
Bayesian Analysis (2014) 9, Number 2, pp. 475–520

Adaptive Bayesian Density Estimation in
Lp-metrics with Pitman-Yor or Normalized
Inverse-Gaussian Process Kernel Mixtures

Catia Scricciolo ∗

Abstract. We consider Bayesian nonparametric density estimation using a
Pitman-Yor or a normalized inverse-Gaussian process convolution kernel mixture
as the prior distribution for a density. The procedure is studied from a frequentist
perspective. Using the stick-breaking representation of the Pitman-Yor process
and the finite-dimensional distributions of the normalized inverse-Gaussian pro-
cess, we prove that, when the data are independent replicates from a density with
analytic or Sobolev smoothness, the posterior distribution concentrates on shrink-
ing Lp-norm balls around the sampling density at a minimax-optimal rate, up to
a logarithmic factor. The resulting hierarchical Bayesian procedure, with a fixed
prior, is adaptive to the unknown smoothness of the sampling density.

Keywords: adaptation, nonparametric density estimation, normalized inverse-
Gaussian process, Pitman-Yor process, posterior contraction rate, sinc kernel

1 Introduction

Consider the problem of estimating a univariate density f0 from independent and iden-
tically distributed (i.i.d.) observations taking a Bayesian nonparametric approach. A
prior probability law is defined on a metric space of probability measures that possess
Lebesgue densities and a summary of the posterior distribution, typically the posterior
expected density, can be employed as a density estimator. Since the seminal articles of
Ferguson (1983) and Lo (1984), the idea of constructing priors on spaces of densities by
convoluting a fixed kernel with a random distribution has been successfully exploited
in density estimation. A convolution kernel mixture may provide an efficient approx-
imation scheme possibly resulting in a minimax-optimal, up to a logarithmic factor,
speed of concentration for the posterior mass on shrinking balls around the sampling
density. Recent literature on Bayesian density estimation has mainly focussed on poste-
rior contraction rates relative to the Hellinger or the L1-metric using Dirichlet process
mixtures of (generalized) normal densities. Ghosal and van der Vaart (2001) found a
nearly parametric rate for estimating supersmooth densities that are themselves mix-
tures of normal densities. Supersmooth cases, beyond being of interest in themselves,
help developing mathematical tools to deal with the estimation of ordinary smooth
densities, i.e., densities that are differentiable up to a certain order, but not necessar-
ily are kernel mixtures. In the article of Ghosal and van der Vaart (2007b), a twice
continuously differentiable density f0 is estimated using a Dirichlet process mixture of
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Gaussian densities, the scale parameter, which plays the role of the smoothing window,
being assigned a sample-size dependent prior obtained by re-scaling a fixed distribution
with an accurately calibrated sequence converging to zero at an appropriate rate so
that the a priori smoothness assumption on f0 is incorporated into the prior. When
the smoothness is unknown, rate-adaptive estimation over Hölder classes can be per-
formed using finite Dirichlet location mixtures of Gaussian densities, cf. Kruijer et
al. (2010). Extending this result to infinite mixtures, Shen et al. (2013) have recently
proved that fully rate-adaptive multivariate density estimation over Hölder regularity
scales can be performed using Dirichlet process mixtures of Gaussian densities without
any bandwidth shrinkage in the prior for the scale nor any knowledge of the smoothness
level.

Even if much progress has been made during the last decade in understanding frequentist
asymptotic properties of kernel mixture models for Bayesian density estimation, there
seems to be a lack of results concerning adaptive estimation of ordinary and infinitely
smooth densities with respect to more general loss functions than the Hellinger or the
L1-distance, employing other processes, beyond the Dirichlet process, as priors for the
mixing distribution. In this article, we investigate the question of how to complement
and generalize existing results on posterior contraction rates by considering adaptive
estimation over analytic or Sobolev density function spaces using the Pitman-Yor or the
normalized inverse-Gaussian process as priors for the mixing distribution of Gaussian
mixtures.

The main results describe recovery rates for smooth densities, where smoothness is
measured through a scale of integrated tail bounds on the Fourier transform of the
sampling density. For analytic densities, a nearly parametric rate stems under various
prior laws that may only affect the power of the logarithmic term, which automatically
recovers the characteristic exponent of the Fourier transform. Such a fast rate is roughly
explainable from the fact that spaces of analytic functions are slightly bigger than
finite-dimensional spaces in terms of metric entropy. Apart from the prior probability
measures considered, the novelty of this article is in the use of stronger metrics to
measure recovery rates, namely, the full scale of Lp-metrics, 1 ≤ p ≤ ∞. That a large
class of Bayesian procedures is capable of such a recovery is established here for the
first time and is encouraging to the use of these methods. For densities in Sobolev
spaces, recovery rates are found to be minimax-optimal, up to a logarithmic factor,
under the Dirichlet process for Lp-metrics, with 1 ≤ p ≤ 2, whereas they deteriorate
by a genuine power of n as p increases beyond 2. Slower than minimax-optimal rates
are found when endowing the mixing distribution with a Pitman-Yor process having
a strictly positive discount parameter since small Kullback-Leibler type balls do not
seem to be charged enough prior mass. We currently have no proof of the fact that
posterior contraction rates are suboptimal under a Pitman-Yor process with strictly
positive discount parameter, but believe that the rates cannot be substantially improved
in this situation. The results of this article may be of interest for different reasons: they
constitute a first step towards the study of posterior contraction rates for other process
priors, beyond the Dirichlet process, recently proposed in the literature which, in many
contexts, can be better suited than the Dirichlet process for the analysis of data in
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a variety of applied settings, as witnessed by the burst of the use of the Pitman-Yor
process in the machine learning community. Also, they provide an indication on the
performance of Bayesian procedures for adaptive density estimation over function spaces
extensively considered in the frequentist literature on nonparametric curve estimation.

The main challenge when proving adaptation in the infinitely smooth case lies in find-
ing a finite mixing distribution, with a relatively small number of support points, such
that the corresponding Gaussian mixture approximates the sampling density, in the
Kullback-Leibler divergence, with an error of the appropriate order. Such a finitely
supported mixing distribution may be found by matching the moments of an ad hoc
constructed mixing density for which the method used by Kruijer et al. (2010) is not
suited because of the infinite degree of smoothness of the true density. There are limita-
tions implicitly coming from the employed kernel which can be by-passed using superk-
ernels, whose usefulness in density estimation has been pointed out by, among others,
Devroye (1992). The crux and a main contribution of this article is the development
of an approximation result for analytic densities with exponentially decaying Fourier
transforms, cf. Lemma 5. We believe this result can also be of autonomous inter-
est for frequentist methods in adaptive density estimation for clustering with Gaussian
mixtures along the lines of the article by Maugis-Rabusseau and Michel (2013).

When assessing posterior contraction rates, a major difficulty is the evaluation of the
prior concentration rate, estimated by bounding below the probability of Kullback-
Leibler type neighborhoods of the sampling density by the probability of `1-balls of ap-
propriate dimension. For the normalized inverse-Gaussian process, likewise the Dirichlet
process, the explicit expressions of the finite-dimensional distributions can be exploited
to estimate the probability of `1-balls. For the Pitman-Yor process, instead, the stick-
breaking representation turns out to be useful to derive lower bounds on the probabilities
of `1-balls of the mixing weights and locations. We expect this technique can be applied
to other stick-breaking process priors.

The present article contributes to the topic by showing that, at least, for densities in
a certain scale of regularity classes, full rate adaptation can be achieved using infinite
Gaussian mixtures without any bandwidth shrinkage, the use of analytic kernels being
intuitively justified by the fact that, in absence of any knowledge of the smoothness level
of f0, only infinitely smooth kernels can capture the “true” regularity of f0. Thus, what-
ever the smoothness of the sampling density, the asymptotic performance, in terms of
posterior contraction rates, of Dirichlet process Gaussian mixture priors is optimal. The
exposition is focussed on density estimation, but other statistical settings are implicitly
covered, for example, fixed design linear regression with unknown error distribution as
described in Ghosal and van der Vaart (2007a), pages 205–206. Extension of these re-
sults to a multivariate setting is imminent along the lines of Shen et al. (2013) and is
not pursued here.

The organization of the article is as follows. In Section 2, we describe the model and re-
view some preliminary definitions. In Section 3, we state results on posterior contraction
rates for general convolution kernel mixtures highlighting the connection with posterior
recovery rates for mixing distributions. The main results are reported in Section 4,



478 Adaptive Bayesian Density Estimation Using Mixture Models

wherein, after investigating the achievability of the error rate 1/
√
n, up to a logarithmic

factor, for supersmooth densities that possess a kernel mixture representation, we focus
on adaptive estimation of densities with analytic or Sobolev smoothness using Gaussian
mixtures. Estimates of the probabilities of `1-balls under various priors are given in
Section 5. Sections 6 and 7 report the proofs of the theorems on adaptive estimation
of densities with analytic or Sobolev smoothness, respectively. Auxiliary results are
deferred to the Appendix.

1.1 Notation

Calculus

For real numbers a and b, we denote by a∧b their minimum and by a∨b their maximum.
We write “.” and “&” for inequalities valid up to a constant multiple which is universal
or inessential for our purposes. For integrals where no domain of integration is indicated,
integration is performed over the entire domain of variation of the variables in the
integrand. For any real valued function f , we write f+ for its non-negative part f1{f≥0}.
For real valued functions f and g, the notation f = o(g) means that f/g → 0 in an
asymptotic regime that should be clear from the context, while f = O(g) means that
|f/g| is (eventually) bounded. Also, f ∼ g means that f/g → 1. For sequences of real
numbers (an)n≥1 and (bn)n≥1, we write
− an ∼ bn to mean that an/bn → 1 as n→∞,

− an � bn to mean that an/bn → 0 as n→∞.

Probability measures

When a probability measure is clearly specified by the context, it is sometimes denoted
just by P and the associated expectation operator by E[·]. Subscripts in E[·] specify
the probability measure with respect to which the expectation is taken. We use the
same symbol F to denote a distribution function and the corresponding probability
measure. All density functions are understood to be with respect to Lebesgue measure
λ on R or on some subset thereof. The probability density function of a standard normal
distribution is denoted by φ. For any pair of probability density functions f and g,
− given 1 ≤ p <∞, ‖f − g‖p stands for the Lp-metric (

∫
|f − g|p dλ)1/p,

− ‖f − g‖∞ stands for the supremum norm ‖f − g‖∞:= supx|f(x)− g(x)|,
− KL(f ; g) stands for the Kullback-Leibler divergence

∫
f log(f/g) dλ.

For any probability density function f , define the positive (possibly infinite) constant

Sf := sup{|t|: |f̂(t)|6= 0}, where f̂(t) :=
∫
eitxf(x) dx, t ∈ R, is the Fourier transform of

f . If
− Sf <∞, then support(|f̂ |) ⊆ [−Sf , Sf ],

− Sf =∞, then |f̂ |> 0 everywhere.

Function spaces

− BC(R) is the space of bounded continuous real-valued functions on R,

− C∞(R) is the space of infinitely differentiable real-valued functions on R,

− Cω(R) is the space of analytic real-valued functions on R.
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2 Model description

The model is a location mixture fF,σ(·) := (F ∗Kσ)(·) =
∫
σ−1K((·−θ)/σ) dF (θ), where

K denotes the kernel density, σ the scale parameter and F the mixing distribution.
Kernels herein considered are characterized via an integrated tail bound condition on
their Fourier transforms. For constants 0 < ρ, r, L < ∞, let Aρ,r,L(R) be the class of
densities on R with Fourier transforms satisfying

Iρ,r(f̂) :=

∫
e2(ρ|t|)r |f̂(t)|2 dt ≤ 2πL2. (1)

In symbols, Aρ,r,L(R) := {f : R → R+| ‖f‖1= 1, Iρ,r(f̂) ≤ 2πL2}. Condition (1) im-

plies that the behavior of |f̂(t)| is described by e−(ρ|t|)r as |t|→ ∞. Densities with
Fourier transforms satisfying (1) are infinitely differentiable on R, see, e.g., Theo-
rem 11.6.2. in Kawata (1972), pages 438–439, and “increasingly smooth” as ρ or r

increases. Also, they are bounded, ‖f‖∞≤ (2π)−1‖f̂‖1≤ L2 + C(ρ, r)/π < ∞, where
C(ρ, r) :=

∫∞
0
e−2(ρt)r dt = (2ρr)−1/rΓ(1+1/r), cf. Lemma 1 in Butucea and Tsybakov

(2008), page 35. Densities in classes Aρ,r,L(R) are called supersmooth. They form
a larger collection than that of analytic densities, including important examples like
Gaussian, Cauchy, symmetric stable laws, Student’s-t, distributions with characteristic
functions vanishing outside a compact set, as well as their mixtures and convolutions.
Example 2.1. Symmetric stable laws, which have characteristic functions of the form
e−(ρ|t|)r , t ∈ R, for some 0 < ρ < ∞ and 0 < r ≤ 2, are supersmooth. Cauchy laws
Cauchy(0, σ) are stable with r = 1 and ρ = σ. Normal laws N(0, σ2) are stable with
r = 2 and ρ = σ/

√
2.

Example 2.2. Student’s-t distribution with ν > 0 degrees of freedom has characteristic
function verifying (1) for r = 1:

f̂tν (t) ∼
√
π[Γ(ν/2)2(ν−1)/2]−1(

√
ν|t|)(ν−1)/2e−

√
ν|t|,

see formula (4.8) in Hurst (1995), page 5.
Example 2.3. Densities with characteristic functions vanishing outside a symmetric
convex compact set are supersmooth. Let ΣΛ be the class of densities with characteristic
functions equal to 0 outside a symmetric convex compact set Λ in Rk, k ∈ N. For
k = 1, let Λ = [−T, T ], with 0 < T < ∞. For any f ∈ ΣΛ, it is f ∈ Aρ,r,L(R)
for every 0 < ρ, r < ∞ and L2 ≥ π−1Te2(ρT )r . The Fejér-de la Vallée-Poussin density
f(x) = (2π)−1[(x/2)−1 sin(x/2)]2, x ∈ R, having characteristic function f̂(t) = (1−|t|)+,
t ∈ R, is the typical example of density in Σ[−1, 1].

Classes of densities as in Example 2.3 are such that, even if infinite-dimensional, for every
2 ≤ p < ∞, inffn supf∈ΣΛ

Enf [‖fn − f‖sp] ≤ csn
−s/2, where fn denotes any estimator

for densities in ΣΛ based on n observations and the expectation is taken over the n-
fold product measure of the probability law with density f . Moreover, for p = s = 2,
the precise asymptotic bound limn→∞ n inffn supf∈ΣΛ

Enf [‖fn − f‖22] = meas(Λ)/(2π)k

holds, see Hasminskii and Ibragimov (1990), page 1008, and the references therein. The
almost parametric rate (log n)/n is achievable for densities with characteristic functions
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decaying exponentially fast, see Watson and Leadbetter (1963). This rate was shown
to be optimal in the minimax sense by Ibragimov and Hasminskii (1983). Starting
from this article, function classes related to Aρ,r,L(R) have been considered by many
authors in frequentist nonparametric curve estimation. Just to mention a few, Belitser
and Levit (2001) considered nonparametric minimax estimation of an infinitely smooth
density at a given point under random censorship; Golubev et al. (1996) investigated
nonparametric regression estimation; Guerre and Tsybakov (1998) studied estimation
of the unknown signal in the Gaussian white noise model; Butucea and Tsybakov (2008)
considered adaptive density estimation in deconvolution problems. Adaptive density or
regression function estimation over classes Aρ,r,L(R) has so far hardly been studied from
a Bayesian perspective, except for the recent articles of van der Vaart and van Zanten
(2009), who used a Gaussian random field with an inverse-gamma bandwidth, and of de
Jonge and van Zanten (2010), who suggested the use of finite kernel mixture priors with
Gaussian mixing weights for inference. The problem with the use of finite mixtures is
the choice of the number of mixing components, while updating it in a fully Bayesian
way is computationally intensive. Mixture models with priors on the mixing distribution
admitting an infinite discrete representation, like the Dirichlet process or more general
stick-breaking priors, avoid fixing a truncation level. The focus of this article is on the
capability of general kernel mixture priors to adapt posterior contraction rates to the
analytic or Sobolev smoothness of the sampling density, without using any knowledge
of the regularity of f0 in the construction of the prior probability measure.

Given the model fF,σ, a prior probability measure is induced on the space of Lebesgue
univariate densities by putting priors on the mixing distribution F and the scale param-
eter σ. Let Π denote the prior for F . The scale parameter is assumed to be distributed,
independently of F , according to a prior G on (0, ∞). The overall prior Π × G on
M (Θ) × (0, ∞), where, unless otherwise stated, M (Θ) stands for the collection of all
probability measures on some set Θ ⊆ R, induces a prior on F := {fF,σ : (F, σ) ∈
M (Θ) × (0, ∞)}, which is equipped with an Lp-metric, 1 ≤ p ≤ ∞. The sequence
of observations (Xi)i≥1 is assumed to be exchangeable. Observations from a kernel
mixture prior can be equivalently described as

Xi|(F, σ)
iid∼ fF,σ, i = 1, . . . , n,

(F, σ) ∼ Π×G.

Assuming that X(n) := (X1, . . . , Xn) are i.i.d. observations from an unknown density
f0 which may or may not be itself a convolution kernel mixture, we analyze contraction
properties of the posterior distribution

(Π×G)(B|X(n)) ∝
∫
B

n∏
i=1

fF,σ(Xi) Π(dF )G(dσ), for any Borel set B,

under regularity conditions on the prior Π×G and the sampling density f0. Given any
1 ≤ p ≤ ∞, a sequence of positive numbers εn,p such that εn,p → 0 and nε2

n,p →∞, as
n→∞, is an upper bound on the posterior contraction rate, relative to the Lp-metric,
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if, for a constant 0 < M <∞, the posterior probability (Π×G)((F, σ) : ‖fF,σ − f0‖p≥
Mεn,p|X(n)) → 0 in Pn0 -probability, where Pn0 stands for the joint law of the first n
coordinate projections of the infinite product probability measure P∞0 , with P0 denoting
the probability measure corresponding to f0. In the following section, we present results
on posterior contraction rates for general kernel mixture priors.

3 Posterior contraction rates for kernel mixture priors

In this section, we present sufficient conditions for assessing posterior contraction rates
in Lp-metrics, 2 ≤ p ≤ ∞, for supersmooth kernel mixture priors. Results for specific
priors on the mixing distribution belonging to the class of species sampling models,
which are useful in concrete applications, are later exposed in Section 4.

Posterior contraction rates in Lp-metrics, 1 ≤ p ≤ ∞, have been recently investigated
by Giné and Nickl (2011), who have developed a new approach to testing problems
based on the concentration properties of kernel-type density estimators. This approach
accounts for having sufficient control of the approximation properties of the prior sup-
port. To describe regularity properties of the sampling density, they consider a general
approximation scheme in function spaces based on integrating a fixed kernel-type func-
tion K2−j (·, ·) := 2jK(2j ·, 2j ·) against a density f , that is,

∫
K2−j (·, y)f(y) dy which,

in the convolution kernel case, is
∫
K2−j (· − y)f(y) dy. The sinc kernel

sinc(x) :=

{
(sinx)/(πx), if x 6= 0,

1/π, if x = 0,

turns out to play a key role in characterizing regular densities in terms of their ap-
proximation properties. This is an unconventional kernel, in the sense that it may take
negative values, it is Riemann integrable with

∫
sinc dλ = 1, but not Lebesgue inte-

grable, sinc /∈ L1(R), it has Fourier transform identically equal to 1 on [−1, 1] and
vanishing outside it. The key role of the sinc kernel in density estimation is known since
the work of Davis (1977), who showed that, for the sinc kernel density estimator, the
optimal mean integrated squared error is of the order O(n−1(log n)1/r) for estimands
satisfying (1) with characteristic exponent r. Regularity of the overall prior distribu-
tion Π × G is expressed through the usual Kullback-Leibler prior support condition,
as discussed in Ghosal et al. (2000), page 504, which involves Kullback-Leibler type
neighborhoods of f0

BKL(f0; ε2) := {(F, σ) : KL(f0; fF,σ) ≤ ε2, E0[(log(f0/fF,σ))2] ≤ ε2}, (2)

where E0[·] denotes the expectation with respect to the probability measure P0. Em-
ploying a prior distribution for σ that is fully supported on (0, ∞) amounts for regularity
conditions on the tails of G, the requirement on the decay rate at 0 being expectedly
more restrictive than that at ∞, the most important values being those included in a
neighborhood of 0. In fact, as the bandwidth tends to 0, Gaussian mixtures can ap-
proximate any density in Lp(R), 1 ≤ p < ∞. Therefore, the Kullback-Leibler prior
support condition typically accounts for some assumption on the lower tail of G, like
the following one, which guarantees enough prior mass in every neighborhood of 0.
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(A0) The prior distribution G for σ has a continuous and positive density g on (0, ∞)
such that, for constants 0 < C1, C2, D1, D2 <∞, 0 ≤ s, t <∞ and 0 < γ ≤ ∞,

C1σ
−s exp (−D1σ

−γ(log(1/σ))t) ≤ g(σ) ≤ C2σ
−s exp (−D2σ

−γ(log(1/σ))t)

for all σ in a neighborhood of 0.

An inverse-gamma distribution IG(ν, λ), with shape parameter 0 < ν < ∞ and scale
parameter 0 < λ <∞, is an eligible prior on σ satisfying Assumption (A0) for s = ν+1,
t = 0 and γ = 1.

We are now in a position to state the main result of the section.
Proposition 1. Let K ∈ Aρ,r,L(R), 0 < ρ, r, L <∞. Let ε̃n be a sequence of positive
numbers such that ε̃n → 0 and nε̃2

n → ∞, as n → ∞. For every 2 ≤ p ≤ ∞, let
εn,p := ε̃n(nε̃2

n)(1−1/p)/2. Suppose that, for f0 ∈ Lp(R),

(Π×G)(BKL(f0; ε̃2
n)) & exp (−Cnε̃2

n) for some constant 0 < C <∞, (3)

where Π is any prior probability measure on M (Θ) and G satisfies Assumption (A0) with
0 ≤ s, t <∞ and 1 < γ ≤ ∞ such that nε̃2

n & (log n)1/[r(1−1/γ)]. Suppose, furthermore,
that ‖f0 − f0 ∗ sinc2−Jn ‖p= O(εn,p) for 2Jn = cnε̃2

n, with (α1/rρE)−1 ≤ c < ∞ and
0 < E ≤ {D2[1[0, γ−1](s) + β1(γ−1,∞)(s)]/(C + 4)}1/γ1(1,∞)(γ) + 1{∞}(γ) for some
constants 0 < α, β < 1. Then, for a sufficiently large constant 0 < M <∞,

(Π×G)((F, σ) : ‖fF,σ − f0‖p≥Mεn,p|X(n))→ 0 in Pn0 -probability.

The assertion, whose proof is reported in the Appendix, is an in-probability statement
that the posterior mass outside an Lp-norm ball of radius a large multiple M of εn,p
is approximately 0. Condition (3) is the essential one: the prior concentration rate is
the only determinant of the posterior contraction rate at regular densities f0 having
Lp-approximation error of the same order against the sinc kernel-type approximant
f0 ∗ sinc2−Jn , with 2Jn = O(nε̃2

n). This is the requirement expressed by the assumption
‖f0− f0 ∗ sinc2−Jn ‖p= O(εn,p). For instance, densities in Aρ,r,L(R) meet this condition,
see Lemma 12. For concreteness, the regularity condition on f0 has been stated in terms
of the sinc kernel, but any superkernel S ∈ L2(R) ∩ L∞(R), with bounded p-variation
for some 1 ≤ p <∞, can be employed, see the Appendix.

Proposition 1 yields optimal rates, up to a logarithmic factor, when the prior con-
centration rate is nearly parametric. When f0 is ordinary smooth, even if the prior
concentration rate is minimax-optimal, up to a logarithmic factor, suboptimal poste-
rior contraction rates are found. Nonetheless, the result has an intrinsic value. When
the kernel has Fourier transform decaying at an exponential power rate and f0 is it-
self a kernel mixture, Proposition 1 yields contraction rates, relative to the Wasserstein
metric of order 1 ≤ p < ∞, for the posterior measure on the mixing distribution. Be-
fore stating the result, we introduce Wasserstein distances. Let (Θ, B(Θ)), Θ ⊆ R,
be a measurable metric space with the Borel σ-field. For 1 ≤ p < ∞, define the
Wasserstein distance of order p between any two Borel probability measures ν and ν′

on Θ with finite pth-moment (i.e.,
∫
dp(θ, θ0)ν(dθ) < ∞ for some and hence any θ0
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in Θ) as Wp(ν, ν
′) := (infµ∈Γ(ν, ν′)

∫
dp(θ, θ′)µ(dθ, dθ′))1/p, where µ runs over the set

Γ(ν, ν′) of all joint probability measures on Θ × Θ with marginal distributions ν and
ν′. When p = 2, we take d to be the Euclidean distance on Θ × Θ. By definition,
Wp(ν, ν

′) ∈ [0, diam(Θ)], where diam(Θ) denotes the diameter of Θ. If Θ is compact,
then diam(Θ) <∞.
Corollary 1. Let K be a symmetric (around 0) probability density such that, for some
constants 0 < ρ <∞ and 0 < r ≤ 2,

|K̂(t)|∼ e−(ρ|t|)r as |t|→ ∞. (4)

Suppose that f0 = fF0,σ0 = F0 ∗Kσ0 , with F0 supported on a bounded set Θ ⊂ R and
0 < σ0 <∞ fixed. Let the model be fF,σ0

= F ∗Kσ0
, with F distributed according to a

prior measure Π on M (Θ). If, for a sequence of positive numbers ε̃n such that ε̃n → 0,
as n→∞, and nε̃2

n & (log n)1/r,

Π(BKL(f0; ε̃2
n)) & exp (−Cnε̃2

n) for some constant 0 < C <∞, (5)

then, for every 1 ≤ p <∞, there is a sufficiently large constant 0 < M ′ <∞ so that

Π(F : Wp(F, F0) ≥M ′(log n)−1/r|X(n))→ 0 in Pn0 -probability.

Inspection of the proof of Corollary 1, which is reported in the Appendix, reveals that
the assumption that Θ is bounded can be replaced by the following requirement:

∀ 1 ≤ p <∞, ∃ p < u <∞, 0 < B <∞ : EK [|X|u] <∞ and EF [|X|u] < B a.s. [Π].

If, for some 1 < r ≤ 2, we have K̂(t) = e−(ρ|t|)r , t ∈ R, then EK [|X|u] = 2ρuΓ(1 −
u/r)Γ(u) sin(πu/2) <∞ for every 0 ≤ u < r, so that the previous condition is satisfied
for every p < u < r. In virtue of Proposition 1, condition (4), combined with (5), implies
that the posterior distribution for the mixture density concentrates on Lp-norm balls
centered at the “true” density f0, which is in the model, with probability tending to 1.
This assertion translates into a parallel statement on the contraction rate, relative to the
Wasserstein metric of order p, for the posterior on the mixing distribution. The resulting
rate only depends on the characteristic exponent r of the Fourier transform of the kernel
density so that the greater r, the smoother the kernel, the more difficult to recover the
mixing distribution and the slower the rate. The open question remains whether this
rate is optimal. Dedecker and Michel (2013) have shown that, in the deconvolution
problem with supersmooth errors, the rate (log n)−1/r is minimax-optimal over a larger
class of probability measures than the one herein considered.

Posterior contraction rates for the mixing distribution in Wasserstein metrics have been
recently investigated by Nguyen (2013), who has argued how convergence in Wasserstein
metrics for discrete mixing measures has a natural interpretation in terms of convergence
of the single atoms providing support for the measures. He has stated sufficient entropy
and remaining mass conditions in the spirit of Ghosal et al. (2000), expressed in terms
of the Wasserstein distance on the mixing distributions as opposed to the Hellinger
or the L1-distance on the mixture densities. Corollary 1 allows to derive posterior
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contraction rates in the Wasserstein metric of any order 1 ≤ p <∞ only from the prior
concentration rate, whatever the prior measure and, under this respect, is more general
than Theorem 6 in the above mentioned article, whose scope of applicability is confined
to Dirichlet process kernel mixtures.

4 Posterior rates for specific priors on the mixing distri-
bution

In this section, we derive posterior contraction rates for specific priors on the mixing dis-
tribution, namely, the Pitman-Yor process and the normalized inverse-Gaussian process,
which are hereafter introduced.

Stick-breaking priors and the Pitman-Yor process

Stick-breaking priors form a rich class of random probability measures, which includes
the Dirichlet process, the Pitman-Yor process or two-parameter Poisson-Dirichlet pro-
cess, see Pitman and Yor (1997), and beta two-parameter processes, cf. Ishwaran
and Zarepour (2000), Ishwaran and James (2001). Stick-breaking priors are almost
surely discrete random probability measures F that can be represented as F (·) =∑N
j=1WjδZj (·), with either a finite or an infinite number of terms 1 ≤ N ≤ ∞, where

δZj (·) denotes a point mass at Zj . The (Zj)j≥1 are independent and identically dis-
tributed random elements with common distribution ᾱ over a measurable Polish space
(Θ, B(Θ)) endowed with its Borel σ-field. It is assumed that ᾱ is non-atomic (i.e.,
ᾱ({θ}) = 0 for every θ ∈ Θ) and ᾱ := α/α(Θ) for some positive and finite measure α.
The random variables (Wj)j≥1, called random weights, are independent of the (Zj)j≥1

and such that 0 ≤Wj ≤ 1, with
∑N
j=1Wj = 1 almost surely. Furthermore,

W1 = V1, Wj = Vj

j−1∏
h=1

(1− Vh), j = 2, 3, . . . , (6)

where Vj∼Hj independently, Hj being a probability measure on [0, 1] which is typically
chosen to be a Beta(aj , bj) distribution with parameters 0 < aj , bj <∞, j = 1, 2, . . ..

When N < ∞, we necessarily set VN = 1 to ensure that
∑N
j=1Wj = 1 almost surely

because WN = 1−
∑N−1
j=1 Wj =

∏N−1
h=1 (1−Vh). When N =∞, a necessary and sufficient

condition for
∑∞
j=1Wj = 1 almost surely is that

∑∞
j=1 EHj [log(1−Vj)] = −∞, see, e.g.,

Lemma 1 in Ishwaran and James (2001), pages 162 and 170.

A stick-breaking random probability measure F where, for 0 ≤ d < 1 and −d < c <∞,
the random variables Vj are independently distributed according to a Beta distribution
Beta(1− d, c+ dj), j ∈ N, is called the Pitman-Yor process or two-parameter Poisson-
Dirichlet process, with concentration parameter c and discount parameter d, denoted
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by F ∼ PY(c, d), which can be described as

F (·) =

∞∑
j=1

Vj

j−1∏
h=1

(1− Vh)δZj (·) a.s.

Vj
ind∼ Beta(1− d, c+ dj), j ∈ N, and Zj

iid∼ ᾱ, j ∈ N.

The case where d = 0 and c = α(Θ), so that the (Vj)j≥1 are independent and identi-
cally distributed according to a Beta(1, α(Θ)), returns the Dirichlet process with base
measure α, denoted by DP(α). There are no known analytic expressions for the finite-
dimensional distributions of the Pitman-Yor process, except when d = 0 and c = α(Θ)
or when d = 1/2 and −1/2 < c <∞.

The Dirichlet process, the Pitman-Yor process with d = 1/2 and the normalized inverse-
Gaussian process, which is hereafter introduced, are the only known processes for which
explicit expressions of the finite-dimensional distributions are available.

Normalized inverse-Gaussian process

Let α be a finite and positive measure on a measurable Polish space (Θ, B(Θ)) en-
dowed with its Borel σ-field. Following Lijoi et al. (2005), we call a random prob-
ability measure F a normalized inverse-Gaussian (N-IG) process with parameter α,
denoted by N-IG(α), if, for every finite measurable partition A1, . . . , AN of Θ, the
random vector (F (A1), . . . , F (AN )), 2 ≤ N < ∞, has a N-IG distribution with pa-
rameter (α(A1), . . . , α(AN )). A random vector (Z1, . . . , ZN ) has a N-IG distribution
with parameter (α1, . . . , αN ), where 0 < αj < ∞ for every j = 1, . . . , N , denoted by
N-IG(α1, . . . , αN ), if it has probability density function over the unit (N − 1)-simplex

∆N−1 := {(z1, . . . , zN ) ∈ RN : zj ≥ 0, 1 ≤ j ≤ N, and
∑N
j=1 zj = 1} given by

f(z1, . . . , zN−1) =
exp (

∑N
j=1 αj)

∏N
j=1 αj

2N/2−1πN/2

×K−N/2(
√
AN (z1, . . . , zN−1))

× [AN (z1, . . . , zN−1)]−N/4

× [z1 × . . .× zN−1 × (1− z1 − . . . − zN−1)]−3/2

=: h1 ×
4∏
r=2

hr(z1, . . . , zN−1), (7)

where K−N/2(·) denotes the modified Bessel function of the third kind and

AN (z1, . . . , zN−1) :=

N−1∑
j=1

α2
j

zj
+ α2

N

1−
N−1∑
j=1

zj

−1

.
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4.1 Estimation of densities with a kernel mixture representation

We begin the analysis from the case where the sampling density f0 is itself a convolution
kernel mixture, f0 = fF0,σ0 = F0 ∗Kσ0 , where F0 and σ0 denote the true values of the
mixing distribution and the scale parameter, respectively. Considering this case helps
developing techniques that can be used when f0 cannot be represented as a location
mixture of kernel densities. Results are obtained under the following assumptions.

Assumptions

(A1) The kernel probability density K : R → R+ is symmetric around 0, monotone
decreasing in |x| and satisfies the tail condition K(x) & e−c|x|

κ

as |x|→ ∞, for
some constants 0 < c, κ <∞.

(A2) The true mixing distribution F0 satisfies the tail condition F0(θ : |θ|> t) . e−c0t
$

as t→∞, for some constants 0 < c0 <∞ and 0 < $ ≤ ∞.

(A3) The base measure α has a continuous and positive density α′ on R such that

α′(θ) ∝ e−b|θ|δ as |θ|→ ∞, for some constants 0 < b, δ <∞.

Assumptions (A1)–(A3) are standard requirements on the kernel density, the true mixing
distribution and the density of the base measure, respectively.

The following theorem, whose proof is deferred to the Appendix, extends results of
Ghosal and van der Vaart (2001) and Scricciolo (2011) on posterior contraction rates,
relative to the Hellinger or the L1-metric, for Dirichlet process Gaussian mixtures to
Pitman-Yor or normalized inverse-Gaussian kernel mixtures in Lp-metrics, 1 ≤ p ≤ ∞.

Given numbers 0 < κ, r <∞, let $ be such that

0 < max{κ, [1 + 1(1,∞)(r)/(r − 1)]} ≤ $ ≤ ∞. (8)

Also, let τ := 1 + {1/r − [1− 1(0,∞)($)/$]}1(0, 1](r)/2 and

ϕ(d) := τ + (τ − 1/2)1(0, 1)(d), 0 ≤ d < 1. (9)

Condition (8) requires a matching between the tail decay speed of the true mixing
distribution F0 and that of the kernel density K.
Theorem 1. Let K ∈ Aρ,r,L(R), 0 < ρ, r, L <∞, be as in Assumption (A1). Suppose
that the probability density f0 = fF0,σ0

= F0 ∗Kσ0
, with

(i) F0 satisfying Assumption (A2) for some constants 0 < c0 <∞ and $ as in (8).

Let F ∼ PY(c, d), with 0 ≤ d < 1 and −d < c < ∞. Alternatively, let F ∼ N-IG(α).
Assume that

(ii) α satisfies Assumption (A3) for constants 0 < b, δ <∞, with δ ≤ $ when $ <∞;

(iii) G satisfies Assumption (A0) for constants 0 ≤ s, t < ∞, 0 < γ ≤ ∞ if p = 1,
max{1, {1 − [2rϕ(d)]−1}−1} < γ ≤ ∞ if 2 ≤ p ≤ ∞, where ϕ(d) is as in (9).
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When p = 1, assume furthermore that, for some constant 0 < % ≤ ∞, the tail
probability 1−G(σ) . σ−% as σ →∞.

Then, the posterior contraction rate relative to the Lp-metric, 1 ≤ p ≤ ∞, denoted by
εn,p, is n−1/2(log n)µ, with a constant 0 < µ <∞ possibly depending on p.

A caveat applies to Theorem 1: since the normalized inverse-Gaussian process behaves
like the Dirichlet process, results for both these priors are obtained when d = 0. Theo-
rem 1 shows that a nearly parametric rate is achievable, irrespective of the tail behavior
of the kernel density (hence of the sampling density f0), heavy-tailed distributions, like
the Student’s-t, which play a crucial role in modeling certain phenomena, being ad-
mitted. Estimation of heavy-tailed distributions is not covered by Theorem 2 nor by
Theorem 3 on adaptation which, by requiring f0 to have (sub-)exponential tails, rule
out these distributions. Furthermore, Theorem 1 has a relevant implication for the con-
traction rate, relative to the Wasserstein metric of order 1 ≤ p < ∞, of the posterior
distribution corresponding to a Dirichlet process prior on the mixing distribution: it
yields the recovery rate for the true mixing distribution when the sampling density is a
convolution kernel mixture.
Corollary 2. Under the conditions of Theorem 1, with F ∼ DP(α) and G = δσ0

a point
mass at σ0, for every 1 ≤ p <∞ there exists a sufficiently large constant 0 < M ′ <∞
so that Π(F : Wp(F, F0) ≥M ′(log n)−1/r)→ 0 in Pn0 -probability.

4.2 Adaptive estimation of analytic densities

In this section, we consider adaptive estimation of analytic densities whose Fourier
transforms have sub-exponential tails using Gaussian mixtures. We assume that the
sampling density f0 satisfies the following conditions.

(a) Smoothness: f0 ∈ Aρ0,r0,L0(R) for some constants 0 < ρ0, L0 <∞ and 1 ≤ r0 ≤
2.

(b) Monotonicity : f0 is non-decreasing on (−∞, a), non-increasing on (b, ∞), for
−∞ < a ≤ b <∞, with f0 ≥ ` > 0 on [a, b] and 0 < f0 ≤ ` <∞ on [a, b]c.

(c) Tails: for some constants 0 < c0 <∞ and 1 < $0 <∞ such that ($0−1)r0 ≤ $0,

f0(x) ∼ e−c0|x|
$0

as |x|→ ∞.

In order to prove that contraction rates of posterior distributions corresponding to
a Pitman-Yor or a N-IG process mixture of normal densities adapt to the “analytic
smoothness” r0 of f0, the key step is the approximation of f0 with a continuous mixture
of normal densities, which is then discretized to have a sufficiently restricted number of
support points, see Lemma 8. We suspect that this step is only possible under Condition
(c) that f0 asymptotically has exponential tails, which, for instance, is satisfied for a
Gaussian density with $0 = r0 = 2. This requirement seems to be necessary to obtain a
nearly parametric rate because, when restricting the support to a compact set, it allows
to take the endpoint of the order O((log(1/ε))l), for some 0 < l < ∞, thus entailing
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a finite mixture with a relatively small number of support points. A density with
polynomially decaying tails would instead incur an additional factor of order O(ε−k),
for some 0 < k < ∞, and a power of n would be lost in the prior as well as in the
posterior contraction rate.

The key step in the proof is the construction of a (not necessarily non-negative) function
that uniformly approximates f0 with an exponentially small error in terms of the inverse
of the bandwidth, see Lemma 5. By suitably modifying this function, we obtain a
density with the same approximation error in the Kullback-Leibler divergence. The
general strategy is similar to that adopted by Kruijer et al. (2010), but the iterative
procedure they used to construct the approximant turns out to be inefficient in the
present case because of the infinite degree of smoothness of f0. As far as we are aware,
the approximation result of Lemma 5 involving the sinc kernel is novel. Once a finite
mixture is constructed, we need to show that there exists a whole set of finite Gaussian
mixtures close to it and contained in a Kullback-Leibler type ball around f0 that is
charged enough prior mass.

We are now in a position to state the result, to which the proviso applies that the claim
for the normalized inverse-Gaussian process is obtained setting d = 0.
Theorem 2. Suppose that the probability density f0 satisfies Conditions (a)–(c). Let the
model be fF,σ = F ∗ φσ, with F ∼ PY(c, d), 0 ≤ d < 1 and −d < c <∞. Alternatively,
let F ∼ N-IG(α). Assume that

(i) α satisfies Assumption (A3) for some constants 0 < b <∞ and 0 < δ ≤ ($0 ∧ 2);

(ii) G satisfies Assumption (A0) for some constants 0 ≤ s, t < ∞, 0 < γ ≤ ∞ if
p = 1, 2 ≤ γ ≤ ∞ if 2 ≤ p ≤ ∞. When p = 1, assume furthermore that, for some
constant 0 < % ≤ ∞, the tail probability 1−G(σ) . σ−% as σ →∞.

Then, the posterior contraction rate relative to the Lp-metric, denoted by εn,p, is

εn,p =

{
n−1/2(log n)

1
2 +{ 1

2∨[2( 1
δ+ 1

γ )ψ(r0, d)]}, for p = 1,

n−1/2(log n)(2−1/p)ψ(r0, d), for 2 ≤ p ≤ ∞,

where

ψ(r0, d) := max{(γ/r0 + t)/2, {(1/2) + [1/r0 + 1/($0 ∧ 2)][1 + 1(0,∞)(d)]}}. (10)

If conditions specific to the cases p = 1 and p = 2 are simultaneously satisfied, then
εn,p ≤ (εn,1 ∨ εn,2) for every 1 < p < 2.

Given that the power of n is fixed at −1/2, the most important element in the rate is the
power of the logarithmic term, which adapts to the characteristic exponent r0 of f0. A
main implication of Theorem 2, whose proof is deferred to Section 6, is that the choice
of the kernel is not an issue in Bayesian density estimation. A well-known problem with
the use of Gaussian convolutions is that the approximation error of a smooth density
can only be of the order O(σ2), even if the density has greater smoothness. The approx-
imation can be improved using higher-order kernels, but the resulting convolution is not
guaranteed to be everywhere non-negative which, in a frequentist approach, translates
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into a non-bona fide estimator. This is not an issue in a Bayesian framework because
to get adaptation it suffices that the prior support contains a set of Gaussian mixtures
close to f0 receiving enough prior mass, which is the case when the mixing distribution
is endowed with a Pitman-Yor or a N-IG process prior.

4.3 Adaptive estimation over Sobolev spaces

In this section, we study adaptive estimation of densities in Sobolev spaces using Gaus-
sian mixtures. We assume that f0 satisfies the following conditions.

(a′) Smoothness: for k0 ∈ N, the probability density f0 ∈ L2(R) has Fourier transform

f̂0 satisfying ∫
(1 + |t|2)k0 |f̂0(t)|2 dt <∞. (11)

In addition,

f
(k0)
0 ∈ L∞(R) with E0[|(f (k0)

0 /f0)(X)|2] <∞ (12)

and, for k0 ∈ {2, 3, . . . },

E0[|(f (j)
0 /f0)(X)|2k0/j ] <∞, j = 1, . . . , k0 − 1. (13)

(b′) Tails: for some constants 0 < c0, M0 <∞ and 2 ≤ $0 <∞,

f0(x) ≤M0e
−c0|x|$0

for large |x|.

Condition (11), which is the essential one, implies that f0 is k0-times continuously dif-

ferentiable on R, with derivatives that vanish at ∞, i.e., f
(j)
0 (x) → 0, as |x|→ ∞, for

every integer 1 ≤ j ≤ k0. Conditions (12) and (13) are technical requirements. Condi-
tion (b′) postulates that the sampling density f0 has (sub-)Gaussian tails, which when
restricting to a compact set the support of the mixing density of a suitably constructed
Gaussian convolution mixture that uniformly approximates f0 allows for keeping the
number of support points relatively small.

The following theorem, whose proof is deferred to Section 7, asserts that, whatever the
“Sobolev smoothness” k0 of f0, the posterior distribution corresponding to a Dirichlet
process mixture of normal densities contracts at a rate at least as fast as
n−k0/(2k0+1)(log n)κ, with 0 < κ < ∞, in all Lp-metrics, 1 ≤ p ≤ 2, where the rate
n−k0/(2k0+1) is known to be optimal in the minimax sense for the L2-metric, see Theo-
rem 2 in Donoho et al. (1996), page 515.
Theorem 3. Suppose that the probability density f0 satisfies Conditions (a′) and (b′).
Let the model be fF,σ = F ∗ φσ, with F ∼ DP(α). Assume that

(i) α satisfies Assumption (A3) for some constants 0 < b <∞ and 0 < δ ≤ 2;

(ii) G satisfies Assumption (A0) for some constants 0 ≤ s, t < ∞ and γ = 1. When
p = 1, assume furthermore that, for some constant 0 < % ≤ ∞, the tail probability
1−G(σ) . σ−% as σ →∞.



490 Adaptive Bayesian Density Estimation Using Mixture Models

Then, the posterior contraction rate relative to the Lp-metric, denoted by εn,p, is

εn,p =

{
n−k0/(2k0+1)(log n)τ+1+(2δ)−1

, for p = 1,

n−k0/(2k0+1)(log n)τ , for p = 2,

with a suitable constant 0 < τ < ∞. If conditions specific to the cases p = 1 and
p = 2 are simultaneously satisfied, then εn,p ≤ n−k0/(2k0+1)(log n)τ+1+(2δ)−1

for every
1 < p < 2.

A few comments are in order. Slower rates are found when endowing the mixing dis-
tribution with a Pitman-Yor process having a strictly positive discount parameter since
small Kullback-Leibler type neighborhoods of f0 do not seem to be charged enough
prior mass. The open question remains whether posterior contraction rates are indeed
suboptimal for a non-degenerate Pitman-Yor process prior on the mixing distribution.
Also, rates in Lp-metrics, 2 < p ≤ ∞, are found to deteriorate by a genuine power of n.

The result of Theorem 3 differs from the one of Theorem 1 in Shen et al. (2013),
page 627, in so far that they obtained adaptation for multivariate Hölder densities
using a Dirichlet process mixture of normal densities with a Gaussian base measure and
an inverse-Wishart prior on the covariance matrix, while we treat the univariate case
and allow for a more general base measure. In addition, the smoothness assumption
is expressed through an integrated tail bound on the Fourier transform of f0 and the
integrability conditions in (12) and (13) are weaker. Besides, while Shen et al. (2013)
made use of the stick-breaking representation of the Dirichlet process to show that the
remaining mass and entropy conditions are satisfied, we verified the remaining mass
condition using the fact that the tails of almost every sample distribution function from
a Dirichlet process are much smaller than the tails of the base measure. We could thus
exploit the same sieve set employed for estimating analytic densities because, in the
univariate case, the entropy correctly scales to the smoothness level.

5 Estimates of the probabilities of `1-balls

Estimates, under different priors, of the probabilities of `1-balls are essential to evaluate
the prior probability mass of Kullback-Leibler type neighborhoods of the sampling den-
sity f0 as in (2). While for the N-IG process, the expressions of the finite-dimensional
distributions can be exploited as in Lemma A.1 of Ghosal et al. (2000), pages 518–519,
which deals with the Dirichlet process, for the Pitman-Yor process, the stick-breaking
representation turns out to be useful to obtain lower bounds on the probabilities of
`1-balls of the mixing weights and locations.

5.1 Pitman-Yor process

Lemma 1. Let F ∼ PY(c, d), with 0 ≤ d < 1 and −d < c < ∞. For 0 < ε < 1,

let F ′ =
∑N
j=1 pjδθj , 1 ≤ N < ∞, be a probability measure on R (possibly depending

on ε) with p1 ≥ p2 ≥ . . . ≥ pN > 0. If N = 1, define v1 := 1. If 2 ≤ N < ∞,
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define v1 := p1, vj := pj [
∏j−1
h=1(1 − vh)]−1, j = 2, . . . , N − 1, and vN := 1. Assume

that 3ε/N2 ≤ min1≤j≤N−1 vj ≤ max1≤j≤N−1 vj ≤ 1− 2ε(1 + ξ)/N2 for some constant

0 < ξ < 1. Let U := (
∑N
j=1

∑j
h=1|Vh − vh|≤ 2ε, min1≤j≤N Vj ≥ ε/N2), where the

random variables V1, . . . , VN are those stemming from the representation in (6). Then,
there exist constants 0 < c1, C1 <∞ (depending only on c and d) such that

P(U) ≥ C1 ×
{

exp (−(c+ d) log(1/ε)), for N = 1,

exp (−c1(1 ∨ dN)N log(N/ε)), for 2 ≤ N <∞.

Proof. If N = 1, then v1 = 1, U = (|V1− 1|≤ 2ε, V1 ≥ ε), with V1 ∼ Beta(1−d, c+d),
and

P(U) ≥ Γ(1 + c)

Γ(1− d)Γ(c+ d)

∫ 2ε

0

zc+d−1 dz & exp (−(c+ d) log(1/ε)).

If N ≥ 2, then vN = 1. If |Vj−vj |≤ 2ε/N2 for j = 1, . . . , N , then
∑N
j=1

∑j
h=1|Vh−vh|<

2ε. Thus, the event U is implied by V := (|Vj − vj |≤ 2ε/N2, Vj ≥ ε/N2, j =
1, . . . , N). Let lj := [(vj − 2ε/N2) ∨ (ε/N2)] and uj := [(vj + 2ε/N2) ∧ 1], j =
1, . . . , N . We have lN = 1−2ε/N2 and uN = 1. By assumption, the Vj are independent
Beta(1− d, c+ dj), j ∈ N, thus, using the identity Γ(z + 1) = zΓ(z), z > 0,

P(V ) ≥ [Γ(1− d)]−NΓ(c)cN

(c+ dN)Γ(c+ dN)
(2ε/N2)c+dN

N−1∏
j=1

∫ uj

lj

(1− v)c+dj dv.

Using the constraints 3ε/N2 ≤ min1≤j≤N−1 vj ≤ max1≤j≤N−1 vj ≤ 1 − 2ε(1 + ξ)/N2,
with 0 < ξ < 1,

P(V ) ≥ [Γ(1− d)]−NΓ(c)cN

Γ(c+ dN + 1)
(2ε/N2)c+dN (4ε/N2)N−1

×
(

1− 2ε/N2 − max
1≤j≤N−1

vj

)c(N−1)+dN(N−1)/2

.

For d = 0, P(V ) & exp (−c1N log(N/ε)). For d > 0, if N is fixed or, in the case where
N → ∞ as ε → 0, using Γ(c + dN + 1) ∼ (2π)1/2 exp (−dN)(dN)dN+c+1/2, we have
P(V ) & exp (−c1(1 ∨ dN)N log(N/ε)). Conclude by noting that P(U) ≥ P(V ).

Lemma 2. Let F ∼ PY(c, d), with 0 ≤ d < 1, −d < c < ∞ and the base measure
α satisfying Assumption (A3) for some constants 0 < b, δ < ∞. For 0 < ε < 1, let

F ′ =
∑N
j=1 pjδθj , 1 ≤ N < ∞, be a probability measure (possibly depending on ε) with

support(F ′) ⊂ [−a, a] for sufficiently large 0 < a < ∞. Then, P(
∑N
j=1|Zj − θj |≤ ε) &

exp (−N [log(Nα(R)/(2ε)) + baδ]), where the Zj are the random locations of F .

Proof. If |Zj − θj |≤ ε/N for every j = 1, . . . , N , then
∑N
j=1|Zj − θj |≤ ε. Since

Z1, . . . , ZN are independent and identically distributed according to ᾱ,

P

 N∑
j=1

|Zj − θj |≤ ε

 ≥ N∏
j=1

∫ θj+ε/N

θj−ε/N

α′(z)

α(R)
dz & exp (−N [log(Nα(R)/(2ε)) + baδ]),
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where the second inequality follows from Assumption (A3) and the fact that a is large
enough.

Remark 1. For d = 0, if N = O((1/ε)%) for some 0 < % < ∞, by Lemma 1,
P(U) & exp (−cN log(1/ε)) which, combined with Lemma 2, yields an estimate of the
probability of an `1-ball under the PY(c, 0), for 0 < c <∞, that is consistent with the
one known for the Dirichlet process DP(α) = PY(α(R), 0) from Lemma 6.1 in Ghosal
et al. (2000), pages 518–519, or Lemma A.1 in Ghosal (2001), pages 1278–1279.

For the Pitman-Yor process, the stick-breaking representation has turned out to be
useful to obtain lower bounds on the probabilities of `1-balls of the mixing weights and
locations. However, when d = 1/2 and −1/2 < c < ∞, the expressions of the finite-
dimensional distributions of the Pitman-Yor process PY(c, 1/2) are known and could
be exploited to estimate the probability of an `1-ball around a given mixing distribution
as in Lemma 6.1 in Ghosal et al. (2000), pages 518–519, or as in Lemma A.1 in Ghosal
(2001), pages 1278–1279.

Let F ∼ PY(c, 1/2), with −1/2 < c < ∞, be a random probability measure on a
measurable Polish space (Θ, B(Θ)) endowed with its Borel σ-field. For every finite
measurable partition A1, . . . , AN of Θ, the random vector (F (A1), . . . , F (AN )), 2 ≤
N <∞, has probability density function over the unit (N − 1)-simplex ∆N−1

f(p1, . . . , pN ) :=
Γ(c+N/2)

π(N−1)/2Γ(c+ 1/2)
×

∏N
j=1(ᾱj/p

3/2
j )

(
∑N
j=1 ᾱ

2
j/pj)

c+N/2
1∆N−1(p1, . . . , pN ), (14)

where ᾱj := ᾱ(Aj) for j = 1, . . . , N , see Theorem 3.1 in Carlton (2002), pages 768–769.
Lemma 3. Let (P1, . . . , PN ), 2 ≤ N < ∞, have distribution with density as in (14).

For 0 < ε < 1, let U := (
∑N
j=1|Pj − pj0|≤ 2ε), with (p10, . . . , pN0) ∈ ∆N−1 such

that ε2 < min1≤j≤N pj0 ≤ max1≤j≤N pj0 < 1 − ε2. Assume that Aεb ≤ ᾱj < 1,
j = 1, . . . , N , for some constants 0 < A, b <∞. If 0 < ε ≤ 1/N , then

P(U) > C
2(N−1)(N/2+c−1/2)

(N/2 + c− 1/2)N−1
εN+2c−3(Aεb)N × exp (−(N − 1)(N + 2c− 1) log(1/ε)),

where C := Γ(c+N/2)/[π(N−1)/2Γ(c+ 1/2)].

Proof. Note that for 0 < pj < 1, j = 1, . . . , N ,

 N∑
j=1

ᾱ2
j/pj

c+N/2

=

 N∏
j=1

pj

−(c+N/2) N∑
j=1

ᾱ2
j

∏
j′ 6=j

pj′

c+N/2

<

N∏
j=1

p
−(c+N/2)
j

because ᾱj < 1 for every j = 1, . . . , N . Reasoning as in Lemma 6.1 in Ghosal et al.
(2000), pages 518–519, we can assume that pN0 ≥ 1/N . For lj := [(pj0 − ε2) ∨ 0] and
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uj := [(pj0 + ε2) ∧ 1], j = 1, . . . , N − 1,

P(U) ≥ P(|Pj − pj0|≤ ε2, j = 1, . . . , N − 1)

> C
εN+2c−3(Aεb)N

(N/2 + c− 1/2)N−1

N−1∏
j=1

(u
N/2+c−1/2
j − lN/2+c−1/2

j )

≥ C εN+2c−3(Aεb)N

(N/2 + c− 1/2)N−1

N−1∏
j=1

(uj − lj)N/2+c−1/2

≥ C 2(N−1)(N/2+c−1/2)

(N/2 + c− 1/2)N−1
εN+2c−3(Aεb)N exp (−(N − 1)(N + 2c− 1) log(1/ε))

because xp − yp ≥ (x− y)p for 0 ≤ x, y ≤ 1 and 1 ≤ p <∞.

The approach used to estimate the probability of a small `1-ball does not impact the
rate: the bound in Lemma 3 agrees with the one in Lemma 1 in showing that, when
d = 1/2, the prior probability of an `1-ball around a given mixing distribution is bounded
below by a term of the order O(exp(−cN2 log(1/ε))) which, differently from the one for
the Dirichlet process, involves the squared number N2 of support points. This does not
have remarkable consequences on posterior contraction rates in the supersmooth case
because N is of logarithmic order and a possible loss in the rate would only incur an
additional logarithmic factor, but may have serious consequences in the ordinary smooth
case, where N is of polynomial order, thus possibly leading to suboptimal posterior
contraction rates because small Kullback-Leibler type balls around the sampling density
f0 are not charged enough prior mass. Admittedly, these are only lower bounds, but we
believe they cannot be substantially improved.

5.2 Normalized inverse-Gaussian process

We prove an analogue of Lemma 6.1 in Ghosal et al. (2000), pages 518–519, or Lemma A.1
in Ghosal (2001), pages 1278–1279, which provides an estimate of the probability of an
`1-ball in RN under the N-IG distribution.
Lemma 4. Let (Z1, . . . , ZN ) ∼ N-IG(α1, . . . , αN ), 2 ≤ N < ∞. For 0 < ε < 1,

let U := (
∑N
j=1|Zj − zj0|≤ 2ε, min1≤j≤N Zj > ε2/2), with (z10, . . . , zN0) ∈ ∆N−1.

Assume that Aεb ≤ αj ≤ 1, j = 1, . . . , N , for some constants 0 < A, b <∞. If 2/N �
min1≤j≤N zj0 − ε and max1≤j≤N zj0 < 1− ε2, then there exist constants 0 < c, C <∞
(depending only on A, b and m :=

∑N
j=1 αj) such that, for 0 < ε < 1/N and N → ∞

as ε→ 0, we have P(U) ≥ C exp (−cN log(1/ε)).

Proof. As in the proof of Lemma 6.1 of Ghosal et al. (2000), pages 518–519, we can

assume that zN0 ≥ 1/N . If |Zj − zj0|≤ ε2 for every j = 1, . . . , N − 1, then
∑N
j=1|Zj −

zj0|≤ 2ε and ZN ≥ ε2 > ε2/2. Therefore, the event U is implied by V := (|Zj − zj0|≤
ε2, Zj > ε2/2, j = 1, . . . , N−1). For lj := [(zj0−ε2)∨(ε2/2)] and uj := [(zj0+ε2)∧1],
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j = 1, . . . , N − 1, the probability P(V ) =
∫ u1

l1
· · ·
∫ uN−1

lN−1
f(z1, . . . , zN−1) dz1 · · · dzN−1,

where f(·) = h1

∏4
r=2 hr(·), with h1, h2(·), . . . , h4(·) as in (7). Then,

P(V ) ≥ em(Aεb)N

2N/2−1πN/2
× (em)−N/2

(
min

1≤j≤N
zj0 − ε

)N/2
× (2ε2)N−1

& exp

(
−cN max

{
log(1/ε), − log

(
min

1≤j≤N
zj0 − ε

)})
,

where h1 is bounded below using the constraint αj ≥ Aεb, while h4(z1, . . . , zN−1) ≥ 1
because zj ≤ 1 for every j = 1, . . . , N−1. To bound below h2(·), note that K−N/2(·) =
KN/2(·), see 9.6.6 in Abramowitz and Stegun (1964), page 375. Since, for ε > 0 small
enough,

[AN (z1, . . . , zN−1)]1/2 < m1/2

(
min

1≤j≤N
zj0 − ε

)−1/2

� (N/2 + 1)1/2,

we have h2(z1, . . . , zN−1) ∼ 2N/2−1Γ(N/2)[AN (z1, . . . , zN−1)]−N/4 for N → ∞ as
ε→ 0, ibidem, formula 9.6.9. By Stirling’s formula,

h2(z1, . . . , zN−1) & e−N/2m−N/4
(

min
1≤j≤N

zj0 − ε
)N/4

.

Consequently, h2(z1, . . . , zN−1)×h3(z1, . . . , zN−1) & (em)−N/2(min1≤j≤N zj0−ε)N/2.

In principle, one could employ the stick-breaking representation for the N-IG process
discovered by Favaro et al. (2012), which represents the first case of a tractable prior
with explicit stick-breaking representation based on dependent weights. However, the
approach based on bounding below the prior probability mass of a Kullback-Leibler
type ball around the “truth” by the product of the prior masses of `1-balls of the
mixing weights and locations (see the events in a) and b) in the proof of Theorem 1),
would yield too small prior estimates using the arguments of Lemma 1. So, in this
case, even if the technique developed in the article to deal with stick-breaking priors
could still be applied to the N-IG process, the approach based on the finite-dimensional
distributions seems to yield a more accurate estimate.

6 Approximation results and proof of Theorem 2

The main difficulty when proving the result on adaptive estimation of analytic densities
using Gaussian convolution mixtures lies in finding a finite mixing distribution with a
number N = O((log(1/ε))k), for some 0 < k < ∞, of support points such that the
corresponding Gaussian mixture is within ε Kullback-Leibler distance from f0. Such a
finite mixing distribution can be found by matching a certain number of its moments
with those of an ad hoc constructed mixing density. The crux is the approximation of an
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analytic density having sub-exponentially decaying Fourier transform by convoluting the
Gaussian kernel with an operator whose expression is a series with suitably calibrated
coefficients and derivatives convoluted with the sinc kernel or, more generally, with
a superkernel. Inspection of the proof of Lemma 5 below reveals that the operation
of convoluting the above described transformation of f0 with the Gaussian density
allows to reproduce the tail behavior of the Fourier transform of f0. Once this (not
necessarily non-negative) function is modified to be a density with the same tail behavior
as f0 and with the same approximation properties in the supremum norm as well as in
the Kullback-Leibler divergence, the re-normalized restriction to a compact set of the
corresponding continuous mixture is discretized.

We begin by presenting the result on the approximation of analytic densities having
Fourier transforms with sub-exponentially decaying tails by convolutions with the Gaus-
sian kernel. For every j ∈ N, let mj :=

∫
yjφ(y) dy be the moment of order j of a stan-

dard normal distribution. Odd moments are null and even moments m2j = (2j)! /(2jj! ),
j = 1, 2, . . . . We define two collections of numbers (c2j)j≥1 and (d2j)j≥1 that only de-
pend on the moments of φ. Set c2 := 0 and d2 := m2/2!, let

c2j :=
∑
k,l≥1
k+l=j

(−1)l
m2k

(2k)!

m2l

(2l)!
and d2j :=

m2j

(2j)!
+ c2j , j = 2, 3, . . . .

For any 0 < σ <∞ and any function f ∈ C∞(R), define the transform

Tσ(f) := f −
∞∑
j=1

d2jσ
2j(f (2j) ∗ sincσ).

The following lemma asserts that any analytic density f0, whose Fourier transform has
sub-exponentially decaying tails, can be uniformly approximated, with exponentially
small error in terms of the inverse of the bandwidth σ, by convoluting its transform
Tσ(f0) with the Gaussian kernel.
Lemma 5. Let f0 ∈ Aρ0,r0,L0(R), with 0 < ρ0, L0 < ∞ and 1 ≤ r0 < ∞. For σ > 0
small enough,

‖Tσ(f0) ∗ φσ − f0‖∞. e−(ρ0/σ)r0 1{∞}(Sf0
) (15)

and

Tσ(f0) = 2f0 − f0 ∗ φσ −
∞∑
j=1

c2jσ
2jf

(2j)
0 +O(e−(ρ0/σ)r0 1{∞}(Sf0

)). (16)

Proof. For 1 ≤ r0 < ∞, the density f0 is analytic on R, f0 ∈ Cω(R), see, e.g., The-
orem 11.7.1 in Kawata (1972), pages 439–440. For any 0 < σ < ∞, by definition of
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Tσ(f0), the fact that f0 ∈ Cω(R) and Taylor’s formula, for every x ∈ R,

[Tσ(f0) ∗ φσ − f0](x)

=

∫ f0(x− y)− f0(x)−
∞∑
j=1

d2jσ
2j(f

(2j)
0 ∗ sincσ)(x− y)

φσ(y) dy

=

∞∑
j=1

[
m2j

(2j)!
σ2jf

(2j)
0 (x)− d2jσ

2j(f
(2j)
0 ∗ sincσ ∗φσ)(x)

]

=

∞∑
j=1

[
m2j

(2j)!
σ2j(f

(2j)
0 − f (2j)

0 ∗ sincσ ∗φσ)(x)− c2jσ2j(f
(2j)
0 ∗ sincσ ∗φσ)(x)

]
,

where, in the third line, the order of integration and summation has been interchanged,
which is licit, and, in the last one, the definition of the d2j has been used. For every
j ∈ N,

(f
(2j)
0 − f (2j)

0 ∗ sincσ ∗φσ)(x)

= (f
(2j)
0 − f (2j)

0 ∗ sincσ)(x) + (f
(2j)
0 ∗ sincσ −f (2j)

0 ∗ sincσ ∗φσ)(x)

=
1

2π

∫
|t|>1/σ

e−itx(−it)2j f̂0(t) dt

+
1

2π

∫
e−itx(−it)2j f̂0(t)1[−1, 1](σt) dt− (f

(2j)
0 ∗ sincσ ∗φσ)(x)

=: T1(2j, σ, x) + T2(2j, σ, x), x ∈ R.

By the Cauchy-Schwarz inequality and the assumption that f̂0 satisfies (1), for σ > 0
small enough, T1(2j, σ, x) . σ−2je−(ρ0/σ)r0 1{∞}(Sf0

), x ∈ R. Thus,

∞∑
j=1

m2j

(2j)!
σ2jT1(2j, σ, x) . e−(ρ0/σ)r0 1{∞}(Sf0

), x ∈ R,

because
∑∞
j=1m2j/(2j)!<∞. We show that

∞∑
j=1

[
m2j

(2j)!
σ2jT2(2j, σ, x)− c2jσ2j(f

(2j)
0 ∗ sincσ ∗φσ)(x)

]
= 0, x ∈ R.

Algebra leads to T2(2j, σ, x) =
∑∞
k=1[(−1)km2kσ

2k(f
(2j+2k)
0 ∗ sincσ ∗φσ)(x)/(2k)! ], x ∈

R. Then, by definition of the c2s,

∞∑
j=1

m2j

(2j)!
σ2jT2(2j, σ, x) =

∞∑
j=1

m2j

(2j)!

∞∑
k=1

(−1)k
m2k

(2k)!
σ2(j+k)(f

(2j+2k)
0 ∗ sincσ ∗φσ)(x)

=

∞∑
s=2

c2sσ
2s(f

(2s)
0 ∗ sincσ ∗φσ)(x), x ∈ R,
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which completes the proof of (15).

We now prove (16). We know that, for σ > 0 small enough,
T1(2j, σ, x) . σ−2je−(ρ0/σ)r0 1{∞}(Sf0

) for every x ∈ R,

therefore Tσ(f0) = f0 −
∑∞
j=1 d2jσ

2jf
(2j)
0 + O(e−(ρ0/σ)r0 1{∞}(Sf0

)) = 2f0 − f0 ∗ φσ −∑∞
j=1 c2jσ

2jf
(2j)
0 + O(e−(ρ0/σ)r0 1{∞}(Sf0

)) by definition of the d2j and the fact that∑∞
j=1[m2jσ

2jf
(2j)
0 /(2j)! ] = f0 ∗ φσ − f0.

Let S ∈ L2(R) be a superkernel as defined in the Appendix. For any 0 < σ < ∞ and
any function f ∈ C∞(R), let

T̃σ(f) := f −
∞∑
j=1

d2jσ
2j(f (2j) ∗ Sσ).

If f0 ∈ Aρ0,r0,L0(R), for 0 < ρ0, L0 < ∞ and 1 ≤ r0 < ∞, then Lemma 5 holds with

T̃σ(f0) replacing Tσ(f0). Furthermore, as shown in the next lemma, T̃σ(f0) integrates
to 1 because of the absolute integrability of superkernels.

Lemma 6. Let f0 ∈ Aρ0,r0,L0(R), 0 < ρ0, r0, L0 < ∞. Suppose that f
(j)
0 ∈ L1(R),

j ∈ N. Then, for every 0 < σ <∞, we have
∫
T̃σ(f0) dλ = 1.

Proof. The assumption f0 ∈ Aρ0,r0,L0(R) implies that, for every j ∈ N ∪ {0}, f (j)
0 ∈

BC(R). Also, f
(j)
0 ∈ L1(R), j ∈ N, implies that, for every j ∈ N, f

(j)
0 (x) → 0 as

|x|→ ∞. Interchanging the order of integration and summation, which is licit,∫
T̃σ(f0) dλ = 1−

∞∑
j=1

d2jσ
2j

∫
(f

(2j)
0 ∗ Sσ) dλ = 1.

In fact, for every j ∈ N, ‖f (2j)
0 ∗ Sσ‖1≤ ‖f (2j)

0 ‖1‖Sσ‖1< ∞ and, by Fubini’s theorem,∫
(f

(2j)
0 ∗ Sσ) dλ =

∫
[
∫
f

(2j)
0 (x− y)Sσ(y) dy] dx =

∫
[
∫
f

(2j)
0 (x− y) dx]Sσ(y) dy = 0.

Suppose that f0 satisfies Conditions (a) and (c). Let (aj)j≥1 be a sequence of positive
numbers such that

D :=

∞∑
j=1

a2j |d2j |<∞.

Given 0 < β < 1/2, 0 < c1 < [ρr00 ∧ (c0/2
$0∧2)], 0 < B, σ <∞ and 1 < M <∞, let

Bσ := {x ∈ R : f0(x) ≥ Bσ−Me−c1(1/σ)r0},

Gσ := {x ∈ R : T̃σ(f0)(x) ≥ βf0(x)},

Uσ := {x ∈ R : |f (2j)
0 (x)|≤ [(1− 2β)/D]a2jσ

−2jf0(x), j ∈ N}.

The function T̃σ(f0) is modified to be everywhere non-negative by setting it equal to a
multiple of f0 when it is below it. Let

gσ := T̃σ(f0)1Gσ + βf01Gcσ
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be the modified function.
Lemma 7. Suppose that the probability density f0 satisfies Conditions (a) and (c).
Then, for σ > 0 small enough,

∫
gσ dλ ≥ β and

∫
gσ dλ = 1 + O(e−c3(1/σ)r0 ) for a

suitable constant 0 < c3 <∞.

Proof. By definition, gσ ≥ βf0(1Gσ + 1Gcσ ) = βf0. Thus,
∫
gσ dλ ≥ β. Rewritten gσ as

gσ = T̃σ(f0) + [βf0− T̃σ(f0)]1Gcσ , by Lemma (6), for σ > 0 small enough,
∫
gσ dλ = 1 +∫

[βf0−T̃σ(f0)]1Gcσ dλ because, for every j ∈ N, ‖f (j)
0 ‖1≤ {E0[|(f (j)

0 /f0)(X)|2]}1/2 <∞.

To show that
∫

[βf0−T̃σ(f0)]1Gcσ dλ = O(e−c3(1/σ)r0 ), we first show that, for σ > 0 small
enough, Bσ ∩ Uσ ⊆ Gσ. In fact, over Bσ ∩ Uσ,

|T̃σ(f0)− f0| ≤ f0

∞∑
j=1

|d2j |σ2j(|f (2j)
0 − f (2j)

0 ∗ Sσ|/f0) + f0

∞∑
j=1

|d2j |σ2j(|f (2j)
0 |/f0)

. f0[e−(ρ0/σ)r0 /f0 + (1− 2β)

∞∑
j=1

a2j |d2j |/D]

= [O(σM ) + 1− 2β]f0 < (1− β)f0,

because, over Bσ, we have e−(ρ0/σ)r0 /f0 = O(σM ). Hence, T̃σ(f0) > βf0 and Bσ∩Uσ ⊆
Gσ. Furthermore, U cσ has exponentially small probability. By Markov’s inequality, for
some constant 1 < ξ <∞ and, for instance, a2j = 2j(log2 j)/2,

P0(U cσ) ≤
∞∑
j=1

P0(|(f (2j)
0 /f0)(X)|> (1− 2β)a2jσ

−2j/D)

< sup
j≥1

E0[exp(c0|(f (2j)
0 /f0)(X)|r0/2j/ξ)]

×
∞∑
j=1

exp (−c0[(1− 2β)a2j/D]r0/2j(1/σ)r0/ξ)

. e−k3(1/σ)r0 ,

where the expected value is finite under Condition (c). In fact, for every j ∈ N,

f0(x) exp(c0|(f (2j)
0 /f0)(x)|r0/2j/ξ) ∼ exp (−c0|x|$0+c0|x|($0−1)r0/ξ),

with exp (−c0|x|$0+c0|x|($0−1)r0/ξ)→ 0 as |x|→ ∞ provided that ($0 − 1)r0 ≤ $0.

Using the bounds P0(U cσ) . e−k3(1/σ)r0 , P0(Bcσ) . (σ−Me−c1(1/σ)r0 )ν valid for every 0 <

ν < 1, and the fact that, by (16), up to O(e−(ρ0/σ)r0 1{∞}(Sf0)), the transform T̃σ(f0) is

a linear combination of f0, f0 ∗φσ and the f
(2j)
0 , we prove that

∫
[βf0− T̃σ(f0)]1Gcσ dλ .

e−c3(1/σ)r0 . We begin by showing that
∫
Ucσ

(f0 ∗ φσ) dλ . e−(k3∧4−1)(1/σ)r0 . For random

variables Y ∼ f0 and Z ∼ N(0, 1),
∫
Ucσ

(f0 ∗ φσ) dλ ≤ P(Y + σZ ∈ U cσ, |Z|≤ σ−r0/2) +

P(|Z|> σ−r0/2) =: T1 + T2, where T2 . e−(1/σ)r0/4 and T1 ≤ P0(U cσ) . e−k3(1/σ)r0 for
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σ > 0 small enough. By the result just shown,
∫
Bcσ

(f0 ∗ φσ) dλ .
∫
Bcσ∩Uσ

(f0 ∗ φσ) dλ+

e−(k3∧4−1)(1/σ)r0 , where, for 1 < ξ′ <∞,∫
Bcσ∩Uσ

(f0 ∗ φσ) dλ ≤ P(Y + σZ ∈ Bcσ ∩ Uσ, |Z|≤ σ−r0/2, Y ∈ Bξ′σ ∩ Uσ)

+ P(Y ∈ U cσ) + P(Y ∈ Bcξ′σ) + P(|Z|> σ−r0/2) . e−k4(1/σ)r0 .

Since T̃σ(f0)→ f0 as σ → 0, we have λ(Gcσ) = o(1). For c3 := min{νc1/2, k3/2, k4},∫
[βf0 − T̃σ(f0)]1Gcσ dλ ≤

∫
|βf0 − T̃σ(f0)|1Gcσ dλ

≤ (β + 2)[P0(Bcσ) + P0(U cσ)] +

∫
Gcσ

(f0 ∗ φσ) dλ

+

∞∑
j=1

|c2j |σ2j

∫
Gcσ

|f (2j)
0 |dλ+O(e−(ρ0/σ)r0 1{∞}(Sf0

))λ(Gcσ)

. [(σ−Me−c1(1/σ)r0 )ν + e−k3(1/σ)r0 ]1/2 + e−k4(1/σ)r0

+ e−(k3∧4−1)(1/σ)r0 + o(e−(ρ0/σ)r0 1{∞}(Sf0))

. e−c3(1/σ)r0 ,

where, for every j ∈ N,
∫
Gcσ
|f (2j)

0 |dλ ≤ {E0[|(f (2j)
0 /f0)(X)|2]P0(Gcσ)}1/2 and

∞∑
j=1

|c2j |σ2j{E0[|(f (2j)
0 /f0)(X)|2]}1/2 <∞.

Next, a finite mixture of normal densities is constructed from the re-normalized restric-
tion to a compact set of the density derived from gσ such that it still approximates f0,
in the Kullback-Leibler divergence, with an error of the order O(e−c(1/σ)r0 ) for some
constant 0 < c <∞.
Lemma 8. Suppose that the probability density f0 satisfies Conditions (a)–(c). For
σ > 0 small enough, there exists a finite Gaussian mixture mσ, having at most Nσ =
O((aσ/σ)2) support points in [−aσ, aσ], with aσ = O((1/σ)r0/($0∧2)), such that, for
suitable constants 0 < c5, S <∞,

max{KL(f0; mσ), E0[(log(f0/mσ))2]} . σ−Se−c5(1/σ)r0 . (17)

Proof. We present a detailed proof only for the upper bound on the Kullback-Leibler
divergence, which is decomposed into the sum of three integrals, see (18) below. We
bound the first integral. Fix 0 < ζ < 1 and let Cζ be the same constant appearing
in Lemma 21. Set Cgσ :=

∫
gσ dλ, by Lemma 7, for σ > 0 small enough, Cgσ =
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1 + Ae−c3(1/σ)r0 for a suitable constant 0 < A < ∞. Define the density hσ := gσ/Cgσ .
For τζ as in Lemma 21,

∀ 0 < σ ≤ τζ , hσ ∗ φσ ≥
β(f0 ∗ φσ)

1 +Ae−c3(1/σ)r0
≥ βCζ

1 +Ae−c3(1/σ)r0
f0

because gσ ≥ βf0 and, by virtue of Condition (b), Lemma 21 can be invoked. Further-
more, |hσ ∗ φσ − f0|≤ C−1

gσ |gσ ∗ φσ − f0|+|C−1
gσ − 1|f0 . |gσ ∗ φσ − f0|+e−c3(1/σ)r0 f0.

Then, Lemma 5 implies that

|gσ ∗ φσ − f0| ≤ |T̃σ(f0) ∗ φσ − f0|+|{[βf0 − T̃σ(f0)]1Gcσ} ∗ φσ|

. e−(ρ0/σ)r0 1{∞}(Sf0) + |{[βf0 − T̃σ(f0)]1Gcσ} ∗ φσ|.

Now, KL(f0; hσ ∗φσ) = (
∫
Bσ∩Uσ +

∫
Bcσ∪Ucσ

)[f0 log(f0/(hσ ∗φσ))] dλ =: I1 +I2. Recalling

that c3 := min{νc1/2, k3/2, k4},

I1 ≤
∫
Bσ∩Uσ

f0
|hσ ∗ φσ − f0|

hσ ∗ φσ
dλ ≤

∫
Bσ∩Uσ

f0
|gσ ∗ φσ − f0|+e−c3(1/σ)r0 f0

hσ ∗ φσ
dλ

. e−[c3∧(ρ
r0
0 −c1)](1/σ)r0 ,

where ‖{[βf0 − T̃σ(f0)]1Gcσ} ∗ φσ‖1≤ ‖[βf0 − T̃σ(f0)]1Gcσ‖1‖φσ‖1. e−c3(1/σ)r0 . By

Lemma 7,
∫
Bcσ∪Ucσ

f0 dλ . (σ−Me−c1(1/σ)r0 )ν + e−k3(1/σ)r0 . Therefore,

I2 . (σ−νMe−νc1(1/σ)r0 + e−k3(1/σ)r0 ) log((1 +Ae−c3(1/σ)r0 )/(βCζ)),

where the logarithmic term is positive because 0 < βCζ < 1. Thus,

KL(f0; hσ ∗ φσ) . σ−νMe−[c3∧(ρ
r0
0 −c1)](1/σ)r0 .

Let Chσ :=
∫ aσ
−aσ hσ dλ and define h̃σ := hσ1[−aσ, aσ]/Chσ as the re-normalized restriction

of hσ to [−aσ, aσ]. By Lemma 17, there exists a discrete distribution F̃ on [−aσ, aσ],
with at most Nσ = O((aσ/σ)2) support points, such that ‖h̃σ∗φσ−F̃ ∗φσ‖∞. σ−1e−Nσ .
Set m̃σ := Chσ (F̃ ∗ φσ), we have |hσ ∗ φσ − m̃σ|≤ σ−1e−Nσ + (hσ1[−aσ, aσ]c) ∗ φσ. For

σ > 0 small enough, (hσ1[−aσ, aσ]c)∗φσ . e−(ρ0/σ)r0 1{∞}(Sf0
)+e−c0(aσ/2)$0∧2

by virtue
of Lemma 5 and Condition (c) on f0. Thus, for a constant c1 < c′′ ≤ [ρr00 ∧ (c0/2

$0∧2)]
and aσ ∝ (1/σ)r0/($0∧2),

‖hσ ∗ φσ − m̃σ‖∞. σ−1e−Nσ + e−(ρ0/σ)r0 1{∞}(Sf0
) + e−c0(aσ/2)$0∧2

. e−c
′′(1/σ)r0 .

Let tσ := m̃σ + Dσφσ, with Dσ := σ−(R−1)e−c̃(1/σ)r0 for 1 < R < M and c1 < c̃ < ∞.
Define the finite Gaussian mixture mσ := (

∫
tσ dλ)−1tσ = (m̃σ + Dσφσ)/(Chσ + Dσ).

Write

KL(f0; mσ) =

∫
f0 log

f0

hσ ∗ φσ
dλ+

∫
f0 log

hσ ∗ φσ
tσ

dλ+

∫
f0 log

tσ
mσ

dλ (18)

=: J1 + J2 + J3,
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where J1 = KL(f0; hσ ∗ φσ).

• Control of J1. It has been shown that J1 . σ−νMe−[c3∧(ρ
r0
0 −c1)](1/σ)r0 .

• Control of J2. Write J2 = (
∫
Bσ

+
∫
Bcσ

)[f0 log((hσ ∗ φσ)/tσ)] dλ =: J21 + J22. Since

0 < c1 < (c′′ ∧ c̃),

J21 ≤
∫
Bσ

f0
|hσ ∗ φσ − tσ|

tσ
dλ

.
σ−Re−(c′′∧c̃)(1/σ)r0

Bσ−Me−c1(1/σ)r0 − e−c′′(1/σ)r0

∫
Bσ

f0 dλ . σM−Re−[(c′′∧c̃)−c1](1/σ)r0 ,

because |hσ ∗ φσ − tσ|≤ |hσ ∗ φσ − m̃σ|+Dσφσ . σ−Re−(c′′∧c̃)(1/σ)r0 and, over Bσ,
hσ ∗ φσ & f0 ≥ Bσ−Me−c1(1/σ)r0 so that tσ > m̃σ ≥ hσ ∗ φσ − |hσ ∗ φσ − m̃σ|&
Bσ−Me−c1(1/σ)r0 − e−c

′′(1/σ)r0 . Because ‖hσ ∗ φσ‖∞≤ C0 < ∞ for a constant C0

(possibly depending on f0) and tσ ≥ Dσφσ,

J22 . log(σ/Dσ)

∫
Bcσ

f0 dλ+
1

2σ2

∫
Bcσ

x2f0(x) dx

. σ−(νM+r0)e−νc1(1/σ)r0 + σ−(νM+2)e−νc1(1/σ)r0 . σ−[νM+(r0∨2)]e−νc1(1/σ)r0 .

• Control of J3. Noting that (tσ/mσ) = Chσ + Dσ ≤ 1 + Dσ, we get that J3 ≤
log(1 +Dσ) ≤ Dσ = σ−(R−1)e−c̃(1/σ)r0 .

Combining partial results, KL(f0; mσ) . σ−Se−c5(1/σ)r0 , where S ≥ max{R− 1, νM +
2} and c5 := min{[c3 ∧ (ρr00 − c1)], [(c′′ ∧ c̃)− c1]} are finite constants.

The same reasoning applies to E0[(log(f0/mσ))2] and (17) follows. Constants stemming
from the upper bound on this term may possibly be just multiplied by 2. We still denote
the overall constants by S and c5.

Proof of Theorem 2. As in the proof of Theorem 1, we first prove the result for the
L1-metric. We then deal with Lp-metrics, 2 ≤ p ≤ ∞. The case of Lp-metrics, with
1 < p < 2, is covered by interpolation.

• L1-metric. As in the proof of Theorem 1, for ε̃n = n−1/2(log n)ψ(r0, d), with ψ(r0, d)
as in (10), since 2ψ(r0, d) > 1 for every 0 ≤ d < 1, we have εn,1 := (ε̄n ∨ ε̃n) = ε̄n =

n−1/2(log n)
1
2 +{ 1

2∨[2( 1
δ+ 1

γ )ψ(r0, d)]}.

• Lp-metrics, 2 ≤ p ≤ ∞. We appeal to Proposition 1. Let εn,p := ε̃n(nε̃2
n)(1−1/p)/2.

By the assumption that f0 ∈ Aρ0,r0,L0(R), we have f0 ∈ Lp(R), 2 ≤ p ≤ ∞, and, by
virtue of Lemma 12, for 2Jn = cnε̃2

n, with c as in Proposition 1 (r = 2 and ρ = 2−1/2

for the Gaussian kernel), ‖f0 − f0 ∗ sinc2−Jn ‖p. exp (−(ρ0cnε̃
2
n)r0) . n−1 . εn,p for

n large enough because 2r0ψ(r0, d) > 1 for every 0 ≤ d < 1. The requirements of
Proposition 1 that 1 < γ ≤ ∞ and (log n)2ψ(r0, d) & (log n)1/[2(1−1/γ)] are both satisfied
for 2 ≤ γ <∞.
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• Small ball probability estimate. We show that, for a suitable constant 0 < c2 < ∞,
(Π × G)(BKL(f0; ε̃2

n)) & exp(−c2nε̃2
n) for every sufficiently large n. By Lemma 8, for

σ > 0 small enough, there exists a finite mixture of Gaussian densities mσ, with Nσ =
O((aσ/σ)2) support points θ1, . . . , θNσ in [−aσ, aσ], where aσ = O((1/σ)r0/($0∧2)),
such that (17) holds. Let p1, . . . , pNσ denote the mixing weights of mσ. The inequality
in (17) holds for every mixture of Gaussian densities mσ′ , with σ′ ∈ [σ, σ+e−d1(1/σ)r0 ),

having support points θ′1, . . . , θ
′
Nσ

such that
∑Nσ
j=1|θ′j − θj |≤ e−d2(1/σ)r0 and mixing

weights p′1, . . . , p
′
Nσ

such that
∑Nσ
j=1|p′j − pj |≤ e−d3(1/σ)r0 for suitable constants 0 <

d1, d2, d3 <∞. Let B̃σ := {x : f0(x) ≥ ζσ}, with ζσ := B′σ−S
′
e−c

∗(1/σ)r0 , where S′ :=
2(S−2) and 0 < c∗ < (3c5∧c′′), the constants S > 2, c5 and c′′ being those appearing in
Lemma 8. For every F ∈M (R) and σ′ ∈ [σ, σ + e−d1(1/σ)r0 ), we have KL(f0; fF,σ′) .
σ−Se−c5(1/σ)r0 + (

∫
B̃σ

+
∫
B̃cσ

)[f0 log(mσ′/fF,σ′)] dλ. We provide an upper bound on the

second integral. For every F such that F ([−aσ′ , aσ′ ]) ≥ 1/2, we have fF,σ′(x) &
(σ′)−1 exp (−(x2 + a2

σ′)/(σ
′)2) for all x ∈ R. From Lemma 8, ‖mσ′‖∞. (σ′)

−1
. For any

0 < ω < 1, we have
∫
B̃cσ

(x/σ′)2f0(x) dx . σ−2ζωσ and
∫
B̃cσ
f0 dλ . ζωσ . Therefore, for a

suitable constant 0 < c′ < ωc∗, we get
∫
B̃cσ
f0 log(mσ′/fF,σ′) dλ .

∫
B̃cσ

(x/σ′)2f0(x) dx+

(aσ′/σ
′)2
∫
B̃cσ
f0 dλ . e−c

′(1/σ)r0 .

As in the proof of Theorem 1, we distinguish the case where the prior for F is a Dirichlet
or a N-IG process, from the case where the prior for F is a general Pitman-Yor process
with 0 ≤ d < 1 and −d < c <∞.

− Dirichlet or N-IG process. Clearly,∫
B̃σ
f0 log(mσ′/fF,σ′) dλ ≤

∫
B̃σ
f0(‖mσ′ − fF,σ′‖∞/fF,σ′) dλ. Using Lemma 5 of Ghosal

and van der Vaart (2007b), page 711,

‖mσ′ − fF,σ′‖∞. σ−2 max1≤j≤Nσ λ(Uj) +σ−1
∑Nσ
j=1|F (Uj)− p′j |, where U0, . . . , UNσ is

a partition of R, with U0 := (
⋃Nσ
j=1 Uj)

c and Uj 3 θ′j for j = 1, . . . , Nσ. The support

points of mσ′ can be taken to be at least σ−3(S−2)e−3c5(1/σ)r0 -separated. If not, mσ′ can
be projected onto a mixture m′σ′ , with σ−3(S−2)e−3c5(1/σ)r0 -separated points, such that
‖mσ′ −m′σ′‖∞. σ−(3S−4)e−3c5(1/σ)r0 . There thus exist disjoint intervals U1, . . . , UNσ
such that Uj 3 θ′j and σ−3(S−2)e−3c5(1/σ)r0 ≤ λ(Uj) ≤ 2σ−3(S−2)e−3c5(1/σ)r0 , j =
1, . . . , Nσ. Let F be such that

Nσ∑
j=1

|F (Uj)− p′j |≤ σ−(3S−5)e−3c5(1/σ)r0 . (19)

Then, ‖mσ′ − fF,σ′‖∞. σ−(3S−4)e−3c5(1/σ)r0 and, over B̃σ, we have fF,σ′ & mσ′ −
σ−(3S−4)e−3c5(1/σ)r0 & ζσ. Therefore,

∫
B̃σ
f0 log(mσ′/fF,σ′) dλ . σ−Se−(3c5−c∗)(1/σ)r0 .

Note that, for F satisfying (19), F ([−aσ′ , aσ′ ]) ≥ 1/2. Combining partial results,
max{KL(f0; fF,σ′), E0[(log(f0/fF,σ′))

2]} . σ−Se−c6(1/σ)r0 for 0 < c6 ≤ min{c5, c′, 3c5−
c∗}. To apply Lemma A.2 of Ghosal and van der Vaart (2001), pages 1260–1261, in order

to estimate the prior probability of {F :
∑Nσ
j=1|F (Uj)−p′j |≤ σ−(3S−5)e−3c5(1/σ)r0 }, note

that α(Uj) ≥ λ(Uj) inf |θ|≤aσ′ α
′(θ) & σ−3(S−2)e−(3c5+b)(1/σ)r0 because 0 < δ ≤ ($0∧2).
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Also, Nσσ
−(3S−5)e−3c5(1/σ)r0 . 1. Since r0 ≥ 1,

(Π×G)(BKL(f0; σ−Se−c6(1/σ)r0 ))

& Π

F :

Nσ∑
j=1

|F (Uj)− p′j |≤ σ−(3S−5)e−3c5(1/σ)r0

×G([σ, σ + e−d1(1/σ)r0 ))

& exp (−(c7Nσ + d1)(1/σ)r0 −D1(1/σ)γ(log(1/σ))t).

Taking σ ≡ σn = O((log n)−1/r0), we have σ−Sn e−c6(1/σn)r0 ∝ n−1(log n)S/r0 = ε̃2
n,

provided that (S/r0) = 2ψ(r0, 0), and (c7Nσn +d1)(1/σn)r0 +D1(1/σn)γ(log(1/σn))t .
(log n)2ψ(r0, 0). We need to take S = 2r0ψ(r0, 0) while having S ≥ max{R−1, νM + 2}
as prescribed by Lemma 8. Since 2r0ψ(r0, 0) > 2, the latter constraint is satisfied by
suitably choosing M and R.

− Pitman-Yor process with 0 ≤ d < 1 and −d < c < ∞. It is enough to note that
‖mσ′ − fF,σ′‖∞. σ−1

∑Mσ

j=1|Wj − p′j |+σ−2
∑Mσ

j=1 p
′
j |Zj − θ′j | and estimate the probabil-

ities in a) and b) of Theorem 1. We have P(
∑Mσ

j=1|Zj − θ′j |≤ σ−(3S−5)e−3c5(1/σ)r0 ) &
exp (−Nσ(1/σ)r0). Thus,

(Π×G)(BKL(f0; σ−Se−c6(1/σ)r0 ))

& exp (−[c8(1 ∨ dNσ)Nσ + d1](1/σ)r0 −D1(1/σ)γ(log(1/σ))t).

Taking σ ≡ σn = O((log n)−1/r0), we have σ−Sn e−c6(1/σn)r0 ∝ ε̃2
n and

[c8(1 ∨ dNσn)Nσn + d1](1/σn)r0 +D1(1/σn)γ(log(1/σn))t . (log n)2ψ(r0, d)

as long as S = 2r0ψ(r0, d) and S ≥ max{R− 1, νM + 2}.

7 Proof of Theorem 3

Some instrumental results are preliminarily presented. For any 0 < σ < ∞ and any
k-times differentiable function f on R, define the transform

Tk,σ(f) :=


f, for k = 1,

f −
k−1∑
j=1

djσ
jf (j), for k = 2, 3, . . . ,

where, abusing the notation introduced in Section 6, c1 := 0, d1 := −m1 = 0,

cj := −
∑
k,l≥1
k+l=j

(−1)k
mk

k!
dl and dj := (−1)j

mj

j!
+ cj , j = 2, 3, . . . ,

mj being the moment of order j of a standard normal distribution. The following
approximation result is an adaptation of Lemma 3.4 in de Jonge and van Zanten (2010),
pages 3311 and 3317–3318, which deals with the approximation in the supremum norm
of multivariate Hölder functions, see Kruijer et al. (2010) for the univariate case.
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Lemma 9. Suppose that, for k ∈ N, f is a k-times continuously differentiable function
on R with f (k) ∈ L∞(R). For every x ∈ R,

|[Tk,σ(f) ∗ φσ − f ](x)|∼ mk

2(k − 1)!
σk|f (k)(x)| as σ → 0.

Proof. For x, y ∈ R, let

Rk(x, y) :=
(−y)k

(k − 1)!

∫ 1

0

f (k)(x− sy)(1− s)k−1 ds.

Since f (k) ∈ BC(R), by the dominated convergence theorem, for every x ∈ R,∫
Rk(x, y)φσ(y) dy ∼ (−1)k

mk

k!
σkf (k)(x). (20)

The proof is by induction on k. For k = 1, by definition of T1,σ(f), Taylor’s formula
and (20), for every x ∈ R,

|[T1,σ(f) ∗ φσ − f ](x)|=
∣∣∣∣∫ R1(x, y)φσ(y) dy

∣∣∣∣ ∼ |−m1σf
(1)(x)|= 0.

For k = 2, by definition, T2,σ(f) = f−d1σf
(1) = f because d1 = 0. By Taylor’s formula

and (20), for every x ∈ R,

|[T2,σ(f) ∗ φσ − f ](x)|=
∣∣∣∣∫ R2(x, y)φσ(y) dy

∣∣∣∣ ∼ m2

2
σ2|f (2)(x)|.

For k ≥ 3, assume that, for every 1 ≤ j ≤ k − 1,

[f (j) − Tk−j,σ(f (j)) ∗ φσ](x) = Ck−j(−1)k−j
mk−j

(k − j)!
σk−jf (k)(x), x ∈ R,

where, for (k − j) even, Ck−j :=
(
k/2
j/2

)−1
. Then, by Taylor’s formula and (20),

|[Tk,σ(f) ∗ φσ − f ](x)| =

∣∣∣∣∣∣∣∣∣
k−1∑
j=1

(−1)j
mj

j!
σjf (j)(x)−

k−1∑
j=1

djσ
j(f (j) ∗ φσ)(x)

+

∫
Rk(x, y)φσ(y) dy

∣∣∣∣∣∣∣∣∣
∼
∣∣∣∣k2 (−1)k

mk

k!
σkf (k)(x)

∣∣∣∣ ,
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because

k−1∑
j=1

(−1)j
mj

j!
σjf (j) −

k−1∑
j=1

djσ
jf (j) ∗ φσ

=

k−1∑
j=1

(−1)j
mj

j!
σj(f (j) − f (j) ∗ φσ)−

k−1∑
j=1

cjσ
jf (j) ∗ φσ

=

k−1∑
j=1

(−1)j
mj

j!
σj [f (j) − Tk−j,σ(f (j)) ∗ φσ]

+

k−1∑
j=1

(−1)j
mj

j!
σj [Tk−j,σ(f (j)) ∗ φσ − f (j) ∗ φσ]−

k−1∑
j=1

cjσ
jf (j) ∗ φσ

=

k−1∑
j=1

(−1)j
mj

j!
σj [f (j) − Tk−j,σ(f (j)) ∗ φσ]

=

(
k

2
− 1

)
(−1)k

mk

k!
σkf (k),

where the term in the fourth line is identically null by definition of the coefficients cj .

Let k0 ∈ {2, 3, . . . }. Suppose that f0 is a k0-times differentiable density. Let 0 < ϑ < 1

and S0 :=
∑k0−1
j=1 |dj |. Given 0 < σ <∞, define

Gσ := {x ∈ R : Tk0,σ(f0)(x) ≥ ϑf0(x)},

Uσ := {x ∈ R : |f (j)
0 (x)|≤ (1− ϑ)σ−jf0(x)/S0, j = 1, . . . , k0 − 1}.

Lemma 10. Suppose that, for some k0 ∈ {2, 3, . . . }, the probability density f0 is k0-

times differentiable, with f
(j)
0 (x) → 0 as |x|→ ∞, j = 1, . . . , k0 − 1, and satisfies the

integrability conditions in (13). Define gk0,σ := Tk0,σ(f0)1Gσ +ϑf01Gcσ . Then, for σ > 0
small enough, ϑ ≤

∫
gk0,σ dλ = 1 +O(σ2k0).

Proof. By definition, gk0,σ ≥ ϑf0. Hence,
∫
gk0,σ dλ ≥ ϑ. Write gk0,σ as Tk0,σ(f0) +

[ϑf0−Tk0,σ(f0)]1Gcσ . By the assumption that f
(j)
0 (x)→ 0 as |x|→ ∞, j = 1, . . . , k0−1,

we have
∫
gk0,σ dλ = 1 +

∫
[ϑf0 − Tk0,σ(f0)]1Gcσ dλ. We now prove that

∫
[ϑf0 −

Tk0,σ(f0)]1Gcσ dλ = O(σ2k0). We begin by showing that Uσ ⊆ Gσ. Over Uσ, we have

|Tk0,σ(f0)− f0|≤ f0(1− ϑ)
∑k0−1
j=1 |dj |/S0 ≤ (1− ϑ)f0. Hence, Tk0,σ(f0) ≥ ϑf0. Conse-

quently, Uσ ⊆ Gσ. The set U cσ has exponentially small probability. In fact, by Markov’s
inequality and the integrability conditions in (13),

P0(U cσ) . σ2k0

k0−1∑
j=1

E0[|(f (j)
0 /f0)(X)|2k0/j ] . σ2k0

and
∫

[ϑf0 − Tk0,σ(f0)]1Ucσ dλ . P0(U cσ) . σ2k0 .
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The following lemma can be proved similarly to Proposition 1 in Shen et al. (2013),
pages 629 and 635, invoking Lemma 9 and Lemma 10.
Lemma 11. Suppose that the probability density f0 satisfies Conditions (a′) and (b′).
For σ > 0 small enough, there exists a finite Gaussian mixture mσ, having at most
Nσ = O(aσ/σ) support points in [−aσ, aσ], with aσ = O((log(1/σ))1/2), such that
max{KL(f0; mσ), E0[(log(f0/mσ))2]} . σ2k0 .

Proof of Theorem 3. We prove the result for the L1- and L2-metrics. The case of Lp-
metrics, 1 < p < 2, is covered by interpolation.

• L1-metric. The entropy condition (2.8) and the small ball probability estimate con-
dition (2.10) of Theorem 2.1 in Ghosal and van der Vaart (2001), page 1239, are shown

to be satisfied for ε̄n = n−k0/(2k0+1)(log n)τ+1+(2δ)−1

and ε̃n = n−k0/(2k0+1)(log n)τ ,
respectively, with an appropriate constant 0 < τ < ∞. The posterior rate is then
εn,1 := (ε̄n ∨ ε̃n) = ε̄n. We begin by considering the entropy condition. For 0 <
a, σ, σ̄ < ∞ and 0 < η < 1, let Fa, η, σ, σ̄ := {fF,σ : F ([−a, a]) ≥ 1 − η, σ ≤ σ ≤ σ̄}
and Fa, σ, σ̄ := {fF,σ : F ([−a, a]) = 1, σ ≤ σ ≤ σ̄}. Combining Lemma A.3 in Ghosal
and van der Vaart (2001), page 1261, with Lemma 3 in Ghosal and van der Vaart
(2007b), pages 705–707,

logD(η, Fa, η/4, σ, σ̄, ‖·‖1) ≤ logN(η/2, Fa, σ, σ̄, ‖·‖1)

. log

(
2σ̄

ησ

)
+

(
a

σ
∨ 1

)(
log

2

η

)[
log

(
2a

ησ
+ 1

)
+ log

2

η

]
.

Choosing an = L(log n)1/δ, ηn = ε̄n, σn = E(nε̃2
n)−1 and σ̄n = eFnε̃

2
n with suitable

constants 0 < E, F, L <∞, for Fn := Fan, ηn/4, σn, σn
, we have logD(ε̄n, Fn, ‖·‖1) .

nε̄2
n.

Using results of Doss and Sellke (1982), page 1304, the prior probability of F c
n can be

bounded above as follows:

(Π×G)(F c
n) ≤ G(σn) + [1−G(σ̄n)] +

4

ηn
EΠ[F ([−an, an]c)]

. σ−sn exp (−[D2σ
−1
n (log(1/σn))t]) + σ̄%n

+
4

ηn
exp

(
− 1

ᾱ(−an)[log ᾱ(−an)]2

)
+

4

ηn
exp

(
− 1

[1− ᾱ(an)][log(1− ᾱ(an))]2

)
. exp (−(c2 + 4)nε̃2

n),

where 0 < c2 <∞ is the constant stemming from the small ball probability estimate.

• L2-metric. We appeal to Theorem 3 of Giné and Nickl (2011), page 2892. Choosing
their γn = 1, n ∈ N, the sequence εn,2 := ε̃n plays the same role as δn. Condition
(b) that ε̃2

n = O(n−1/2) is satisfied for every k0 ∈ N. Condition (1) of Theorem 2,
ibidem, page 2891, is now checked. Let σn := E(nε̃2

n)−1(log n)ψ, for 1/2 < ψ < t
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and a constant 0 < E < ∞ to be suitably chosen later on, and let 2Jn = cnε̃2
n,

with any 0 < c < ∞. Define Fn := {fF,σ : F ∈ M (R), σ ≥ σn}. We show that
Fn ⊆ {fF,σ : ‖fF,σ − sinc2−Jn (fF,σ)‖2≤ C(sinc)εn,2} for every sufficiently large n. For
every fF,σ ∈ Fn such that SF < ∞, we have ‖fF,σ − sinc2−Jn (fF,σ)‖2= 0 because
2Jn > SF for all n large enough. For every fF,σ ∈ Fn such that SF = ∞, we have
‖fF,σ − sinc2−Jn (fF,σ)‖2. σ−1

n exp (−(ρσn2Jn)2) . n−1 < εn,2 because (σn2Jn)2 ∝
(log n)2ψ & (log n) as ψ > 1/2. Now, (Π×G)(F c

n) . σ−sn exp (−[D2σ
−1
n (log(1/σn))t]) .

exp (−(c2 + 4)nε̃2
n) because ψ < t.

By the assumption that f0 has Fourier transform satisfying the integrability condition
in (11), we have f0 ∈ L∞(R) and ‖f0− f0 ∗ sinc2−Jn ‖2= O(εn,2). Concerning Condition
(3), we first apply Theorem 2, ibidem, page 2891, for the supremum norm (Condition
(1) for the supremum norm can be seen to be satisfied as for the L2-norm and ‖f0−f0 ∗
sinc2−Jn ‖∞= O(n1/2ε̃2

n)) and then use the conclusion that the posterior concentrates on
a shrinking supremum norm neighborhood of f0 to see that the posterior accumulates
on a fixed supremum norm ball of radius B := 1 + ‖f0‖∞ with probability tending to 1.

• Small ball probability estimate. By routine computations, see, e.g., Theorem 4 in
Shen et al. (2013), pages 629–630, it can be seen that, for the Dirichlet process, there
exists a constant 0 < c2 < ∞ so that (Π × G)(BKL(f0; ε̃2

n)) & exp (−c2nε̃2
n) for all n

large enough.
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Appendix

The Appendix is split into three parts: the first one presents the proofs of the results in
Section 3, preceded by some lemmas; the second one contains the proofs of Theorem 1
and Corollary 2; the third one reports some auxiliary results.

Proofs of the results in Section 3

The following lemma provides, for every 2 ≤ p ≤ ∞, an upper bound on the Lp-norm
approximation error of a density, whose Fourier transform either vanishes outside a
compact set or decays exponentially fast, by its convolution with the sinc kernel. Recall
that if f̂ ∈ L1(R), then f can be recovered from f̂ using the inversion formula for

Fourier transforms, f(x) = (2π)
−1 ∫

e−itxf̂(t) dt, x ∈ R. Furthermore, f is continuous
and bounded, f ∈ BC(R). In what follows, Sf is as defined in Section 1.1.
Lemma 12. Let f ∈ Aρ,r,L(R), 0 < ρ, r, L <∞. Let 0 < σ <∞ be fixed. If Sf ≤ 1/σ,
then ‖f − f ∗ sincσ‖p= 0 for every 1 ≤ p ≤ ∞. If Sf = ∞, then ‖f − f ∗ sincσ‖p.
σ−(1−r)/2e−(ρ/σ)r for every 2 ≤ p ≤ ∞.

Proof. Since f ∈ Aρ,r,L(R), we have f̂ ∈ L1(R). Then, f̂(1 − ŝincσ) ∈ L1(R). By

the inversion formula for Fourier transforms and the fact that ŝinc(t) = 1[−1, 1](t),

t ∈ R, we have (f − f ∗ sincσ)(x) = (2π)−1
∫
|t|>1/σ

e−itxf̂(t) dt, x ∈ R. If Sf ≤
1/σ, then

∫
|t|>1/σ

e−itxf̂(t) dt = 0 identically on R and ‖f − f ∗ sincσ‖p= 0 for every

1 ≤ p ≤ ∞. Now, suppose Sf = ∞. For any function g ∈ Lp(R), 2 ≤ p < ∞,
we have ‖g‖pp≤ Cp‖ĝ‖qq, where q−1 := (1 − p−1) ∈ [1/2, 1) and 0 < Cp < ∞ is a
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constant depending only on p, see, e.g., Theorem 74 in Titchmarsh (1937), page 96.
By the assumption that f ∈ Aρ,r,L(R), we have f ∈ Lp(R) for every 2 ≤ p ≤ ∞.
Then, ‖f − f ∗ sincσ‖p≤ ‖f‖p+‖f‖1‖sincσ‖p< ∞. For every 2 ≤ p < ∞, we have

‖f − f ∗ sincσ‖pp≤ Cp‖f̂(1 − ŝincσ)‖qq= Cp
∫
|t|>1/σ

|f̂(t)|q dt. By the Cauchy-Schwarz

inequality and the assumption that f ∈ Aρ,r,L(R),∫
|t|>1/σ

|f̂(t)|q dt <

∫
|t|>1/σ

|f̂(t)|dt . σ−(1−r)/2e−(ρ/σ)r , (21)

where
∫∞

1/σ
e−2(ρt)r dt = r−1(2ρr)−1/rΓ(r−1, 2(ρ/σ)r), with Γ(a, z) =

∫∞
z
ta−1e−t dt,

for 0 < a, z < ∞, the upper incomplete gamma function. It is known that Γ(a, z) ∼
za−1e−z as z →∞. The case where p =∞ is treated implicitly in (21).

When Sf = ∞, the result of Lemma 12 can be extended to all Lp-metrics, 1 ≤ p ≤
∞, replacing the sinc kernel with a superkernel, which, unlike the sinc kernel, is an
absolutely integrable function. A superkernel S is a symmetric (around 0), absolutely
integrable function, with

∫
S dλ = 1, that has an absolutely integrable Fourier transform

Ŝ (hence S is continuous and bounded) with the properties that Ŝ = 1 identically on
[−1, 1] and |Ŝ|< 1 outside [−1, 1]. The interval [−1, 1] is chosen for convenience only:
Ŝ is required to be equal to 1 in a neighborhood of 0. Superkernels necessarily have
infinite support. They can be obtained as iterated convolutions of re-scaled versions of
the sinc kernel, cf. Example 1 in Devroye (1992), page 2039.
Lemma 13. Let f ∈ Aρ,r,L(R), 0 < ρ, r, L < ∞. Let S be a superkernel and let
0 < σ < ∞ be fixed. If Sf ≤ 1/σ, then ‖f − f ∗ Sσ‖p= 0 for every 1 ≤ p ≤ ∞. If
Sf =∞, then ‖f − f ∗ Sσ‖p. σ−(1−r)/2e−(ρ/σ)r for every 2 ≤ p ≤ ∞. If, furthermore,
when Sf = ∞, we have 0 < σ < 1 and

∫
fυ dλ < ∞ for some 0 < υ < 1, then

‖f − f ∗ Sσ‖p. (σ−(1−r)/2e−(ρ/σ)r )1−υ for every 1 ≤ p < 2.

Proof. We have (f − f ∗ Sσ)(x) = (2π)
−1 ∫

|t|>1/σ
e−itxf̂(t)[1 − Ŝ(σt)] dt, x ∈ R. If

Sf ≤ 1/σ, then ‖f − f ∗ Sσ‖p= 0 for every 1 ≤ p ≤ ∞. If Sf = ∞, since, for every
2 ≤ p < ∞, ‖f − f ∗ Sσ‖p≤ (1 + ‖Sσ‖1)‖f‖p< ∞ for all 0 < σ < ∞, by repeating
the same reasoning as for the sinc kernel in Lemma 12, we conclude that ‖f − f ∗
Sσ‖pp≤ Cp‖f̂(1 − Ŝσ)‖qq= Cp

∫
|t|>1/σ

(|f̂(t)||1 − Ŝ(σt)|)q dt < 2qCp
∫
|t|>1/σ

|f̂(t)|q dt .

σ−(1−r)/2e−(ρ/σ)r because |Ŝ|< 1 on [−1, 1]c. The case where p = ∞ follows from the

bound on
∫
|t|>1/σ

|f̂(t)|dt in (21). Now, let 1 ≤ p < 2. From Lemma 1 in Devroye

(1992), page 2040, and the assumption that f ∈ Aρ,r,L(R), we have ‖f − f ∗ Sσ‖1<
2(
∫
fυ dλ)(

∫
|t|>1/σ

|f̂(t)|dt/π)1−υ . (
∫
fυ dλ)(σ−(1−r)/2e−(ρ/σ)r )1−υ for every 0 < υ <

1 as in the statement. For any Lp-metric, 1 < p < 2, using the inequality ‖f−f ∗Sσ‖p≤
max{‖f − f ∗ Sσ‖1, ‖f − f ∗ Sσ‖2} (see, e.g., Athreya and Lahiri (2006), page 104), we
get that ‖f − f ∗ Sσ‖p. (σ−(1−r)/2e−(ρ/σ)r )1−υ.

Before proving Proposition 1, a remark is in order. If K̂ ∈ L1(R), then ‖f̂F,σ‖1≤∫
|K̂(σt)|dt <∞ for every 0 < σ <∞. So, if K ∈ Aρ,r,L(R), 0 < ρ, r, L <∞, then, not
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only is K̂ ∈ L1(R), but fF,σ ∈ Aρσ,r,L/
√
σ(R). Therefore, the absolute integrability of K̂

allows to recover any convolution mixture fF,σ by just inverting its Fourier transform.

Proof of Proposition 1. We appeal to Theorem 2 of Giné and Nickl (2011), page 2891.
Choosing their γn = 1, n ∈ N, the sequence εn,p := ε̃n(nε̃2

n)(1−1/p)/2 plays the same
role as δn in the cited theorem. For σn := E(nε̃2

n)−1/γ , 0 < E < ∞ being a constant
as in the statement, let Fn := {fF,σ : F ∈ M (Θ), σ ≥ σn}. For every fF,σ ∈ Fn,

we have Iρn,r(f̂F,σ) ≤ 2πL2
n, with ρn := ρσn and L2

n := L2/σn. Condition 1(a),
ibidem, page 2890, for the convolution kernel case is satisfied for the sinc kernel. In
fact, sinc ∈ L2(R) ∩ L∞(R) because

∫
sinc2 dλ = ‖sinc‖∞= (1/π) < ∞. Besides, the

sinc kernel is continuous and, as shown in Lemma 14, is of bounded quadratic variation
on R. For every fF,σ ∈ Fn for which SfF,σ < ∞, since σn2Jn ∝ (nε̃2

n)1−1/γ → ∞ as
n→∞, we have ‖fF,σ− sinc2−Jn (fF,σ)‖p= 0 for every 2 ≤ p ≤ ∞. For every fF,σ ∈ Fn

for which SfF,σ =∞, taking into account that 2Jn = cnε̃2
n, with (α1/rρE)−1 ≤ c <∞,

and using the constraint on γ, we have ‖fF,σ− sinc2−Jn (fF,σ)‖p. exp (−α(ρσn2Jn)r) .
exp (−α(ρEc)r(nε̃2

n)r(1−1/γ)) . n−1 . εn,p for every 2 ≤ p ≤ ∞. Therefore, for
every sufficiently large n, Fn ⊆ {fF,σ : ‖fF,σ − sinc2−Jn (fF,σ)‖p≤ C(sinc)εn,p}, where
0 < C(sinc) < ∞ is an appropriate constant depending only on the operator sinc
kernel. If 1 < γ <∞, for 0 < E ≤ {D2[1[0, γ−1](s) + β1(γ−1,∞)(s)]/(C + 4)}1/γ , where
0 < C < ∞ is the constant stemming from the small ball probability estimate, by
Lemma 4.9 of van der Vaart and van Zanten (2009), page 2669, and Assumption (A0),

(Π×G)(F c
n) =

∫ σn

0

g(σ) dσ . σ−(s−γ+1)
n (log(1/σn))−t exp (−D2σ

−γ
n (log(1/σn))t)

. exp (−(C + 4)nε̃2
n)

and Condition (1), ibidem, page 2891, is fulfilled.

Proof of Corollary 1. Under the stated conditions, Proposition 1 holds with the prior
distribution G for the scale parameter being a point mass at σ0 and with t play-
ing the role of p. It is verified that K ∈ Aρ′,r,L(R) for every 0 < ρ′ < ρ and a
suitable constant 0 < L < ∞. Consequently, fF0,σ0 ∈ Lt(R), 2 ≤ t ≤ ∞, and,
defined εn,t := ε̃n(nε̃2

n)(1−1/t)/2, we have ‖fF0,σ0
− sinc2−Jn (fF0,σ0

)‖t= O(εn,t) for
2Jn = cnε̃2

n, with [α1/rρ(σ0 ∧ 1)]−1 ≤ c < ∞ for any fixed 0 < α < 1. Thus, for
every 2 ≤ t ≤ ∞, there exists a sufficiently large constant 0 < M < ∞ so that
Π(F : ‖fF,σ0 − fF0,σ0‖t≥Mεn,t|X(n))→ 0 in Pn0 -probability. By Lemma 15, for every
2 ≤ t < ∞ and any 0 < u < ∞ such that EK [|X|u] < ∞, we have ‖fF,σ0 − fF0,σ0‖1.
(‖fF,σ0

− fF0,σ0
‖t)1/[1+(su)−1], where fF,σ0

, fF0,σ0
∈ L∞(R) because K ∈ Aρ′,r,L(R)

and supF ′∈M (Θ) EfF ′,σ0
[|X|u] ≤ (1∨ 2u−1){σu0 EK [|X|u] +

∫
|θ|u dF ′(θ)} <∞ since Θ is

bounded. By modifying Theorem 2 in Nguyen (2013), page 377, for every 2 ≤ p, t <∞,
we get that Wp(F, F0) . [− log dTV(fF,σ0 , fF0,σ0)]−1/r . (− log‖fF,σ0 − fF0,σ0‖t)−1/r,
where dTV(·, ·) denotes the total variation distance. Thus, for every pair p, p′ such that
1 ≤ p′ ≤ 2 ≤ p < ∞, since Wp′(·, ·) ≤ Wp(·, ·), see, e.g., Remark 6.6 in Villani (2008),
page 95, we have {F : ‖fF,σ0

− fF0,σ0
‖t. εn,t} ⊆ {F : Wp(F, F0) . (log n)−1/r} ⊆

{F : Wp′(F, F0) . (log n)−1/r}. Hence, for every 1 ≤ p <∞, there exists a sufficiently
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large constant 0 < M ′ < ∞ so that Π(F : Wp(F, F0) ≥ M ′(log n)−1/r|X(n)) → 0 in
Pn0 -probability.

Proofs of the results in Section 4.1

Recall that, given a metric space (S, d) and a totally bounded subset C of S, for fixed
0 < ε <∞, the ε-packing number of C, denoted by D(ε, C, d), is defined as the largest
integer m such that there is a set {s1, . . . , sm} ⊆ C with d(sk, sl) > ε for all pairs of
integers 1 ≤ k 6= l ≤ m. The ε-capacity of (C, d) is defined as logD(ε, C, d).

Proof of Theorem 1. We prove the result for the L1-metric invoking Theorem 2.1 of
Ghosal and van der Vaart (2001), page 1239. We deal with Lp-metrics, 2 ≤ p ≤ ∞,
appealing to Proposition 1. For 1 < p < 2, the result follows from the interpolation
inequality ‖fF,σ− f0‖p≤ max{‖fF,σ− f0‖1, ‖fF,σ− f0‖2} . n−1/2(log n)ι for a suitable
constant 0 < ι <∞.

• L1-metric. We show that conditions (2.8) and (2.9) in Theorem 2.1 of Ghosal and van
der Vaart (2001), page 1239, are satisfied for sequences ε̄n = n−1/2(log n)χ, with a suit-
able constant 0 < χ <∞, and ε̃n = n−1/2(log n)ϕ(d), with ϕ(d) = τ+(τ−1/2)1(0,∞)(d)
as defined in (9), the latter sequence stemming from the small ball probability esti-
mate below. Then, the posterior rate is εn,1 := (ε̄n ∨ ε̃n). Given 0 < ηn < 1/5,
for constants 0 < E, F, L < ∞ to be suitably chosen, let an := L(log(1/ηn))2ϕ(d)/δ,
σn := E(log(1/ηn))−2ϕ(d)/γ and σ̄n := exp(F (log(1/ηn))2ϕ(d)). For Fn := {fF,σ :
F ([−an, an]) ≥ 1 − ηn, σn ≤ σ ≤ σ̄n}, by Lemma A.3 of Ghosal and van der Vaart
(2001), page 1261, and Lemma 20,

logD(ηn, Fn, ‖·‖1) . log

(
σ̄n
σnηn

)
+

(
an
σn

)1(0, 1](r)

×
(

log
1

ηn

)1+1(0, 1](r)/r

× max

{(
an
σn

)r/(r−1)

,

(
log

1

ηn

)}1(1,∞)(r)

.

Taking ηn = ε̄n, we have logD(ε̄n, Fn, ‖·‖1) . nε̄2
n. Concerning condition (2.9), by

assumptions (ii)–(iii) and the fact that 2τ > 1, for appropriate choices of E, F, L as
functions of the constant c2 stemming from the small ball probability estimate, the prior
probability of F c

n is bounded above by exp (−D2[β1(0, s+1)(γ) + 1[s+1,∞](γ)]σ−γn ) +

σ̄−%n + e−ba
δ
n/ηn . exp (−(c2 + 4)nε̃2

n) because, by Markov’s inequality and the inde-
pendence of (Wj)j≥1 and (Zj)j≥1,

Π(F : F ([−an, an]c) > ηn) <
1

ηn
E

 ∞∑
j=1

Wj1[−an, an]c(Zj)

 .
α([−an, an]c)

ηn
.
e−ba

δ
n

ηn
.

• Lp-metrics, 2 ≤ p ≤ ∞. The conditions of Proposition 1 are satisfied. Let εn,p :=
ε̃n(nε̃2

n)(1−1/p)/2. By the assumption that f0 = fF0,σ0
= F0 ∗ Kσ0

, we have f0 ∈
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Aρσ0,r,L/
√
σ0(R)∩Lp(R), 2 ≤ p ≤ ∞. By Lemma 12, letting 2Jn = cnε̃2

n, with c defined
as in Proposition 1, ‖f0 − f0 ∗ sinc2−Jn ‖p= O(εn,p) for n large enough.

• Small ball probability estimate. We show that, for 0 < ε ≤ [(1/4) ∧ (σ0/2)], there
exists a constant 0 < c2 <∞ so that (Π×G)(BKL(f0; ε2)) & exp(−c2(log(1/ε))2ϕ(d)).
A remark is in order. The case where $ =∞ corresponds to F0 having compact support,

i.e., F0([−a0, a0]) = 1 for some 0 < a0 < ∞. Let aε := a
1{∞}($)
0 (c−1

0 log(1/ε))1/$ and
let F ∗0 be the re-normalized restriction of F0 to [−aε, aε]. By Lemma A.3 of Ghosal and
van der Vaart (2001), page 1261, and Assumption (A2), ‖fF∗0 ,σ0

− f0‖1. ε. We show
that there exists a discrete probability measure F ′0 on [−aε, aε], with at most

N .

(
log

1

ε

)2τ−1

(22)

support points, such that ‖fF∗0 ,σ0 − fF ′0,σ0
‖∞. ε. The support points of F ′0 can be

taken to be at least 2ε-separated. We distinguish the case where 0 < r ≤ 1 from the
case where r > 1. In the latter case, the assertion follows immediately from Lemma 17:
in fact, aε can be taken to be large enough so that aε/(ρσ0) ≥ e−1. If 0 < r ≤ 1,
Lemma 17 cannot be directly applied because the requirement on aε/(ρσ0) may not
be met. Yet, an argument similar to the one used in Lemma 2 of Ghosal and van
der Vaart (2007b), page 705, can be adopted. Consider a partition of [−aε, aε] into

k = da1{∞}($)
0 (c

[1−1{∞}($)]/$
0 σ0)−1(log(1/ε))1/r−1+1(0,∞)($)/$e subintervals I1, . . . , Ik

of equal length 0 < l ≤ 2σ0(log(1/ε))−(1−r)/r and, possibly, a final interval Ik+1 of length
0 ≤ lk+1 < l. Let J be the total number of intervals in the partition, which can be either

k or k+1. Write F ∗0 =
∑J
j=1 F

∗
0 (Ij)F

∗
0,j , where F ∗0,j denotes the re-normalized restriction

of F ∗0 to Ij . Then, fF∗0 ,σ0
(·) =

∑J
j=1 F

∗
0 (Ij)fF∗0,j ,σ0

(·) =
∑J
j=1 F

∗
0 (Ij)(F

∗
0,j ∗ Kσ0

)(·).
For every j = 1, . . . , J , by Lemma 17 (and Remark 2) applied to every fF∗0,j ,σ0

, with

a/σ = (l/2)/σ0 ∝ (log(1/ε))−(1−r)/r, there exists a discrete distribution F ′0,j , with at
most Nj . log(1/ε) support points, such that ‖fF∗0,j ,σ0

− fF ′0,j ,σ0
‖∞. ε. Defined F ′0 :=∑J

j=1 F
∗
0 (Ij)F

′
0,j , we have ‖fF∗0 ,σ0

− fF ′0,σ0
‖∞≤

∑J
j=1 F

∗
0 (Ij)‖fF∗0,j , σ0

− fF ′0,j ,σ0
‖∞. ε,

where F ′0 has at most N .
∑J
j=1Nj . k× log(1/ε) . (log(1/ε))1/r+1(0,∞)($)/$ support

points. Combining the result on the total number N of support points of F ′0 in the case
where 0 < r ≤ 1 with the one for the case where r > 1, we obtain the bound in (22).
Let 0 < q <∞ be such that EK [|X|q] <∞. For any υ such that (1 + q)−1 < υ < 1, by
Hölder’s inequality,

∫
fυF∗0 ,σ0

dλ . (1 +
∫
|x|qfF∗0 ,σ0(x) dx)υ . {(1 ∨ 2q−1)[σq0 EK [|X|q] +∫

|θ|≤aε |θ|
q dF ∗0 (θ)]}υ . aυqε , this implying that ‖fF∗0 ,σ0 − fF ′0,σ0

‖1. ε1−υaυqε by virtue

of Lemma 16.

Next, we distinguish the case where the prior for F is a Dirichlet process, i.e., a Pitman-
Yor process with d = 0 and c = α(R), from the case where the prior for F is a general
Pitman-Yor process with 0 ≤ d < 1 and −d < c < ∞. The proof for the Dirichlet
process is paradigmatic to deal with other process priors, like the N-IG process, whose
finite-dimensional distributions are known.

− Dirichlet process. Represented F ′0 as
∑N
j=1 pjδθj , with |θj − θk|≥ 2ε for all 1 ≤ j 6=
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k ≤ N , and set Uj := [θj − ε, θj + ε], j = 1, . . . , N , for every F ∈M (R) such that

N∑
j=1

|F (Uj)− pj |≤ ε (23)

and every 0 < σ < ∞ such that |σ − σ0|≤ ε, we have ‖fF,σ − fF ′0,σ0
‖1. ‖Kσ −

Kσ0
‖1+ε/(σ∧σ0)+

∑N
j=1|F (Uj)− pj |. ε by virtue of Lemma 18, Lemma 19 and condi-

tion (23). Thus, ‖fF,σ − fF ′0,σ0
‖1. ε and the squared Hellinger distance ‖f1/2

F,σ−f
1/2
0 ‖22=∫

(f
1/2
F,σ − f

1/2
0 )2 dλ ≤ ‖fF,σ − fF ′0,σ0

‖1+‖fF ′0,σ0
− fF∗0 ,σ0‖1+‖fF∗0 ,σ0 − f0‖1. ε1−υaυqε .

In order to appeal to Theorem 5 of Wong and Shen (1995), pages 357–358, we show

that, for densities in the set Sε := {fF,σ :
∑N
j=1|F (Uj)− pj |≤ ε, |σ − σ0|≤ ε} and a

suitable constant 0 < % ≤ 1, M2
% :=

∫
{(f0/fF,σ)≥e1/%} f0(f0/fF,σ)% dλ = O((1/ε)ξ) for

some 0 ≤ ξ ≤ κ/$. For every F satisfying (23), F ([−aε, aε]) > 1/2, thus, by sym-
metry and monotonicity of K, fF,σ(x) ≥

∫
|θ|≤aε Kσ(x − θ) dF (θ) > Kσ(|x|+aε)/2,

x ∈ R. By Assumption (A1), K(aε) & exp (−caκε ) for aε large enough. Hence,∫
|x|≤aε f

1+%
0 (x)K−%σ (|x|+aε) dx . exp (%c(4aε/σ0)κ) because |σ − σ0|≤ ε ≤ σ0/2 and

‖f0‖∞<∞. Also,∫
|x|>aε

f1+%
0 (x)

K%
σ(|x|+aε)

dx .
∫
|x|>aε

K−%σ0
(4|x|)[Kσ0

(|x|/2) + F0(θ : |θ|> |x|/2)] dx <∞,

where the last integral is finite for a suitable choice of % by virtue of Assumption (A2).
Thus, Sε ⊆ BKL(f0; c1ε

1−υaυqε (log(1/ε))2). To apply Lemma A.2 of Ghosal and van
der Vaart (2001), pages 1260–1261, note that, for each |θj |≤ aε, by Assumption (A3),

α(Uj) & εe−ba
δ
ε & εb

′
for some constant b′ > 0 because, when $ < ∞, we have

0 < δ ≤ $ by hypothesis. Thus, ε̃n = n−1/2(log n)τ .

− Pitman-Yor process with 0 ≤ d < 1 and −d < c < ∞. We need to modify the
arguments to control ‖fF,σ − fF ′0,σ0

‖1. To the aim, the stick-breaking construction for

the random weights of F is exploited. Let F ′0 =
∑N
j=1 pjδθj be the finite distribution

that approximates F ∗0 in the supremum norm. By relabelling, we can assume that p1 ≥
p2 ≥ . . . ≥ pN ≥ 0. Let 1 ≤M ≤ N be the number of strictly positive mixing weights.
For every 0 < σ <∞, by Lemma 18 and the inequality

∑∞
j=M+1Wj ≤

∑M
j=1|Wj − pj |,

‖fF,σ − fF ′0,σ‖1≤ 2

M∑
j=1

|Wj − pj |+
2‖K‖∞

σ

M∑
j=1

pj |Zj − θj |. (24)

Let v1 := p1 and vj := pj [
∏j−1
h=1(1− vh)]−1 for j = 2, . . . , M . Note that 0 < vj < 1 for

every j = 1, . . . , M − 1 and vM = 1 because pM = 1−
∑M−1
j=1 pj =

∏M−1
h=1 (1− vh). We

have |Wj−pj |≤ |Vj−vj |
∏j−1
h=1(1−Vh)+vj |

∏j−1
h=1(1−Vh)−

∏j−1
h=1(1−vh)|≤

∑j
h=1|Vh−vh|,

where the inequality |
∏j−1
h=1 yh −

∏j−1
h=1 zh|≤

∑j−1
h=1|yh − zh|, valid for complex numbers

y1, . . . , yj−1 and z1, . . . , zj−1 of modulus at most 1, has been used. If, for 0 < ε ≤ σ0/2,
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a)
∑M
j=1

∑j
h=1|Vh − vh|≤ ε, b)

∑M
j=1|Zj − θj |≤ ε, c) |σ − σ0|≤ ε,

then, by Lemma 19 and inequality (24), we have

‖fF,σ − fF ′0,σ0
‖1. ‖Kσ − Kσ0

‖1+
∑M
j=1

∑j
h=1|Vh − vh|+

∑M
j=1 pj |Zj − θj |. ε. Next,

we show that, for Bε = aε (or Bε = aε + 1, the latter case being considered if any
support point θj of F ′0 is equal to −aε and/or aε), the events in a) and b) together
imply that, for 0 < ε ≤ [(1/4) ∧ (σ0/2)], we have F ([−Bε, Bε]) > 1/2. This inequality
is used when checking that, for a suitable constant 0 < % ≤ 1, M2

% = O((1/ε)ξ), with
0 ≤ ξ ≤ κ/$, so that Theorem 5 of Wong and Shen (1995), pages 357–358, can be
invoked. By the event in b), for ε > 0 small enough, all the Zj are in [−Bε, Bε]. Using

this fact and the inequality
∑M
j=1|Wj−pj |≤

∑M
j=1

∑j
h=1|Vh−vh|, the event in a) implies

that F ([−Bε, Bε]c) ≤
∑M
j=1

∑j
h=1|Vh − vh|≤ ε < 1/2.

Concerning the probability in c), by Assumption (A0),
∫ σ0+ε

σ0−ε g(σ) dσ & ε, therefore the

prior concentration rate is driven by the probabilities of the events in a) and b). By the
independence of (Wj)j≥1 and (Zj)j≥1, Lemma 1 and Lemma 2, when 0 < d < 1, for
(3ε/M2) ≤ min1≤j≤M−1 vj ≤ max1≤j≤M−1 vj ≤ 1 − (4ε/M2) (if the vj do not satisfy
the condition, fF ′0,σ0

can be projected into a new density fF ′′0 ,σ0
which is, at most, within

ε L1-distance from fF ′0,σ0
so that the new v′j satisfy the constraints),

P

 M∑
j=1

|Wj − pj |≤ ε

× P

 M∑
j=1

|Zj − θj |≤ ε

× P(|σ − σ0|≤ ε)

& exp (−c2M2 log(1/ε)),

because, by (22), 1 ≤M ≤ N . (log(1/ε))2τ−1, where τ ≥ 1, and, for $ <∞, we have
0 < δ ≤ $ by assumption, so that aδε . log(1/ε). Thus, ε̃n = n−1/2(log n)2τ−1/2. For
d = 0, the same lower bound as for the Dirichlet process is obtained.

Proof of Corollary 2. We appeal to Corollary 1. Since Θ may be unbounded, we check
that, given 1 ≤ p <∞, for every p < u <∞,

∫
|θ|u dF (θ) <∞ with DP(α)-probability

1. For θ ∈ R, let ᾱ(θ) :=
∫ θ
−∞[α′(t)/α(R)] dt. Using results in Doss and Sellke (1982),

page 1304, for any fixed 0 < T <∞ large enough, by Assumption (A3),∫
|θ|u dF (θ) ≤ 2uTu−1 +

∫ ∞
T

uθu−1 exp

(
− 1

ᾱ(−θ)[log ᾱ(−θ)]2

)
dθ

+

∫ ∞
T

uθu−1 exp

(
− 1

[1− ᾱ(θ)][log(1− ᾱ(θ))]2

)
dθ <∞

for almost every sample distribution function F when sampling from DP(α).

Auxiliary results

This section reports some auxiliary results used throughout the article. Proofs that are
an adaptation of those of results known in the literature are omitted.
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In the following lemma, the sinc kernel is shown to be of bounded quadratic variation
on R. By definition, for 1 ≤ p < ∞, a real-valued function h is of bounded p-variation
on R if its p-variation Vp(h, R) := sup{

∑n
k=1|h(xk) − h(xk−1)|p: −∞ < x0 < . . . <

xn <∞, n ∈ N} is finite.
Lemma 14. The function x 7→ sinc(x) is of bounded quadratic variation on R.

Proof. For every n ∈ N, the sum
∑n
k=1[sinc(xk) − sinc(xk−1)]2 is maximum at xk :=

(2k + 1)π/2, k = 1, . . . , n. Split the sum into two terms,

∑
2≤k=2j≤n

[sinc(xk)− sinc(xk−1)]2 =
4

π4

∑
2≤2j≤n

[
4(2j)

(4j + 1)(4j − 1)

]2

and ∑
1≤k=2j+1≤n

[sinc(xk)− sinc(xk−1)]2 =
4

π4

∑
1≤2j+1≤n

[
4(2j + 1)

(4j + 3)(4j + 1)

]2

.

Then, V2(sinc, R) <∞ as a consequence of the fact that
∑∞
j=1 j

−2 <∞.

The next lemma provides an upper bound on the Lp-distance, 1 ≤ p < ∞, between
densities on R with finite absolute moment of (some) order 0 < u <∞, in terms of the
product of their L∞-distance and any Lq-distance, 1 < q <∞. The proof is similar to
that of statement (b) in Lemma 6 of Nguyen (2013), pages 389 and 397–398.
Lemma 15. Let f, g ∈ L∞(R) be probability densities with max{Ef [|X|u], Eg[|X|u]} <
∞ for some 0 < u <∞. For every 1 ≤ p <∞ and 1 < t <∞,

‖f − g‖pp< (s−1 + u)

× [s1/s(21/s/u)u‖f − g‖pupt ‖f − g‖(p−1)/s
∞ (Ef [|X|u] + Eg[|X|u])1/s]s/(1+su),

where s−1 := 1− t−1.

Proof. For any 0 < R <∞, by Hölder’s inequality,
∫
|x|≤R|f(x)−g(x)|p dx ≤ (2R)1/s‖f−

g‖ppt. Also,
∫
|x|>R|f(x)− g(x)|p dx < R−u‖f − g‖p−1

∞ (Ef [|X|u] + Eg[|X|u]). Therefore,

‖f − g‖pp< minR>0{(2R)1/s‖f − g‖ppt+R−u‖f − g‖p−1
∞ (Ef [|X|u] + Eg[|X|u])}. The in-

equality in the assertion follows from

min
x>0

(Axα +Bx−β) = (α+ β)[(A/β)β(B/α)α]1/(α+β)

for every A, α, B, β > 0.

The next lemma provides an upper bound on the L1-distance between densities on R in
terms of their L∞-distance. It is implicit in the proof of Lemma 1 in Devroye (1992),
page 2040.
Lemma 16. Let f, g ∈ L∞(R) be probability densities. For any 0 < υ ≤ 1 such that∫
fυ dλ <∞, we have ‖f − g‖1≤ 2‖f − g‖1−υ∞

∫
fυ dλ.
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Proof. Write ‖f−g‖1= 2
∫

(f−g)+ dλ ≤ 2
∫

min{f, ‖f−g‖∞} dλ ≤ 2‖f−g‖1−υ∞
∫
fυ dλ.

The assertion follows.

As noted in Remark 3 by Devroye (1992), page 2042, if

for some 0 < q <∞, Ef [|X|q] <∞, (25)

then
∫
fυ dλ <∞ for every υ such that (1 + q)−1 < υ < 1. For example, condition (25)

is satisfied for a Student’s-t distribution with 0 < ν < ∞ degrees of freedom when
0 < q < ν. For the special case of a Cauchy distribution, we have 0 < q < 1.

The following lemma provides an upper bound on the number of mixing components
of a convolution mixture, with kernel density K belonging to some class Aρ,r,L(R),
which uniformly approximates a given mixture with the same kernel and a compactly
supported mixing distribution. The definition of SK is in accordance with that in
Section 1.1.
Lemma 17. Let K ∈ Aρ,r,L(R), 0 < ρ, r, L < ∞. Let 0 < ε < 1 and 0 < a, σ < ∞
be given. For any probability measure F on [−a, a], there exists a discrete probability
measure F ′ on [−a, a], with at most N support points, such that

‖F ∗Kσ − F ′ ∗Kσ‖∞. ε/σ,

where
N . max {log(1/ε), (a/σ)} , if SK <∞,

and

N .


log(1/ε), for 0 < r < 1 and ρσ/a = O((log(1/ε))(1−r)/r),

log(1/ε), for r = 1 and a/(ρσ) ≤ e−1,

max
{

log(1/ε), (a/σ)r/(r−1)
}
, for r > 1 and a/(ρσ) ≥ e−1,

if SK =∞.

Proof. By Lemma A.1 of Ghosal and van der Vaart (2001), page 1260, there exists a
discrete probability measure F ′ on [−a, a], with at most N + 1 support points, N being
suitably chosen later on, such that it matches the moments of F up to the order N ,∫ a

−a
θj dF ′(θ) =

∫ a

−a
θj dF (θ), j = 1, . . . , N. (26)

By the moment matching condition in (26),

|F̂ (t)− F̂ ′(t)|≤
∫ a

−a

|tθ|N

N !
min

{
|tθ|
N + 1

, 2

}
d(F + F ′)(θ), t ∈ R, (27)

where the inequality holds because F and F ′ have finite absolute moments of any order,
see, e.g., inequality (26.5) in Billingsley (1995), page 343. By the assumption that
K ∈ Aρ,r,L(R), we have

∫
|K̂(σt)|dt < ∞ for every 0 < σ < ∞, hence F ∗ Kσ and
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F ′ ∗Kσ can be recovered using the inversion formula for Fourier transforms. By (27),
‖F ∗Kσ−F ′ ∗Kσ‖∞≤ 2aN/(πN ! )

∫
|t|N |K̂(σt)|dt. Next, we distinguish the case where

SK <∞ from that where SK =∞. If SK <∞, by the assumption that K ∈ Aρ,r,L(R),

‖F ∗Kσ−F ′∗Kσ‖∞≤
2aN

πN !

∫
|t|≤SK/σ

|t|N |K̂(σt)|dt ≤ 4

σ
[L2+C(ρ, r)/π]

(
aeSK
σN

)N
.
ε

σ

for N = max{log(1/ε), (ae2SK/σ)}. If SK =∞, by the Cauchy-Schwarz inequality,

‖F ∗Kσ − F ′ ∗Kσ‖∞ ≤
2aN

πN !

(
2πL2

σ

)1/2(∫
|t|2Ne−2(ρσ|t|)r dt

)1/2

.
1

σ

(
a

21/rρσ

)N
[Γ((2N + 1)/r)]1/2

Γ(N + 1)
.

For N large enough, using Γ(az + b) ∼ (2π)1/2e−az(az)az+b−1/2 (z →∞) with a > 0,

‖F ∗Kσ − F ′ ∗Kσ‖∞.
1

σ

(
a

ρσ

)N
eN(1−1/r)r−N/rN−N(1−1/r)+(1/r−3/2)/2.

If 0 < r < 1 and (ρσ/a)r/(1−r) = O(log(1/ε)), for N such that log(1/ε) . N .
(σ/a)r/(1−r),

‖F ∗Kσ − F ′ ∗Kσ‖∞ .
1

σ
N (1/r−3/2)/2 exp

(
−N

[
log

ρσ/a

N1/r−1
−
(

1− 1

r
+

1

r
log

1

r

)])
.
ε

σ
.

If r = 1 and a/(ρσ) ≤ e−1, for N = log(1/ε),

‖F ∗Kσ − F ′ ∗Kσ‖∞.
1

σ

(
a

ρσ

)N
.
ε

σ
.

If r > 1 and a/(ρσ) ≥ e−1, for N = O(max{log(1/ε), (a/σ)r/(r−1)}),

‖F ∗Kσ − F ′ ∗Kσ‖∞.
1

σ
exp

(
−N

[
log

N1−1/r

a/(ρσ)
− 1

r
(r − 1− log r)

])
.
ε

σ

and the proof is complete.

Remark 2. Although Lemma 17 is stated for a probability measure F supported on a
symmetric interval around 0, it holds for every F with support(F ) being any bounded
set in R.

The inequality in the next lemma can be proved similarly to the one for the Gaussian
kernel, see, e.g., the first part of Lemma 1 in Ghosal et al. (1999), pages 156–157.
Lemma 18. Let K be a probability density on R, bounded and symmetric around 0.
For every 0 < σ <∞ and every pair θj , θk ∈ R,

‖Kσ(· − θj)−Kσ(· − θk)‖1≤ 2‖K‖∞
|θj − θk|

σ
.
|θj − θk|

σ
.
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In the following lemma, a sufficient condition is provided for the L1-distance between
convolution mixtures with different scales to be bounded above by the distance between
the scales.
Lemma 19. Let K be a probability density on R, bounded, symmetric around 0 and
monotone decreasing in |x|. For every probability measure F on R and every pair
0 < σ, σ′ <∞, we have ‖F ∗Kσ − F ∗Kσ′‖1≤ ‖Kσ −Kσ′‖1≤ 2|σ − σ′|/(σ ∧ σ′).

Proof. Note that ‖F ∗Kσ − F ∗Kσ′‖1≤
∫
‖Kσ(· − θ) − Kσ′(· − θ)‖1 dF (θ) = ‖Kσ −

Kσ′‖1. The second inequality in the statement can be proved as in Norets and Pelenis
(2014).

The next lemma provides an upper bound on the L1-metric entropy of a class of con-
volution mixtures with a supersmooth kernel. For 0 < ε < ∞, the metric entropy of
a set B in a metric space with metric d is defined as logN(ε, B, d), where N(ε, B, d)
is the minimum number of balls of radius ε needed to cover B. The result is based on
Lemma 17, Lemma 18, Lemma 19 and can be proved similarly to Lemma 3 of Ghosal and
van der Vaart (2007b), pages 705–707, which deals with mixtures of normal densities.
Lemma 20. Let K ∈ Aρ,r,L(R), 0 < ρ, r, L <∞, be symmetric around 0 and monotone
decreasing in |x|. Let 0 < ε < 1/5, 0 < a < ∞ and 0 < σ ≤ σ̄ < ∞ be such that
(a/σ) . (log(1/ε))ν for some constant 0 < ν < ∞. Define Fa,σ,σ̄ := {F ∗ Kσ :
F ([−a, a]) = 1, σ ≤ σ ≤ σ̄}. Then,

logN(ε, Fa,σ,σ̄, ‖·‖1) . log

(
σ̄

σε

)
+N ×

[
log

(
2a

σε
+ 1

)
+ log

1

ε

]
,

where

N .

{
(a/σ)× (log(1/ε))1/r, for 0 < r ≤ 1,

max{log(1/ε), (a/σ)r/(r−1)}, for r > 1.

The following lemma is a variant of Lemma 6 in Ghosal and van der Vaart (2007b),
page 711.
Lemma 21. Let K be a probability density on R symmetric around 0. Let f be a
bounded probability density on R, non-decreasing on (−∞, a), non-increasing on (b, ∞),
for −∞ < a ≤ b <∞, with f ≥ ` > 0 on [a, b] and 0 < f ≤ ` <∞ on [a, b]c. For any

0 < ζ < 1, let 0 < τζ < ∞ be such that
∫ b−a

0
Kτζ (x) dx ≥ ζ. Then, f ∗Kσ ≥ Cζf for

every 0 < σ ≤ τζ , with Cζ := (ζ`/‖f‖∞) ∈ (0, 1).


