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Spatial Bayesian Variable Selection Models on
Functional Magnetic Resonance Imaging

Time-Series Data

Kuo-Jung Lee ∗ and Galin L. Jones † and Brian S. Caffo ‡ and Susan S. Bassett §

Abstract. A common objective of fMRI (functional magnetic resonance imaging)
studies is to determine subject-specific areas of increased blood oxygenation level
dependent (BOLD) signal contrast in response to a stimulus or task, and hence
to infer regional neuronal activity. We posit and investigate a Bayesian approach
that incorporates spatial and temporal dependence and allows for the task-related
change in the BOLD signal to change dynamically over the scanning session. In
this way, our model accounts for potential learning effects in addition to other
mechanisms of temporal drift in task-related signals. We study the properties of
the model through its performance on simulated and real data sets.

Keywords: Bayesian variable selection, fMRI, Ising distribution, Markov chain
Monte Carlo

1 Introduction

Functional neuroimaging experiments typically aim to uncover localized regions in the
brain which activate during a task, describe the networks required for a particular brain
function or assess physical characteristics that result from disease or trauma. Our focus
is on functional magnetic resonance imaging (fMRI) techniques to detect task-related
neuronal activation. However, neuronal activation occurs too quickly to be observed
directly in fMRI experiments. Despite this, the principle of neurovascular coupling
(that is, local neuronal activation is related to changes in cerebral blood flow) allows
indirect observation of activation via the blood oxygenation level dependent (BOLD)
signal contrast.

The typical single-subject fMRI experiment is conceptually straightforward. A sub-
ject in an MRI scanner performs a task in response to a stimulus while three-dimensional
images of the subject’s brain are captured every 2-3 seconds. However, the data has a
complicated structure. Imagine that the image is divided into a regular grid of volume
elements, or voxels. The BOLD signal is observed at each voxel at each time point re-
sulting in an enormous amount of data (possibly as many as 40 million observations) ex-
hibiting both spatial and temporal dependence. Moreover, the data tend to be noisy and
have a weak signal. Hence accurate and powerful models of single-subject task-related
activation would be useful in developing effective imaging biomarkers. Unfortunately
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there are few, if any, off-the-shelf methods for constructing sensible, computationally
feasible statistical models in this situation. Indeed, Lindquist (2008) considered only
non-Bayesian approaches and concluded

The size and complexity of the data make it difficult to create a full statistical
model for describing its behavior, and a number of shortcuts are required to
balance computational feasibility with model efficiency.

In fact, standard non-Bayesian approaches (e.g. Friston et al. 1994; Chen et al. 2009;
Nichols and Holmes 2002; Worsley et al. 1992; Worsley 2003) do not produce a full
model. However, many of these methods are computationally efficient.

The Bayesian paradigm provides an attractive inferential framework within which
to develop models directly incorporating the physical characteristics of the experiment.
Hence Bayesian methods in neuroimaging have received a fair amount of recent atten-
tion, see e.g. Bowman et al. (2008), Caffo et al. (2011), Genovese (2000), Goldsmith
et al. (2014), Smith et al. (2003), Smith and Fahrmeir (2007), Woolrich et al. (2004),
and Xia et al. (2009). We use Bayesian variable selection methodology to detect task-
specific changes in the BOLD signal. The basic idea is now described while the details
are given in Section 2. For voxel v = 1, . . . , N let yv,i be the BOLD image intensity and
xv,i the transformed stimulus at time i = 1, . . . , Tv. Then we assume a linear model

yv,i = zTi av + xv,iβv + εv,i .

The baseline trend zTi av is a linear combination of basis functions to remove low-
frequency stimulus-independent effects. Next, βv is interpreted as the activation am-
plitude while xv,i is the convolution of a stimulus function s and a parametric hemo-
dynamic response function (HRF) h. It is necessary to transform the input functions
since for a short-duration stimulus the BOLD response increases above baseline about
2 seconds after the onset of neuronal activity, peaking at about 5-8 seconds and falling
below baseline (the undershoot) for about 10 seconds (Aguirre et al. 1997). Typically,
s corresponds to a ’boxcar’ function indicating the stimulus is active/inactive while the
HRF h may correspond to a Poisson or Gamma density (Glover 1999; Gössl et al. 2001;
Smith and Fahrmeir 2007) in which case we have

xv,i =

i−dv∑
k=0

h(k, λv)si−dv−k .

The parameters λv and dv are usually estimated in a preprocessing step. A more sophis-
ticated approach is to use an HRF consisting of a difference of two Gamma densities,
one modeling the undershoot (Friston et al. 1998). Finally, εv,i is the measurement
error. Modeling the inherent spatial and temporal characteristics may be accomplished
by making appropriate distributional assumptions for the εv,i and through the choice
of prior distributions for the parameters.

Detecting neuronal activation is now equivalent to detecting whether or not the coef-
ficient βv is nonzero, a variable selection problem (George and McCulloch 1993, 1997).
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Others have taken similar approaches (Smith et al. 2003; Smith and Fahrmeir 2007)
by modeling spatial association between neighboring voxels, but temporal correlation
between the time series for each voxel is often ignored in the interests of computational
efficiency. However, in Section 3 we show that this approach leads to lower quality
inference. On the other hand, if one proceeds with a naive fully Bayesian approach
which incorporates both spatial and temporal dependence it is easy to encounter pos-
teriors that are computationally intractable even with the most sophisticated modern
computational methods (see e.g. Lee 2010). Thus we are faced with a situation where
computational issues drive some of the modeling decisions. In Section 2 we develop
our model and pay careful attention to the prior specifications with the dual goals that
we accurately reflect the nature of the experiment while mitigating the computational
burden.

The posterior based on our prior specifications is typically of an extremely large
dimension and is unavailable in closed form. We focus on the use of Markov chain Monte
Carlo (MCMC) throughout to perform the required inferential tasks, but MCMC has its
challenges. In particular, the high dimension of the posterior means that convergence is
essentially impossible to verify using standard diagnostic methods. We derive a general
MCMC algorithm which gives asymptotically correct answers and we investigate the
effect of using several different priors on the performance of the MCMC algorithms and
the resulting posterior inference.

We develop the Bayesian models and required MCMC algorithms in Section 2 and
in Section 3 a simulation study is undertaken to validate the model and estimation
procedure. Finally, we present the results of applying our methods to a particular data
set in Section 4. Notably, we show how our model can allow for the task-related change
in the BOLD signal to change dynamically over the scanning session. In this way, the
model accounts for potential learning effects and other mechanisms of temporal drift in
task-related signals. In the rest of this section we describe the fMRI experiment and
resulting data that motivated our research and which is analyzed in Section 4.

1.1 Experimental fMRI Data

The experimental data are part of a longitudinal study of Alzheimer’s disease (AD) and
its correlates. The study has been conducted in two waves of fMRI data collection with
a third under way. All subjects provided informed consent, and the study was approved
by the Johns Hopkins Medical Institutions Institutional Review Board. We investigate
a color/word Stroop paradigm (Stroop 1935) implemented on a subset of the subjects
in the second wave of data collection. To investigate normative values, we only consider
right-handed controls in this study, as establishing normative activation is a necessary
first step in producing biomarkers. All subjects are older, generally well-educated, and
healthy. None of them have any clinically diagnosed neurologic disorders, including AD.

The Stroop test exploits the conflict between one well-learned or automatic behavior
(e.g. reading) and a decision rule that requires this behavior be inhibited. Many previous
behavioral studies have established the features of the Stroop task that produce cognitive
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interference while neuroimaging studies (Bench et al. 1993; Carter et al. 1995; Fisher
et al. 1990; Li et al. 2009; Polk et al. 2008; Taylor et al. 1997) have indicated that
several brain regions are involved in the performance of the Stroop task, although these
imaging studies do not all agree on which brain areas are most centrally involved in
resolving Stroop inference.

Each subject in the current investigation performed the following Stroop task: sub-
jects are shown words and subsequently asked to press a button corresponding to the
color of the ink when the word is shown. There are three different components of the
task:

� Ink only; the word is “XXXX” in colored ink; for example, when presented with,
XXXX, the subject will be expected to press the button for the color red.

� Congruence; the word is the color of the ink; for example, when presented with
BLUE; the subject will be expected to press the button for the color blue.

� Interference; the word is a different color from the color of the ink; for example,
when presented with BLUE, the subject will be expected to press the button for
the color red.

This task considers an important cognitive mechanism; specifically, directed atten-
tion. Since most people are proficient at reading words, especially so in the highly
educated sample under consideration, it takes inhibitory effort to ignore the word and
concentrate on the color of the ink. Also, there is a well-documented age effect. That is,
younger adults will typically experience a smaller interference effect than older adults.
Additionally, interference effects may decrease with practice (Davidson et al. 2003). In
this study all subjects are older so we will not model an age effect, but it may be of
interest to describe any temporal drift in the response over the scanning session.

The Stroop exam was administered in the scanner in a block design (Friston et al.
2007) with a scanning time repetition of two seconds. The battery of Ink, Congruence
and Interference were tasks repeated in sequence 3 times with observations taken at a
total of 465 time points. We used standard fMRI preprocessing techniques, including
slice timing (aligning axial slices via interpolation from the actual acquisition time),
coregistration (using affine transformations to spatially normalize subjects images) and
spatial smoothing. Data were then registered in standardized space. Template space is
79× 95× 68-dimensional with a voxel size of 2mm3.

Imaging data were subsequently masked, vectorized and stacked into a subject-
specific matrix of time by voxels that represents our basic analytic structure. The mask
was retained for back-transformation and visualization of results.

2 Variable Selection in a Spatio-Temporal Model

It is reasonable to expect that voxels are spatially dependent—voxels close together
should behave similarly—and temporally dependent—the nature of the BOLD signal
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suggests that voxels adjacent in time will have correlated responses and this effect will
persist over longer time intervals than the scanning repetition time (Lund et al. 2006;
Worsley et al. 2002; Woolrich et al. 2001). The model we develop below incorporates
both characteristics.

Recall that for voxel v = 1, . . . , N the BOLD image intensity at time i = 1, . . . , Tv
is yv,i and set yv = (yv,1, . . . , yv,Tv )T . Let Xv be a known Tv × p matrix of full column
rank and βv = (βv,1, . . . , βv,p)

T be a p× 1 vector of regression coefficients. We assume

yv = Xvβv + εv, εv ∼ NTv (0, σ2
vΛv) . (1)

Consider the structure of the design matrix Xv. We can account for long memory trends
by introducing factors accounting for hardware related low-frequency drift, residual
movement effects, and aliased physiological noise such as respiration and cardiac pul-
sation (Friston et al. 2007; Lund et al. 2006). Also, there are columns for each task
corresponding to the convolution of the canonical HRF (Friston et al. 2007) with an
impulse stimulus function (Rajapakse et al. 1998; Lindquist et al. 2009).

Our goal is detecting neuronal activation in a voxel which corresponds to identifying
nonzero βv. Let γv = (γv,1, . . . , γv,p)

T be binary random variables used to indicate
whether the voxel is activated by a sequence of input stimuli. That is, the coefficient
βv,j is equal to zero if γv,j = 0 and βv,j is nonzero if γv,j = 1. The zero of γv,j implies
no effect on voxel v is caused by the corresponding experimental task j. Therefore, the
model in (1) can be written as

yv = Xv(γv)βv(γv) + εv, εv ∼ NTv (0, σ2
vΛv),

where βv(γv) is the vector of nonzero regression coefficients and Xv(γv) is the corre-
sponding matrix for a given indicator variable γv. That is, Xv(γv) includes only the
columns of Xv corresponding βv(γv,j) 6= 0, j = 1, . . . , p.

We now turn our attention to specification of prior distributions. First consider
the prior on βv(γv) given γv for a particular voxel, v. We will use Zellner’s g-prior
(Zellner 1996). This prior depends on a parameter typically denoted g which effectively
controls model selection in that large values often lead to models with only a few large
coefficients while small values tend to produce saturated models (Fernández et al. 2001;
George 2000; Liang et al. 2008). We set this parameter equal to Tv yielding the unit
information prior which leads to results similar to those if Bayesian information criterion
(BIC) were used. Thus our prior is given by

βv(γv)|yv, σ2
v ,Λv, γv ∼ N(β̂v(γv), Tvσ

2
v [XT

v (γv)Λ
−1
v Xv(γv)]

−1), (2)

where

β̂v(γv) = [XT
v (γv)Λ

−1
v Xv(γv)]

−1XT
v (γv)Λ

−1
v yv . (3)

The prior is data-based because the mean depends on yv. This prior often leads to
simpler computation than alternative priors. For example, we also investigated the use
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of multivariate t distributions, but these did not substantively change the results while
making the required computation much more challenging (Lee 2010).

Next we assume the σ2
v are independent and

π(σ2
v) ∝ 1

σ2
v

. (4)

Note that Λv allows us to account for the temporal dependence between observations
on a given voxel. We will see that the priors for Λv are critically important to both
inferential efficacy and computational efficiency. Accordingly we will investigate the use
of several priors. The first prior assumes no temporal dependence (i.e. Λv is an iden-
tity matrix), which is a common assumption made to achieve computational efficiency
(Genovese 2000; Smith et al. 2003; Smith and Fahrmeir 2007).

While images are collected every 2 seconds the BOLD signal increases above base-
line about 2 seconds after the onset of neuronal activity, peaking at about 5-8 seconds
and falling below baseline for about 10 seconds. In addition to the persistence of neu-
ronal activation it has been found that other cyclical neuronal events and artifacts of
the measurement process can be responsible for temporal autocorrelation in fMRI set-
tings (see e.g. Locascio et al. 1997). All of this suggests that an autoregressive (AR)
or autoregressive moving average (ARMA) dependence might be sensible, but moving
average processes, such as MA(1) or MA(2) processes, will be less desirable (see among
many others Friston et al. 1995; Lindquist et al. 2009; Xia et al. 2009). In particular, we

will focus on using AR(1) dependence so the (i, j) th element of Λv is Λv(i, j) = ρ
|i−j|
v .

We will consider the use of two priors for ρ = (ρ1, . . . , ρN ). The first assumes the
components of ρ to be independently uniformly distributed between -1 and 1, that is,

π(ρ) =

N∏
v=1

π(ρv) ∝
N∏
v=1

I(−1 ≤ ρv ≤ 1) .

The second prior we investigate will be based on an empirical Bayes (EB) approach
where ρ is estimated with ρ̂, the maximum likelihood estimator. This type of EB
approach is often referred to as a two-stage solution or prewhitening.

We have investigated the use of other structures such as AR(2), ARMA(1,1) and
MA(1) dependence, but using the EB approach with the AR(1) structure seems to
be an effective compromise between inferential efficacy and computational efficency.
Indeed the robustness of our method is investigated in Section 3 while we compare
the results in our real data application to that of using an empirical Bayes method
(all parameters estimated with maximum likelihood) assuming AR(2), ARMA(1,1) and
MA(1) dependence in Section 4.

All that remains is to specify a prior for the indicator variables γv. We will use a
binary spatial Ising prior that allows us to incorporate anatomical prior information as
well as spatial interaction between voxels. Let γ(j) = {γ1,j , . . . , γN,j} be the vector of
indicator variables for regression j over locations {1, 2, . . . , N}. We begin by addressing
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how the spatial interaction is handled. Let ωv,k be prespecified constants that allow
us to weigh the interaction between neighboring locations on lattices v and k and let
θj be the positive parameter to represent the strength of the interaction between any
two voxels. If two voxels v and k are neighbors, then we write v ∼ k and the spatial
interaction is described linearly

θj
∑
v∼k

ωv,kI(γv,j = γk,j) .

The neighborhood structure is defined by the user. Commonly used neighborhood
structures are based on the four, eight, or twelve nearest neighbors; see Figure 1. For

Figure 1: Common neighborhood structures in imaging analysis.

example, in the simulation study of Section 3 we employ a two-dimensional neighbor-
hood of v that is defined to contain the directly adjacent vertical and horizontal voxels
k. In our main application in Section 4 we employ a three-dimensional neighborhood
that also includes the nine voxels immediately above, and nine voxels immediately be-
low, voxel v. However, in any application the user should consider whether it may be
more fruitful to consider cliques of higher orders instead of continuing the theme of
pairwise interactions only; see Tjelmeland and Besag (1998) where several interesting
experiments are conducted. We set the weights to be the reciprocal of the distance
between voxel v and each of the neighboring voxels, but we also assess the robustness
of this choice in Section 3.

Next we specify an “external field” which is meant to incorporate anatomical prior
information in a linear combination of parameters

N∑
v=1

αv,jγv,j .
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The prior on γ is then taken to be π(γ|θ) =
∏p
j=1 π(γ(j)|θj), where

π(γ(j)|θj) ∝ exp

{
N∑
v=1

αv,jγv,j + θj
∑
v∼k

ωv,kI(γv,j = γk,j)

}
, (5)

where the αv,j are chosen to reflect prior knowledge.

Smith and Fahrmeir (2007) consider the problem of incorporating external or anatom-
ical information into the binary spatial Ising prior. We consider their approach in the
current setting. To begin we will simplify the presentation by dropping the subscript j
so that we are considering how to choose the parameters αv in

π(γ|θ) ∝ exp

{
N∑
v=1

αvγv + θ
∑
v∼k

ωv,kI(γv = γk)

}
.

Now suppose that activation occurs only in some region G and introduce a indicator Iv
to denote if the voxel v is in the area G, that is,

Iv =

{
1, v ∈ G;
0, otherwise.

Since activation only occurs in G it is reasonable to assume the marginal probability
p(γv = 1) = 0 where v /∈ G. On the other hand, we assume p(γv = 1|Iv) = bv, v ∈ G
where bv is specified by the user to reflect prior (including anatomical) knowledge.
Further assume that the indicators are a priori independent across voxels. If voxel
v ∈ G, we have

p(γv = 1) = p(γv = 1|Iv = 1)p(Iv = 1) = bv × p(Iv = 1) := ev.

We match the marginal prior probabilities ev to the external field of the Ising prior
when there is no spatial correlation, so that θ = 0. In this case the joint density is

π(γ|θ = 0) = exp

{
N∑
v=1

αvγv

}
,

with marginals

π(γv = 1) =
exp{αv}

1 + exp{αv}
set
= ev, v ∈ G.

Therefore, an anatomically informed Ising prior is given by setting

αv = log
ev

1− ev
.

However, the drawback of using non-zero external field coefficients in the Ising prior
is that θ is no longer simply a smoothing parameter. Therefore, we could employ a
two-step procedure to address the relationship between θ and the marginal probability
of activation with non-zero αv:
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Estimation Set α1 = · · · = αN = 0, estimate and obtain θ̂ = E(θ|y).

Refitting Refit with an anatomically informed Ising prior, that is obtain α1, . . . , αN
as described above, but conditional on a fixed level of smoothing θ̂ = E(θ|y).

This leaves only the distribution of the parameter θ to address. We assume a uniform
prior on θ = (θ1, . . . , θp), i.e., π(θ) ∝

∏p
j=1 I(0 < θj < θmax), where θmax is a user-

specified hyperparameter. In practice, θmax ≤ 2 often suffices; see Møller (2003).

Note that θ, ρ, and σ2 are a priori independent, γ conditionally independent, and
independence across voxels. Thus the posterior density is characterized by

q(β(γ), γ, ρ, θ, σ2|y) ∝ p(y|β(γ), γ, σ2,Λv)π(β(γ)|y, σ2,Λ, γ)π(γ|θ)π(ρ)π(σ2)π(θ) (6)

∝
N∏
v=1

[
p(yv|βv(γv), γv, σ2

v ,Λv)π(βv(γv)|yv, γv, σ2
v ,Λv)π(σ2

v)
]

× π(γ|θ)π(ρ)π(θ) .

2.1 Posterior Inference

The posterior quantities of interest are the activation probability and its magnitude, that
is, q(γv,j = 1|y) and E(βv|y), respectively. These quantities are analytically intractable
and must be approximated with Monte Carlo methods. We will describe a particular
MCMC method in the subsequent section. A naive approach would be to construct an
MCMC sampler having the full posterior q(β(γ), γ, ρ, θ, σ2|y) as the invariant density.
However, this would be computationally prohibitive. An alternative is to use Rao-
Blackwellization. Note that

E(βv|y) =
∑
γv

E(βv|γv, y)q(γv|y)

and if γ−(v,j) denotes the vector of binary regressors excluding γv,j , then

q(γv,j = 1|y) =

∫
q(γv,j = 1|ρv, γ−(v,j), y)q(ρv|y)q(γ−(v,j)|y) dρv dγ−v,j .

Thus we only need an MCMC sampler whose invariant distribution is q(γ, ρ|y). The
MCMC algorithm will be described in the next section. For now, suppose

{(γ[1], ρ[1]), (γ[2], ρ[2]), . . . , (γ[K], ρ[K])}

is a Monte Carlo sample generated with our MCMC algorithm. Then we can approxi-
mate the posterior quantities with

E(βv|y) ≈ 1

K

K∑
k=1

β̂v(γ
[k]
v ) (7)
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and

q(γv,j = 1|y) ≈ 1

K

K∑
k=1

q(γv,j = 1|, γ[k]
−(v,j), ρ

[k]
v , y) := q̂(γv,j = 1|y) . (8)

How large should K be? There are two common approaches to choosing a value of
K. The first is to fix a value of K before the simulation begins; that is, a fixed-time
rule. The disadvantage of such a rule is that the user then has no control over the
Monte Carlo error in the estimates. Another approach is to base the stopping rule on
a fixed-width approach which continues the simulation until the Monte Carlo standard
error (MCSE) is sufficiently small; see Flegal and Gong (2013), Flegal and Jones (2011),
Flegal et al. (2008), and Jones et al. (2006). We will use the method of batch means to
calculate asymptotically valid MCSEs.

We need a threshold in order to use q̂ to detect activation. Several authors have
suggested using 0.8722, which we will use. That is, an individual voxel is categorized
as active if q̂ > 0.8722, otherwise it is considered inactive. Following Raftery (1996),
Smith and Fahrmeir (2007) give a clear description of the motivation for this value in
the context of a Bayesian spatial model. In Section 3 we compare this threshold value
with some other possibilities and show that it is an effective choice.

2.2 Bayesian Inference via MCMC Sampling

We need to construct an MCMC sampler which has q(γ, ρ|y) as the invariant density.
Unfortunately, this density is not available in closed form since the integral

∫
π(γ|θ)π(θ) dθ

is analytically intractable. However, it will suffice to create an algorithm having q(γ, ρ, θ|y)
as the invariant density. Let

S(ρv, γv) = (yv −Xv(γv)β̂v(γv))
TΛ−1

v (yv −Xv(γv)β̂v(γv))

and qv =
∑p
j=1 γv,j . In Appendix 5 we show that

q(γ, ρ, θ|y) ∝ π(γ|θ)π(θ)π(ρ)

N∏
v=1

(1 + Tv)
−qv/2|Λv|−1/2S(ρv, γv)

−Tv/2 .

As the target posterior may be truly high-dimensional it is natural to use a component-
wise strategy (Johnson et al. 2013). In this case we need the three conditional densities
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q(γ|ρ, θ, y), q(ρ|γ, θ, y) and q(θ|γ, ρ, y). These are characterized by

q(γ|ρ, θ, y) ∝ π(γ|θ)
N∏
v=1

(1 + Tv)
−qv/2|Λv|−1/2S(ρv, γv)

−Tv/2

q(ρ|γ, θ, y) = q(ρ|γ, y) ∝ π(ρ)

N∏
v=1

|Λv|−1/2S(ρv, γv)
−Tv/2

q(θ|γ, ρ, y) = q(θ|γ, y) ∝ π(γ|θ)π(θ) .

Note that, given γ, θ and ρ are a posteriori independent. Let ξ = (θ, ρ). Then we can
set up a two-variable component-wise sampler that updates γ followed by ξ; that is, if
we let (γ, ξ) be the current state and (γ′, ξ′) be the future state, one step of the MCMC
sampler is the composition of two steps and looks like (γ, ξ)→ (γ′, ξ)→ (γ′, ξ′).

Step 1. Consider updating γ conditional on the values of θ and ρ. We will use a
component-wise Metropolis-Hastings method. Schematically the transition γ → γ′

consists of Np steps and will look like

(γ1,1, γ2,1, . . . , γN,1, . . . , γ1,p, γ2,p, . . . γN,p)

→(γ′1,1, γ2,1, . . . , γN,1, . . . , γ1,p, γ2,p, . . . γN,p)

→(γ′1,1, γ
′
2,1, . . . , γN,1, . . . , γ1,p, γ2,p, . . . , γN,p)

...

→(γ′1,1, γ
′
2,1, . . . , γ

′
N,1, . . . , γ

′
1,p, γ

′
2,p, . . . , γ

′
N,p) .

Thus we need the density q(γv,j |γ−(v,j), θ, ρ, y). Notice that

q(γv,j |γ−(v,j), θ, ρ, y) ∝ (1 + Tv)
−γv,j/2S(ρv, γv)

−Tv/2

× exp

{
αv,jγv,j + θj

∑
k∈δv

ωv,kI(γk,j = γv,j)

}
.

Now let pγv,j (·|γ−(v,j), θ, ρ) be a user-specified proposal distribution. Then one of
the Np steps occurs as follows. Let the current state of the Markov chain be

γ = (γ′1,1, . . . , γ
′
v,j−1, γv,j , γv,j+1, . . . , γN,p) .

Then draw proposal γ∗v,j ∼ pγv,j (·|γ−(v,j), θ, ρ). Set γ′v,j = γ∗v,j with probability
the minimum of 1 and the Hastings ratio, otherwise set γ′v,j = γv,j . The Hastings
ratio is

(1 + Tv)
−γ∗

v,j/2S(ρv, γ−(v,j), γ
∗
v,j)
−Tv/2

(1 + Tv)−γv,j/2S(ρv, γv)−Tv/2

×
exp

{
αv,jγ

∗
v,j + θj

∑
k∈δv ωv,kI(γk,j = γ∗v,j)

}
exp

{
αv,jγv,j + θj

∑
k∈δv ωv,kI(γk,j = γv,j)

} pγv,j (γv,j |γ−(v,j), θ, ρ)

pγv,j (γ
∗
v,j |γ−(v,j), θ, ρ)

.
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Notice that no matter which proposal distribution pγv,j we use, if γ∗v,j = γv,j , then
the Hastings ratio is 1 and we automatically set γ′v,j = γ∗v,j .

One possible choice for the proposal distribution is

pγv,j (γv,j |γ−(v,j), θ, y) =
1

Z(θ)
exp

{
αv,jγv,j + θj

∑
k∈δv

ωv,kI(γk,j = γv,j)

}

from which it can be shown that

pγv,j (γv,j = 1|γ−(v,j), θ, y) =

[
1 + exp

{
−αv,j + θj

∑
k∈δv

ωk,v(1− 2γk,j)

}]−1

.

This leads to a simplification in the Hastings ratio

(1 + Tv)
−γ∗

v,j/2S(ρv, γ−(v,j), γ
∗
v,j)
−Tv/2

(1 + Tv)−γv,j/2S(ρv, γv)−Tv/2
.

Step 2. Consider updating ρ conditional on γ. In this step we again use a component-
wise MCMC algorithm. Schematically the transition ρ → ρ′ consists of N steps
and will look like

(ρ1, ρ2, . . . , ρN−1, ρN )→ (ρ′1, ρ2, . . . , ρN−1, ρN )

→ (ρ′1, ρ
′
2, . . . , ρN−1, ρN )

...

→ (ρ′1, ρ
′
2, . . . , ρ

′
N−1, ρN )

→ (ρ′1, ρ
′
2, . . . , ρ

′
N−1, ρ

′
N ) .

Thus we need the density q(ρv|ρ−v, γ, y). Notice that

q(ρv|ρ−v, γ, y) = q(ρv|γ, y) ∝ π(ρv)|Λv|−1/2S(ρv, γv)
−Tv/2 .

Let the current state of the Markov chain be ρv. Then generate a proposal ρ∗v
from the density pρv (·|γ, y) and set ρ′v = ρ∗v with probability the minimum of 1
and the Hastings ratio which is given by

π(ρ∗v)|Λ∗v|−1/2S(ρ∗v, γv)
−Tv/2

π(ρv)|Λv|−1/2S(ρv, γv)−Tv/2
pρv (ρv|γ, y)

pρv (ρ∗v|γ, y)
.

Otherwise, set ρ′v = ρv. One possible choice for the proposal density is a uniform
distribution, Uniform(−1, 1).

Notice that when we use the EB approach for ρ we avoid this step entirely.
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Step 3. Consider updating θ conditional on γ. Again we use a component-wise MCMC
method. Schematically the transition θ → θ′ consists of p steps and looks like

(θ1, θ2, . . . , θp−1, θp)→ (θ′1, θ2, . . . , θp−1, θp)

→ (θ′1, θ
′
2, . . . , θp−1, θp)

...

→ (θ′1, θ
′
2, . . . , θ

′
p−1, θp)

→ (θ′1, θ
′
2, . . . , θ

′
p−1, θ

′
p) .

Thus we need the density q(θj |θ−j , γ, y). Notice that

q(θj |θ−j , γ, y) = q(θj |γ, y)

∝ Z−1
j (θj , αj) exp

{
θj
∑
v∼k

ωv,kI(γv,j = γk,j)

}
I(0 < θj < θmax) .

where

Zj(θj , αj) =

∑
γ(j)

exp

{
N∑
v=1

αv,jγv,j + θj
∑
v∼k

ωv,kI(γv,j = γk,j)

} .

Let the current state of the Markov chain be θj . Then generate a proposal θ∗j from
a proposal density pθj (·|γ, y). Then set θ′j = θ∗j with probability the minimum of
1 and the Hastings ratio

Zj(θj , αj) exp
{
θ∗j
∑
v∼k ωv,kI(γv,j = γk,j)

}
I(0 < θ∗j < θmax)

Zj(θ∗j , αj) exp {θj
∑
v∼k ωv,kI(γv,j = γk,j)} I(0 < θj < θmax)

pθj (θj |γ, y)

pθj (θ
∗
j |γ, y)

.

The ratio
Zj(θj , αj)

Zj(θ∗j , αj)

is analytically intractable but can be estimated with path sampling (Gelman 1998)
or the Wang-Landau algorithms (Wang and Landau 2001; Zhang and Ma 2007),
among others.

One choice for a proposal distribution is N(θj , σ̃
2) where θj is the current state

and σ̃ will be tuned so that the acceptance rate is roughly 40%.

3 Simulation Study

In this section we report the results of a simulation study undertaken to validate the
model and estimation procedure described above. In part this is done to investigate
what differences arise when different priors are used for ρ. Specifically, we consider the
3 cases where (i) ρv ∼ Uniform(−1, 1), independently; (ii) an empirical Bayes approach
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is used to estimate ρ with ρ̂, which is calculated by maximum likelihood; and (iii)
taking Λv to be the identity matrix for all v. In the second part of this section we
continue to use the EB approach and investigate the robustness of our choice for the
weights ωv,k in our spatial prior and our choice of .8722 for the cutoff for the posterior
activation probabilities. The final part of this section is concerned with investigating
the robustness of either (i) using an empirical Bayes approach to estimate ρ with ρ̂ or
(ii) taking Λv to be the identity matrix for all v when the underlying data is generated
with various temporal correlation structures.

We generate 10 data sets from the model based on 30 × 30 activated-inactivated
images. We do a posteriori inference on these data sets using the full posterior defined
at (6). We then compare the various methods based on their ability to estimate the
spatial interaction parameter θ and their ability to correctly classify voxels as activated
or inactivated.

We now describe how we generate the data. Suppose σv = σ2 for each v = 1, . . . , N
and set (θ, σ2) = (.7, 3). Given θ, a γ is exactly generated from

p(γ|θ) =
1

Z(θ)
exp

θ∑
i∼j

ωi,jI (γi = γj)

 .

Simulating from p(γ|θ) is not easy but can be done using a perfect sampling technique
for Ising models (Propp and Wilson 1996). This γ is a 30 × 30 activated-inactivated
square image. Given γ, we simulate a time-series yv in each voxel v of length 100 from
the model

yv = Xv(γv)βv(γv) + εv, εv ∼ N100(0, σ2
vΛv) .

We assume a ‘boxcar’ type stimulus function and after convolving with the canonical
HRF the design matrix is given in Figure 2.
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Figure 2: The design matrix used in the simulation study.
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The autoregression coefficient, ρv, is generated from Uniform(−1, 1) for each voxel.
Let βv = (βv,0, βv,1)T where βv,0 represents the baseline level and βv,1 describes the
amplitude of activation in response to a stimulus at each voxel v. We use γv,j to
indicate if βv,j is equal to 0 or not, that is, βv,j 6= 0 if γv,j = 1; otherwise βv,j = 0.
In this simulation, we always assume γv,0 = 1 since βv,0 models the baseline level in
a human brain. On the other hand, γv,1 can be either 0 or 1. When γv,1 = 1, we set
βv = (300, 5)T ; otherwise βv = βv,0 = 300. The reason we set βv,1 = 5 is that the BOLD
contrast is typically fairly small, with activation inducing a signal increase ranging from
1% to 5%.

For each simulated data set, the spatial Bayesian variable selection approach is
applied to detect the activation and to estimate the spatial coefficient θ via its posterior
mean. Recall the prior for β is given in (2). Now consider the binary spatial Ising prior
(5). We used a two-dimensional neighborhood which contains the directly adjacent
voxel and the horizontal voxels. The weights ωv,k were taken to be the reciprocal of
the distance between voxels v and k. Finally, we set θmax = 2 and since there is no
anatomical information in this problem we set α = 0. To evaluate the performance
of this method, we consider the accuracy of estimating θ with its posterior mean and
the accuracy and false positive rate of identifying activation-inactivation. Note that we
classified a voxel as active if q̂ > 0.8722. Accuracy is defined as the percentage of voxels
correctly classified. The false positive rate is the percentage of active voxels falsely
identified.

The average estimates of θ and corresponding Monte Carlo standard errors (MCSEs)
over 10 simulated data are given in Table 1. Recall that the true value for θ is 0.7. The
estimation results are based on 1 × 104 draws from the posterior using our MCMC
algorithm, resulting in all MCSEs being less than 0.005. The results suggest that
using a prior which does not include temporal correlation (i.e. Λv = I100) will lead
to overestimates of the spatial correlation but there is little difference between either of
the other two priors.

Prior for ρ Estimate θ̂ MCSE
Uniform(−1, 1) 0.73 0.0017

EB 0.74 0.0015
Λv = I100 0.78 0.0015

Table 1: The average Monte Carlo estimates of θ and corresponding Monte Carlo stan-
dard errors (MCSE) based on 1 × 104 MCMC iterations for each of the 10 simulated
data sets.

Table 2 reports the average (over times and data sets) accuracy and false positive
rate for each of the 3 priors. Again we find that ignoring the temporal correlation
will lead to inferior inference. Specifically, when Λv = I100 we observed a higher false
positive rate. However, the other two priors produce comparable results. It is worth
emphasizing that the computation time required for the EB approach is over 300 times
less than that required for the Uniform(−1, 1) prior; note that with the EB method Step
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2 of the MCMC algorithm is superfluous so inversion of Λv for each voxel is avoided.

Prior for ρ Λv = I100 Uniform(−1, 1) EB
Accuracy (%) 91.38 97.38 97.16

False Positive Rate (%) 13.59 0.045 0.04

Table 2: The accuracy based on 1× 104 MCMC iterations for each of the 10 simulated
data sets.

We next use the EB method for estimating ρ and assess the robustness of the pro-
cedure to our choice of weights ωv,k and activation cutoff q̂ > 0.8722.

Consider our choice for the weights ωv,k, which is the reciprocal of the Euclidian
distance between voxels. We tried half and double these values of ωv,k in our simulation
study. Both show quite similar results to the weights we chose previously. The choice
of weights does not appear to significantly impact the quality of the inference in this
example. The results are reported in Table 3.

Weight 1/2 1 2
Accuracy (%) 97.11 97.28 97.25
False Positive (%) 1.20 1.36 1.34

Table 3: The accuracy and false positive rate on identifying activation corresponding to
different weights applied where original means the weights are equal to the reciprocal
of the distance between voxels, half for half original weights, double for double original
weights.

To investigate the effect of the choice of the threshold on the result, a sensitivity
study in terms of accuracy of identification of activation is given. The voxel is activated
if the corresponding posterior probability q̂(r = 1|y) is greater than a specified value.
Letting p = q(r = 1|y), we have

−2 log

(
1− p
p

)
appr.∼ χ2(1).

We tried a set of p-values of .01, .05, and .1 with corresponding critical values of 6.635,
3.841, and 2.705, respectively. Given the critical values, the posterior probabilities
q(r = 1|y) are equal to .9650, .8722, .7946, respectively. Then we applied the critical
values to detect the activation. Table 4 shows the results. Based on these results, it
seems reasonable to take the threshold as 0.8722.

Critical value .7946 .8722 .9650
Accuracy (%) 97.44 97.28 95.93
False Positive (%) 2.30 1.36 0.50

Table 4: The accuracy of detection of activation using different critical values.
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To this point all of our simulated data has followed an autoregressive temporal cor-
relation. We now turn our attention to assessing the robustness of our procedure when
this assumption does not hold. Specifically, we simulated 100 images under each of 5
temporal correlation structures–AR(1), AR(2), MA(1), MA(2) and ARMA(1,1). We
then fit two models to each data set. One of the models was our EB method assuming
an AR(1) temporal correlation and one was a model which assumed no temporal cor-
relation. The results are presented in Tables 5 and 6. Yet again we see that ignoring
the temporal correlation results in inferior inference. It is also clear from these results
that the use of an AR(1) structure is quite reasonable in all of these settings.

Models AR(1) AR(2) MA(1) MA(2) ARMA(1, 1)
Acc (%) 97.38 (0.97) 96.40 (0.97) 95.98 (0.67) 97.88 (1.75) 96.01 (0.65)
FP (%) 0.68 (0.041) 2.23 (0.077) 0.97 (0.041) 0.98 (0.067) 0.97 (0.043)

Table 5: The EB AR(1) model is implemented on 100 images simulated with five differ-
ent temporal correlation structures. The accuracy (Acc) and false positive (FP) rates
are reported. The figures inside of parentheses are the corresponding MCSE.

Models AR(1) AR(2) MA(1) MA(2) ARMA(1, 1)
Acc (%) 95.11 (1.26) 94.43 (1.47) 98.56 (0.07) 96.88 (0.08) 93.67 (1.65)
FP (%) 8.74 (0.41) 10.22 (0.87) 0.10 (0.004) 6.00 (0.64) 9.79 (1.43)

Table 6: The model with Σ = I is implemented on 100 images simulated with five
different temporal correlation structures. The accuracy (Acc) and false positive (FP)
rates are reported. The figures inside of parentheses are the corresponding MCSE.

4 Activation in Experimental fMRI Data

In this section we use the methodology, i.e. the model, estimation procedure and the
MCMC sampling method, described earlier to analyze the Stroop data which was de-
scribed in Section 1.1. Based on the results of Section 3 we will limit attention to using
EB methods for ρ; recall that we found little difference in the quality of inference be-
tween the EB approach and the Uniform prior while the computing time for the EB
method was over 300 times less. The weights in the binary spatial Ising prior will be
given by the reciprocal of the Euclidean distance between neighboring voxels and set
θmax = 1. We used a cutoff of .8772 for detecting activation.

We consider two different models in this section. The first (see Section 4.2) does not
allow for changes in the activation patterns over time while the second (see Section 4.3)
does. Which model is used should be determined by the inferential goals. If the interest
is mainly in which areas are activated by a task, the time-invarying model should be
used. But if we want investigate the activation changes over time, the time-varying
model is appropriate.
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4.1 Design Matrix in the Regression Model

In general, at voxel v, the design matrix Xv consists of the effects of no interest, trans-
formed stimuli, and the baseline trend. The transformed stimulus is the convolution
of the stimulus function with the assumed HRF, as discussed earlier. In this fMRI
experiment, there are 3 types of tasks (“Ink Only”, “Congruence”, and “Interference”)
given 3 alternating times. Therefore, this part of the design matrix implemented in
this study was obtained by convolving the stimulus function with the canonical HRF.
The visualization of the design matrix is given in Figure 3. The red and black lines in
Figure 3 model the initial effect which is of no interest and the baseline trend during
the experiment, respectively. The green, blue, and pink lines model the corresponding
effects, “Ink Only”, “Congruence”, and “Interference” during the test.
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Figure 3: The design matrix used for the experimental fMRI data.

4.2 Time-Invarying Activation Patterns

We assume the basic linear model

yv = a0z0 + a1z1 + β1x1 + β2x2 + β3x3 + εv, (9)

where yv represents a time-series in a particular voxel v, each xi is a transformed input
function, zi is a vector used to remove low-frequency, stimulus independent effects, the
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βi are parameters of interest corresponding to different tasks,“Ink Only”, “Congruence”,
and “Interference”, respectively. The ai are nonzero nuisance parameters to model the
baseline brain signal. The rest of the hierarchical model is specified as described in
Section 2 and at the beginning of this section. A sequence of binary variables γv =
{1, 1, γ3,v, γ4,v, γ5,v} is used to indicate if the corresponding parameter is zero or not;
recall that we assume both of the ai are nonzero.

The posterior of interest q(γ, θ|y) is intractable so we will use the MCMC algorithm
developed in Section 2.2 to obtain 1× 105 observed values of the Markov chain. We use
the method of batch means (Jones et al. 2006) to calculate MCSEs for the estimated
quantities. We also used trace plots and histograms to visually assess convergence of
the simulation.

The estimates of the components of the spatial correlation parameter are given in
Table 7. Note that the reported MCSEs are small and hence we have precise estimates.
Also, the spatial correlations appear quite large.

θ2 θ3 θ4

0.7476 (0.00006) 0.7520 (0.00006) 0.6181 (0.00007)

Table 7: Estimate of the components of θ based on 1 × 105 MCMC simulations with
MCSE given in the parentheses.

In Figure 4 we present some results predicting activation from the coronal, sagittal,
axial, and whole brain views. Figure 4(A), 4(B), and 4(C) show predicted activations
while performing the “Ink Only”, “Congruence”, and “Interference” tasks, respectively.
The parietal and occipital lobes are activated during the Stroop task since the parietal
lobe accounts for cognition, information processing, and visual perception and the oc-
cipital lobe is the visual processing center which is responsible for control of vision and
color recognition. Additionally, the activation regions in the right brain are larger than
those in the left brain partly because the left and right hemispheres of the brain process
information in different ways and we tend to process information using our dominant
side; recall that all subjects were right-handed.
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(A) Ink Only.

(B) Congruence.

(C) Interference.

Figure 4: Predicted activation maps for each task using AR(1) temporal dependence.

4.3 Time-Varying Activation Patterns

In the fMRI experiment described in Section 1, the three different Stroop tasks are
repeated three times. The model at (9) fails to serve the goal of studying a possible
activation change over time. Here we generalize the model in order to study possible
changes to the activation pattern over time. Suppose,

Yv =a0z0 + a1z1 + β1,1x1,1 + β1,2x1,2 + β1,3x1,3 + β2,1x2,1 + β2,2x2,2 + β2,3x2,3

+ β3,1x3,1 + β3,2x3,2 + β3,3x3,3 + εv, (10)

where xi,j is the transformed input function of task j in the ith trial, zi is a vector used
to remove low-frequency, stimulus independent effects, βi,j is the parameter of interest
corresponding to the jth task in the ith trial, the ai are nonzero nuisance parameters to
model the baseline of a brain signal and εv has a normal distribution, N(0, σ2

vΛv). We
continue to use the EB method based on the MLE ρ̂ for the elements of Λv. A sequence
of binary variables is used to indicate if the corresponding parameter is zero or not. In
our case, we assume ai nonzero. Therefore, the variable for voxel v is

γv = {1, 1, γ3,v, γ4,v, γ5,v, γ6,v, γ7,v, γ8,v, γ9,v, γ10,v, γ11,v} .

The rest of the model specification is as described in Section 2.

The posterior of interest q(γ, θ|y) is intractable so we will use the MCMC algorithm
developed in Section 2.2 to obtain 1× 105 observed values of the Markov chain. We use
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the method of batch means (Jones et al. 2006) to calculate MCSEs for the estimated
quantities. We also used trace plots and histograms to visually assess convergence of
the simulation.

The activation maps are given in Figures 5, 6, and 7. All these figures show that
the partial lobe is activated during these tasks in different phases but the occipital lobe
is only activated in the third trial and the frontal lobe is slightly activated in the first
trial of congruence and interference tasks and in the second trial of ink only task. The
temporal lobe is only activated in the third phase, not in the first and second phases.
Notice that the size of activation areas when performing the “Interference” task is bigger
than that when performing the other two.

Figure 5: Activation maps for the time-varying model in the first trial. The top row
is activation maps when performing the “Ink Only” task, the middle one for the “Con-
gruence” task, and the bottom one for the “Interference” task.

4.4 Model Assessment

To keep things manageable we will limit discussion to the model in Section 4.2. Similar
results were found for the model in Section 4.3. We performed several voxel-level
exploratory analyses to assess model fit. For example, we plotted the raw data versus
time with a trend line, residuals as a function of time, quantile-quantile plots to assess
our distributional assumption of normality and autocorrelation function (ACF) and
partial ACF plots to assess the temporal correlation. We present the results for several
randomly selected voxels in Figures 8 and 9. Consider Figure 8. The first row of
each plot is the raw data with a fit line. The second row is the residual multiplied by
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Figure 6: Activation maps for the time-varying model in the second trial. The top row is
activation maps when performing the “Ink Only” task, the middle one for “Congruence”
task, and the bottom one for the “Interference” task.

Figure 7: Activation maps for the time-varying model in the third trial. The top
row is activation maps when performing the “Ink Only” task, the middle one for the
“Congruence” task, and the bottom one for the “Interference” task.
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the inverse squared root of AR(1) covariance and the quantile-quantile plots for the
corresponding residuals with a Shapiro–Wilk test given. Even when the Shapiro–Wilk
test rejects normality, we find by checking the quantile-quantile plots that most of the
points lie around the straight line. Now consider Figure 9 which contains the ACF
and PACF plots for the same voxels as in Figure 8. Mostly this shows that an AR(1)
structure is reasonable although a couple suggest that a higher order autoregressive
structure could be appropriate.

We also performed voxel-wise chi-squared goodness-of-fit tests by comparing the
reduced model to the full model at the .1 level, very few (.01%) of the null hypotheses
(reduced model) were rejected. In addition, only a small percentage (0.05%) of the
voxels had BIC values that were smaller for the reduced model than for the full model.
Finally, we examined the nature of the activation patterns with the 3 possible cutoff
probabilities (i.e. .9650, .8722 and .7946) introduced in Section 3 and found little
practical difference in the patterns. In sum, these analyses suggest that our model fits
the data reasonably well.

Recall that in Section 4.2 we used EB methods for all of the ρv and assumed a priori
that the ρv are independent across voxels. This was done mainly because the simulation
study results from Section 3 suggested that the quality of inference was similar when
we assumed ρv ∼ Uniform(−1, 1), independently. Moreover, when we tried to use
the Uniform priors on the experimental fMRI data the computation was prohibitively
expensive. The crux of the computational issue can be seen by examining the Hastings
ratio for the MCMC step updating ρv

π(ρ∗v)|Λ∗v|−1/2S(ρ∗v, γv)
−Tv/2

π(ρv)|Λv|−1/2S(ρv, γv)−Tv/2
pρv (ρv|γ, y)

pρv (ρ∗v|γ, y)

where S(ρv, γv) = (yv −Xv(γv)β̂v(γv))
TΛ−1

v (yv −Xv(γv)β̂v(γv)). Although computing
the determinant of Λv is easy and fast, calculating S(ρv, γv) is time consuming partly
because Λv must be inverted. In the current fMRI data example Λv is 465× 465 and it
must be inverted for each voxel.

However, the assumption of independence of the ρv may not be optimal. Figure 10
shows the MLE for ρv in each voxel. There does seem to be some evidence that nearby
voxels tend to have similar values and hence the map may be exhibiting spatial corre-
lation. It would be a potentially interesting research project to try to account for this
through a prior specification on ρ while maintaining computational feasibility.

Finally, we compare the activation maps produced from our model when different
temporal structures, AR(2), ARMA(1,1), and MA(1), are assumed. In each case we
used maximum likelihood estimates of the parameters and implemented an empirical
Bayes approach. The computational effort for each of these was similar to that of the EB
AR(1) model. The results are presented in figures in the Supplemental Material. The
activation maps for the AR(1) and AR(2) models are comparable, but the ARMA(1,1)
and MA(1) activation maps show larger activated regions. Given the results of the ACF
and PACF plots above as well as the results of the simulation study in Section 3 we
suspect that the ARMA(1,1) and MA(1) fits are yielding a substantial number of false
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Figure 8: Residual check. The 1st, 4th, 7th rows represent the raw data with a fit line,
2nd, 5th, 8th are the corresponding residuals with a spline, and 3rd, 6th, 9th rows are
the corresponding QQ plots.
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Figure 9: ACF and PACF plots for randomly selected voxels.
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Figure 10: Estimates of ρv for each voxel.

positives. Overall, the use of an AR(1) temporal dependence seems quite reasonable in
this example.

5 Discussion

We have developed a Bayesian hierarchical model which incorporates both spatial and
temporal correlation. In the process we demonstrated how to incorporate a time-varying
coefficient that allows for the variety of processes that might impact a BOLD response
to a task during scanning. This work has the potential to have a broad and immediate
impact on single-subject and -session fMRI task activation studies, which are the com-
mon first step when performing an fMRI study. Moreover, recent developments in the
clinical usage of fMRI rely on subject- and session-specific investigations to locate and
investigate language areas prior to brain surgery (Sabsevitz et al. 2003). In addition,
for diseases such as AD, it is hoped that imaging can be used as a diagnostic utility for
initiating treatment (Bassett et al. 2006).

For broader goals it would be of interest to extend the model to group studies. One
approach would be to mirror existing group studies and adopt a two-stage frequen-
tist/least squares approach (see Friston et al. 2007). That is, use posterior quantities
from the subject-specific models in standard second-stage inter-subject regression mod-
els. A more satisfying answer would incorporate recent developments in fMRI meta
analysis models (Kang et al. 2011), employing a Bayesian second-stage model. Yet
another alternative would build a global Bayesian model for groups of whole brain func-
tional images, without relying on two-stage methods. However, such a solution presents
numerous modeling and computational challenges. For example, the study of MCMC
convergence in such high dimensional settings remains unexplored (present study in-
cluded). Hence the consequences of having far more parameters than possible MCMC
iterations remains unknown. Moreover, any fully Bayesian model for groups must not
require loading the full inter-subject data set into memory to be scalable to the ever-
increasing scope of fMRI studies. For many of these problems variational Bayesian
solutions may be important future directions.

Despite computational and modeling difficulties, we are confident that Bayesian
approaches represent an important direction in fMRI, and high-dimensional research in
general. Studies such as the present one and others (e.g. Smith and Fahrmeir 2007; Caffo
et al. 2011; Bowman et al. 2008; Goldsmith et al. 2014) demonstrate the practicality,
efficacy and feasibility of general Bayesian solutions to these problems.
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Appendix: Derivation of q(γ, ρ, θ|y)

q(γ, ρ, θ|y) ∝
∫
q(β(γ), γ, ρ, θ, σ2|y) dβ(γ) dσ2
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Now

q(γ, θ, ρ|y)
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