) whereby provided that at least one person is colonised, there is a constant coloni-
sation pressure for the corresponding susceptible group so that f(Ȳh) = φg1(Ȳh > 0)
(the Greenwood model hereafter). For illustration, we use the priors, φs ∼ U(0, 0.1) and
φg ∼ U(0, 0.02). The expressions for Ȳh(t) for the Standard and Greenwood models are
given by

Ȳh(t) =
RYp(t)

hR
pph(1−h) + Yp(t)

and
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Ȳh(t) =
R1(Yp(t) > 0)

hR
pph(1−h) + 1(Yp(t) > 0)

,

respectively, where h = 0.59 is the hand hygiene compliance and pph = 0.13 is the
probability of a transmission from patient to health-care worker. Note that for the
Greenwood model Ȳh(t) = 0 if Yp(t) = 0.

This example provides a useful application for testing out our method for inferring
model parameters and also calculating posterior model probabilities as the likelihood can
be calculated here using the approach of Drovandi and Pettitt (2008). It is important
to note that the likelihood-based analysis depends upon setting an upper bound for
the incidence, L (our simulation based approach does not require this). The maximum
value of the incidence in the dataset is 4 (see Figure 1). We found that the results were
essentially identical when L = 5 and L = 6 so we report results based on L = 5. For
our approach we used N = 100 and matched the incidence data exactly. The number
of colonised patients is unobserved throughout the process so we introduce xt = Yp(t)
as an auxiliary variable in the particle filter. We ran our method separately for the
Standard and Greenwood models for 100,000 iterations following a burn-in period of
1000 iterations and used normal random walk proposals. To validate our method we ran
the likelihood-based approach for 1,000,000 MCMC iterations with the same proposal
distributions. Figure 2 demonstrates agreement between our likelihood-free method and
the likelihood-based results.

Gamma distributions were fitted to the posterior distribution which were then used
as importance distributions to obtain an importance sampling estimate of the evidence
for each model (see (1)). For each model, the estimated evidences were based on 10,000
importance samples. We obtained very similar estimates of the evidences for each model
when using either the true likelihood or the unbiased simulated likelihood. Both the

Figure 2: (a) Posterior distribution of φs for the Standard model. (b) Posterior distri-
bution of φg for the Greenwood model.
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likelihood-based and simulation-based approaches produced a posterior model proba-
bility, to two decimal places, of 0.85 in favour of the Standard model.

Figure 2 also displays the approximate posteriors when using ε = 1, which biases
the results towards smaller values of the parameters and increases the uncertainty. We
note the strong impact on the posteriors is a result of ε = 1 not being a very stringent
matching criterion given the very small counts in the dataset. Using a similar process
to that above, we found that the approximate posterior model probability was 0.82 for
the Standard model.

Finally, we investigated the impact of starting values and between-run variability.
For the standard model, we initialised two chains at φs = 0.01 and φs = 0.1, respectively.
From Figure 2(a) it can be seen that these starting values are out in the extreme tails
of the posterior support. The results are shown in Appendix A of the Supplementary
Material (Drovandi et al., 2015). In short, the method converges from both starting
values and there is very little between-run variability in the posterior density estimates
for φs.

Another illustrative example involving infectious diseases is provided in Appendix B
of the Supplementary Material (Drovandi et al., 2015).

3.2 Partially Observed Branching Processes

This example demonstrates the utility of pseudo-marginal algorithms for transdimen-
sional simulation problems involving low integer-valued time series models. Consider
a standard Galton–Watson branching process where the population size at the end of
generation t, Yt, can be determined via the random sum of random variables

Yt =

Yt−1∑
i=0

Xt,i,

where Xt,i is the number of offspring produced by individual i during the tth generation.
Here the set of random variables {Xt,i : ∀t, i} are independent and identically distributed
discrete random variables. We propose to use a flexible non-parametric probability mass
function for the bounded offspring distribution, where p(Xt,i = k) = pk for k = 0, . . . ,K
(K < ∞). Denote the vector of probabilities as θK = (p0, . . . , pK).

The most realistic scenario is that only the population sizes at each generation
are observed, and the number of offspring produced by each individual is hidden. We
denote the observed data as y = (y1, . . . , yT ) where yt is a realisation of Yt and T
is the total number of generations that the process is observed for. In this case the
model is Markovian, but the transition probability, p(yt|yt−1,θ), involves a summation
over all combinations of the offspring realisations that are consistent with the observed
data. However, it is very fast to simulate from this distribution and thus the likelihood
contribution can be estimated in an unbiased way via simulation.

When the maximum number of offspring possible, K, is finite and fixed, González
et al. (2013) show that inference for θK can proceed by introducing a set of latent
variables, {nt,k : t = 1, . . . , T, k = 0, . . . ,K}, where nt,k represents the number of
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times that k offspring are produced during the tth generation. The latent variables
must satisfy the constraints

∑K
k=0 nt,k = yt−1 and

∑K
k=0 knt,k = yt. Using this set-

up, a Gibbs sampler can be implemented that draws θK from a Dirichlet distribution
conditional on the current set of latent variables, then draws the set of latent variables
from a multinomial distribution conditional on the current θK and also constrained to
be consistent with the observed data. The reader is referred to González et al. (2013)
for more details.

Here we also consider conducting inference for the parameter K, the maximum
offspring size, creating a transdimensional simulation problem. Consider a proposal
where K is increased by one. It is relatively straightforward to propose a θK+1 whose
elements sum to 1 based on a slight modification to θK (see below). However, we were
unable to propose a local update to expand the set of latent variables in such a way that
maintains the integrity of the constraints. It appears that the only available proposal is
to re-generate the full set of latent variables conditional on the proposed θK+1. However,
the acceptance probability of this move will involve the evaluation of the intractable
likelihood.

We can estimate the likelihood unbiasedly via simulation, which allows us to over-
come this issue, and so we perform inference for K via an RJMCMC method that
mimics an algorithm on the marginal space of {K,θK}. The prior distribution for K is
discrete uniform between Kmin and Kmax. The prior for θK is Dirichlet with parameter
αK

0 of length K + 1. We denote the probability density of this prior as D(θK ;αK
0 )

for simplicity. In this work we assign Jeffreys’ prior on θK for each value of K, which
involves setting all values in αK

0 equal to 0.5. This algorithm consists of both within-
model and between-model moves. For the within-model move, a proposed vector for
the offspring distribution is obtained via a Dirichlet random walk with a mean given
by the current parameter and variance controlled by a single tuning parameter. The
between-model move involves a change in dimension. Consider the following birth move
to create a K + 1 model from a K model. Draw a random variable r ∼ U(b, 1) (we use
b = 0.9 after some experimentation) and then the proposed θK+1 is given by

θK+1 = (pK+1
0 , . . . , pK+1

K , pK+1
K+1) = (rpK0 , . . . , rpKK , 1− r),

where pji denotes the probability of i offspring when the upper bound of the offspring
distribution is K = j. The absolute value of the Jacobian of this transformation is equal
to 1/rK+1. The likelihood is estimated unbiasedly based on the proposal via simulation.
The acceptance probability of this move is

αK→K+1 = min

(
1,

p̂(y|θK+1)D(θK+1;α
K+1
0 )(1− b)pK+1→K

p̂(y|θK)D(θK ;αK
0 )rK+1pK→K+1

)
, (3)

where pi→j is the probability of proposing a model where K = j from a model where
K = i. Here we have pi→j = 0.5 if j = i + 1 or j = i − 1 and 0 otherwise except for
pKmin→Kmin+1 = pKmax→Kmax−1 = 1. The corresponding death move from K + 1 to K
removes the pK+1

K+1 probability and re-scales the remaining probabilities by a factor of

1/(1 − pK+1
K+1). The Metropolis–Hastings ratio (the second term in brackets in (3)) for

the death move is the reciprocal of the one for the birth move.
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Figure 3: (a) Branching process data. (b) Posterior distribution for K.

For analysis, we simulated T = 50 generations of data using the offspring distribution
θ = (0.35, 0.4, 0.140625, 0.0625, 0.03125, 0.015625) and y0 = 5. That is, the true value of
K is 5. The data is shown in Figure 3(a). We forced exact matching with the observed
data. Further, the model is Markovian so we do not require st or xt. The likelihood is
simply estimated unbiasedly via simulation. If it took more than 100,000 simulations
to match on a particular observation, that parameter configuration was rejected. It was
important to implement this intervention here, since the between-model step often made
proposals that were not consistent with the data. The smallest value of K that could
generate the data with a non-zero probability is 2, so we set Kmin = 2. The upper
limit is set at Kmax = 10. The algorithm was run for 50,000 iterations starting at the
true parameter. Each iteration consisted of a within-model move followed by a between-
model move. The acceptance rate of the between model move was 12%. The resulting
posterior distribution for K is shown in Figure 3(b). The posterior mean of the average
number of offspring produced by an individual (averaged over K) was roughly 1.0572
(true value is 1.071875) with a posterior standard deviation of 0.03. The posterior mean
estimate is consistent with the expected number of offspring required to produce 81
individuals after 50 generations, (81/5)0.02 ≈ 1.0573.

To help validate our results we implemented a variant of the Expectation Propaga-
tion (EP) ABC algorithm of Barthelmé and Chopin (2014) assuming a Dirichlet dis-
tribution for p(θK |y,K) (see Appendix C of the Supplementary Material (Drovandi et
al., 2015) for more detail). A by-product of the algorithm is an estimate of the evidence,
which we convert into posterior model probabilities (considering values of K = 2, . . . , 8).
We found that there was some Monte Carlo variability associated with the results so
we repeated the algorithm 10 times for each value of K. In Table 1, we report the mean
and standard deviation of the posterior model probability estimates. We found that the
EP ABC results produced the same modal value of K = 3 as our method but had less
support for larger values of K.
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K 2 3 4 5 ≥ 6 time (hrs)
ε = 0 0.11 0.48 0.30 0.09 0.02 5.9
ε = 1 0.15 0.48 0.26 0.09 0.02 2.9
ε = 2 0.28 0.39 0.24 0.07 0.02 1.9
ε = 3 0.33 0.42 0.19 0.05 0.01 1.6

EP ABC 0.16(0.08) 0.66(0.08) 0.14(0.06) 0.03(0.01) 0.00(0.00) 2.4a

Table 1: Posterior probabilities, p(K = k|y), in the branching process application for
different values of ε. Note the probabilities have been rounded to two decimal places. Also
shown are the computing times in hours. The final row consists of the EP ABC results,
where the algorithm was replicated 10 times. Shown is the mean(standard deviation) of
the 10 runs.
a Total computing time for all 10 repetitions of the EP ABC algorithm.

The results suggest that the data are able to be explained using K = 3. We repeated
the analysis on a second dataset generated from the model with the same parameter
configuration (results not shown). The posterior for K again suggested a mode at K = 3
(but this time no support for K = 2 and a similar support for K = 3 and K = 4).
There are two possible reasons for this. Firstly, the true value of K is 5; however, p4
and p5 are rather small. Secondly, the choice of the prior distribution on θK may be
having an effect on the posterior for K. This requires further investigation and is not a
focus of this paper. We note that the method recovers the expected number of offspring
reasonably well, which is important for predicting extinction of the population.

We also investigated the effect of introducing ε on the posterior model probabilities
(with the same value of ε used for each observation). We note that we used the im-
plementation described in Remark 2. Table 1 presents the results for several ε values
(based on the same MCMC specifications as for the ε = 0 case). It is evident from the
table that increasing the value of ε biases the results further towards a simpler expla-
nation of the data (that is, a lower value of K). There was also a steady reduction in
the computing time as ε increased.

Finally, we investigated the impact of starting values and between-run variability.
For K = 5, we drew θK values randomly until we obtained four parameter sets that
produced simulated data that matched with the observed data in the alive particle filter.
We then ran our RJMCMC algorithm for 101,000 iterations using the first 1,000 itera-
tions as burn-in. For all four of these starting values we obtained very similar posterior
distribution estimates for K (results are shown in Appendix D of the Supplementary
Material (Drovandi et al., 2015)) and also for each of the marginals of θK . This demon-
strates that the results are not sensitive to the initial values provided that a reasonable
parameter set is used.

3.3 Integer Autoregressive Moving Average Models

The integer autoregressive moving average (INARMA) model is the discrete version
of the popular ARMA model for stationary Gaussian time series. The INARMA(p, q)
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model is given by

Yt =

p∑
i=1

αi ◦ Yt−i + Zt +

q∑
j=1

βj ◦ Zt−j ,

where ◦ is the binomial thinning operator (that is, if W = α ◦ Y , then W ∼
Binomial(Y, α)) and Zt for t ∈ N is a sequence of independent and identically dis-

tributed discrete random variables. A popular choice is Zt
iid∼ Poisson(λ), which is

adopted here. The likelihood is cumbersome for all but the INAR(1) model, which
involves the convolution of a binomial and a Poisson random variable. Some appli-
cations of these types of models are to counts of road accidents (Pedeli and Karlis,
2011) and animal health (Jazi et al., 2012), for example. From a Bayesian perspective,
such models have been studied via introducing auxiliary variables to form the complete
likelihood and using MCMC for joint posterior simulation and RJMCMC for selecting
the model order. Our method attempts to mimic a sampler on the marginal space of
θ = (p, α1, . . . , αp, q, β1, . . . , βq) only. The approach of White et al. (2015) can handle
INAR(p) models but cannot accommodate a moving average component due to the lack
of Markov structure in the resulting model. Our particle filter uses auxiliary variables
to allow the addition of the moving average component. Below we consider two models
that have a first order moving average component. For these cases the auxiliary variable
is xt = Zt. Here we enforce exact matching so that st is not required.

We analyse the number of web address downloads at a computer at the University
of Würzburg (see Martin et al. (2014)). From the data, autocorrelation function and
partial autocorrelation function (see Figure 4), it is evident that the INAR(1), INMA(1)
and INARMA(1,1) are all plausible models. However, none of the models are able to
replicate the observed value of 8 in this dataset, suggesting that this point is an outlier
with respect to these models (see Eduarda Silva and Pereira (2012) for confirmation of
this). This observation was changed to a 5 for our purposes. We assume that Y0 = 0
where required.

Here we define the INAR(1), INMA(1) and INARMA(1,1) models as m1, m2 and
m3, respectively, and are assumed equally likely a priori. The parameter for each of these
models is given by θm1 = (αm1 , λm1), θm2 = (βm2 , λm2) and θm3 = (αm3 , βm3 , λm3),
respectively. Here we implement a pseudo-marginal RJMCMC algorithm in order to
estimate the posterior model probabilities. Assume that the current model is mi. At
each iteration a proposal was made to one of the other models, say mj , with equal
probability. The parameter, θmj , was drawn independently using the results from an
initial within-model run (see below for more details). We denote this proposal density
as qmj . The acceptance probability of this move is given by

αi→j = min

(
1,

p̂(y|θmj ,mj)p(θmj |mj)qmi(θmi)

p̂(y|θmi ,mi)p(θmi |mi)qmj (θmj )

)
.

For all models the parameters on (0,1) had a Uniform(0, 1) prior whilst the λ param-
eter had an improper prior on R

+ proportional to a constant. The use of an improper
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Figure 4: (a) The number of web address downloads every 2 minutes. (b) Autocorrelation
function. (c) Partial autocorrelation function. Data source: Martin et al. (2014). The
solid horizontal lines in (b) and (c) are the estimated 95% CI.

prior for λ is valid here as we assume the same arbitrary constant for each model and
thus have cancelling in the marginal likelihood ratio (Pericchi, 2005). A within-model
algorithm was run for the models INAR(1) and INMA(1) using 21,000 iterations whilst
31,000 iterations were used for the INARMA(1,1) model, discarding the first 1000 as
burn-in in all cases. Multivariate normal random walks were used.

Parametric statistical models were then fitted to the within-model posterior distri-
butions in order to determine suitable proposal distributions, qmi(θmi) for i = 1, 2, 3, to
use in the reversible jump. Normal distributions were fitted to the posterior samples of
each of the INAR(1) and INMA(1) model parameters. Gamma distributions were fitted
for αm3 and βm3 while a normal distribution was fitted for λm3 for the INARMA(1,1)
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model. The RJMCMC was run for 50,000 iterations with a starting value used from
the within-model runs (so no burn-in was required). The posterior probability of the
INAR(1) and INMA(1) models was roughly 0.41 while the INARMA(1,1) had probabil-
ity 0.18. These posterior distributions can be seen in Figure 5. Note that Figures 5(a)
and 5(b) show agreement between our approach and the use of the exact likelihood for
the INAR(1) model.

Another example on INARMA models is provided in Appendix E of the Supplemen-
tary Material (Drovandi et al., 2015). In this appendix, we also investigate the issue of
multiple starting points and between-run variability.

3.4 Autoregulatory Gene Network Example

Golightly and Wilkinson (2005) consider a Markov jump process for an autoregulatory
gene network that consists of four species (DNA, RNA, P and P2) (see Golightly and
Wilkinson (2005) for more details about this application). There are eight possible
reactions in the system, which are given by

DNA+ P2
c1DNA×P2−−−−−−−→ DNA · P2, c1 = 0.1,

DNA · P2
c2(k−DNA)−−−−−−−→ DNA+ P2, c2 = 0.7,

DNA
c3DNA−−−−→ DNA+RNA, c3 = 0.35,

RNA
c4RNA−−−−→ RNA+ P, c4 = 0.2,

2P
c50.5×P(P−1)−−−−−−−−−→ P2, c5 = 0.1,

P2
c6P2−−−→ 2P, c6 = 0.9,

RNA
c7RNA−−−−→ ∅, c7 = 0.3,

P
c8P−−→ ∅, c8 = 0.1,

where the values assigned to the parameters are the true values of the parameters used
to simulate some observed data (with k = 10 assumed known). Initial values of 5, 8, 8
and 8 of DNA, RNA, P and P2, respectively, were used to simulate 100 observations
where the species populations were observed at 0.5 second time intervals. The initial
values were assumed known. Even though the observed counts are small (Figure 6), due
to the large number of species, this model does not allow a computationally tractable
likelihood function.

We considered two scenarios: the first where all species are observed at these equally
spaced time points (referred to as fully observed) and where only the RNA and P
species are observed (referred to as partially observed). We assumed that the data are
observed without error. As in Fearnhead et al. (2014), we selected half-cauchy priors on
the parameters, p(ci) ∝ 1/(1 + (4ci)

2), ci > 0 for i = 1, . . . , 8. Note that in the MCMC
we sampled over the re-parameterised space of θ where θi = log ci.

One approach to perform inference for such models is to assume that each species
is observed with Gaussian error with a standard deviation of σ (Holenstein, 2009).
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Figure 5: Posterior densities for when the INAR(1), INMA(1) and INARMA(1,1) models
are fitted to the downloads data in Figure 4. (a) and (b) Posteriors for INAR(1) model.
(c) and (d) Posteriors for INMA(1) model. (e), (f) and (g) Posteriors for INARMA(1,1)
model.
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Figure 6: Data for the autoregulatory gene network example.

This allows a standard particle MCMC approach with a bootstrap filter to be applied.
More accurate inferences are obtained with a lower value of σ but the (approximate)
likelihood is more computationally demanding to estimate precisely. We compare our
approach (called alive) with this particle MCMC method (referred to as bootstrap).

In the completely observed case, exact matching on the four species simultaneously
was not feasible. Here we used εt = 1 for all t. The alive approach used N = 100 particles
and we rejected any proposal that needed at least 100,000 simulations to produce a
match on any observation. For the bootstrap method, we selected the number of particles
so that the overall computation time was similar to the alive approach. The value of σ
was chosen so that the bootstrap likelihood was estimated to a similar precision as the
alive likelihood (standard deviation of approximately 1 for the log-likelihood based on
the true parameter). Thus for the bootstrap method we used N = 6000 and σ = 0.85.
We ran both methods for 100,000 iterations starting at the true value of the parameter.
Both approaches required about 75 hours of computation. Posterior distributions for
the parameters (with the true values and priors overlaid) are shown in Figure 7. It can
be seen that the alive method results in more precise inferences for the parameters θ3
and θ7 whereas the results for the other parameters are relatively similar.

When the data are partially observed, we found that it was feasible to produce exact
matching and thus set εt = 0 for all t. Again N = 100 was used for the alive approach
and we rejected any proposal that needed at least 100,000 simulations to produce a
match on any observation. Using a similar process to above, we chose N = 6000 and
σ = 0.45 for the bootstrap method. The computing times for the alive and bootstrap
methods were 98 and 93 hours, respectively. The extra computation time compared
with the completely observed scenario could be attributed to an increase in time to
simulate from the model as the less informative data allows for larger values of the rate
parameters. The posterior approximations are shown in Figure 8. The bootstrap and
alive approaches produced similar results for the parameters θ1, θ2, θ3, θ5 and θ6 but
due to the exact matching the alive approach resulted in more precise inferences for the
parameters θ4, θ7 and θ8.
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Figure 7: Posterior densities for the gene network example with all species observed.
Results are shown for the bootstrap method (solid lines) and alive method (dashed
lines). The prior distributions are shown in grey.
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Figure 8: Posterior densities for the gene network example with DNA and P species
observed only. Results are shown for the bootstrap method (solid lines) and alive method
(dashed lines). The prior distributions are shown in grey.
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4 Discussion

Here a general Bayesian methodology was presented to perform inference on parame-
ters of models for low integer-valued time series data with intractable likelihoods. The
method can work on partially observed processes and non-Markovian models through
the use of auxiliary variables in the particle filter. Since the proposals can be made
directly on the space of θ alone, efficient reversible jump proposals can be developed
straightforwardly, which leads to robust fully-Bayesian model comparisons. When the
observed data cannot be matched exactly, the algorithm allows for ABC inference by
introducing a tolerance. No summary statistics are required. Our algorithm represents
an alternative to the data augmentation approaches of Neal and Subba Rao (2007) and
Enciso-Mora et al. (2009) for INARMA models.

As was seen in one of the examples, the method can fail if there are outliers (with
respect to a particular model). The algorithm can become stuck constantly trying to
generate data from the model to match the observed outlier. However, if an outlier exists
it may be that there is sufficient reason to remove such a data point or possibly that
the model is not an adequate representation of the true underlying process. However,
the method we propose can be used to identify if a model is not appropriate for the
data and identify outliers in the data. For example, the outlier in the downloads data
(Figure 4) was quickly noticed. See also one of the examples in Appendix F of the
Supplementary Material (Drovandi et al., 2015). A real advantage of these methods is
that they have a built in predictive check so that poorly fitting models are discovered
quickly. A related issue is that in our RJMCMC branching process application in Section
3.2, the between model proposals often were not consistent with the data, as is often
the case in RJMCMC applications. Currently we are working on including the alive
particle filter into the SMC2 algorithm of Chopin et al. (2013) so that the evidence of
each model can be estimated individually and no between-model moves are required.

As mentioned in the introduction of the paper, the method can only be applied to
a certain class of non-Markovian models. A model not within this class is the discrete
time series models of Cui and Lund (2009). Here independent renewal processes are
run in parallel and are superposed. To simulate the model, each renewal process must
be simulated to at least the current observation but can often go beyond. Applying
our method to this class of models may accept simulations that match the current
observation but produce a random mis-match in the future. Despite this, we demonstrate
in Appendix F of the Supplementary Material (Drovandi et al., 2015) that we are able
to obtain good approximate Bayesian inference for such models.

As has been stated in the paper, our method relies upon a starting value where it is
computationally feasible to match simulated with observed data. When the model pro-
vides a reasonable fit to the data, this amounts to finding a parameter value within the
space of non-negligible posterior support. We note that there are other MCMC methods
that suffer from this same problem. For example, MCMC ABC (Marjoram et al., 2003)
requires the same kind of stringent matching condition. In addition, in pseudo-marginal
methods, it is often computationally difficult to obtain precise estimates of the likeli-
hood in regions of negligible posterior support. This can lead to grossly overestimated
likelihoods that result in the chain getting ‘stuck’ when only local MCMC moves are
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applied. In this paper, several starting values were tested until a suitable one was found.
Our other suggestion was to begin with a more relaxed matching tolerance. Here we
suggest other approaches that might be useful. Approximate and fast methods, such
as EP ABC, may be applied first to find a starting value. However, methods like EP
ABC are not as widely applicable as our method. Our current work on incorporating
the alive filter within SMC2 (Chopin et al., 2013) may also help address this issue since
the method uses a population of ‘particles’ across the parameter space.

The approach proposed in this paper is most suited to datasets where the time se-
ries consists of very low integer values such that it is not very computationally intensive
to obtain close matches between the observed and simulated data. Furthermore, our
method is most appropriate for models where sequential simulation is possible (perhaps
via the introduction of some auxiliary variables) and where events occurring in the fu-
ture beyond the current simulation time do not need to be stored (however, we show
in Appendices A and D of the Supplementary Material (Drovandi et al., 2015) that
useful posterior approximations can be obtained for such models). The method may
be applicable to data with large counts or continuous data, but would require some
development. Clearly, exact matching will be computationally prohibitive in such situa-
tions. Therefore, ABC will be required, potentially with a different discrepancy function
(for example, a discretised Gaussian kernel) utilised here that is more appropriate for
large values. The variance of the data at some time points may be greater than others,
and this needs to be considered. We are currently exploring this in other research. Par-
tially observed data and non-Markovian models could be handled in the same way via
auxiliary variables in the particle filter. There are, of course, situations where models
produce near chaotic data (see, for example, Wood (2010)), and methods which attempt
to match simulated with observed datasets are not feasible.

Supplementary Material

Supplementary Material for Exact and Approximate Bayesian Inference for Low Integer-
Valued Time Series Models with Intractable Likelihoods (DOI: 10.1214/15-BA950SUPP;
.pdf).
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