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Bayesian Graphical Models for Differential
Pathways

Riten Mitra∗, Peter Müller†, and Yuan Ji‡

Abstract. Graphical models can be used to characterize the dependence struc-
ture for a set of random variables. In some applications, the form of dependence
varies across different subgroups. This situation arises, for example, when pro-
tein activation on a certain pathway is recorded, and a subgroup of patients is
characterized by a pathological disruption of that pathway. A similar situation
arises when one subgroup of patients is treated with a drug that targets that
same pathway. In both cases, understanding changes in the joint distribution and
dependence structure across the two subgroups is key to the desired inference.
Fitting a single model for the entire data could mask the differences. Separate in-
dependent analyses, on the other hand, could reduce the effective sample size and
ignore the common features. In this paper, we develop a Bayesian graphical model
that addresses heterogeneity and implements borrowing of strength across the two
subgroups by simultaneously centering the prior towards a global network. The
key feature is a hierarchical prior for graphs that borrows strength across edges,
resulting in a comparison of pathways across subpopulations (differential path-
ways) under a unified model-based framework. We apply the proposed model to
data sets from two very different studies: histone modifications from ChIP-seq
experiments, and protein measurements based on tissue microarrays.

Keywords: autologistic regression, histone modifications, Markov random fields,
networks, reverse phase protein arrays.

1 Introduction

1.1 Background

We discuss inference for the comparison of graphical models. The discussion is motivated
by two biomedical inference problems. In the first application, we study how protein
pathways change across different disease subpopulations. In the second motivating ap-
plication, we compare dependence structure of histone modification (HM) counts in
promoter regions across genes with high versus low expression. Both applications ad-
dress important questions in biomedical research that cannot easily be addressed by
existing methods. Details of the applications are reported later. In both cases, depen-
dence structure is formalized as a graph with the nodes representing proteins or HMs.
Both applications require coherent inference on how conditional dependence structure
changes for the same set of nodes across different biological conditions. To achieve such
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inference, we introduce graphical models that impose a hierarchical prior on a pair of
graphs. The main contribution of this paper is an approach for inference for comparing
two graphs.

Graphical models can be used to characterize the dependence structure of a set of
random variables. We focus on Markov random field (MRF) models. An MRF can be
represented as an undirected graph G = (V,E), where V = {1, . . . ,m} are the nodes and
edges are pairs of nodes, E = {{i, j}, i �= j ∈ V }. The nodes index random variables. In
our case studies, the variables are protein expression or HM counts. The edges represent
conditional dependence between the corresponding random variables. The absence of an
edge between any two nodes indicates conditional independence of the corresponding
random variables. In general, an undirected graph is a more general concept than an
MRF. For example, the graph G itself might be the observed data, without any notion
of modeling conditional independence structure. However, for the purpose of this paper,
we shall assume that an MRF is indistinguishable from any undirected graphical model.

Some commonly used examples of MRF models are Gaussian graphical models
(GGM). A GGM uses a multivariate normal distribution to describe the joint distribu-
tion of the nodes. The absence of an edge, i.e., conditional independence, corresponds
to a zero entry in the precision matrix of the Gaussian distribution. The G-Wishart
distribution is a conjugate prior for the inverse covariance matrix under the constraint
to these zero entries. This feature has, in recent years, motivated the development of a
range of computational techniques for sampling from this distribution. However, infer-
ence in these high dimensional graphical models remains computationally challenging.
Several authors therefore propose sparsity control as one means of mitigating the com-
putational challenge. Related proposals are mostly based on lasso and penalized like-
lihood techniques (Yuan and Lin, 2007). Recently developed lasso methods that deal
with conditional likelihoods through neighborhood selection include Chen et al. (2013);
Ravikumar et al. (2010); Meinshausen and Bühlmann (2006); Yang et al. (2012) and
Yang et al. (2013). A common theme of these approaches is the maximization of some
penalized versions of conditional likelihood per node. Node-specific inference is then
merged to reconstruct the entire graph. Some of these methods have been shown to be
consistent under some sparsity constraints of the true graph.

In contrast, the Bayesian approach relies on carefully specified priors. The role of
prior specifications has been discussed, in great detail among many others, in Dobra
et al. (2004) Jones et al. (2004), Scott and Carvalho (2008) and Carvalho and Scott
(2009). For decomposable graphs, Carvalho et al. (2007) proposed a direct and efficient
method based on the perfect ordering of cliques. For general graphs, Piccioni (2000)
proposed a block Gibbs sampler using Bayesian iterative proportional scaling. However,
this technique relies on clique enumeration and is computationally expensive. To address
these limitations and increase computational efficiency, Mitsakakis et al. (2011), Dobra
and Lenkoski (2011) and Wang and Carvalho (2010) proposed several approaches based
on novel reversible jump and Metropolis Hasting steps. These improvements followed
the theory for non-decomposable graphs developed in Atay-Kayis and Massam (2005).

Graphical models are increasingly used for inference in biomedical research problems.
The first applications to biological networks date back to as early as Wright (1934).
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More recently, Lauritzen and Sheehan (2003) demonstrated the use of these models
in detecting allele networks and analyzing pedigrees. Zhang (2012) proposed a novel
Bayesian graphical model for multilocus disease association in genome-wide case control
studies. Another example is the work of Stingo et al. (2010) who propose a Bayesian
graphical modeling approach to infer a miRNA regulatory network. A key feature of
their Bayesian approach is the use of priors to include important covariates like sequence
information. Applications like these are often characterized by a large number of nodes
(regulatory elements) and small sample sizes. This has motivated the use of sparsity to
reduce dimensionality in network inference. For example, Dobra et al. (2004) impose
sparsity constraints in GGMs for modeling gene–gene interactions in high dimensional
data. Sparsity is also sometimes desirable as a biologically meaningful constraint, e.g.,
in the application of Stingo et al. (2010) where small number of microRNAs regulate
a large number of genes. Instead of a GGM, Mitra et al. (2013) propose a graphical
model for binary indicators based on an autologistic model. In particular, we carried
out inference with multivariate count data, by using the binary indicators at the nodes
of the graph as latent variables with an additional sampling model for the observed data
given the latent indicators.

1.2 Multiple Graphs

Biomedical research problems related to unknown networks often naturally lead to joint
inference for multiple related graphs. Biological networks across related disease sub-
categories, related genes, protein-pathways targeted by the same drug, are natually
modeled to share some common characteristics. Danaher et al. (2013) and Guo et al.
(2011) introduced the idea in frequentist models. They estimate multiple related GGMs
for observations belonging to distinct classes. Their method borrows strength across the
classes through an appropriate convex penalty functions. Some other examples of joint
graphical modeling using penalized likelihood appear in Chiquet et al. (2011); Hara and
Washio (2013); Yang et al. (2012); Mohan et al. (2012) and Mohan et al. (2013). For
example, Mohan et al. (2012, 2013) used the perturbed-node joint graphical lasso which
introduces a convex optimization that is based upon the use of a row-column overlap
norm penalty.

Our approach adds a novel perspective to this problem through hierarchical Bayesian
priors. We use priors to borrow strength across multiple graphs and sharpen inference for
datasets with small sample sizes. To our knowledge, this is the first Bayesian formulation
of joint graphical inference, except for Peterson et al. (2014) who discuss the special
case of GGMs and focus a slightly different problem by considering the case of several
related graphs, with an MRF over graphs. Instead, we focus here on the comparison
of two graphs with a general sampling model. We build on the models of Mitra et al.
(2013) to achieve this. The approach is motivated by problems where a heterogeneous
population of samples gives rise to two subgroups. Assuming a common network for
both subgroups could bias inference to a large extent. On the other hand, treating
them as independent samples would result in a loss of efficiency. A typical example
are protein measurements for cancer patients. Different disease subtypes give rise to
patient subgroups, which, while sharing many common characteristics, possess unique
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features that are specific to each subtype. Typically, the unique features and differences
across subgroups are the focus of interest. The proposed hierarchical graphical models
borrow strength across subgroups and allow inference on the differences between the
two groups. The proposed approach can be characterized as a hierarchical model across
graphs.

The rest of the article is organized as follows. In the next section, we state the
proposed model. In Section 3, we discuss model choice between the proposed differential
graph model and a model based on two separate independent graphs. Section 4 describes
a posterior simulation scheme to implement posterior inference. In Section 5, we report
some simulation experiments to validate the proposed graphical model. In Section 6,
we describe the application of our model to two case studies. Finally, we conclude with
a brief discussion on the importance of these results and their relevance to the current
state of biological research.

2 Model

2.1 A Differential Prior Model for Graphs

We propose a prior model for a pair of graphs that represent conditional independence
structure. We denote the two unknown networks sharing the same set of nodes by
G1 = (V,E1) and G2 = (V,E2), respectively. For later reference we first summarize the
overall model structure. We define a joint probability model for G1, G2, π, y, θ, and β.
Here Gk, k = 1, 2, denote the two graphs, π denotes a hyperparameter that is interpreted
as the overall probability of edges matching across G1 and G2, y is the observed data,
and θ and β are parameters that index the sampling model for y, with β describing the
strength of dependence for those outcomes that are not constrained to be conditionally
independent by Gk. Also, y = (y1,y2) are the data arranged by group, and similarly
for βk and θk. In the following sections, we define a joint probability model,

p(y,θ,β, G1, G2) ∝ p(G1, G2 | π) p(π)
2∏

k=1

p(yk | θk,βk, Gk) p(β
k | Gk) p(θ

k). (1)

The first two factors are the key elements of the proposed model. It is the joint prior over
the two related graphs which helps achieve meaningful inference about the comparison
of G1 and G2. The third factor is the sampling model for the observed data y. For
the moment we only need to assume that it can be chosen to respect the conditional
independence structure that is specified in Gk. Details of the sampling model, as well
as the prior on βk and θk, are discussed below, in Section 2.2. Let Gk

ij = I({i, j} ∈ Ek)

denote an indicator for the presence of an edge in Gk. We define δij = |G2
ij −G1

ij | as a
latent indicator for a difference between the two graphs at the edge {i, j}.

We assume that prior expert information can be summarized as a prior guess G0 =
(V,E0). Let U(G0) denote a uniform distribution on the space of all subgraphs of G0.
We start the model construction with a uniform prior for G1,

G1 ∼ U(G0). (2)
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In words, p(G1) has support only on the edges of the prior graph G0. No prior mass will
be placed on any edges outside G0. Each edge in G0 is included in G1 independently
with probability 0.5. We complete the prior p(G1, G2 | π) with independent priors for
the differences δij

δij ∼ Ber(π), i < j, and π ∼ Beta(a, b). (3)

Together G1 and δij implicitly define G2 by G2
ij = G1

ij(1 − δij) + (1 − G1
ij)δij for all

edges {i, j}, i < j. We refer to (3) as the differential graph model, and refer to π as the
global probability of similarity.

Conditional on π and G1, the prior on G2 places more mass on structures closer
(when π < 0.5) or distant (π > 0.5) to G1. Fixing π = 0.5 recovers the special case
of Gk ∼ U(G0), k = 1, 2, independently. In any case, the marginals are identical,
p(G1) = p(G2). This does not remain true under general, alternative priors p(G1). In
view of this asymmetry, it is natural to think of G1 as a reference graph.

In some applications, informative prior information might not be readily available,
and we assume instead G1 ∼ Um(V ), where Um(V ) denotes a uniform distribution over
all graphs G = (V,E) of size |V | = m.

In the applications and in the description of posterior inference, we fix the hyper-
parameters at a = b = 1. However, p(G2 | G1) diverges from p(G2) after marginalizing
out π. The conditionals posterior distributions p(π | G1, G2, data) and p(δ | π, data)
form the basis of inference in this differential model. The inclusion probability π plays a
significant role in the differential graph model. Note that π is an unknown parameter to
be estimated from the available data. It informs us about the global similarity between
two networks. When the data suggests network similarity, π is closer to 0. This, in turn,
enforces similarity between the two networks. In the absence of any information, we
could use a uniform hyperprior for π. However, depending on the context availability
of expert knowledge, we can construct an informative prior around π. In general, we
recommend using different values of a and b if more specific prior information were
available. These hyperparameters would then reflect prior beliefs on the commonality
across graphs. Overall, posterior learning about π is essential for borrowing strength.

In addition, several interesting alternatives could arise out of the general framework
described above. For example, instead of the uniform prior on G1, we could center G1

at a prior guess, say by p(G1) ∝ ρd(G1,G0) where d is a distance between the two graphs
and ρ is a pre-specified concentration parameter.

2.2 The Sampling Model

Conditional on Gk, k = 1, 2, we assume a sampling model for the observed data. Let
ykti, i = 1, . . . ,m, t = 1, . . . , nk, k = 1, 2, denote the observed data for experimental
unit t in group k, and i indexes the coordinates of the m-dimensional response vector.
Let yk denote all data for the kth group. We assume a sampling model

p(yk | βk,θk, Gk). (4)
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The sampling model is indexed by parameters βk and θk, and it is defined to respect the
conditional independence structure given by Gk. Details of the sampling model depend
on the application. In both case studies that we discuss later, we set up a hierarchical
model

p(yk | βk,θk, Gk) =

∫ ∏
i,t

p(ykti | vkti,θk) p(vk | βk, Gk) dv
k.

The model uses a set of latent binary indicators vtk = (v1tk, . . . , vmtk), vkti ∈ {0, 1} and
vk = (vtk, t = 1, . . . , nk). The indicators are interpreted as activation of a protein or
as presence of a histone modification, respectively. In the first case study with RPPA
data, as well as in the upcoming simulation study, we use a normal sampling model,

p(ykti | vkti,θk) ∝
{
N(μ1ik, σ

2
1ik) if vkti = 0,

N(μ2ik, σ
2
2ik) if vkti = 1.

(5)

Let θk = (μ1ki, μ2ki, σ1ki, σ2ki, i = 1, . . . ,m, k = 0, 1) denote the parameters that index
the sampling model.

We continue the construction of the hierarchical sampling model with a prior on v.
This is where we impose the conditional independence structure described by Gk. We
use an autologistic model (Besag, 1974),

p(vkt | βk, Gk) ∝ exp

⎧⎨⎩∑
i

βk
i vkti +

∑
j: Gk

ij=1

βk
ij(vkti −mk

i )(vjtk −mk
j )

⎫⎬⎭ , (6)

wheremk
i = 1/{1+exp(−βk

i )}. The interaction coefficients βk
ij is zero whenever G

k
ij = 0.

The inclusion of Gk in the conditioning subset highlights the dependence of the autol-
ogistic model on Gk.

We complete the sampling model with independent priors for the non-zero elements

βk
ij ∼ N(0, σ2

β), {i, j} ∈ Ek, k = 1, 2. (7)

Finally, we will discuss priors for θk in the context of the case studies.

3 Graphical Model Choice

We argue for the differential graph model (3) and (2) over the default alternative of
independent models with independent priors for G1 and G2, i.e., p(Gk) = U(G0),
k = 1, 2, independently. The two main reasons for preferring the differential graph
model over the independent models are multiplicity control and better modeling of the
experimental setup. We discuss both issues in some more detail below and show that
the latter matters.
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Multiplicity Control for Comparing Dependence Structure Inference on comparing
two graphs G1 and G2 can be described as a massive multiple comparison problem. For
each possible edge {i, j} we decide whether to report the edge as different across the
two subgroups. Recall that δij denotes the truth about comparing edge {i, j} across the
two graphs. Let p = m(m−1)/2 denote the number of comparisons, that is, the number
of edges.

Posterior inference under (3) automatically adjusts for multiplicities, in the following
sense. Scott and Berger (2006, 2010) consider inference for a family of hypotheses δi = 0
versus δi = 1, i = 1, . . . , p. They consider the special case of variable selection in a
linear model, but the argument is more general. Assume that the model includes a
hyperparameter π that can be interpreted as the overall rate of true comparisons, for
example as p(δi = 1 | π) = π, independently, i = 1, . . . , p. Including π in the parameter
vector and adding a hyperprior p(π) allows us to learn about the overall level of noise
and thus on all δi. If the data suggests that many comparisons are negative, then π
is estimated to be closer to zero, and thus posterior inference for any particular δi is
shrunk towards zero. On the other hand, if there is evidence that many comparisons
are likely to be positive, then E(δi | y) is shrunk towards larger values. Compared with
inference that fixes π or inference that does not include learning about the overall level
of observed differences, posterior inference under the hierarchical Bayesian model can
be said to adjust for multiplicities. In other words, a full Bayesian model can define a
more general prior over the space of joint hypotheses δ = (δi, i = 1, . . . , p) than many
other approaches. The discussion in Scott and Berger (2010) is about hypotheses or
model selection related to the mean of the observed outcomes. In contrast, inference
about δ = (δij , i < j) in the differential graph model is related to inference about
the dependence structure and comparing dependence structure across two conditions.
However, the argument remains valid and explains how (3) adjusts for multiplicity.

Posterior Inference under the Differential Versus the Independent Graph Model
The other important justification for proposing the differential graph model (3) over two
independent graphs is that it better reflects biological reasoning and assumptions. In the
motivating applications, the graphs correspond to conditional independence structure
of protein activation under different biologic conditions. It is assumed a priori that the
two graphs are different. In fact, we are interested in inference about how they differ.
However, the differences are not expected to be many, making a hierarchical model
that allows most edges to be unchanged across G1 and G2 more appropriate than two
independent models. And most importantly, these differences between the two model
choices matter. They can lead to very different posterior inference, as we show next.

Consider a stylized multiple comparison problem, with inference for a vector δ =
(δi, i = 1, . . . , p) of comparisons. Let pμ(δ) denote the joint prior under a hierarchical
model with pμ(δi = 1 | π) = π and pμ(π) = U(0, 1). The model pμ is a stylized proxy
for the differential graph model. Let pν(δ) denote a model with p(δi = 1) = p0 for
fixed p0. The model is a stylized proxy for the independent graph model which fixes the
probability of matching edges by implication of the independent prior on the graphs Gk.
Under both models we assume the same sampling model p(y | δ). Finally, let pμ(δ | y)
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and pμ(y) denote the posterior distribution and marginal model under μ, and similar
for pν(δ | y) and pν(y). For any two probability models P and Q, let

KL(P,Q) =

∫
log

P (x)

Q(x)
dP (x)

denote the Kullback–Leibler (KL) divergence between P and Q. Posterior inference
in the multiple comparison problem under pμ and pν differs substantially. The KL
divergence of the two posterior models diverges as the size of the comparison increases.

Theorem 1. If pν(δ | y)/pν(δ) < M1 and pμ(δ | y)/pμ(δ) > M0 > 0 are bounded from
above and from below, respectively, then

KL [pμ(· | y), pν(· | y)] → ∞

as p → ∞, almost surely. Recall that in the application to inference for the edges in
a graph, p = m(m − 1)/2 is the number of edges. The proof is given in the appendix.
The result is independent of the actual sampling model, as long as the stated condition
holds. In words, the bounds on p(δ | y)/p(δ) say that the data must not be “unlimited
informative”. In other words, we require that the likelihood should not dominate the
prior. These conditions are easily met for fixed and moderate sample sizes when the
sampling model is Gaussian or Bernoulli. The theorem states that, for large enough
networks, the posterior probabilities under the two models differ in KL divergence by
arbitrary amounts.

4 Posterior Inference

4.1 Posterior MCMC Simulation

Posterior inference for model (1) is implemented as posterior Markov chain Monte Carlo
(MCMC) simulation. We use [x | y, z] to generically indicate a transition probability
that changes x while conditioning on the currently imputed values of y and z. In writing
the transition probabilities, we include only those conditioning parameters which appear
in the kernel. Recall that δ is a function of G1 and G2. MCMC posterior simulation pro-
ceeds by iterating over the following transition probabilities: [θk | βk, Gk,y

k], [βk | θk,
Gk,y

k] for k = 1, 2, [π | δ], [δ,β2 | θ2,β1, G1, π,y
2], [G1,β

1 | θ1,θ2,β2, G2, π,y
1].

The transition probabilities [θk | . . .] update the parameters θk in the sampling
model. In both examples later, these transition probabilities are straightforward stan-
dard MCMC implementations. The transition probability [π | . . .] updates the global
similarity parameter π. We use the complete conditional posterior probability. Let
m1 =

∑
i<j δij and m0 =

∑
i<j(1− δij) denote the number of mismatches and matches

between edges of the two graphs G1 and G2. We have p(π | δ) ∝ πm1+a−1(1−π)m0+b−1.
We recognize this as the kernel of Beta(m1 + a,m0 + b).

This above step, though computationally simple, is critical to the posterior inference
scheme. Without this updating, π would be fixed. When π is fixed to 0.5, posterior
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inference would proceed just as in an independent model. Fixing π to a known value
would make the networks dependent. However, the degree of borrowing would then
be entirely dictated by the a priori information and ignore available data. In contrast,
the proposed posterior updating step produces a more general inference by allowing a
flexible interplay between the data and priors.

The remaining steps are to update βk and Gk. Here we run across a critical compu-
tational hurdle in the form of normalizing constants. Let c(βk, Gk) denote the normal-
ization constant in (6). The complete conditional posterior distributions for βk and Gk

involve evaluation of this constant.

In general, these constants emerge as a challenging problem in many graphical mod-
els. Some approaches to solve this problem for GGMs using G-Wishart priors required
approximation techniques like the Monte Carlo integration of Atay-Kayis and Massam
(2005) and the Laplace approximation of Lenkoski and Dobra (2011). Alternative meth-
ods sample over the joint space of graphs and precision matrices through reversible jump
procedures (Dobra et al., 2011; Giudici and Green, 1999; Lenkoski and Dobra, 2011). For
these methods, suitable choice of tuning parameters remains a major challenge. Wang
and Li (2012), alternatively, devised a completely novel MCMC exploiting the partial
analytic structure (PAS) of G-Wishart distributions which resulted in automated pro-
posal choices for the RJ steps. Moreover, computation of prior normalizing constants is
avoided via the implementation of an exchange algorithm. A detailed review of these
methods and the associated challenges for G-wishart priors appears in Wang and Li
(2012). For Bayesian GGMs not based on G-Wishart priors, one can cleverly exploit a
reparametrization of the precision matrix Ω and then impose a prior on the new param-
eters. Some good examples of this strategy can be found in Wong et al. (2003) and Wang
(2012). They replace the problem of imposing priors on G by the specification of priors
on partial correlations, which can be specified independently, without any constraints.
Moreover, normalizing constants are required for each possible graph size rather than
for every individual graph. The latter substantially reduces the scale of the problem.
A parsimonious GGM proposed by Wang (2012) entirely does away with normalizing
constants by avoiding model selection on the space of zero-constrained Gs. Instead,
they induce a weaker version of parsimony through shrinkage priors on the individual
elements of the inverse covariance matrix.

For autologistic models like (6), the same problem arises, that is, the evaluation of an
analytically intractable normalization constant. Here, the constant is expressed as a sum
over all possible m-dimensional binary vectors vt ∈ {0, 1}m. This is computationally
intractable for the massively repeated evaluation that is needed in MCMC simulation.
Though introduced decades earlier in Besag (1974), the scope of application of autologis-
tic models has been limited due to these constants. Several techniques to approximate
these constants have been suggested (Atchade et al., 2008; Moeller et al., 2006). We
used an importance sampling technique that is described in Mitra et al. (2013) where
we used the same second-order autologistic model for inference with a single graph. We
briefly summarize the strategy and refer to Mitra et al. (2013) for details.

We first describe the implementation of a transition probability to change βk. For
simplicity we drop the super-index k in the following argument. We implement an impor-
tance sampling estimate to approximate the ratio of the normalizing constants c(β, G)
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that are required for the evaluation of the acceptance probabilities in the Metropolis–
Hastings transition probabilities to update β. The use of importance sampling estimates
to evaluate ratios of normalizing constants is discussed in Chen and Shao (1997), and
more recently reviewed in Chen, Shao and Ibrahim (2000, Chapter 5). Let pv(v; β, G)
denote the autologistic probability (6), and let K(v; β, G) denote the un-normalized
expression on the right-hand side of (6). We generate a proposal for a new β̃ by draw-
ing β̃i ∼ q(β̃i; βi) = N(βi, c). Next we sample M binary vectors vi ∼ pv(vi; β, G). By

the law of large numbers, the sample average R = 1
M

∑M
i=1 K(vi; β̃, G)/K(vi; β, G)

converges to c(β̃, G)/c(β, G). We use R to approximate the ratio of the normalization
constants c(β̃, G)/c(β, G) that appears in the Metropolis–Hastings acceptance ratio for
the proposal β̃. In our experience, the importance sampling is fast and sufficiently ac-
curate with an importance sampling size of M = 5,000.

We similarly construct another transition probability to update Gk in a Metropolis–
Hastings step. An added complication is that a change in Gk requires to add or remove
coefficients in the autologistic model (6). Implementation requires a transdimensional

MCMC (Green, 1995). We construct a candidate G̃k by adding or deleting an edge from
Gk. We first describe the transition probabilities to update G2.

Updating G2 conditional onG1 is equivalent to updating δ sinceG2 is a deterministic
function of G1 and δ. We update (δij , β

2
ij) one edge at a time. The transition probability

implies a possible change in dimension of β2 when it involves a change of δij . We use a

reversible jump (RJ) MCMC implementation and jointly propose a candidate (δ̃ij , β̃
2
ij).

Without loss of generality, assume that the currently imputed state is δij = 0 and we

propose δ̃ij = 1. Thus the parameter vector under the proposed new state is incremented

by an additional coefficient β2
ij . We generate β̃2

ij from a normal proposal distribution

q(β̃2
ij). The joint proposal (δ̃ij , β̃

2
ij) implicitly defines a proposal G̃2. Let β̃

2 denote β2

with β2
ij replaced by β̃2

ij . The acceptance probability becomes min{1, A} with

A =
p(v2 | G̃2, β̃

2)

p(v2 | G2,β2)

p(β̃2
ij)

q(β̃2
ij)

. (8)

The Jacobian is 1 since the proposal involves no deterministic transformation. Evalu-
ation of A again requires the normalization constant c(β̃2, G̃2). We proceed as before
with the importance sampling method. The RJ acceptance probability can now easily be
evaluated. Updating G1 and β1 conditional on currently imputed values of G2 proceeds
similar to the above step.

4.2 Posterior Summaries

One of the desired inference summaries are estimates for the graphs G1 and G2. We
report graphs Ḡ1 and Ḡ2 based on marginal inclusion probabilities. Let P̄ k

ij = p({i, j} ∈
Ek | y) denote the posterior probability of edge {i, j} being included in graph Gk. We
report graphs Ḡk including all edges with P̄ k

ij > λ for some threshold λ. That is, we
report estimates

Ḡk
ij = I(P̄ k

ij > λ). (9)
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The threshold is set to control the posterior expected false discovery rate (FDR) for
edge inclusion,

FDRλ =

∑
i j [(1− P̄ij)I(P̄ij > λ)]∑

i,j I(P̄ij > λ) + ε
,

adding ε to avoid division by zero.

The main inference targets are the δij . We summarize posterior inference on δij by
a similar argument as P̄ k

ij . We use a rule that reports an edge as different across graphs
when

δ̄ij = I [p(δij = 1 | y) > κ] . (10)

This is similar to the rule {P̄ k
ij > λ} that we use to report estimated graphs. Only now

the rule is deciding the report of edges as different across conditions. Again, κ can be
chosen to control the FDR for the multiple comparison problem.

In summary, posterior inference is implemented with reversible jump MCMC simu-
lation. Computation is not trivial, but does not involve any non-standard techniques.
Inference is computation intensive. However, conditional on imputed values of βk and
θk, the implementation of the transition probabilities to update π and the two graphs
are linear in p (recall that p is the number of edges). In other words, the joint model
adds an O(p) term to the computational cost, compared to inference for a single graph.

5 Simulations

We set up a simulation experiment to validate the proposed model. For each simulated
data set we carried out inference under four models: (1) the proposed model (differential
graph model); (2) a model with two independent priors for G1 and G2, identical to p(G1)
in (3) (independent graph model); (3) joint graphical inference by Guo et al. (2011);
(4) joint graphical inference by Danaher et al. (2013); and (5) Independent graphical
lasso.

The Beta hyper-parameters of the proposed differential model (3) were set as a = 11
and b = 1. We fixed the number of observations for subgroup 1 at 330 and subgroup 2
at 48. The graph G1 was generated by setting up vertices for m = 7 nodes. For each
pair of nodes {i, j} we included an edge between them with probability p = 0.5. For
each imputed edge {i, j} we generated values of β1

ij using a discrete uniform prior over

three possible values, β1
ij ∼ Unif({log(2), log(4),− log(2)}. These values were chosen

arbitrarily. Next, we used π to generate G2 from the conditional prior distribution
p(G2 | G1, π). In the simulation truth, we used several choices of π. Values are indicated
in the upcoming tables of results.

Hypothetical data yk was generated using the sampling model (5) with latent bi-
nary indicators generated as in (6). We fixed the model parameters θk with μ1ik ∼
N(4, 0.2), μ2ik ∼ N(1, 0.2) and σ1ik = σ2ik = 0.1. We generated 20 hypothetical datasets
under this assumed sampling model. We then evaluated inference under the proposed
differential graph model with sampling model (5) and (6).



110 Bayesian Graphical Models for Differential Pathways

To assess model performance, recall rule (10) that reports an edge as positive when
δ̄ij = I[p(δij = 1 | y) > κ]. As we vary the threshold κ, we generate a family of decision
rules. The receiver operating characteristic (ROC) curve for each model plots sensitivity
versus the false positive rate as we vary κ. The area under the ROC curve (AUC) along
with misclassification rates is often used as a summary to compare competing classifica-
tion rules. For each dataset we computed AUC for the five models (1) through (5). The
frequentist lasso methods (3)–(5) required specifying the glasso penalization parameter
ρ which we set to 0.03. Inference under models (3) and (4) was implemented using the
glasso package and jgl in R, while (5) was executed with code obtained from Guo et al.
(2011). For each method we recorded 4 measures of model performance, including the
AUC for estimating G1 (AUC1 in Table 1); AUC for estimating G2 (AUC2); the av-
erage across these two (AUC12); and ERκ, as the error rate for detecting differential
edges obtained under a given posterior probability threshold κ in (10). The latter is
evaluated as the proportion ERκ = 1

p

∑
i;ji<j [Ḡ

k
ij �= δoij ] where δoij is the simulation

truth and p = m(m − 1)/2 is the number of possible edges. The last two summaries,
AUC12 and ERκ, provide a combined summary of how the model jointly estimates the
pair of networks. AUC12 focuses on average performance over individual graphs while
ERκ addresses the detection of differential edges. We fixed κ = 0.75 throughout. The
ROC curves for the frequentist methods are obtained by thresholding the values of the
estimated inverse covariance matrix at different cutoff values. Each cutoff yields a binary
matrix of estimated differences, which is then used to compute the corresponding sensi-
tivity and specificity. The average AUC values for all methods along with their standard
errors (across repeat simulation) are summarized in Table 1. We observe that the dif-
ferential prior compares consistently favorably with the independent prior in terms of
combined accuracy and the estimation of G2.

Figure 1 shows smoothed ROC curves under the two models for estimating both
graphs for one of the sample data sets. The smoothed curves are based on kernel density

Figure 1: ROC curves for a simulated data set. The green and black curves represent
the operating characteristics of the differential graph model (solid) and the independent
graph model (dotted), respectively.
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estimates of the distribution of δ̄ij for both, true positives and true negatives. For more
details we refer the readers to Lloyd (1998).

We next varied the penalization parameters of the frequentist methods and found
that performance was very sensitive to these values. Specifying an optimal value of λ
remains a challenge. In interpreting the overall comparison, one should, however, keep
in mind that these approaches were never specifically intended for a comparison of edges
in two graphs and are more focussed on the shrinkage of graph coefficients.

Performance Diff-Bayes Ind-Bayes Glasso JGL Guo
AUC1 0.95 (0.06) 0.97 (0.04) 0.97 (0.04) 0.97 (0.04) 0.89 (0.11)
AUC2 0.84 (0.10) 0.68 (0.13) 0.68 (0.12) 0.71 (0.11) 0.65 (0.13)
AUC12 0.90 (0.08) 0.83 (0.07) 0.83 (0.03) 0.84 (0.03) 0.77 (0.03)
ERκ 0.118 (0.04) 0.82 (0.06) 0.119 (0.06) 0.119 (0.07) 0.12 (0.10)

Table 1: Comparing differential prior model against independent priors and other fre-
quentist alternatives. In parentheses, standard deviations (..) over repeat simulations.

Besides the comparison of Table 1, several other considerations lead us to favor the
proposed approach when the primary goal is a comparison of dependence structure
across two conditions. First, the Bayesian paradigm allows the incorporation of prior
expert knowledge, when available. Second, we model the differential structure directly
on the space of latent graphs, rather than relying on features of an assumed sam-
pling model. This makes the approach very flexible. For example, the sampling model
could be replaced by any alternative sampling model without substantially changing the
implementation of posterior simulation. Lastly, the Bayesian approach includes a full
probabilistic description of uncertainties as the posterior distribution p(δ | y). Overall,
the joint estimation of differential pathways in the differential model allows improved
inference on differences across the two graphs. The relative advantage over independent
analyses decreases when sample sizes increase (simulations not shown). However, infer-
ence under the differential prior provides substantial gains in AUC (and a significantly
lower error rate) under unequal and lower sample sizes. Asymptotically, as both sample
sizes increase, and the data essentially reveals the true graphs, both models achieve an
AUC of 100%.

6 Case Studies

6.1 RPPA Data

Reverse Phase Protein Arrays (RPPAs) is a recently developed high-throughput tech-
nology that is designed to measure protein activation for many samples simultaneously.
A typical RPPA experiment starts out with a mixture of cultured cells from patient
samples. These cells are treated with therapeutic agents. Proteins extracted from these
cells are then fixed onto a slide. A typical slide usually consists of thousands of indi-
vidual patient samples. Investigators wanting to study a particular pathway design an
RPPA experiment with each array on the slide hybridized against an antibody that
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Figure 2: RPPA data. Posterior graphs and estimated differences δij under the differ-
ential graph model (a,b,c) and the independent graph model (d,e,f). Inference under
the differential prior reports no uncommon edges between the two graphs while the
independent prior selects 3 edges.

binds to a targeted protein of interest. Therefore, each RPPA produces a data set of
measurements for one protein across multiple samples.

We analyzed data from an RPPA experiment on the mitogen-activated protein kinase
(MAPK) pathway from breast cancer cell lines. The dataset consists of measurements
of 10 proteins selected from the MAPK pathway for 255 patient samples. Patients were
classified into three clinical groups based on the activation status of three biomarkers
HR+, Triple Negative(TN+) and HER2+. The sample sizes for the three subgroups
samples were 139, 63 and 53 patients, respectively. The goal was to estimate differ-
ences in the protein networks for each pair of these three subgroups by combining prior
knowledge of protein interaction and RPPA measurements.

We first focus on comparing TN versus HR+. We carried out MCMC posterior sim-
ulation, using 16,000 iterations in total, and keeping the last 8,000 iterations to evaluate
posterior summaries. The total time for running these simulations was 23 minutes on
a Dell Optiplex 980 desktop computer. Figure 2 summarizes posterior inference for the
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comparison of HR+ versus TN. Figures 2(c,f) include all edges with δ̄ij = 1 based on a
FDR criterion of 0.01. Figure 2(c) shows the reported differences under the differential
graph model for (G1, G2). Panel 2(f) shows the same inference under two independent
models for G1 and G2. The additional edges that are reported by the independent
model are due to the un-adjusted high posterior probabilities P̄ij = p(δij = 1 | y). In
contrast, the differential path model learns that most edges remain unchanged across
conditions and shrinks inference on δij towards 0. For reference, Panels 2(a,b,d,e) show
the estimated graphs Ḡk

ij .

Next, Figure 3 shows the posterior estimated networks Ḡk under the remaining two
comparisons, that is HR+ versus HER2, and TN versus HER2. The cutoff in Ḡk was
chosen to achieve a posterior expected FDR of 0.01. From inspection of the two esti-
mated graphs in Figure 3 alone, it is not clear which differences should be reported. And
it is impossible to attach probabilities to any such report. In these two particular com-
parisons, inference under the differential graph model finds no edges to be significantly
different (again under FDR control at 0.01). The strength of the proposed model is that
it facilitates such inference as straightforward summaries of the posterior distribution
p(δ | y).

6.2 ChIP-Seq Data of Histone Modifications

Histones are proteins that wrap short segments of DNA (about 140 base pairs) around
small spherical structures called nucleosomes. A nucleosome consists of an octamer of
four core proteins (two sets of H2A, H2B, H3, and H4). Post-translational modifications
of these proteins by methyl, acetyl and phosphoryl groups significantly influence impor-
tant biochemical processes such as gene activation, nucleosome assembly and higher-
order chromatin packing. The correlation of these histone modifications (HMs) with
translational activity and occurrence of promoters has been well documented in Barski
et al. (2007), among many others. By influencing gene expression, HMs can overwrite
the inscribed genetic code. Therefore, HMs can be said to be epigenetic markers that
share the importance of DNA in explaining heredity. Recent research has been increas-
ingly suggestive of a fundamental association between HMs and the pathology of some
major diseases. For example, patterns of HMs have been found to be important predic-
tors of cancer prognosis and subsets of HMs are used as potential informants of clinical
decisions (Kurdistani, 2007, 2011). Both, global patterns in HMs and their cellular het-
erogeneity have been considered in building therapeutic regimens. A comprehensive list
of HMs appears at http://bioinfo.hrbmu.edu.cn/hhmd (Zhang et al., 2010).

Despite their obvious importance, knowledge about the association of HMs with
translational processes and disease markers still remains restricted to marginal associ-
ation, in the sense that most reported associations are for individual HMs. The mecha-
nism of co-localization of multiple HMs and its relation to transcription remains largely
unknown. The famously hypothesized histone code (Strahl and Allis, 2000) suggests
that the presence or absence of these HM co-localizations regulates gene transcription
combinatorially. Since the emergence of this hypothesis, several experimental results
have provided strong evidence for a cross talk mechanism between HMs. Many plausi-
ble mechanisms of co-localization have also been uncovered, e.g., the concurrent activity

http://bioinfo.hrbmu.edu.cn/hhmd
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Figure 3: RPPA data. Posterior estimated graphs Ḡ1 and Ḡ2 for the comparison of HR+
versus HER2 (a,b) and for TN versus HER2 (c,d). Ḡk shows the estimated conditional
independence structure for protein activation in the MAPK pathway for the respective
comparisons.

of several enzymes on different parts of the histone tails. It is now known that the dis-
tributions of HMs vary with genomic locations, and there are attempts to demarcate
functional domains over the genome by signatures of histone patterns (Liu et al., 2005).
We go a step further and aim to demonstrate that functionally diverse genomic regions
(e.g., regions of high and low gene expression) are characterized by different cross-talk
mechanisms. Our model-based approach formalizes this dependence through difference
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graphs between two networks.

Data for HMs was obtained from a ChIP-seq experiment for CD4 positive T lym-
phocytes (Wang et al., 2008; Barski et al., 2007). The data reported counts for m = 39
types of HMs including 18 acetylations, 20 methylations, and one special histone modifi-
cation H2A.Z at a given set of genomic locations. A high count indicated an enrichment
of the HM at the corresponding genomic location. Here, genomic location refers to a
segment of DNA of around 2,000 base pairs. In Mitra et al. (2013) we discussed inference
for the same data using a model for a single population, using the marginal model for
y1 that is implied by (1). The upcoming results under the proposed differential graph
model extended this analysis to inference across two subpopulations, as we explored
differences in dependence structure of HMs across regions corresponding to high and
low transcription. To achieve this goal we restricted data to the HM counts in known
promoter regions that were related to specific genes. Then we separated the genomic
region belonging to promoters into protein coding and non-coding regions. This defined
the two groups. In each group we had count data for all 39 HMs.

For the HM data we used a slight modification of the sampling model (5), replacing
the normal sampling model with a mixture of log normal model. Let LN(μ, σ) denote
a log-normal distribution with location parameter μ and scale parameter σ. We assume

p(ykti | θk, vkti) ∝
{
LN(μ1ik, σ

2
1ik) vkti = 0,

LN(μ2ik, σ
2
2ik) vkti = 1.

(11)

The autologistic model (6) remains unchanged. In the context of the application to
HM data, the indicators vkti are interpreted as indicators for the presence of histone
modification i in sample t under condition k. The primary aim of the study is inference
about the difference across conditions k = 1, 2 of the dependence structure of vkti,
i = 1, . . . ,m.

We implemented inference under the proposed differential graph model by simulating
a total of 8000 iterations of the earlier described MCMC posterior simulation. This
took approximately 8.5 hours on a Dell Optiplex 980 desktop computer. Figure 4 shows
the estimated differences δij in the dependence structure across the high versus low
expression regions. In the figure, we indicate the different HMs names with running
indices 1 through 39, as indicated.

To select edges to be reported in the difference graph of Figure 4 we used a variation
of the rule in (10). First we noted that δ̄ij in (10) can be justified as a Bayes rule under
the loss function

L(δ,d) =
∑
i

∑
j

[dij(1− δij) + c(1− dij)δij ], (12)

where d = {dij} is a set of decision rules in which {dij = 1} denotes the decision
to declare that there exists a difference between the two graphs at the edge {i, j}.
Under L(δ,d), d∗ij = δ̄ij is the Bayes rule. The tradeoff c determines the threshold κ
in (10). See, for example, Müller et al. (2007) for a discussion of this interpretation
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Figure 4: HM data. Estimated differences between graphs G1 and G2. The solid edges
are present in the high expression network G1 and not in low expression network G2.
The dashed edges are present in low expression network and not in the high expression
network. The HM names corresponding to nodes 1 through 39 are listed.

of thresholding rules. Understanding the underlying loss function (12), one could now
criticize the rule (10). In particular, the loss function penalizes all false negatives (second
term in L(δ, δ̄)) equally with a penalty c. This interpretation leads us to adopt an
alternative rule. Let mij = δij |β1

ij −β2
ij | denote the (true) extent of differential strength

in edge {i, j}. We use mij to weigh false negatives differently, in the loss function

L(δ,d,β) =
∑
i

∑
j

[−dijmij + c1(1− dij)mij + c2dij ].

Here c1 and c2 are two fixed constants. In words, false negatives (1 − dij)δij and true
positives dijδij are weighted by the size of the difference mij . The relative weights of
true positives, false negatives and sampling cost are −1, c1 and c2, respectively. It is
easy to show that the optimal rule d∗ij is given by

d̂ij = I [E(mij | y) > c2/(1 + c1)] .

In other words, we include edges in the difference graph by thresholding the posterior
probability of the differences δij weighted by the strengths βij of the edges. The rule

d̂ is a variation of the earlier introduced rule (10), replacing the posterior mean of δij
by a weighted quantity mij = δij |β1

ij − β2
ij |. In our implementation, we use a cutoff
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c2/(1+ c1) = 0.6. Figure 4 shows d̂ij . For ease of display, we used a numerical index for
each HM (instead of its full name) in plotting the graph.

In summary, most edges occur with high posterior probabilities in both networks.
Some of the common edges are between the variants of the same type of HM. For
example, edges (H3K27me3, H3K27me2) and (H4R2me1, H4R2me2) are common to
both networks. Apart from these, the list of significant common edges include edges
between H3K4me and H3K9me methylation groups. The following edges correspond
to the solid lines in Figure 4: (H3K36ac, H3K18ac), (H4K8ac, H3K4ac), (H3K4ac,
H3K27ac), (H4K16ac, H2BK20ac), (H3K36ac, H4K91ac), and (H2BK12ac, H4K5ac).
The following is a list of some positive edges in the low expression network that do not
appear in the high expression network. These correspond to the (black) dotted lines
in Figure 4: (H4K91ac, H3K4me3), (H3K9me3, H3K36me1), (H3R2me2, H3K79me2),
(H4K8ac, H3K79me1), (H3K79me1, H4K20me1), and (H2BK12ac, H3K18ac). Finally,
we report HMs with high posterior probabilities of high connectivity, defined by 8 or
more edges. In both the high and low expression networks, the top connecting HMs
include H3K4ac and H3K9ac. Both of these HMs are known to be associated with tran-
scriptional activity in promoter regions. The activating mark H3K4me1 connects to a
large number of nodes in the high expression network. The top connecting HMs in the
low expression network include H4K8ac and H3K27me3.

7 Conclusion

We propose a model for joint inference on dependence structure G1 and G2 in two
related subgroups. The main goal is inference about relative differences of the two
dependence structures. In the application to protein activation, such inference formalizes
the notion of pathway activation and disruption in one subpopulation relative to the
other. In the application to histone modification counts, inference on relative differences
between G1 and G2 gets us closer to understanding what is known as the histone code,
i.e., epigenetics marks of HMs that reveal the regulatory mechanisms of HMs on gene
expressions.

Among the limitations of the proposed model are the restriction to low and mod-
erate size graphs, the restriction to comparing two graphs, the computation-intensive
estimation and the lack of informative priors in the current implementation.

First, the proposed inference is only suitable (and intended) for problems with a
moderate number of nodes, say, m ≤ 40. The joint graphical prior only mitigates the
challenge of inference for high-dimensional problems, but does not entirely solve it. Sec-
ond, we restrict discussion to two related subpopulations, simply because this is all we
need for the two motivating case studies. Some straightforward extensions to multiple
subpopulations are possible. For example, assume that subpopulation 1 is the reference
population. Sets of parameters (δk,βk), k = 2, . . . ,K, could be used to augment the
model to (G1, . . . , Gk). Third, implementation requires MCMC simulation, with trans-
dimensional transition probabilities to allow for the addition and deletion of edges. We
use a reversible jump MCMC scheme. Such MCMC schemes are easy to describe, but
notoriously difficult to implement. An efficient implementation requires attention to
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many housekeeping details. Finally, we described the model with generic priors p(Gk)
that did not make use of prior expert opinion beyond centering the graph around a prior
guess G0. However, nothing changes in the remaining discussion if p(Gk) were replaced
by more informative models.

A natural next step would be to embed such prior models in a larger framework
where the subgroups are unknown a priori. The goal would be then to estimate the sub-
group categories and the graphs simultaneously. The work of Rodriguez et al. (2011)
is a significant step in that direction. They used a DP mixture of GGMs for this pur-
pose. However, unlike us, they did not focus on differential edges between the graphs
conditioned on subgroups.

The model can also be extended in several directions to try to locate finer differences
and similarities between two graph topologies. One modification would be to center the
δij not around a global mean, but around a mean specific to a local neighborhood.
A local neighborhood of an edge, or a pair of vertices, could be defined as subset of
vertices connected to both i and j, or some other criterion. The newly defined means
for the subgraphs (could be overlapping) could be independent or could themselves be
centered.

Appendix

Proof of Theorem 1. We first introduce some notation. We make use of an approxi-
mation of the sampling model under pν by a normal distribution, after appropriate
standardization. For any π let Y p

π denote the standardized version of a binomial vari-
able Y ∼ Bin(p, π), with mean pπ. Let qp be the p.m.f of Y p

π . By the Central Limit
Theorem, qp → N(0, 1) weakly and also in probability.

In the following argument, we need a slightly different mode of convergence. We say
pν is LR-convergent if log(qp/φ) converges to 0 uniformly, where φ is the density of

the standard normal distribution. Let sp =
√

π(1− π)/p. The maximum and minimum
of the support of qp is ap = (1− π)/sp and bp = −π/sp. The distance between two
consecutive point masses in the support of qν is dp = sp. In the proof, we will use that

ap and bp are O(
√
p) and dp is O(

√
1/p).

We begin with a general form of KL divergence between two posteriors. Since the
space of possible graphs or binary configurations is discrete, the integral in the formula
of KL divergence reduces to a summation:

∑
δ

pμ(δ | y) log
{
pμ(δ | y)
pν(δ | y)

}
=

∑
δ

pμ(δ | y)
pμ(δ)

pμ(δ) log

{
pμ(δ)

pν(δ)

pν(y)

pμ(y)

}
=

=
∑
δ

[
pμ(δ | y)
pμ(δ)

pμ(δ) log

{
pμ(δ)

pν(δ)

}]
− log{B(y, μ, ν)}

Here B(y, μ, ν) is the Bayes factor of μ with respect to ν. Since
pμ(δ|y)
pμ(δ)

> M0, the first

term is greater than M0 KL(pμ, pν).
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We now produce a lower bound for the second term, − log{B(y, μ, ν)}. To see this,
write the Bayes factor as B(y, μ, ν) =

∑
δ pμ(δ) pν(δ | y)/pν(δ). Using

∑
δ pμ(δ) = 1 and

the upper bound M1 for pν(δ | y)/pν(δ), we conclude − log{B(y, μ, ν)} > − log(M1).

Thus the divergence of the posteriors would primarily be driven by the divergence
of the priors under the given assumptions. We need to show only lower bounds since
our aim is to show divergence to positive infinity.

The KL divergence for the priors can be written as

KL(pμ(δ), pν(δ)) =
∑
δ

pμ(δ) log
pμ(δ)

pν(δ)
.

For each δ let kδ =
∑

ij δij denote the number of non-zero elements, and recall that m
is the number of edges in the graph. Then

pμ(δ) =

∫ 1

0

λkδ(1− λ)p−kδdp =
kδ!(p− kδ)!

(p+ 1)!
.

This distribution induces a uniform prior for the number of non-zero entries kδ

pμ(kδ = k) =
p!

kδ!(p− kδ)!

kδ!(p− kδ)!

(p+ 1)!
=

1

p+ 1
.

Now pν(δ) = pkδ
0 (1 − p0)

p−kδ and thus pν(kδ = k) = Cp,k p
k
0(1 − p0)

n−k where Cp,k =
p!/{k!(p − k)!} is the binomial coefficient or the number of size k subsets of a set of
p items. Partitioning the sum in the KL expression into subsets which have the same
value of kδ we have

KL =

p∑
k=0

1

p+ 1
log

{
1/(p+ 1)

Cp,k pk0(1− p0)n−k

}
.

Thus the divergence is equal to KL(X,Y ) whereX is a discrete uniform random variable
on {0, 1, . . . , p+1} and Y ∼ Bin(p, p0). The priors μ and ν induce a uniform and a bino-
mial distribution, respectively, on the same support. Since a one–one transformation pre-

serves KL, we can further write this as KL{T (X), T (Y )} where T (x) =
√
p{

x
p−p0√
p0(1−p0)

}
Thus, we can rewrite KL(pμ(·), pν(·)) as KL(X ′, Y p

p0
) where Y p

p0
is a standardized ver-

sion of binomial variable with mean p0 and X ′ is a discrete uniform variable on the
same support. Using the earlier defined notation of qp for the p.m.f. of a standardized
binomial variable, we have

KL =
1

p+ 1

p∑
i=0

log

{
(1/qi)

p+ 1

}
= − log(p+ 1)− 1

p+ 1

p∑
i=0

log(qi).

From Lemma 1 below, the second term is O(p). It is precisely −(K+zp){ p2

1+p}+cp where
K is a constant and the sequences zp and cp go to 0. From Lemma 1, the second term

is O(p). It is precisely −(K + zp){ p2

1+p} + cp where K is a constant and the sequences

zp and cp go to 0. Now log(p + 1)/p → 0 as p → ∞. In other words, p diverges faster
than log(p+ 1). Therefore, KL = O(p), which completes the proof.
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Lemma 1. Consider qp as defined above. Then the average log-probability mass function
of qp defined by Q = 1

p+1

∑p
i=0{log(qi)} is O(p).

Proof. Let φi denote the normal density evaluated at the ith point mass in the support
of Y p

p0
. Then the average probability mass function can be written as

Q =
1

p+ 1

p∑
i=0

log

{
qi
φi

(φi)

}
=

1

p+ 1

p∑
i=0

log
qi
φi

+

1
p+1

dh

bp∑
ap

dh log(φi).

From the assumption on LR convergence the first term tends to 0. The second term can
be written as

1/(p+ 1)

dh

[
p∑
0

dh log(φi)−
∫ bp

ap

log(φ)

]
+

1/(p+ 1)

dh

∫ bp

ap

log(φ).

Now, {
1

p+1

dh
} is equal to

√
p
√

p0(1−p0)

p+1 which converges to 0. Also, since ap and bp go to
infinity and dh goes to 0, the term in the third bracket goes to 0 by the definition of
Riemann integral.

The integrand in the second term is log(C) − 1
2x

2, implying the second term to be

−{
1

p+1

dh
}(a3p − b3p)/6. Here C is

√
1
2π .

From the definitions of ap and bp which areO(
√
p) and noting that

1
p+1

dh
=

√
p
√

p0(1−p0)

p+1

the last term is is equal to − p2

1+p (K + zp) where K is a constant and zp goes to 0. Thus

the expression is O(p).
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