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Bayesian Analysis of the Functional-Coefficient
Autoregressive Heteroscedastic Model

Xin-Yuan Song, ∗ Jing-Heng Cai, † Xiang-Nan Feng ‡ and Xue-Jun Jiang §

Abstract. In this paper, we propose a new model called the functional-coefficient
autoregressive heteroscedastic (FARCH) model for nonlinear time series. The
FARCH model extends the existing functional-coefficient autoregressive models
and double-threshold autoregressive heteroscedastic models by providing a flex-
ible framework for the detection of nonlinear features for both the conditional
mean and conditional variance. We propose a Bayesian approach, along with the
Bayesian P-splines technique and Markov chain Monte Carlo algorithm, to esti-
mate the functional coefficients and unknown parameters of the model. We also
conduct model comparison via the Bayes factor. The performance of the proposed
methodology is evaluated via a simulation study. A real data set derived from the
daily S&P 500 Composite Index is used to illustrate the methodology.

Keywords: Nonlinear time series, Autoregressive heteroscedastic models, Bayesian
P-splines;, MCMC methods, Bayes factor

1 Introduction

Since the pioneering work of the autoregressive moving average (ARMA) models (Box
et al. 2008) to analyze time series data, the original ARMA framework has been ex-
tended in numerous aspects. Examples of such extensions include the fractional ARMA
(Granger and Joyeux 1980; Dahlhaus 1989) and (multivariate) vector ARMA models
with exogenous variables (Hannan and Deistler 1988). However, most of these analyses
were restricted to linear modeling. Given the existence of various nonlinear phenom-
ena, such as asymmetric cycles and bimodality, nonlinear relationships among lagged
variables have been observed in real time series data sets (see Tjøstheim 1994; Tong
1990, 1995). Moreover, these nonlinear features are beyond the capacity of linear mod-
els. Thus, nonlinear time series analysis has received a great deal of attention over the
past thirty years. At the early stage of nonlinear time series development, analyses
focused on known parametric forms, such as the threshold autoregressive (TAR) model
(Tong 1990) and the exponential autoregressive (EXPAR) model (Haggan and Ozaki
1981). An evident limitation of these parametric (both linear and nonlinear) models
is that they are too restrictive for many applications since the functional forms for the
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relationships among variables have to be specified. However, nonlinear functions have
many different types, and the functional form of a specific relationship is seldom known
in advance. In addition, strict parametric functional forms are likely to miss subtle
patterns. To relax the restrictions in parametric models, functional-coefficient autore-
gressive (FAR) models have been developed recently. The advantage of FAR models
lies in the flexibility to accommodate most nonlinear features with only minimal prior
information assumed. Further, such models can be employed as an exploratory tool for
investigating functional forms. Given their flexibility in dealing with nonlinear relation-
ships, FAR models have been widely used over the past decades (see, for example, Chen
and Tsay 1993; Cai et al. 2000; Fan and Yao 2003, among others).

Volatility is important in asset pricing, monetary policymaking, proprietary trading,
portfolio management, and risk analysis. Thus, modeling and predicting volatility is of
great importance. A widely used approach for modeling volatility is the discrete time
method, in which the volatility is considered to be a conditional variance of the return.
Since the autoregressive conditional heteroscedasticity (ARCH) model was first intro-
duced by Engle (1982) as an important tool for modeling volatility, numerous variants of
the ARCH model have been proposed. Bollerslev (1986) extended the ARCH model into
a generalized ARCH (GARCH) model. To capture the nonlinear features in real appli-
cations, Tong (1990) proposed a self-exciting threshold ARCH (SETAR-ARCH) model
with changing conditional variance, which has a piecewise linear conditional mean and
an ARCH innovation. Glosten et al. (1993) and Zakoian (1994) developed the threshold
GARCH (TGARCH) model to capture different effects of the positive and negative parts
of the past noises on the conditional variance. Li and Li (1996) subsequently extended
the TAR model to the double-threshold ARCH (DTARCH) model, which can address
conditions where both the conditional mean and the conditional variance specifications
are piecewise linear given previous information. They studied model identification, es-
timation, and diagnostic verification using the maximum likelihood (ML) method with
the normal assumption of innovations. The DTARCH model is useful for detecting
nonlinear structures such as asymmetric behavior in the mean and the volatility of an
asset return as well as heteroscedasticity with clustering in the volatility. Brooks (2001)
extended the DTARCH model to the double-threshold GARCH (DTGARCH) model
which uses a GARCH rather than ARCH specification for the conditional variance.
Further, Hui and Jiang (2005) relaxed the normal assumption and investigated similar
problems based on L1 regression in the DTARCH setting. Although their method is
resistant to outliers and robust against error distribution, it is inefficient when the error
is normal. More recently, Jiang et al. (2013) proposed a weighted composite quantile
regression method to analyze DTARCH models. They highlighted that the proposed
method uniformly dominated the L1 estimation and nearly reached the efficiency of the
oracle ML method with known innovations.

Although the aforementioned models are useful for describing the conditional mean
and/or conditional variance, they share the limitation of parametric models in that
specific parametric forms may be too restrictive to reveal the true conditions. In this
paper, we consider the functional-coefficient autoregressive heteroscedastic (FARCH)
model. The proposed integrated model framework is more general. Moreover, the
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FARCH model can accommodate most nonlinear relationships and does not require
a priori specified parametric functions for both the conditional mean and conditional
variance. Local polynomial regression (Fan and Gijbels 1996) coupled with the ML
method is apparently a natural choice for analyzing the proposed model. However,
bandwidth selection in the estimation procedure is difficult to implement for models with
a nonparametric formulation of volatility. Moreover, the nonparametric specification of
both the conditional mean and conditional variance make the problems of hypothesis
testing and other statistical inferences highly non-trivial.

A sampling-based Bayesian approach is a potential alternative to the ML method and
has been widely applied in the analysis of various statistical models (see, for example,
Gelman et al. 2004; Congdon 2006, among others). The most attractive features of the
Bayesian approach are as follows. First, this approach enables the use of genuine prior
information to achieve better results. Second, as highlighted by Scheines et al. (1999)
and Dunson (2000), sampling-based Bayesian methods rely less on large-sample asymp-
totic theory, thereby having the potential to produce reliable results even with small
sample sizes. Finally, compared with ML-based methods, the Bayesian approach is con-
ceptually simple and easy to implement. For instance, the ML-based hypothesis testing
procedures require the derivation of the asymptotic distribution of the test statistic,
whereas Bayesian hypothesis testing can be implemented more easily through model
selection with Bayesian statistics, such as the Bayes factor (Kass and Raftery 1995) and
the deviance information criterion (DIC; Spiegelhalter et al. 2002). In the estimation
of nonparametric functions, the local polynomial or other conventional smoothing tech-
niques require a tedious selection of bandwidth or other tuning parameters, whereas the
Bayesian estimation can be obtained via posterior sampling with Markov chain Monte
Carlo (MCMC) methods, thereby avoiding the difficulties that may be encountered in
ML-based methods. Owing to the rapid development of powerful computational tech-
nologies, the Bayesian P-splines approach (Lang and Brezger 2004), a Bayesian analogue
of penalized splines, has been widely used to model unknown smoothing functions in
nonparametric or semiparametric models (see, for example, Berry et al. 2002; Fahrmeir
and Raach 2007; Song and Lu 2012, among others). In this paper, we use the Bayesian
P-splines technique to estimate the nonparametric functions in the proposed FARCH
model. In addition to the estimation, we also consider model selection (hypothesis
testing). Natural questions about the current nonparametric modeling are whether the
conditional mean and variance (scale) are actually varying, and whether the nonpara-
metric model is actually better than its parametric and semiparametric counterparts.
These questions motivate us to develop an efficient procedure for Bayesian model selec-
tion.

The main contributions of this paper are summarized. First, we extend the FAR and
DTARCH models to the FARCH model. This modeling framework is novel and more
flexible to capture the nonlinear phenomena of financial time series data. To the best of
our knowledge, no study has been conducted on the statistical analysis of the FARCH
model. Second, we develop a Bayesian approach coupled with MCMC methods to
analyze the proposed model. The Bayesian estimation of nonparametric functions is
obtained using the Bayesian P-splines approach, whereas the model selection for the
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conditional mean and conditional variance (scale) is conducted via a Bayesian model
selection statistic, the Bayes factor (Kass and Raftery 1995). Finally, we apply the
proposed methodology to a study of the daily S&P 500 Composite Index. The nonlinear
features of return and volatility are investigated.

The remainder of this paper is organized as follows. Section 2 defines the proposed
FARCH models. Section 3 introduces the Bayesian P-splines approach, as well as the
Bayesian estimation procedure coupled with MCMC algorithms. Bayesian model se-
lection based on the Bayes factor and Bayesian forecasting via parametric bootstrap
method are also discussed in this section. In Section 4, we conduct a simulation study
to demonstrate the empirical performance of the Bayesian approach. The result of a real
life example concerning the daily S&P 500 Composite Index is also reported. Section 5
concludes the paper with a discussion.

2 FARCH Model

Let {Yt, t = 1, · · · , T} be a stationary and ergodic time series with E(Y 2
t ) < ∞, we

assume that Yt’s are generated from the following model,

Yt = α1(Yt−d)Yt−1 + α2(Yt−d)Yt−2 + · · ·+ αp(Yt−d)Yt−p + εt, (1)

where the delay parameter d is a positive integer, p is the AR order, and αj(·)’s are
unknown smoothing functions with second order derivatives. In addition, let Ft−1 be
the σ-field generated by the random variables {εt−j , j = 1, 2, · · ·}. For each t, when
information Ft−1 is given, we assume that the stochastic error εt satisfies εt = ht(Yt−d)ut
with the conditional scale ht(Yt−d) defined as follows,

ht(Yt−d) = β0(Yt−d) + β1(Yt−d)|εt−1|+ · · ·+ βq(Yt−d)|εt−q|, (2)

where q denotes the ARCH order, βj(·)’s are unknown smoothing functions satisfying
β0(·) > 0 and βj(·) ≥ 0 for j = 1, · · · , q. The innovations ut’s are independently
and identically distributed as N(0, 1). Inspired by Li and Li (1996) and Fan and Yao
(2003), we denote the model defined in (1) and (2) as FARCH(p, d, q). Notably, ht(Yt−d)
is defined as a conditional scale rather than a conditional variance. Bickel and Lehmann
(1976) emphasized that such a scale provides a more natural dispersion concept than
variance as well as offers substantial advantages in terms of robustness. A detailed
discussion can be found in Koenker and Zhao (1996) and Jiang et al. (2001). Other
alternative modeling approaches for the volatility include

log ht(Yt−d) = β0(Yt−d) + β1(Yt−d)|εt−1|+ · · ·+ βq(Yt−d)|εt−q|, (3)

and
ht(Yt−d) = β0(Yt−d) + β1(Yt−d)ε

2
t−1 + · · ·+ βq(Yt−d)ε

2
t−q. (4)

While there are certainly advantages to using these alternatives, for instance, (3) releases
the assumption of β0(·) > 0, βj(·) ≥ 0, j = 1, · · · , q and (4) leads to a simpler posterior
computation for the volatility model, our extensive simulation study shows that the
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multiplicative modeling of volatility in (3) and the quadratic forms of εt−j in (4) make
the conditional scale ht(·) much more sensitive to the change of lagged stochastic errors,
which tends to result in non-stationary series or unstable estimation and prediction
results.

Yau and Kohn (2003) developed a functional-coefficient heteroscedastic regression model
in a Bayesian framework. However, substantial differences exist between our model and
Yau and Kohn (2003). First, Yau and Kohn (2003) considered a cross-sectional rather
than a time series model. Second, the conditional mean and variance/scale are regressed
on independent explanatory variables in Yau and Kohn (2003) but on lagged responses
Yt−j and lagged stochastic errors εt−j in our paper. The latter is much more difficult
to handle in a Bayesian framework. Finally, the conditional variance/scale is modeled
in the log scale in Yau and Kohn (2003) but in the original scale in our paper.

The proposed FARCH model naturally extends the FAR model in Chen and Tsay (1993)
and the DTARCH model in Li and Li (1996). First, the conditional scale changes over
time in the FARCH model but remains constant in the FAR model. This feature makes
the FARCH model more appealing in capturing the dynamic change of volatility. Sec-
ond, the unknown functions are piecewise linear in the DTARCH model but nonlinear
and unspecified in the FARCH model. The nonparametric modeling framework pro-
vides more flexibility for reflecting the true condition in reality. The proposed model
is able to reveal how the dynamic effects of historical time series values on the future
mean value vary according to the lagged variable Yt−d while also investigating how his-
torical volatilities influence the future volatility dynamically according to the lagged
variable Yt−d. Moreover, unlike the DTARCH model, it is unnecessary to carefully
choose/estimate the thresholds in a FARCH model. Thus, the FARCH model is pro-
posed to reveal nonlinear phenomena, such as asymmetric cycles, jump resonance, and
amplitude-frequency dependence, especially in financial time series data analysis.

One important issue in time series modeling is to impose appropriate constraints to
ensure stationarity. Unfortunately, it is difficult to derive such general conditions on
the functional-coefficients αj(·) and βj(·). Inspired by the stationary conditions on the
FAR and ARCH models, we propose an empirical rule for the FARCH model as follows:
(i) αj(·) and βj(·) are bounded such that |αj(·)|≤ cj , j = 1, · · · , p, and |βj(·)|≤ dj , j =
1, · · · , q; (ii) all the roots of the characteristic function xp−c1xp−1−· · ·−cp−1x−cp = 0
are inside the unit circle, and (iii)

∑q
j=1 dj < 1. Our extensive simulation studies show

that a FARCH model satisfying the above conditions produces stationary and ergodic
time series. Instead, when one or more of the above conditions are violated, for instance,
taking αj(u) = 1.5 cos(u− 0.5) or βj(u) = 0.8 + (u− 1)2/30 in a FARCH(2,2,1) model,
the time series produced by the FARCH model are not stationary and most likely to
diverge to infinity.
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3 Bayesian Analysis of the FARCH Model

3.1 Bayesian P-splines

In the analysis of the FARCH model defined in the previous section, one important issue
is the modeling of the unknown smooth functions in (1) and (2). Inspired by Eilers and
Marx (1996) and Lang and Brezger (2004), we consider a Bayesian P-splines approach
to estimate the unknown smooth functions. The basic idea of B-splines smoothing is
to approximate the smooth functions αj(·) and βj(·) in (1) and (2) by using a sum of
B-splines (De Boor 2001) with a large number of knots in the domains of the Yt−d’s.
Specifically, αj(Yt−d) in (1) can be approximated by

αj(Yt−d) =

Kλ∑
k=1

λjkB
λ
k (Yt−d) = λTj Bλ(Yt−d), (5)

where Kλ is the number of splines determined by the number of knots, λj = (λj1, · · ·,

λjKλ)T is a vector of unknown parameters, Bλ(Yt−d) =
(
Bλ1 (Yt−d), · · · , BλKλ(Yt−d)

)T
,

and the functions Bλk (·) are B-splines basis functions with appropriate order. A natural
choice of Bλk (·) is the cubic B-splines. Consequently, αj(Yt−d) is a nonlinear function of
Yt−d. In practice, Kλ ranging from 10 to 30 provides sufficient flexibility for modeling
α(·). Similarly, βj(Yt−d) in (2) is approximated by

βj(Yt−d) =

Kγ∑
k=1

γjkB
γ
k (Yt−d) = γTj Bγ(Yt−d), (6)

where Kγ , γj = (γj1, · · · , γjKγ )T , and Bγ(Yt−d) =
(
Bγ1 (Yt−d), · · · , BγKγ (Yt−d)

)T
are

defined in a similar manner as those in (5). To satisfy the model assumption of β0(·) > 0,
βj(·) ≥ 0, j = 1, · · · , q, we impose the constraints: γT0 Bγ(Yt−d) > 0, γTj Bγ(Yt−d) ≥
0, j = 1, · · · , q for t = d+ 1, · · · , T .

Let Λ = (λT1 , · · · ,λTp )T , Γ = (γT0 , · · · ,γTq )T , Bλ
Y j(Yt−d) = Bλ(Yt−d)Yt−j for j =

1, · · · , p, Bγ
εj(Yt−d) = Bγ(Yt−d)|εt−j | for j = 1, · · · , q, and Bγ

ε0(Yt−d) = Bγ(Yt−d).
With the constant terms being disregarded, the conditional log-likelihood function can
be written as

L(Λ,Γ) = − 1

2

T∑
t=s+1

[
log(h2

t (Yt−d)) + ε2
tht(Yt−d)

−2
]

= − 1

2

T∑
t=s+1

2 log
( q∑
j=0

γTj Bγ
εj(Yt−d)

)
+

(
Yt −

∑p
j=1 λ

T
j Bλ

Y j(Yt−d)
)2

[∑q
j=0 γ

T
j Bγ

εj(Yt−d)
]2

,
(7)

where s = max{p, d, q}.
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The problem of over-fitting may occur if an excessive number of knots are used in (5)
and (6). Eilers and Marx (1996) proposed the P-spline by penalizing the coefficients of
adjacent B-splines to prevent over-fitting of the B-splines approximation and to guar-
antee sufficient smoothness of the fitted curves. This process facilitates the penalized
likelihood estimation, of which the penalized likelihood

Lp = L(Λ,Γ)−
p∑
j=1

ρλj

K∑
l=k+1

(∆kλjl)
2 −

q∑
j=0

ργj

K∑
l=k+1

(∆kγjl)
2 (8)

is maximized with respect to the unknown parameters λ and γ. In (8), ρλj and ργj
are smoothness tuning parameters for controlling the amount of penalty, and ∆k is
the difference operator of order k and defined in a recursive manner. For example,
∆λjl = λjl − λj,l−1, ∆2λjl = ∆λjl − ∆λj,l−1 = λjl − 2λj,l−1 + λj,l−2, · · ·, ∆kλjl =
∆k−1λjl −∆k−1λj,l−1. Using the matrix notation, (8) can be rewritten as:

Lp = L(Λ,Γ)−
p∑
j=1

ρλjλ
T
j Mλλj −

q∑
j=0

ργjγ
T
j Mγγj , (9)

where Mλ and Mγ are the penalty matrices derived from the specified difference penalty.
For example, with the penalty order k, Mλ = (Dk−1× · · · ×D0)T × (Dk−1× · · · ×D0),
where Dl is a (K − l − 1)× (K − l) matrix:

Dl =


−1 1 0 · · · 0
0 −1 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 −1 1

 , l = 0, · · · , k − 1.

The trade-off between flexibility and smoothness is controlled by the smoothing pa-
rameters ρλj and ργj . In the context of ML estimation, these smoothing parameters
are chosen via a cross-validation procedure. However, the computational burden for
determining the optimal values of ρλj and ργj is heavy when the number of smooth
functions in the model is large. More importantly, identifying the explicit form of cross-
validation for the conditional variance model is difficult. Therefore, for the proposed
FARCH model, the optimal values of ρλj and ργj are difficult to obtain using the ML-
based methods. In the Bayesian framework, the coefficients λ and γ are regarded as
random, and the difference penalties in (9) are replaced by their stochastic analogues,
∆kλjl = ∆kλj,l−1 +eλ,jl and ∆kγjl = ∆kγj,l−1 +eγ,jl, where eλ,jl and eγ,jl are indepen-
dently distributed as N [0, τλj ] and N [0, τγj ], respectively. The amount of smoothness is
then controlled by the additional variance parameters τλj and τγj , which correspond to
the inverse of the smoothing parameters in (9). In this work, τλj and τγj can be consid-
ered as new smoothing parameters. In the Bayesian model framework, these smoothing
parameters, along with the regression coefficients in Λ and Γ, can be obtained via the
MCMC algorithm without much difficulty.

The stochastic analogues to the difference penalties are equivalent to assigning the
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following Gaussian prior distributions to the coefficients of the B-splines basis functions:

p(λj |τλj) =

(
1

2πτλj

)(K∗λ/2)

exp

{
− 1

2τλj
λTj Mλλj

}
, j = 1, · · · , p, (10)

p(γ0|τγ0) =

(
1

2πτγ0

)(K∗γ/2)

exp

{
− 1

2τγ0
γT0 Mγγ0

}
I(γT0 Bγ > 0), (11)

p(γj |τγj) =

(
1

2πτγj

)(K∗γ/2)

exp

{
− 1

2τγj
γTj Mγγj

}
I(γTj Bγ ≥ 0), j = 1, · · · , q, (12)

where K∗λ = rank(Mλ), K∗γ = rank(Mγ), Bγ = (Bγ(Y1), · · · ,Bγ(YT−d)), and I(·) is an
indicator function. For the smoothing parameters τλj and τγj , we follow the existing
literature (Lang and Brezger 2004; Song and Lu 2012) in assigning highly dispersed
(but proper) inverse gamma priors

p(τ−1
λj )

D
= Gamma[αλ0, βλ0], for j = 1, · · · , p,

p(τ−1
γj )

D
= Gamma[αγ0, βγ0], for j = 0, · · · , q,

(13)

where αλ0, βλ0, αγ0, and βγ0 are hyperparameters with preassigned values. To obtain
highly dispersed priors, common choices for these hyperparameters are αλ0 = αγ0 = 1,
whereas βλ0 and βγ0 are small. In this article, we set αλ0 = αγ0 = 1, and βλ0 = βγ0 =
0.005.

3.2 Posterior inference

Let Y = {Y1, · · · , YT } be the set of observed time series. Let τλ = {τλ1, · · · , τλp},
τγ = {τγ0, · · · , τγq}, and θ = {Λ,Γ, τλ, τγ} include all unknown parameters in the
model. The Bayesian estimate of θ can be obtained via the sample mean of a suf-
ficiently large number of observations drawn from the posterior distribution p(θ|Y).
However, this posterior distribution is intractable because of model complexity. To
solve this problem, we use the Gibbs sampler (Geman and Geman 1984) algorithm to
simulate each component of {Λ,Γ, τλ, τγ} given others from its full conditional distri-
bution iteratively. The full conditional distributions required in the Gibbs sampler are
derived in the Appendix. Considering the nonlinearity and complexity of the model,
several full conditional distributions are nonstandard, and sampling observations from
such distributions is not straightforward. Hence, the Metropolis-Hastings (MH) algo-
rithm (Metropolis et al. 1953; Hastings 1970) is adopted to simulate observations from
nonstandard distributions. The implementation of the MH algorithm is also provided
in the Appendix.

3.3 Model comparison

A specific question regarding model selection is whether an advanced (more complex)
model is actually “better” than an elementary (simpler) one. This issue is particularly
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relevant here: If a parametric model with simple constant coefficients can provide a
better fit to the observed data, then the nonparametric model with functional coefficients
is unnecessary; or if a model with constant variance is adequate, then modeling both
the conditional mean and conditional variance is unnecessary. One simple Bayesian
model selection statistic is the deviance information criterion (DIC; Spiegelhalter et al.
2002). While DIC is advantageous due to its ease of computation, it may encounter
the problem of always selecting the most complex model as the sample size becomes
large. As a remedy, Ando (2007) proposed the Bayesian predictive information criterion
(BPIC), which evaluates the model complexity more accurately and thus lessens the
overfitting problem. However, the computation of BPIC in our model framework is
difficult because it requires the maximization of an extremely complex joint posterior
distribution. In this article, we use the Bayes factor (Kass and Raftery 1995), which is
defined by the ratio of marginal likelihoods, as the model comparison statistic. Given
that the marginal likelihood in the current model setting involves high-dimensional
integration, the computation of the Bayes factor is challenging. Although the path
sampling procedure proposed by Gelman and Meng (1998) has been demonstrated to
be useful for computing the Bayes factor in the comparison of many statistical models
(see, for example, Song and Lee 2012), it cannot be directly applied to the current
model because defining a linked model between the nonparametric FARCH model and
its parametric or semiparametric counterparts is difficult. To solve this difficulty, instead
of directly working on the competing models, we compare each of the candidate models
with the following simple intermediate model M0:

M0 : Yt = ut, ut
iid∼ N(0, 1). (14)

The Bayes factors between the competing models and M0 is obtained via the path
sampling procedure. For example, the competing models are given below:

M1: FARCH model defined by (1) and (2).

M2: Parametric ARCH model

Yt = α1Yt−1 + · · ·+ αpYt−p + εt,

ht = β0 + β1|εt−1|+ · · ·+ βq|εt−q|,

where α’s and β’s are unknown parameters.

The linked model between M1 and M0 is defined by

M1l : Yt = l

[
α1(Yt−d)Yt−1 + α2(Yt−d)Yt−2 + · · ·+ αp(Yt−d)Yt−p

]

+

[
lht(Yt−d) + (1− l)

]
ut,

ht(Yt−d) = β0(Yt−d) + β1(Yt−d)|εt−1|+ · · ·+ βq(Yt−d)|εt−q|.
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It can be seen that M1l = M1 when l = 1 and M1l = M0 when l = 0. Hence, the log
Bayes factor, logB10, can be computed via the path sampling procedure (see Song and
Lee 2012). Similarly, the linked model between M2 and M0 can be defined as

M2l : Yt = l

[
α1Yt−1 + α2Yt−2 + · · ·+ αpYt−p

]
+

[
lht + (1− l)

]
ut,

ht = β0 + β1|εt−1|+ · · ·+ βq|εt−q|.

And logB20 can be obtained accordingly. Thus, the log Bayes factor between M1 and
M2 can be calculated as

logB12 = logB10 − logB20. (15)

The interpretation of the Bayes factor between candidate models can be found in Kass
and Raftery (1995).

3.4 Bayesian Forecasting

Following Tsay (2010), we apply parametric bootstraps to compute nonlinear forecasts.
Let T be the forecast origin and l > 0 be the forecast horizon. That is, we are at
time index T and interested in forecasting YT+l. Given the observed data Y1, · · · , YT ,
the parametric bootstrap computes realizations YT+1, · · · , YT+l as follows. (i) Draw a
new stochastic error εT+1 from N(0, hT+1(YT+1−d)), where hT+1(YT+1−d) is calculated
based on (2). (ii) Compute YT+1 based on (1). (iii) Repeat steps (i) and (ii) to obtain
YT+2, · · · , YT+l. The above procedure produces a realization for YT+l. The procedure is

repeated M times to obtain M realizations for YT+l, denoted by Y
(m)
T+l , m = 1, · · · ,M .

The point forecast of YT+l and the estimated variance of the forecast are calculated as
follows,

ŶT+l =
1

M

M∑
m=1

Y
(m)
T+l , V̂ar(ŶT+l) =

1

M − 1

M∑
m=1

(Y
(m)
T+l − ŶT+l)

2.

Tsay (2010) pointed out that M = 3000 could provide satisfactory results. In this paper,
we employ mean square error (MSE) to measure the performance of point forecasts. For
an l-step-forecast, the MSE is defined as follows,

MSE(l) =
1

n

n−1∑
j=0

(ŶT+j+l − YT+j+l)
2, (16)

where n is the number of l-step-ahead forecasts available in the forecasting subsample.
In application, the model with the smallest magnitude on that measure is regarded as
the best l-step-ahead forecasting model. However, it is possible that different l may
result in the selection of different models. In addition, we employ mean variance values
(MV) to assess the robustness of the forecasting. For l-step-forecast, the MV is defined
as follows,

MV(l) =
1

n

n−1∑
j=0

V̂ar(ŶT+j+l). (17)
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The model with the smallest MV value provides the most reliable forecasts.

4 Numerical Results

4.1 Simulation study

The main objective of this subsection is to demonstrate the empirical performance of
the proposed methodology. We considered the following FARCH(2,2,1) model:

Yt = α1(Yt−2)Yt−1 + α2(Yt−2)Yt−2 + εt,

ht = β0(Yt−2) + β1(Yt−2)|εt−1|,
(18)

where α1(u) = u/20 − 0.15, α2(u) = 0.5 cos(u − 0.5), β0(u) = 0.5 + (u − 0.5)2/20, and
β1(u) = 0.2 + (u− 1)2/30. A total of 25 equidistant knots were employed to construct
cubic P-splines in the domains of Yt−2. The second-order random-walk penalty was used
in the Bayesian P-splines for estimating the unknown smooth functions. We conducted
100 replications with two different sample sizes T = 1, 000 and 2,000. The convergence
was assessed by the estimated potential scale reduction (EPSR) values (Gelman et al.
1996). Figure 1 shows the EPSR values against the iteration numbers in an arbitrarily
selected replication. Based on the EPSR plot, we found that the algorithm converged
within 10,000 iterations. We therefore took a burn-in phase of 10,000 iterations and used
an additional 10,000 observations to obtain the Bayesian results. Figures 2 and 3 present
the averages of the pointwise posterior means of functional coefficients, along with the
5%- and 95%- pointwise quantiles. Compared with their true functions (represented by
solid curves), the estimated curves capture the peaks, valleys, and change patterns of
the true functions correctly. The accuracy of the estimated curves is further assessed
through the deviance of the estimated curve f̂(u) from its true curve f(u), which is
measured by the square root of average squared errors (RASE)

RASE =

n−1
grid

ngrid∑
k=1

(
f̂(uk)− f(uk)

)2


1/2

, (19)

where {uk, k = 1, · · · , ngrid} are grid points taken in the domain of u. The boxplots
for 100 RASE values are presented in Figure 4. The RASE values are reasonably small,
which indicates that the performance of our proposed methodology is satisfactory.

To evaluate the performance of the Bayes factor, we conducted model selection based
on the above simulated data sets. The following competing models are considered:

M1: FARCH model defined in (18).

M2: Semiparametric model with functional-coefficient mean model but constant-coefficient
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Figure 1: EPSR values against the number of iterations in the simulation study.
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Figure 2: Estimates of the unknown smooth functions in the simulation study with
sample size T = 1000. The solid curves represent the true curves, the dashed and dot-
dashed curves respectively represent the estimated posterior means and the 5%- and
95%- pointwise quantiles on the basis of 100 replications.
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Figure 3: Estimates of the unknown smooth functions in the simulation study with
sample size T = 2000. The solid curves represent the true curves, the dashed and dot-
dashed curves respectively represent the estimated posterior means and the 5%- and
95%- pointwise quantiles on the basis of 100 replications.
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Figure 4: Boxplots of the RASE values in the simulation study. The data sets are
generated from the FARCH(2,2,1) model with sample sizes T = 1000 and T = 2000.
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variance model:

Yt = α1(Yt−2)Yt−1 + α2(Yt−2)Yt−2 + εt,

ht = β0 + β1|εt−1|,

where α(·)’s are unknown functions, and β’s are unknown parameters.

M3: DTARCH(2,2,1) model

Yt = [α11Yt−1 + α21Yt−2] · I(Yt−2 ≤ 0) + [α12Yt−1 + α22Yt−2] · I(Yt−2 > 0) + εt,

ht =
[
β01 + β11|εt−1|

]
· I(Yt−2 ≤ 0) +

[
β02 + β12|εt−1|

]
· I(Yt−2 > 0),

where α’s and β’s are unknown parameters.

M4: Parametric ARCH(2,1) model

Yt = α1Yt−1 + α2Yt−2 + εt,

ht = β0 + β1|εt−1|,

where α’s and β’s are unknown parameters.

We compared each of the competing models with the intermediate model M0 (see (14))
using the Bayes factor. The boxplots of the log Bayes factors between the above candi-
date models and M0 for 100 replicated data sets are presented in Figure 5. It can be seen
that the means of the log Bayes factors follow the order: M1 > M2 > M3 > M4. When
checking each of the 100 replications further, we found that the Bayes factor selected M1

in 95 replications when T = 1, 000 and in 97 replications when T = 2, 000. Moreover, we
used 100 out-of-sample observations to assess the performance of the Bayesian forecast-
ing. Table 1 presents the means of MSE and MV based on an l-step-forecast (l = 1, 2)
for 100 replications. The means of MSE and MV corresponding to M1 are the smallest,
indicating that the FARCH model provides more accurate and robust forecasts. Based
on the results of the Bayes factor and the performances of forecasting, we conclude
that M1 is the best one among the candidate models. In addition, we compared the
FARCH models with different p, d, and q values. We found that the Bayes factor chose
the FARCH(2,2,1) model consistently in each replication. The details are not presented
here to save space.

In order to check whether the FARCH model can provide a good approximation when
the true model is relatively simple, we generated time series from a parametric DTARCH
model and analyzed the data sets via the FARCH model. Then, the relevant questions
might be (i) whether the FARCH model produces reasonable estimation results, and
(ii) whether the Bayes factor selects the true (simpler) model. To address these issues,
we generated 100 data sets with the sample size of T = 2, 000 from the following
DTARCH(1,2,1) model:

Yt = −0.3Yt−1 · I(Yt−2 ≤ 0) + 0.35Yt−1 · I(Yt−2 > 0) + εt,

ht =
[
0.2 + 0.42|εt−1|

]
· I(Yt−2 ≤ 0) +

[
0.4 + 0.24|εt−1|

]
· I(Yt−2 > 0).

(20)
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Figure 5: Boxplots of the log Bayes factor values in the simulation study with sample
sizes T = 1000 and T = 2000.

1-step 2-step
Sample Sizes Model MSE MV MSE MV

T = 1000 M1 0.463 0.475 0.472 0.488

M2 0.533 0.488 0.490 0.499

M3 0.549 0.493 0.494 0.508

M4 0.563 0.507 0.509 0.519

T = 2000 M1 0.464 0.472 0.469 0.484

M2 0.484 0.480 0.486 0.492

M3 0.492 0.493 0.499 0.508

M4 0.500 0.506 0.505 0.518

Table 1: Out-of-sample forecast comparison among M1 to M4 in the simulation study.



386 Bayesian Analysis of the FARCH Model

−1.0 −0.5 0.0 0.5 1.0

−0
.4

0.
0

0.
4

u

α 1
(u

)

−1.0 −0.5 0.0 0.5 1.0

0.
1

0.
3

0.
5

u

β 0
(u

)

−1.0 −0.5 0.0 0.5 1.0

0.
1

0.
3

0.
5

u

β 1
(u

)

Figure 6: Estimates of the unknown smooth functions in the simulation study. The data
sets are generated from the DTARCH(1,2,1) model with sample size T = 2000. The
solid curves represent the true curves, the dashed and dot-dashed curves respectively
represent the estimated posterior means and the 5%- and 95%- pointwise quantiles on
the basis of 100 replications.

The generated data sets were analyzed using the FARCH(1,2,1) model. Figure 6 shows
the true curves, the averages of the pointwise posterior means of functional coefficients,
and the 5%- and 95%- pointwise quantiles. Figure 7 (left panel) presents the boxplots
for 100 RASE values, most of which are not far from zero, indicating that FARCH(1,2,1)
provides reasonable estimation for piecewise constant coefficients. Figure 7 (right panel)
presents the boxplots of the log Bayes factor values between the candidate models and
the intermediate modelM0. The mean value of the log Bayes factors for DTARCH(1,2,1)
is larger than that for FARCH(1,2,1). When checking each of the 100 replications
further, we found that the true model, DTARCH(1,2,1), was consistently selected in all
replications. Therefore, the Bayes factor picks the true model correctly regardless of
model size and complexity.

4.2 Real data analysis

As an illustration, we apply the proposed methodology to the study of the daily S&P
500 Composite Index from Jan 3, 2000 to July 27, 2011. The S&P 500 Composite
index is a stock market index based on the common stock prices of 500 top publicly
traded American companies, which is one of the most commonly followed indices and
is a good representation of the market of the U.S. economy. Our main goal is to
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Figure 7: Boxplots of the RASE values (left panel) and the log Bayes factor values (right
panel) in the simulation study. The data sets are generated from the DTARCH(1,2,1)
model with sample size T = 2000.

investigate the nonlinear features of return and volatility in terms of the S&P 500 Com-
posite Index. Let Xt be the closing price at time t, the return series Yt was defined
as Yt = 100 log(Xt/Xt−1). The total sample size was T = 2, 909. We used the first
2,700 observations to develop the model and used the remaining 209 observations as
the out-of-sample set to assess the performance of the Bayesian forecasting. We pro-
posed a FARCH(p, d, q) model to investigate the asymmetry of the conditional mean
and conditional variance as well as to determine how this asymmetric feature changes
dynamically according to lagged returns.

First, we determined the delay parameter d, the AR order p, and the ARCH order q by
comparing FARCH models with different values of p, d, and q. By rotating their values
from 1 to 3, a total of 27 candidate models were considered. We first compared each of
the candidate models with the intermediate model M0 (see (14)) using the Bayes factor.
The results are presented in Table 2, from which we can calculate the log Bayes factors
between different FARCH models via (15) and conclude that FARCH(1,2,1) is the best
model. We also compared FARCH models with larger values of p, d, and q (the results
are not presented here). The Bayes factors again chose FARCH(1,2,1), which is defined
as

Yt =α1(Yt−2)Yt−1 + εt,

ht =β0(Yt−2) + β1(Yt−2)|εt−1|.
(21)

Next, we considered several candidate models, including M1: FARCH(1,2,1) and its
semiparametric and parametric counterparts:

M2: Semiparametric model with functional-coefficient mean model but constant-coefficient
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d = 1 d = 2 d = 3

q
p

1 2 3 1 2 3 1 2 3

1 293 275 290 478 275 290 427 363 350

2 381 294 246 320 294 246 426 393 377

3 311 307 230 259 239 225 298 289 205

Table 2: The log Bayes factors between FARCH(p, d, q) models and the intermediate
model M0 in the analysis of the S&P 500 data set.

variance model:

Yt = α1(Yt−2)Yt−1 + εt,

ht = β0 + β1|εt−1|,

where α1(·) is an unknown function, β’s are unknown parameters.

M3: Semiparametric model with AR mean model but functional-coefficient variance
model:

Yt = α1Yt−1 + εt,

ht = β0(Yt−2) + β1(Yt−2)|εt−1|,

where α1 is an unknown parameter, β0(·) and β1(·) are unknown functions.

M4: DTARCH(1,2,1) model

Yt = α11Yt−1 · I(Yt−2 ≤ 0) + α12Yt−1 · I(Yt−2 > 0) + εt,

ht =
[
β01 + β11|εt−1|

]
· I(Yt−2 ≤ 0) +

[
β02 + β12|εt−1|

]
· I(Yt−2 > 0),

where α’s and β’s are unknown parameters.

M5: Parametric ARCH(1, 1) model

Yt = α1Yt−1 + εt,

ht = β0 + β1|εt−1|,

where α1 and β’s are unknown parameters.

The log Bayes factor values between M1 and M0 to M5 and M0 are equal to 478, 63, 358,
167, and 105, respectively. Again, M1 was selected. Further, we used the out-of-sample
observations to assess the performance of the Bayesian forecasting of M1 to M5. Table
3 presents the MSE and MV values of l-step-forecast (l = 1, 2) for M1 to M5. Both the
MSE and MV values of FARCH(1,2,1) are the smallest, reconfirming the best fit of the
selected model.
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1-step 2-step
Model MSE MV MSE MV
M1 0.628 1.232 0.633 1.368

M2 0.657 1.566 0.635 1.956

M3 0.628 1.237 0.633 1.375

M4 0.630 9.251 0.634 7.744

M5 0.642 9.511 0.643 7.982

Table 3: Out-of-sample forecast comparison among M1 to M5 for the S&P 500 data set.

In this study, a total of 25 equidistant knots were used to construct cubic P-splines in
the domains of Yt−2. The second-order random-walk penalty was used for the Bayesian
P-splines in the estimation of the unknown smooth functions. Figure 8 shows the EPSR
values against the iteration numbers. We found that the Gibbs sampler converged within
20,000 iterations. Hence, we discarded the first 20,000 burn-in iterations and took 20,000
additional iterations to obtain the estimation. The estimated curves, along with the 5%-
and 95%- pointwise quantiles, are depicted in Figure 9. Several interesting findings can
be derived from this analysis. First, the estimated values of α̂1(·) are slightly below zero,
implying mild negative associations between the future mean return and the historical
returns. Thus, the future mean return tends to be positive (negative) if the historical
returns are negative (positive). This patten may explain why the index values tend to
be stable as well as why the overall market is robust to minor financial events. Second,
the estimated curve β̂1(·) exhibits a U-shaped pattern, which means the persistence in
volatility tends to be high when the historical returns are high or low, reaching the
minimum when Yt−d is approximately zero. In addition, the estimated curve presents
obvious asymmetry; the values of β̂1(·) at the negative range of Yt−d are clearly larger
than those at the positive range of Yt−d. That is, the volatility persistence tends to
be higher in bear markets than in bull markets. Third, the Bayes factors selected the
model with d = 2. Fan and Yao (2003) highlighted that Yt−d should be regarded as
the “model-dependent variable,” which provides useful information on the modeling
and the dependence structure of the observed data. In this study, the delay parameter
d = 2 indicates that the historical returns will be internally reflected in the model with
one day lag. Finally, the dynamic coefficients, β̂0(·) and β̂1(·) in the volatility model
are clearly neither linear nor piecewise linear. These nonlinear patterns cannot be well
captured by the existing parametric or semiparametric time series models.

To assess the sensitivity of the Bayesian results to inputs of hyperparameters in the
prior distributions, the above analysis was repeated with disturbances of the current
prior input. Two different choices of αλ0 = αγ0 = 1, βλ0 = βγ0 = 0.05 and αλ0 =
αγ0 = βλ0 = βγ0 = 0.001 were used. We obtained the same model selection results,
close Bayesian estimates of the unknown parameters, and similar estimated curves of
the unknown smooth functions.



390 Bayesian Analysis of the FARCH Model

Figure 8: EPSR values against the number of iterations in the analysis of the S&P 500
data set under FARCH(1, 2, 1).
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Figure 9: Estimated curves in the analysis of the S&P 500 data set under
FARCH(1, 2, 1). The solid curves represent the pointwise mean curves, and the dot-
dashed curves represent the 5%- and 95%- pointwise quantiles.
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5 Discussion

In this paper, we proposed a novel FARCH model to analyze time series data. The
FARCH model generalizes both FAR and DTARCH models, thus providing a flexible
model framework to capture various nonlinear phenomena for both the conditional mean
and conditional variance. We developed a Bayesian approach coupled with Bayesian P-
splines and MCMC algorithms to obtain the estimation of the functional coefficients.
We employed a Bayesian model selection statistic, the Bayes factor, to address the hy-
pothesis testing problem. Simulation results showed that our proposed methodology had
satisfactory performance. Given that volatility is an important factor for understanding
and predicting reality and that the true relationships among time series observations
are seldom known a priori especially in the financial market, the proposed FARCH
model and the Bayesian approach are useful and important. The work in this paper
expands the scope of Bayesian nonparametric time series modeling in the statistics and
economics literature.

This research has limitations. First, we did not provide a sufficient and/or a necessary
condition to theoretically ensure the stationarity of the FARCH model because of the
model complexity. This important issue is worthy of further investigation. Second, our
proposed method cannot satisfactorily estimate a very wiggly function like β(u) = 0.2+
0.1 sin(2πu), in the conditional variance/scale model. The unsatisfactory performance
may be due to the nature of volatility. Exploring an efficient way to address this problem
is also important. Third, the innovations were assumed to follow the standard normal
distribution in our model. This assumption may not be valid in practice. Therefore,
more robust methods such as L1 regression and quantile regression may be considered for
the FARCH model. Fourth, as suggested by an anonymous referee, the current model
framework can be extended to functional-coefficient GARCH (FGARCH) models to
achieve more flexibility. However, substantial effort will be required to solve the technical
challenges in the posterior computation of such models. Finally, the current research
only handles univariate time series. A generalization to accommodate multivariate time
series data might be interesting for further research.
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Appendix: Full Conditional Distributions and Implementa-
tion of the MH Algorithm.

(1) For j = 1, · · · , p, the full conditional distribution of λj is:

p(λj |·) ∝ exp

− 1

2

T∑
t=s+1

2 log
( q∑
j=0

γTj Bγ
εj(Yt−d)

)
+

(
Yt −

∑p
j=1 λ

T
j Bλ

Y j(Yt−d)
)2

[∑q
j=0 γ

T
j Bγ

εj(Yt−d)
]2


− 1

2τλj
λTj Mλλj

.
(22)

The MH algorithm (Metropolis et al. 1953; Hastings 1970) is employed to sample ob-
servations from this complicated distribution. The details of the implementation are as

follows. At the rth iteration with the current values of {Λ(r),Γ(r), τ
(r)
λ , τ

(r)
γ }, we first

generate the candidate λ∗j from the proposed distribution

N [λ
(r)
j , σ2

λjΣ
∗
λj ],

where

Σ∗−1
λj

=

T∑
t=s+1

Bγ
Y j(Yt−d)B

γT
Y j (Yt−d) + Mλ/τλj .

Then the candidate λ∗j is accepted as the new value of λ
(r+1)
j with probability

min

1,
p(λ∗j |·)

p(λ
(r)
j |·)

.
If the candidate is rejected, then λ

(r+1)
j = λ

(r)
j , and the chain does not move. Finally,

σ2
λj is selected such that the acceptance rate is 0.25 or more (Gelman et al. 1996).

(2) For j = 0, · · · , q, the full conditional distribution of γj is:

p(γj |·) ∝ exp

− 1

2

T∑
t=s+1

2 log
( q∑
j=0

γTj Bγ
εj(Yt−d)

)
+

(
Yt −

∑p
j=1 λ

T
j Bλ

Y j(Yt−d)
)2

[∑q
j=0 γ

T
j Bγ

εj(Yt−d)
]2


− 1

2τγj
γTj Mγγj

I(γTj Bγ ≥ 0). (23)
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Note that the constraint is I(γTj Bγ > 0) for j = 0. The given distributions are non-
standard. Similarly, the MH algorithm is employed. We first generate the candidate γ∗j
from the proposed distribution

N [γ
(r)
j , σ2

γjΣ
∗
γj ]I(γjB

γ > 0), j = 0,

N [γ
(r)
j , σ2

γjΣ
∗
γj ]I(γjB

γ ≥ 0), j = 1, · · · , q,

where

Σ∗−1
γj =

1

2

T∑
t=s+1

Bγ
εj(Yt−d)B

γT
εj (Yt−d)

(
Yt −

p∑
j=1

λTj Bλ
Y j(Yt−d)

)2

+ Mγ/τγj .

This can be done by the rejection method. That is, we keep generating γ∗j from

N [γ
(r)
j , σ2

γjΣ
∗
γj ] until γ∗jB

γ > 0 when j = 0 or γ∗jB
γ ≥ 0 when j = 1, · · · , q. Then the

candidate γ∗j is accepted as the new value of γ
(r+1)
j with probability

min

1,
p(γ∗j |·)

p(γ
(r)
j |·)

.
Finally, σ2

γj is chosen such that the acceptance rate is 0.25 or more.

(3) The full conditional distributions of τλ and τγ are as follows:

p(τ−1
λj |·)

D
= Gamma

[
αλ0 +K∗λ/2, βλ0 + λTj Mλjλj/2

]
, j = 1, · · · , p, (24)

p(τ−1
γj |·)

D
= Gamma

[
αγ0 +K∗γ/2, βγ0 + γTj Mγjγj/2

]
, j = 0, · · · , q. (25)
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