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Bayesian Polynomial Regression Models to Fit
Multiple Genetic Models for Quantitative Traits

Harold Bae*, Thomas Perls’, Martin Steinberg®, and Paola Sebastiani*

Abstract. We present a coherent Bayesian framework for selection of the most
likely model from the five genetic models (genotypic, additive, dominant, co-
dominant, and recessive) commonly used in genetic association studies. The ap-
proach uses a polynomial parameterization of genetic data to simultaneously fit
the five models and save computations. We provide a closed-form expression of
the marginal likelihood for normally distributed data, and evaluate the perfor-
mance of the proposed method and existing method through simulated and real
genome-wide data sets.

Keywords: marginal likelihood, GWAS, Bayesian model selection, parameterization,
additive, dominant, recessive, co-dominant.

1 Introduction

Genome-wide association studies have been a popular approach to discover genetic
variants that are associated with increased risk for rare and common diseases (Sebastiani
et al. (2009)). The most common variants in the human genome are single nucleotide
polymorphisms (SNPs): DNA bases that can vary across individuals. Typically SNPs
have two alleles, say A and B, and based on the combination of SNPs alleles in each
chromosome pair (the genotype), an individual can be homozygous for the A allele if
both chromosomes carry the allele A, homozygous for the allele B if both chromosomes
carry the B allele, and heterozygous when the two chromosomes carry the A and B
alleles. Genotyping DNA was a slow and expensive process until mid-2000, when high
throughput technologies produced microarrays that can generate the genetic profiles of
an individual in hundreds of thousands to millions of SNPs, and the technology was
the trigger for an explosion of genome-wide association studies (GWAS) to discover the
genetic base of common diseases.

Typically in a GWAS the association between each SNP and a quantitative trait is
tested using linear regression under a specific genetic model that can assume a geno-
typic (2 degrees of freedom), dominant, recessive, co-dominant, or additive mode of
inheritance of each tested SNP. In a genotypic model the 3 genotypes AA, AB and BB
are treated as a factor with 3 levels. The other 4 genetic models compress the 3 geno-
types into a numerical variable by either counting the number of minor alleles (additive
model), or by recoding the genotypes as AA=0 versus AB, BB=1 (dominant model for

*Department of Biostatistics, Boston University School of Public Health, bach@bu.edu

TNew England Centenarian Study, Section of Geriatrics, Department of Medicine, Boston University
School of Medicine, thperls@bu.edu

fCenter of Excellence in Sickle Cell Disease Boston Medical Center, Pediatrics, Pathology and
Laboratory Medicine, mhsteinb@bu.edu

(© 2015 International Society for Bayesian Analysis DOI: 10.1214/14-BA880


http://bayesian.org
mailto:baeh@bu.edu
mailto:thperls@bu.edu
mailto:mhsteinb@bu.edu
http://dx.doi.org/10.1214/14-BA880

54 Polynomial Coding of Genetic Data

the B allele), AA, AB=0 versus BB=1 (recessive model for the B allele), AA, BB=0
versus AB=1 (co-dominant model). However, the inheritance pattern is rarely known,
and using a suboptimal model can lead to a loss of power (Lettre et al. (2007)).

Selecting the correct genetic model for each SNP is often accomplished by fitting
the five models and choosing the model that describes the data best. This approach
has several drawbacks. It increases computational burden with genome-wide data as 5
GWASSs need to be conducted. Furthermore, testing five models for each SNP increases
the burden of multiple testing in addition to the existing issue of multiple comparisons
with millions of SNPs. More importantly, the optimal method for choosing the best
model is not clear (Lettre et al. (2007)). The common practice is to simply use the
additive genetic model. It has been shown that additive models perform reasonably
well to detect variants that have additive or dominant inheritance pattern, but they are
underpowered when the true mode of inheritance is recessive (Bush and Moore (2012)).
Others (Freidlin et al. (2002); Gonzalez et al. (2008); Li et al. (2008); So and Sham
(2011)) have proposed to study the maximum of the three test statistics derived under
additive, dominant, and recessive models.

We propose a polynomial parameterization of the genetic data that includes the
five genetic models as special cases, and we describe a coherent Bayesian framework to
select the most likely genetic model given the data. This polynomial parameterization
is equivalent to the genetic model described in Servin and Stephens (2007) that adds
a dominance effect to the additive model to describe non-additive genetic effects. The
advantage of either parameterization is that, in a Bayesian framework, fitting a single
model becomes sufficient to test the genotype-phenotype associations without specifying
a particular genetic model and this problem has been described in detail in Servin and
Stephens (2007). Here, we focus on the specific task of selection of the best genetic
model when the specific mode of inheritance is of interest in addition to whether a SNP
is associated with the trait.

The next section describes this parameterization and shows that there is a mathe-
matical relationship between the parameters of the polynomial model and each of the
five possible genetic models. Section 3 describes the model selection approach that is
based on the computation of the marginal likelihood of the five models so that the
model with maximum posterior probability can be identified. Section 3 also provides
closed form solutions for the marginal likelihood and for the estimates of the parame-
ters of the model with the highest marginal likelihood or Bayes Factor (BF), assuming
exchangeable observations that follow normal distributions. The proposed method is
evaluated through simulation studies in Section 4, and is applied to two GWAS data
sets in Section 5. Conclusions and suggestions for further work are provided in Section 6.

2 Relationship Between the Polynomial Model and
Other Genetic Models

Here we show that the five genetic models are specific cases of a general polynomial
model, with parameters that satisfy some linear constraints. Let y denote the response
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variable in the genetic association study, and consider the polynomial regression model

E(y|B) = Bo + P1Tadd + B4y

where (8 denotes the vector of regression parameters and x,44 is the variable that codes
for the genotype data as follows:

0 if genotype is AA
Tadd = 1 if genotype is AB
2 if genotype is BB.

Note that the proposed model is equivalent to the additive model with dominance effects
described in Servin and Stephens (2007):

E(y|0) = 0y + 612q4q + O2Z et

where e = 1 for heterozygous genotype and 0 otherwise, and 01 = S+ 202; 03 = — 5.
Mathematically, we found the polynomial parameterization more appealing as it allows
interpretation of the regression coefficients in terms of the SNP dosage.

2.1 Genotypic Association Model

The genotypic association model is typically parameterized using two indicator variables
to describe the effect of the genotypes AB and BB relative to AA:

E(yly) = +nzas + 72788
zap = 1 if genotype is AB (and 0 otherwise)

and zpp = 1 if genotype is BB (and 0 otherwise).

This parameterization specifies the expected value of y, for each of the 3 genotypes
AA, AB, BB as summarized in Table 1. Equating the expected values of y from the 2
different parameterizations produces a system of linear equations:

Yo Bo
Yo+mn | = Bo + B1 + B2
Yo + 72 Bo + 281 + 4532
that can be solved as
Yo 1 00 Bo 1 0 0
M l=1011 Gl=]011]g
Y2 0 2 4 Ba 0 2 4

Therefore, the parameters in the polynomial model and the genotypic association model
have a one-to-one relationship. For the other genetic models, some constraints on pa-
rameters of the polynomial model are necessary.
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2.2 Additive Model

The parameterization of the additive genetic model is E(y|aa) = aao + aa®qqq and
equating the expected values of y in Table 1 leads to the system of linear equations:

Bo = a0

B1+ P2 =aa
281 + 482 = 204

that can be solved if S = 0, so that Sy = aag, and 51 = . Therefore the relationship
between the parameters in the polynomial model and additive model requires a linear
constraint on the vector 5.

2.3 Dominant Model

Now, consider the dominant model for the B allele: E(y|ap) = apo + @pZpem, where
Zpom=1 if genotype is AB or BB (and 0 otherwise). Proceeding as in the previous cases
leads to the equations:
apo = Po
ap = B+ o = 201 + 452.
The system has the solution apg = 8y and ap = % (1 if the parameters of the polynomial
model satisfy the constraint 8; + 382 = 0.

2.4 Recessive Model

Similarly, consider the recessive model for the B allele: E(ylar) = aro + Q@R Rec,
where zg..=1 if genotype is BB (and 0 otherwise). In this case, the relations between
parameters are:
aro = Bo = Bo+ B1 + B2
agp =201 + 462

with linear constraint 81 + 82 = 0, agg = Bo and ag = 25;.

2.5 Co-dominant Model

Lastly, consider the co-dominant genetic model: E(ylac) = aco + acTood, where
Zooa=1 if genotype is AB (and 0 otherwise). In this case:

aco = Bo = Bo + 261 + 402
ac = B+ Ba.
The linear constraint is 51 + 232 = 0, so that acg = 8o and ag = %51.

In summary, there is a one-to-one transformation between the parameters of the
polynomial and general model, while the transformation between the polynomial and
the other four models (additive, dominant, recessive, and co-dominant) is constrained
by a linear contrast of the parameters in the polynomial model.
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Polynomial 2-df Additive Dominant | Recessive Co-
Model General Model Model Model dominant
Model Model
E(ylAA) | Bo Y0 a 40 apo aRo aco
E@AB) | Bo+B1+P2 | vo+m aaotaa | apotap | agro aco + ac
E(y|BB) | Bo+2B1+4B2 | 70 +72 aa0+2a4 | apotap [ arotar | aco

Table 1: Expected value of the quantitative trait for 3 genotypes in each model.

3 Model Selection via Marginal Likelihood and
Parameter Estimation

The polynomial parameterization provides a framework to simultaneously fit different
genetic models. Given a sample of genotype data, the question is how to select the most
appropriate genetic model. We propose a Bayesian model selection approach in which
genetic models are compared based on their marginal likelihood and the model with
largest marginal likelihood is selected, assuming that a priori the 5 genetic models are
equally likely.

In the polynomial model (y|8 = X8 + € in matrix form), the data are assumed to
be exchangeable and follow a normal distribution with:

1
y|X7B7TN N(XB7 ;I)

where [ is the identity matrix. A standard normal-gamma prior for the vector of pa-
rameters 8 and precision 7 is assumed such that p(8,7) = p(8|7)p(7), where

7 ~ Gamma(ay, az)

BT ~ N(Bo, (TRo)™")

with By, Rp, a1, and ay as prior hyperparameters. Specification of these prior hyper-
parameters can be subjective and represents the prior probability of alternative genetic
models. With genome-wide data, most of the tested SNPs are likely to be null SNPs
and it is both reasonable and convenient to assume non-informative priors. Therefore
the following values for the prior hyper-parameters: 5o = 0, Ry = I, a; = 1, and
as = 1 will be assumed. If there is strong prior belief about certain genetic models,
more informative prior distributions can be chosen and this problem is described at
length in Servin and Stephens (2007). The marginal likelihood given this polynomial
model M, can be computed analytically in the equation below:

- 1 agT(ai,) |Ro|2
M) = [ P01, 8, 7)p(5 gy = o s B3

with the following updated hyper-parameters:

R,=Ro+XTX
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Bn = R (RoBo + XTy)

n
aln:a1+§

_5?11Rn5n + yTy + ﬁgROﬁO + i
2 as

agyn = [ ]71.

Details are for example in O’Hagan and Kendall (1994). In the general genetic model,
the vector of parameters 7 is a linear transformation of 3, v = wf, where the matrix w
is:

1 00
w=1|0 11
0 2 4

Since vy is a linear transformation of 3, once a prior distribution for g is elicited, the
prior distribution of « is derived as:

Y| = wBlT ~ N(who, w(TRo) ™ 'wh)

while the prior for 7 does not change with the re-parameterization. If the prior distri-
butions of the parameters vectors are so defined, then it can be shown that p(y|Mp) =
p(y|Mg) (see the Supplementary Material for details). In other words, the marginal
likelihood is invariant under linear transformations of the regression coefficients.

Derivation of marginal likelihoods for additive, dominant, recessive, and co-dominant
models is different, as these models are defined by a linear transformation of the parame-

ters of the polynomial model and an additional constraint. Formally, let a = [ 30 } de-
1

note the vector of parameters in any of these models. Then we can define o = [ o ] =

aq
0 o
[ 00 ] |#2 = 0 where § = | 6; | = wf and matrix w depends on the specific genetic
1
02

model (see Table 2). If the vector 8 follows a multivariate normal distribution, 8 also
follows a multivariate normal distribution, and so does the marginal distribution of 65
and « that is a conditional distribution. Starting from the proper prior distributions for
the vector of parameters § and precision 7 priors, then proper prior distributions for a
and 7 are found to be:

T ~ Gamma(ay, az)

a= [ g? } = [ z(l) ] 0 =0 ~ N(po, 7 '551).
to and Xy ! can be obtained by using properties of the conditional multivariate normal
distribution (Eaton (1983)) and are summarized in Table 3. Using these derived priors,
the marginal likelihood for the additive, dominant, recessive, and co-dominant models
(M4, Mp, Mg, and M¢, respectively) can be computed in closed form. The derivation
of the marginal likelihood for the dominant model is detailed in the Supplementary Ma-
terial. Derivation of the marginal likelihood for the additive, recessive, and co-dominant
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2-df General Dominant Recessive Codomiant Additive
Model Model Model Model Model

1 0 0] 1 0 0] 1 0 0] 1 0 0] 1 0 0]
w 0 1 1 0 1 1 0 2 4 0 1 1 0 1 1
0 2 4 0 1 3 0 1 1 0 1 2 0 0 1

Table 2: Specification of w for five genetic models.

model is similar. Note that the derivation relies on the use of proper prior distributions
for the parameters of the polynomial model.

Assuming that the 5 genetic models are a priori equally likely, the Bayes rule to
model selection is equivalent to choosing the genetic model with the highest marginal
likelihood or BF relative to the null model (i.e. ratio of marginal likelihood of one of
the five models and the null model) (Kass and Raftery (1995)). Once the most likely
model is selected, the parameter estimates of any of the five genetic models are the
means of the posterior distributions. The regression parameters in the polynomial model
are estimated by 3, = R, 1(RoB + XTy) and using the one-to-one relationship, the
parameters in the general model can be estimated by 7, = w3,. The relation between
parameters of the polynomial models and the dominant, recessive, co-dominant, and
additive models can be used to derive their posterior estimates. Specifically, from the
set of relations:

Bl ~ N(Bn, (TRn)il)
0 = wﬂ|7‘ ~ N(en = wﬁn,W(TRn)ile)

0 e
o= { 9(1) ] |02 =0~ N(p, 7 'S, 1)
and using the properties of the conditional multivariate normal distribution, the point
estimates p,, for any model are found to be:

= | 0 | + ISl 0~ 0

where w(TR,) 'w? = 771 [ S11 Sz

B So1 Saz
dim(S21) =1 x 2, and dim(Sa2) = 1 x 1. Table 3 summarizes the specification of w and
formulas for computing prior and updated hyper-parameters and marginal likelihood
for different genetic models discussed in this section as well as the null model.

:|, and dlm(Sn) =2 X 2, dzm(S’lg) =2 X 1,

4 Simulation Studies

Three simulation studies were conducted to assess false and true positive rates of the
Bayesian procedure with polynomial models and compared to the frequentist approach
in which the association with minimum p-value is selected. Simulation study (1) was de-
signed to evaluate the false positive rates of the polynomial model approach for various
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Prior Hyper Posterior Hyper Marginal
parameters parameters Likelihood
—T T
Bn = R, ~(RgBo + X" y)
Bo = [Boo Bo1 ozl Ry = Ro + X7 1
ri1 ria 713 n = Rg y p(y|Mp) = T
Ry = - - - aly = a1 +n/2 agy ! ;1
Mp 21 22 23 (=BT RnBn+vTy 1 |Rg|Y/
r31 32 733 azn — 2m"/2 |Rp 172
ay T -1 aalnr‘(a )
R, 2 1in
ay B 080 L L n
2 ag
Yn = whn
- —-1,T
= wp Ry =w(Bn)” w p(yIMg) = 70(11
70 = o e =a1 +n/2 e INCED)
R! = w(Rg) 1wl in =21 T 21 112
Mg 0 oo — [ =BaBnBnty’y 1 lw(Rg) ™ "w™ |
ay on = | —t—5 ——— (22 [(0o—DT Rpw—1[1/2
ap —1 o1n =
BTROBO 4L ag, " T(ayn) = p(y|Mp)
2 ag
— T
Let Let p(y|M;) = aall"(oq)
2
Mp 900 Ono 1 [Sol1/2
wBy =6p = | 601 whn = O0n = On1 (2m)n/2 |5, |1/2
902 On2 gl T (a1y)
w(TR(])_le =Sp = w(ﬂ'Rn)_le = Sp =
o X sél séz séS ) sib 512 413 where i= dominant, recessive
R T sgt s32 0 38 T s2b s22 523 codominant or additive
6 0
o (1) pos (00 ) -
M, o1 On1
c g3 33)—1 533 33y—1
93 ] (s5%) ooz B3 ) (sp2)7 TOn2
SO a‘n
o1 _ AT s32 o1 _ 1t 12
o T | 21 ng - ns = 21 22 |~
M 4 13 0 “0 13 n n
s 3. _ : s _
(B )etHed (5 )esrem
S0 Sn
alp =a1 +mn/2
_ 7#52nun+yT’y
. 2n = 2
aj; ag
T —1
Ho Zoro | 1
2 ag
Bn = Ry L(RoBo + 11 v)
_ T
Bo = [Bool Bn=FRo+1'y Py Mpyy) = ﬁ
Rg = (r11) alp = a1 +n/2 021/2(621)
My 0 11 = —Br RpBn+yTy 1 IRgl
ay 2n = | — "t —g — @m)72 |Rp 172
a — Xln
2 ﬁgRoﬁo L ! gy lein)
2 ag

Table 3: Specification prior hyper-parameters, updated hyper-parameters, and
marginal likelihood for each model. Mp=Polynomial Model, Ms=Genotypic Model,
M p=Dominant Model, Mr=Recessive Model, Mc=Codominant Model, M 4=Additive
Model, and Mpy=Null Model.

selection criteria. Real genotype data from two GWASs of different sample sizes were
used and the quantitative trait in each set was randomly permuted to create data sets
with no true positive associations. Simulation study (2) was designed to compare sensi-
tivity and specificity of our proposed method and the standard approach by simulating
genetic data that mimic the GWAS setting with causal SNPs (i.e. SNPs truly asso-
ciated with the trait) having different modes of inheritance, each SNP explaining the
same proportion of the trait variability. Simulation (3) modified the design of simulation
(2) and let SNPs explain varying proportions of the trait variability.
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4.1 Simulation Study (1)

Data: Two real datasets were used. The first data set consisted of genotype data of 201
unrelated offspring of centenarians from the New England Centenarian Study (NECS)
(http://www.bumc.bu.edu/centenarian/) (Sebastiani and Perls (2012)). The geno-
type data were described in Sebastiani et al. (2012). The quantitative trait in this anal-
ysis was a neuroticism score measured in the NEO-Five Factor Inventory (NEO-FFTI),
which is a 60-item (12 items per domain) measure of five personality dimensions (neu-
roticism, extraversion, openness, agreeableness, and conscientiousness) (Costa and Mc-
Crae (1992)). Previous studies have shown that the estimated heritability of neuroticism
is approximately 25% (Bae et al. (2013); Pilia et al. (2006)). The second data set con-
sisted of 843 unrelated African-American subjects with sickle cell anemia enrolled in the
Cooperative Study of Sickle Cell Disease (CSSCD) (https://biolincc.nhlbi.nih.
gov/studies/csscd/) (Gaston and Rosse (1982)). In this cohort, the trait is the per-
cent of fetal hemoglobin in the total hemoglobin. The percent fetal hemoglobin is a
major modulator of hematologic and clinical complications of sickle cell anemia (Akin-
sheye et al. (2011)). Studies have shown that there is a strong genetic basis of fetal
hemoglobin and a well-established gene that affects this trait is BCLI11A (Bae et al.
(2012)). The estimated heritability ranges from 60.9% to 89% (Garner et al. (2000);
Pilia et al. (2006)). Both studies were approved by the institutional review board of
each participating institution, and standard quality control procedures were performed
on both genotype data (Bae et al. (2012); Sebastiani et al. (2012)).

Methods: Initially 254,612 and 486,331 autosomal SNPs were available for analysis in
the two cohorts (NECS and CSSCD), respectively. It is well known that SNPs in close
proximity tend to be correlated with each other (Slatkin (2008)), and this non-random
correlation can bias the assessment of false positive rates. In order to avoid this problem,
SNPs whose pairwise correlation was r2 > 0.2 were removed using the PLINK software
(Purcell et al. (2007)). After this pruning, 50,894 and 140,864 independent SNPs were
left for analysis in the NECS and CSSCD sample, respectively. In both sets, 50,000
SNPs were randomly chosen from each set and 10,000 simulations were performed by
permuting the trait values at random. Two approaches were evaluated in this simulation
study: 1) the proposed method, in which the best genetic model was selected based on
the maximum BF for each SNP; and 2) the frequentist approach, in which five genetic
models were fitted and the best model was selected based on the minimum p-value for
each SNP. For the genotypic model (2 degrees of freedom) in the frequentist approach,
the minimum of the two p-values was chosen. Various threshold criteria for the two
approaches were explored and the number of significant associations detected for varying
thresholds was recorded. False positive rates were computed as the rates of significant
associations.

4.2 Simulation Study (2)

Data: In order to assess the true positive rates of our proposed method and the stan-
dard approach, genetic data were simulated with known causal SNPs, each explaining
the same proportion of the trait variance. A modification of the simulation procedure
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described in Yip and Lange (2011) was used to simulate the data but an additional
source of variability was introduced as well as SNPs with dominant and recessive mode
of inheritance, in addition to additive effects. Several scenarios were considered by us-
ing different sample sizes (N=1,000, 10,000, 20,000, 50,000, and 100,000) and different
heritability (Ober et al. (2001)) of the quantitative traits (h?=0.2, 0.4, and 0.6). Heri-
tability is defined as the proportion of the total variance of the trait that is explained by
the genetic effect and the higher the heritability the larger the genetic contribution to
the trait. A total of 500,000 SNPs were simulated in each run and included 100 causal
SNPs: 34 with additive effects, 33 with dominant effects, and 33 with recessive effects.
We assumed that each causal SNP explained 1/100 of the total genetic variance so
that, for example, when the total heritability was 0.2 and 20% of the total phenotypic
variance was due to the genetic variance, each causal SNP explained 1/100 of the total
genetic variance and hence the SNP-specific heritability was 0.002.

Methods: The following steps describe the simulation scheme.
Step 1. Generate minor allele frequency for each SNP

The minor allele frequency (MAF: frequency of B allele) for each SNP was randomly
drawn from a Beta distribution Beta(2,8), which represents the distribution of commer-
cially available chips (Yip and Lange (2011)). We also used a standard quality control
procedure by excluding any SNPs with MAF less than 0.01.

Step 2. Generate the genotype

Genotypes for each SNP (AA, AB, BB) were generated assuming Hardy-Weinberg
equilibrium. Essentially, if p is the prevalence of the A allele in the population, Hardy-
Weinberg equilibrium (HWE) law states that the prevalence of the three genotypes will
be p?, 2p(1 —p), (1 —p)? (Weinberg (1908)). These expected genotype frequencies were
used to simulate the genotype data, given p.

Step 3. Select the causal SNPs

100 causal SNPs from the total SNPs were randomly chosen and assigned the mode
of inheritance randomly to the selected SNPs.

Step 4. Determine the effect size for each causal SNP

The effect size a; for each j'* causal SNP (j=1, 2,..., 100) was computed from the
formula:

12 Thaag  bomy _ 2pi(1 = pj)la; +d;(1 —2p))I* + 2p; (1 = p;)d,)?
J

2 2
9Total 9Total
where 0% 4, ; is the additive genetic variance of the j'* causal SNP, 07, . is the dom-

inance genetic variance of the j** causal SNP, O’%Otal is the total phenotypic variance,
pj is the MAF for the jth causal SNP, a; is the additive genetic effect at the jth causal
SNP, and d; is the dominance genetic effect at the j*" causal SNP. The parameter h?
is the locus-specific heritability, which was assumed to be %. This is the amount of
heritability that is contributed by the j** causal SNP and hence all causal SNPs con-
tribute to the total heritability by an equal amount. In the above formula, note that the

genetic variance is decomposed into the additive and dominance variance component.
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The additive genetic variance implies that each additional copy of an allele contributes
a fixed amount of effect a; to the trait. Under this assumption, the trait value of the
heterozygote (AB) would be the midpoint between the two homozygotes (AA and BB).
On the other hand, when there exists dominance genetic variance, the trait value of
the heterozygote will deviate from the midpoint between the two homozygotes, and the
degree of deviation is expressed by the quantity d;. Therefore, it follows that d; = 0
for any SNP with additive effect, and d; = a; for any SNP with dominant effect, and
dj = —a; for any SNP with recessive effect. We also assumed 0% ,,, = 1. Note that only
the three genetic models (additive, dominant, and recessive) were considered.

Step 5. Generate the phenotypic value based on the causal SNPs

Let y; denote the phenotypic value for it individual. For each causal SNP, the SNP
contribution to the trait was randomly generated as

% otal
Xij ~ N(a;Gig, =507
where a; is the effect of the 4t causal SNP (computed in the previous step) and Gij
is genotype coding for the i*" individual at the j** causal SNP that was generated in
Step 2. For an additive causal SNP, G;;= number of minor allele (0, 1, 2). For a dominant
causal SNP, G;; = 1 if the genotype is AB or BB (0 otherwise). For a recessive causal
SNP, G;; =1 if the genotype is BB (0 otherwise). Then, the phenotypic value is:

o
J
and E(y;) = > a;Gi; and Var(y;) = 07, = 1.
J

Step 6. Perform association tests using our method and the standard approach
Step 7. Repeat 100 times

In each simulated data set, the empirical false positive rates in the two approaches
were evaluated to determine thresholds for p-values and BF with the same false positive
rates. Specifically, in each simulated set the number of false positive associations (sig-
nificant associations of null SNPs) in the frequentist results with p-values p < 1 x 1077,
5x 1077, 1 x 1079, and 5 x 107% were counted and the BF thresholds that produced
the same number of false positive associations in the Bayesian approach were detected.
Using these p-values and BF thresholds that produced the same empirical false positive
rates, the power of the two approaches was evaluated. Two types of power were consid-
ered: (1) the number of causal SNPs detected as associated regardless of whether the
correct genetic model was identified and (2) the number of causal SNPs detected with
the true genetic model.

4.3 Simulation Study (3)

Data and Methods: The limitation of Simulation Study (2) is the assumption that each
SNP accounts for the same proportion of the trait variability. Therefore, the scheme of
the Simulation Study (2) was modified to let causal SNPs explain varying proportions
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of the trait variability. In this modified design, the genetic variances of dominant and
recessive SNPs were increased, while decreasing the genetic variance of additive SNPs.
This trade-off was necessary to maintain the same total heritability used in Simulation
Study (2) for proper comparison later. The following two cases were considered: 1) when
h? was halved for additive SNPs and 2) when h? was quartered for additive SNPs. In
case 1), this resulted in increasing hf by 25% for both dominant and recessive SNPs. In
case 2), this resulted in increasing hf by 37.5% for both dominant and recessive SNPs.
Under these changes, the effect sizes were generated based on Step 4 in the previous
section and the rest of the simulation design remained the same.

a) Bayesian Polynomial Model Approach

BF>100 BF> 500 BF>1000 | BF>1500 | BF>3000 | BF>5000
NECS 90x107% [ 14x107% [ 80x10™° [ 40x107° | 20x107° | 0.0 x 1079
data
CSSCD | 68x107F [ 12x107% [ 6.0x107° | 40x107° [ 20x107° | 0.0 x 1079
data
b) Frequentist Approach

p <1073 p<107* p<107° p<107° p<10” [ p<107®
NECS 34x1072 [ 40x107* [ 40x10™° [ 00x107° [ 0.0x107° | 0.0 x 1079
data
CSSCD [ 33x107% [ 38x1077 [40x107° | 00x1079 [ 0.0x107° | 0.0 x 107°
data

Table 4: Median false positive rates in the NECS and CSSCD data in 10000 permutations
(Simulation Study 1). BF=Bayes Factor; p=p-value.

Results: Table 4 shows the median false positive rates at varying significance thresholds
in the two sets included in Simulation Study (1). Setting the thresholds to maximum
BF > 1500 in our approach and minimum p-value < 10~° in the standard approach
yields the same median false positive rate of 4 x 10~ in both data sets. This translates
into 2 false positive associations among 50,000 SNPs.

Figures 1-3 summarize the results of Simulation Study (2) for the scenario in which
the total heritability is 0.4 and the sample sizes are 10,000, 20,000, and 50,000. The full
set of results can be found in the Supplementary Materials. With a sample of 1000, nei-
ther approach detects any causal SNPs, while almost all causal SNPs are detected when
the sample size is 100,000, regardless of the heritability. Figure 1 shows the distribution
of the empirical false positive rate for different p-value thresholds and Figure 2 shows
the distribution of the BF that would produce the same empirical false positive rates of
the frequentist procedure. Figure 3 shows the box plot of the true positive rate (propor-
tion of detected causal SNPs) of the two approaches at varying significance thresholds.
Finally, Table 5 shows the mean number of additive, dominant, and recessive SNPs that
are correctly identified (out of 34, 33, and 33, respectively) in the two approaches at
successive thresholds.

The mean and standard deviation of the quantitative traits were 2.55 and 1.10 when
the total heritability was 0.4. Several points are noteworthy. The first point is that, as
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a) h?=0.4, N=10,000 b) h?=0.4, N=20,000 ¢) h?=0.4, N=50,000
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Figure 1: Box plot of cubic root of empirical false positive rates (y-axis) for different
p-value thresholds (x axis), and increasing sample sizes. The results are based on the
simulation scenario when the heritability was 0.4 and the sample sizes were 10,000,
20,000, and 50,000 (panel a, b, and ¢, respectively).
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Figure 2: Box plot of log-transformed BF (y-axis) for different p-values thresholds (x-
axis) and increasing sample sizes. The results are based on the simulation scenario when
the heritability estimate was 0.4 and the sample sizes were 10,000, 20,000, and 50,000
(panel a, b, and ¢ respectively).

expected, lower heritability of the trait results in a smaller number of detections. Even
when the total heritability was relatively high (h?=0.6), both approaches detected about
half of the causal SNPs with N=10,000. At the most stringent significance threshold of
p < 1x 1077, the Bayesian approach correctly identified 53.75 causal SNPs on average
and the frequentist approach correctly identified 46.52 causal SNPs on average when
heritability is 0.6 and N is 20,000 (see Supplementary Materials for detail). This result
is consistent with findings from other authors that large sample sizes are needed to
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Figure 3: Box plot of power of the two approaches at different significance thresholds
(Red: Bayesian approach; Blue: Frequentist approach). The results are based on the
simulation scenario when the heritability estimate was 0.4 and the sample sizes were
10,000, 20,000, and 50,000 (panel a, b, and c, respectively).

detect many casual variants that explain a small proportion of variability. For example,
in Park et al. (2010) authors have shown that they need approximately N=25,000 to
detect 25 loci out of 201 causal variants with 80% power for a highly heritable trait.

Secondly, we observed that the false positive rate of decision rules based on BF
decreases as the sample size increases, given a fixed BF threshold. This property has
also been noted in Matthews (2011) and Wakefield (2012) and implies that we can relax
the thresholds for BF as we increase the sample size and better leverage the increased
sample size than frequentist procedures. Figure 2 illustrates this property graphically.
For example, at a fixed p-value threshold 1 x 10~7, the median BF threshold needed to
obtain the same false positive rate decreases from 11122 to 9866 to 7489 as the sample
size increases from 10,000 to 20,000 to 50,000. A similar pattern is observed at all
levels of false positive rates. In contrast, no such pattern is observed in the frequentist
approach, and the false positive rates are invariant to sample sizes given a fixed p-value
threshold in the standard approach.

The third important point is that the Bayesian method we propose has a slightly
greater power for more stringent (lower) thresholds (see Figure 3) than the frequentist
approach. This result holds for all sample sizes and all levels of heritability considered in
the simulations (see Supplement Figures S3 and S6). Also, at this stringent threshold,
the Bayesian approach recovered more correct genetic models when the sample sizes
were 20,000 and 50,000 (Table 5). Although our method recovers less often than the
frequentist approach SNPs with an additive genetic effect, it identifies more often SNPs
with a dominant and recessive effect. When the sample size was 10,000, the Bayesian
approach recovered slightly fewer genetic models. In addition, both approaches iden-
tified nearly 0 models that had either dominant or recessive inheritance pattern when
N=10,000 in simulation study (2). We speculated that this may be due to the lack of
power to detect rare variants. For example, if we assume MAF=0.01, under HWE the
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Bayesian Frequentist
N Significance| A D R Total A D R Total
Threshold

1x10~7 156 0.7 0.9 17.2 [ 173 03 03 17.9

10000 5% 10-7 16.0 0.8 1.0 177 | 19.8 06 0.6  21.0

1x 106 16.3 0.9 1.2 184 | 20.8 07 0.8 223

5x 106 175 1.3 1.9 207 | 224 1.1 1.6 252

Simulation Ix10 7 25.0 49 6.4 363 | 282 24 35 342
Study  (2) 90000 O X 10-7 250 56 7.5 380 | 282 4.1 54  37.7
- Uniform 1x 106 25.0 62 8.1 39.3 | 282 49 66  39.7
Contribution 5x 106 25.0 88 11.0 448 | 283 7.5 101 459
1x10 7 30.0 27.1 30.5 87.6 | 31.2 232 286 829

50000 0% 10-7 30.0 276 31.1 888 | 312 244 303 858

1x 10~ 30.0 27.8 314 89.3 | 31.2 246 31.0 86.7

5x 1076 30.0 285 320 905 | 312 254 319 885

1x 1077 3.5 1.4 1.9 6.8 3.2 0.7 0.8 4.7

10000 2% 10-7 3.8 1.5 21 7.4 4.9 1.0 1.4 7.3

1x 10~ 4.1 1.8 2.4 8.3 5.7 1.3 1.8 8.9

5x 106 5.5 2.9 3.7 12.0 8.5 2.5 3.2 14.2

Simulation 1x 10—; 16.,5 10.4 13.1 40.0 | 189 6.3 8.1 33.2
Study (3) - 20000 5 % 1(r6 170 115 145 431 | 21.2 9.0 11.5 41.7
Case 1) 1x 10~ 17.4 123 154 451 | 219 102 13.3 454
5x 10~6 18.5 14.7 187 51.9 | 236 129 17.7 54.2

Tx10° 7 26.3 294 327 884 | 29.0 266 322 378

50000 0% 10-7 26.3 294 328 885 | 29.0 26.8 326 884

1x10-6 26.3 295 32.8 887 | 290 269 327 885

5x 1076 26.3 295 329 888 | 29.0 269 329 888

1x10~7 03 20 28 5.1 02 09 1.1 2.2

10000 5% 10-7 0.3 2.3 3.1 5.7 0.5 1.7 2.1 4.2

1x 106 04 26 34 6.3 06 2.1 2.7 5.5

5x 10~6 0.7 39 50 9.6 1.2 35 45 9.2

Simulation 1x 10—; 3.9 135 16.8 342 34 88 11.2 235
Study (3) - 20000 5 % 10*6 44 145 18.0 36.9 53 11.7 152 322
Case 2) 1x 10~ 48 152 19.0 39.0 6.4 127 169 359
5x 106 6.3 17.8 223 464 93 156 214 46.3

Ix10° 7 209 29.7 329 835 | 242 274 327 843

50000 2% 10-7 21.3 29.7 329 840 | 253 27.5 329 856

1x10-6 21.5 29.7 33.0 842 | 256 27.5 330 86.0

5x 10~6 21.8 297 330 845 | 261 275 330 86.5

Table 5: Mean number of additive, dominant, and recessive SNPs correctly identified
(out of 34, 33, and 33, respectively) in the two approaches when heritability is 0.4.
A=additive; D=dominant; R=recessive.

expected count of the homozygote group for the minor allele is only 1. As the sample
size increased, there was a substantial increase in identification of dominant and reces-
sive variants. Results from simulation study (3) also support this conjecture. Increased
effect sizes for SNPs with dominant and recessive effects resulted in more detection of
these variants at the cost of loss of power for additive SNPs. However, loss of power
for additive SNPs was much greater than increased power for dominant and recessive
SNPs when the sample size was 10,000. This result suggests that we need much higher
sample sizes to detect dominant and recessive variants, compared to the additive SNPs.
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5 Application to Real Data

Using the thresholds that yielded the same false positive rate in the two methods (max-
imum BF>1500 and minimum p < 1 x 107%) in simulation study (1), we compared the
results obtained with the two methods in the cohorts described in the earlier section,
using the SNP sets generated after pruning the dependent SNPs. In the NECS data,
out of 50,894 tested SNPs, nine SNPs were found associated with neuroticism using the
polynomial model approach, whereas only five SNPs were significant using the standard
approach (Table 6). Four SNPs were common in both analyses. For these four SNPs,
the genetic models selected agreed in the two approaches. This result suggests that the
Bayesian model selection procedures work well in the case of small sample sizes and can
potentially discover more variants.

In the CSSCD data, out of 140,864 tested SNPs, ten SNPs were associated with
fetal hemoglobin in both approaches, and eight SNPs were common in both (Table 6).
For these eight SNPs in common, five of them agreed in the genetic model selection
between the two approaches, but three SNPs (rs2239580, rs12469604, and rs2034614)
had discrepant results. For rs2239580, the Bayesian procedures selected the dominant
model, while the standard approach identified the genotypic model. For rs12469604,
the Bayesian procedure selected the dominant model, while the additive model had the
minimum p-value. For rs2034614, the co-dominant model had the maximum BF and
the genotypic model had the minimum p-value.

Using our Bayesian polynomial model approach in the NECS data, 4 SNPs had
dominant models, 3 SNPs had additive models, 1 SNP had a co-dominant model and 1
SNP had a recessive model. In the CSSCD data, 3 SNPs had dominant models, 3 SNPs
had co-dominant models, 3 SNPs had recessive models, and 1 SNP had an additive
model. These results suggest that different variants may influence the trait through
different genetic models. Some of these associations would not have been captured if
an additive model alone was used, and this highlights the need to examine all possible
genetic models in a computationally efficient manner to ensure that we do not miss any
interesting findings.

6 Conclusion

We propose a Bayesian approach to simultaneously detect the SNPs associated with a
continuous trait and the mode of inheritance. Our Bayesian approach uses a polynomial
parameterization of the SNP dosage that can simultaneously represent different genetic
models and a coherent framework for model selection based on comparing different
models by their posterior probability (The Wellcome Trust Case Control Consortium
(2007); Marchini et al. (2007); Servin and Stephens (2007); Guan and Stephens (2008);
Wakefield (2008); Newcombe et al. (2009); Stephens and Balding (2009); Clark et al.
(2010); Lorenzo Bermejo et al. (2011); Maller et al. (2012); Xu et al. (2012)). Cru-
cial to our approach is the use of proper prior distributions on the parameters of the
polynomial model, from which the prior distributions of specific genetic models can be
derived. In contrast to this coherent Bayesian approach, it is important to emphasize
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a) NECS Data
Bayesian
SNP Chr/Gene BFg BFy BFp BFRr BF¢ BFmax
rs850610 1/Clorf203 1.0e5 8.0e4 1.2e6 1.5el 1.5e3 1.2e6
rs7666974 4 /unknown 7.6€2 1.4e—1 7.4el 7.5el 1.2e4 1.2e4
rs2333166 4 /unknown 4.6e2 3.9e2 3.4e3 3.8e—1 1.5e3 3.4e3
rs2801185 1/ESRRG 2.2e2 4.4el 4.9e—1 2.0e3 4.0e—1 2.0e3
rs1869676 8/unknown 1.4e3 5.0e3 1.0el 2.0e3 3.7el 5.0e3
rs8064944 17 /unknown 2.2e2 1.0el 4.3e3 2.9e—1 4.4e—1 4.3e3
rs3746314 19/C190rf12 1.8e3 2.4e3 9.4e2 3.7el 9.9e—1 2.4e3
159555139 13 /unknown 6.5e2 2.2e3 6.7el 1.5e2 1.5el 2.2e3
rs12770017 10/unknown 1.4e2 3.0e—1 1.9e3 1.2e—1 1.9el 1.9e3
rs1530239 2/IKZF2 7.9el 5.8el 7.0e—1 2.1el 5.9el 5.9el
Frequentist
SNP Chr/Gene Pret Prom Pa Pp Pr Pc Poin
rs850610 1/Clorf203 2.0e—7 | 2.4e—4 2.5e—7 1.9e—8 3.3e—2 2.1le—5 1.9e—8
rs7666974 4/unknown 8.4e—4 | 7.7e—1 1.5e—1 5.3e—2 6.9e—4 1.9e—6 1.9e—6
152333166 4 /unknown 5.8—6 2.3e—1 5.5e—5 5.5e—6 | 4.4e—1 8.7e—6 5.5e—6
rs2801185 1/ESRRG 7.3e—1 | 3.1e—6 | 1.9e—3 | 1.0e—1 | 2.8e—6 | 6.2e—1 2.8e—6
151869676 8/unknown 8.le—1 1.5e—1 3.5e—4 2.4e—1 1.le—4 3.2e—4 1.le—4
rs8064944 17 /unknown 4.0e—4 2.7e—4 2.2e—2 2.1le—4 2.8e—1 5.2e—1 2.1le—4
rs3746314 19/C19orf12 2.2e—2 1.5e—3 8.8e—4 2.2e—3 6.0e—3 1.0e—1 8.8e—4
rs9555139 13/unknown 4.2e—1 6.2e—2 8.2e—3 7.0e—2 1.2e—2 6.1le—2 8.2e—3
rs12770017 10/unknown 2.6e—4 1.1e—3 9.6e—1 7.9e—4 | 3.8e—1 6.0e—2 2.6e—4
rs1530239 2/IKZF2 3.5e—2 1.4e—3 | 3.7e—6 | 3.1e—3 | 2.3e—5 | 5.0e—4 3.7e—6
b) CSSCD Data
Bayesian
SNP Chr/Gene BFg BF4 BFp BFRr BF¢ BFmax
rs6709302 2/BCL11A 1.7e4 1.9e5 7.4e3 3.8e2 2.1el 1.9e5
rs7631659 3/unknown 1.2e4 3.4el 4.4e—1 1.6e5 2.2e—1 1.6e5
rs13043968 20 /unknown 1.9e3 1.2el 2.5e—1 3.1le4 2.1le—1 3.1e4
rs2239580 14/COCH 2.5e3 1.1e3 3.0e4 1.5e—1 2.8e4 3.0e4
rs6932510 6/RPS6KA2 5.9e2 2.1e3 5.9e3 3.le—1 3.7e3 5.9e3
rs1890911 14 /unknown 2.5e2 8.5e—1 1.5e—1 4.4e3 3.3e—1 4.4e3
rs12469604 2/unknown 6.1e2 2.2e3 2.9e3 6.3e—1 1.8e3 2.9e3
rs2034614 12/PRICKLE1 1.8e2 1.5e2 1.7e3 1.6e—1 2.8e3 2.8e3
rs2301819 4/TBC1D14 8.4el 5.0el 1.9e2 1.9e—1 2.0e3 2.0e3
159642124 7/unknown 3.8el 4.8e—2 3.2el 9.2e—1 1.8e3 1.8e3
rs11794652 9/FUBP3 9.9el 4.2e2 5.2el 6.0e2 2.1le—1 6.0e2
rs7975463 12/unknown 3.5el 1.3el 1.8e2 8.4e—2 8.9e2 8.9e2
Frequentist
SNP Chr/Gene PHet PHom PA PD PR PC P‘,,”'n
rs6709302 2/BCL11A 1.2e—4 | 2.5e—7 | 1.3e—8 | 8.0e—7 | 2.6e—5 | 1.5e—2 1.3e—8
rs7631659 3/unknown 9.1le—1 7.6e—8 7.0e—3 1.5e—1 7.5e—8 | 9.2e—1 7.5e—8
rs13043968 20/unknown 8.9e—1 | 5.4e—=7 | 2.1e—2 | 2.8e—1 | 4.9e—7 | 6.Te—1 4.9e—7
rs2239580 14/COCH 1.7e—7 | 2.1e—1 | 4.9e—6 | 2.3e—7 | 5.7e—1 | 3.2e—7 1.7e—7
rs6932510 6/RPS6KA2 4.9e—6 | 2.5e—1 | 6.4e—6 | 3.3e—6 | 3.9e—1 | 6.5e—6 3.3e—6
rs1890911 14 /unknown 6.7e—1 4.7e—6 1.5e—2 3.7e—1 2.6e—6 2.5e—1 2.6e—6
rs12469604 2/unknown 1.2e—5 2.3e—1 6.6e—6 7.2e—6 2.8e—1 1.4e—5 6.6e—6
rs2034614 12/PRICKLE1 7.7e—6 | 5.6e—1 | 9.4e—5 1.2e—5 | 8.7e—1 | 9.0e—6 7.7e—6
rs2301819 4/TBC1D14 1.9e—5 | 7.0e—1 3.5e—=3 | 1.3e—4 | 3.7e—1 1.3e—5 1.3e—5
159642124 7/unknown 4.0e—4 8.7e—1 9.8e—1 1.6e—2 1.4e—2 1.6e—5 1.6e—5
rs11794652 9/FUBP3 9.9e—2 | 3.3e—6 | 7.9e—6 | 2.8e—3 1.1e—5 | 4.8e—1 3.3e—6
rs7975463 12 /unknown 7.6e—6 2.8e—1 6.5e—3 4.6e—5 6.2e—1 1.2e—5 7.6e—6
Table 6: Significant results using two approaches in the a) NECS and b)

CSSCD data. BF=Bayes Factor ;P=p-value; G=genotypic; A=additive; D=dominant;
R=recessive; C=co-dominant; Het=heterozygote genotype factor in the genotypic
model; Hom=homozygote genotype factor in the genotypic model. SNPs that were
significant in both approaches are highlighted in gray.
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that the frequentist approach does not have a clear way to compare the genotypic model
(2 degrees of freedom) to the other four specific genetic models (1 degree of freedom).
The evaluation of the method in simulated data shows that the Bayesian method we
propose has a slightly higher power when we limit to false positive rates at very small
values and this is a particularly attractive property in genome-wide association studies
in which the large number of SNPs analyzed requires to set the false positive rate to
extremely small numbers. An additional attractive feature of this method is the gain
in computations: The proposed method codes five genetic models simultaneously using
a single polynomial parameterization instead of fitting five different genetic models for
each SNP. This contrasts with the standard approach in which recoding of the SNP
genotype and conducting 5 analyses is necessary to evaluate all five models concur-
rently.

An important theoretical implication of this particular parameterization is that it
shows that different genetic models are functionally related. We have shown that there
is a mathematical relationship between the parameters of the polynomial model and
each of the five genetic models. This relation also suggests that when all five genetic
models are evaluated the effective number of tests per SNP is less than 5. In practice,
GWASs suffer from severe correction for multiple testing, and evaluation of several
genetic models for each SNP aggravates this issue. However, our work suggests that the
correction for multiple testing should be less severe as the effective number of tests is
less than the number of models fitted, when evaluating all five genetic models, although
it is not immediately obvious how Bonferroni type corrections should benefit from this
result.

The proposed work can be particularly useful for genome-wide data consisting of
millions of SNPs. This work, at the current state, is limited to the case where the
trait is quantitative, as we can obtain closed form solutions for the marginal likeli-
hood and BF. More work is needed to evaluate a similar approach when the trait of
interest is binary or time-to-event. In particular, when performing logistic regression
in the GWAS context, alternative measures of associations such as approximate Bayes
Factor or Bayesian false-discovery probability (Wakefield (2007, 2008, 2009)) can be
considered.

Supplementary Material

Supplementary Materials: Bayesian Polynomial Regression Models to Fit Multiple Ge-
netic Models for Quantitative Traits (DOI: 10.1214/14-BA880SUPP; .pdf).
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