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On Divergence Measures Leading to Jeffreys
and Other Reference Priors

Ruitao Liu ∗ †, Arijit Chakrabarti ‡, Tapas Samanta §, Jayanta K. Ghosh ¶

and Malay Ghosh ‖

Abstract. The paper presents new measures of divergence between prior and
posterior which are maximized by the Jeffreys prior. We provide two methods for
proving this, one of which provides an easy to verify sufficient condition. We use
such divergences to measure information in a prior and also obtain new objective
priors outside the class of Bernardo’s reference priors.
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1 Introduction

Reference priors, originally introduced by Bernardo (1979), and further developed by
Berger and Bernardo (1989, 1992a, 1992b), are quite a popular choice for objective
priors. In the construction of reference priors, the parameters are arranged in increasing
order of importance, and a step by step algorithm is used to construct conditional priors
given the parameters appearing earlier in the order. It is perhaps not unfair to say that
these priors are descendents of the Jeffreys prior with some of the standard objections
to that prior well taken care of. Moreover, when all the parameters are given equal
importance, the reference priors turn out to be the Jeffreys prior in regular problems.
For more details on the above, see, for example, the articles referred to earlier in this
paragraph. An important recent contribution in this area is Berger, Bernardo and Sun
(2009).

A major interest in the Bayesian literature is in finding objective priors which are pri-
marily algorithmic in nature, depending only on the model or equivalently the likelihood
function. Bernardo (1979) proposed such an algorithmic method based on maximizing
a particular divergence measure between prior and posterior (see (2) below), supported
on a given compact parameter space. Bernardo appealed to Shannon’s notion of missing
information in a channel (Shannon 1948), to justify the divergence and the resulting
priors, but a more direct justification for maximizing any divergence between prior and
posterior may be given as follows. If the prior is a point mass, the most informative case,
the posterior will also be a point mass no matter what the data is. So the divergence
is zero. The more informative the prior is the less we expect a given data to change it
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in the course of forming the posterior, leading to a smaller divergence. This is another
way of saying the bigger the divergence, the lower the information in the prior or the
smaller its influence on the posterior. A measure of the influence of the prior is taken
as a measure of information in the prior. For example, it is often routine to examine
prior-posterior plots to see if the prior is too informative. We want to investigate what
kinds of priors are obtained by maximizing divergences other than the one considered
by Bernardo (1979).

Bernardo (1979) considers maximization of a measure based on the Kullback-Leibler
divergence (Kullback and Leibler 1951) and Jeffreys prior comes out as the maximizer.
This was observed earlier in Ibragimov and Hasminskii (1973) in a different context. Two
other principles of constructing objective priors, namely, probability matching and weak
limits of a sort of discrete uniforms on a finite set approximating the compact parameter
space in the Hellinger metric, also lead to the Jeffreys prior, (Ghosh and Ramamoorthi
2003, Ch.8, Ghosh, Delampady and Samanta 2006, Ch. 5; see also Zhang, 1994, in this
context).

We believe that the Jeffreys prior is a basic objective prior and therefore, it is of natural
interest to find divergence measures maximized by the Jeffreys prior. One of the main
goals of this paper is to come as close as possible to characterizing such divergences.
In Section 2 of this paper, we pursue this goal. We fall short of a characterization
but provide a sufficient condition for a divergence measure to be maximized by Jeffreys
prior.

We consider observations X = (X1, X2, . . . , Xn) ∼ p(x|θ), where θ has prior density
p(θ). Let p(θ|x) and m(x) denote respectively the posterior density of θ given x and
the marginal density of X. In Section 2 we consider a class of divergence measures
D(p(·), p(·|x)) between the prior and the posterior and the corresponding average di-
vergence

J(p) =

∫
D(p(·), p(·|x))m(x)dx.

Bernardo (1979) considered the Kullback-Leibler divergence

D(p(·), p(·|x)) =

∫
log

{
p(θ|x)

p(θ)

}
p(θ|x)dθ.

It is observed that the functional J is expected to be a nice function of the prior only
asymptotically (see, e.g., Berger and Bernardo 1989) and this suggests evaluating the
divergence using the limiting posterior rather than the finite sample posterior. Thus
instead of J we may also consider the functional

Ĵ(p) =

∫
D(p(·), p̂(·|x))m(x)dx (1)

where p̂(·|x) is the limiting posterior density of θ. This may be taken either as an
approximation to J or as an idealized version of J obtained through a limit (avoiding
unacceptable discrete maximizers as shown in Berger and Bernardo 1989). From a
technical point of view we need to work with Ĵ to achieve one of our major goals,
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namely, understanding in a general way the form of divergences which will lead to the
Jeffreys prior upon maximization. In Section 2.1 we describe briefly how the asymptotic
maximization is done for the Kullback-Leibler divergence. Section 2.2 deals with a
general class of divergence measures. We note that if the divergence measure is invariant
under smooth one-to-one transformations of the parameter then the maximizing prior
is also invariant. This leads us to consider a general class of divergence measures (see
(7)) which are invariant. We find easy to verify sufficient conditions on the divergence
under which the average divergence measure Ĵ(p) is maximized by the Jeffreys prior. It
follows as an immediate consequence that for a class of divergence measures, known as
α-divergence measures (Amari 1982, 1985, Cressie and Read 1984), the Jeffreys prior
is obtained as a maximizer of Ĵ(p) for −1 < α < 0 and 0 < α < 1. Note that
the class of α-divergence measures includes the squared-Hellinger distance (α = 1/2)
and the Kullback-Leibler divergence in a limiting sense (α → 0). We also prove our
results separately for the L1 and Hellinger distances and obtain Jeffreys prior. The
proof for Hellinger distance requires some necessary modification on the argument of
our general theorem (Theorem 2.1) for the case of α-divergence with α = 1/2. The case
for the L1 distance requires a substantially different treatment and we consider this as a
stand-alone case outside the purview of our general theorem that deals with sufficiently
“smooth” divergences. Although we maximize Ĵ(p) instead of J(p), it is expected that
the Jeffreys prior will also asymptotically maximize J(p) for all these divergences. For
instance, we have verified this for the L1 distance. A more precise statement of this
result is presented in the Appendix.

In Section 3 we present an alternative approach based on the so called “shrinkage argu-
ment”, due to one of us, which deals with J(p) directly for the α-divergence measures.
It is shown that the Jeffreys prior maximizes J(p) for the α-divergence measures for
−1 < α < 0 and 0 < α < 1. Section 3.3 deals with an α-divergence measure with
α = −1, known as chi-square divergence. The resulting prior turns out to be different
from Jeffreys prior. This is illustrated through a couple of examples. We explain at the
end of Section 2 why we require two methods of proof in Sections 2 and 3 to obtain our
results.

After obtaining new divergence measures (other than Kullback-Leibler divergence) that
give rise to Jeffreys prior, an immediate natural question is whether we get a satisfactory
reference prior if we use such a new divergence measure and proceed to construct the
reference prior following the step by step algorithm of Bernardo. It may be recalled
that Bernardo (1979) and Berger and Bernardo (1992a, 1992b) proposed a stepwise
procedure for finding reference priors when the parameters can be arranged according
to their order of importance. In particular, the situation where some of the parameters
are nuisance parameters can also be handled using this approach. In Section 4 we
consider selection of priors in the presence of nuisance parameters using the class of
α-divergence measures considered in Section 2. We briefly outline a derivation of the
result without going into the details and give one example. We present this result very
briefly, as it is a problem, closely related to the main theme of the paper, which is to be
studied more extensively in the future. We would like to mention in this context that
an innovative use of the Berger-Bernardo strategy for constructing reference priors to
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avoid the marginalization paradox can be found in Fraser et al. (2010). A relatively
complete treatment of reference priors in the presence of nuisance parameters can be
found in Yuan and Clarke (2004).

Finally, we would like to mention another approach to measuring information in a prior
(without going into details), which seems to be related in a sense to the approach de-
scribed in this article. Bernardo’s concern was with estimation problems. An approach
to measuring information in a prior for testing problems by associating with it a con-
ceptual equivalent (expected) sample size has been developed by Clarke (1996) and Lin,
Pittman and Clarke (2007). A similar approach in the context of clinical trials can be
found in Morito, Thall and Mueller (2008, 2010).

2 Jeffreys Prior as a Maximizer of Divergence between
Prior and Posterior

Jeffreys prior is one of the widely used objective priors which is defined as

π(θ) ∝ |I(θ)|1/2,

where I(θ) denotes the Fisher information matrix and |I(θ)| denotes its determinant.
An important property of this prior is that it is invariant under one-to-one transforma-
tions of the parameter θ and thus does not lead to inconsistencies if applied to different
parametrizations of the same problem. This means Jeffreys priors π(θ) for θ and π∗(η)
for any smooth one-to-one function η(θ) of θ are related by the usual Jacobian formula

π(θ) = π∗(η(θ))

∣∣∣∣dηdθ
∣∣∣∣ .

In this section we show how Jeffreys prior can be obtained as a maximizer of divergence
between prior and posterior for a class of divergence measures. Section 2.1 considers the
Kullback-Leibler divergence. Section 2.2 presents a class of divergence measures which
are maximized by the Jeffreys prior. It also presents specific examples of divergences
falling within this class.

2.1 Jeffreys Prior as a Maximizer of Kullback-Leibler Divergence be-
tween Prior and Posterior

The method presented in this subsection is well known, but we describe it briefly to
help later exposition.

Let X = (X1, . . . , Xn) ∼ p(x|θ), x = (x1, . . . , xn) ∈ X ,θ ∈ Θ ⊂ Rk, where θ has prior
density p(θ). Let p(θ|x) and m(x) denote respectively the posterior density of θ given
x and the marginal density of X. Following Lindley (1956), Bernardo (1979) used the
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average Kullback-Leibler divergence between prior and posterior, namely,

J(p) =

∫
X

[∫
Θ

log

{
p(θ|x)

p(θ)

}
p(θ|x)dθ

]
m(x)dx (2)

=

∫
Θ

{∫
X

[∫
Θ

log

{
p(θ′|x)

p(θ′)

}
p(θ′|x)dθ′

]
p(x|θ) dx

}
p(θ) dθ,

as a measure of information about θ provided by the experiment. This measure was
derived from the work of Shannon (1948). Maximizing J(p) with respect to p will mean
minimizing information in a prior. We briefly describe below how the (asymptotic)
maximization is done.

Fix an increasing sequence of compact rectangles Ki whose union is the whole parameter
space Θ. Fix i and consider only priors pi supported on Ki and let n→∞.

We assume X1, . . . , Xn are i.i.d. and also assume conditions under which the posterior
distribution is asymptotically normal in an appropriate sense (see Clarke and Barron
1990, 1994). Then the functional J can be suitably approximated by

Ĵ(pi) =

∫
Ki

{∫
X

[∫
Rd

log p̂i(θ
′|x)p̂i(θ

′|x) dθ′
]
p(x|θ) dx

}
pi(θ) dθ

−
∫
Ki

(log pi(θ))pi(θ) dθ

where p̂i is the approximating Nk(θ̂n, I
−1(θ)/n) density, θ̂n being the maximum like-

lihood estimator (MLE) of θ. We now use a well-known fact about the exponent of a
multivariate normal density (see, e.g., Ghosh et al. 2006, p.127) and get

Ĵ(pi) =
k

2
log n− {k

2
log(2π) +

k

2
}+

∫
Ki

log

{
(det(I(θ)))

1
2

pi(θ)

}
pi(θ) dθ. (3)

The prior that maximizes the above is given by

pi(θ) =

{
ci[det(I(θ))]1/2 on Ki;

0 elsewhere
(4)

where ci is a normalizing constant such that (4) is a probability density on Ki.

2.2 Divergence Measures Leading to Jeffreys Prior

The measure J(p), considered in Section 2.1, is based on the average Kullback-Leibler
divergence between prior and posterior. The question that we try to address in this
section is for which kind of divergence measures do the corresponding functionals J(p),
when maximized with respect to the prior p, lead to Jeffreys prior. In the next few
paragraphs we try to motivate the choice of a general class of divergence measures
within which we will restrict our attention for this investigation.



336 Divergence Measures and Reference Priors

An important property of the (average) Kullback-Leibler divergence J(p), as given in
(2), is that it is invariant under smooth one-to-one transformations of the parameter.
This is because for a smooth one-to-one function η(θ) of θ,

p(θ|x)

p(θ)
=
pη(η|x)

pη(η)

and therefore,

J(p) =

∫
X

∫
log

p(θ|x)

p(θ)
p(θ|x)dθm(x)dx

=

∫
X

∫
log

pη(η|x)

pη(η)
pη(η|x)dηm(x)dx. (5)

Here pη(η) and pη(η|x) denote the prior and posterior densities of η. This notion of
invariance is the same as Shannon’s (Shannon 1948) requirement of invariance under
change of dominating measure (see, e.g., Ghosh et al. 2006, p. 124). That J(p) is
invariant implies that the maximizing prior, if unique, is also invariant under smooth
one-to-one transformations. For uniqueness we need a concavity assumption for the
functional J . We simply use the fact that the maximum of J(p) over all p(θ) and the
maximum of Jη(pη) over all pη are the same and the corresponding unique maximizers

p∗(θ) and p
η
∗ (η) are related by the usual Jacobian formula

p∗(θ) = p
η
∗ (η(θ))

∣∣∣∣dηdθ
∣∣∣∣ .

We now consider a divergence measure Dp(x) = D(p(·), p(·|x)) between the prior and
the posterior and the corresponding functional

J(p) =

∫
X
Dp(x)m(x)dx

=

∫ ∫
Dp(x)p(x|θ)dxp(θ)dθ. (6)

Examples of such divergence measures include the Hellinger distance with

Dp(x) =

{∫
|p 1

2 (θ)− p 1
2 (θ|x)|2dθ

} 1
2

and the Lr-distance, r > 0, with

Dp(x) =

{∫
|p(θ)− p(θ|x)|rdθ

} 1
r

.

Our aim is to see for which kind of divergence measures the corresponding functionals
in (6) are maximized by the Jeffreys prior, a prior invariant under smoooth one-to-
one transformations. Thus we need to restrict ourselves within the class of divergence
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measures for which the maximizers of (6) remain invariant under such transformations.
Keeping this in mind, we consider a class of divergence measures of the form

Dp(x) =

∫
Θ

d

 p(θ′)

p(θ′|x)

p(θ′|x)dθ′ (7)

for some function d(·) defined on (0,∞). The divergence measure (7) with convex d(·)
is indeed the same as what was proposed as a measure of divergence by Ali and Silvey
(1966); see also Csiszár (1963) and Morimoto (1963). Following the same arguments
as used above for the Kullback-Leibler divergence, one can see that the maximizer of
the functional (6) using the divergence measure (7) will be invariant under smooth
one-to-one transformations. Particular examples are the Kullback-Leibler divergence
(d(u) = − log(u)), L1-distance (d(u) = |u − 1|) and α-divergences (see (27)) which
include the squared Hellinger distance (α = 1/2, d(u) = (

√
u − 1)2). It is to be noted

that the functional (6) corresponding to the Lr-distance with r 6= 1 is not invariant.

We now restrict attention to the class of divergence measures Dp(x) of the form (7).
We consider the multiparameter case and the set up of Section 2.1.

As in Section 2.1 we consider a sequence of increasing compact rectangles whose union
is the whole of Θ. We fix such a compact rectangle K and consider priors p(·) supported
on K. As mentioned in the Introduction (see (1) and the paragraph following it), we

replace the posterior p(·|x) by its limit Nk(θ̂n, (nI(θ))−1) in (7) and (6) to obtain the
functional

Ĵ(p) =

∫ ∫
D̂p(x)p(x|θ) dx p(θ)dθ (8)

where

D̂p(x) =

∫
K

d

 p(θ′)

p̂(θ′|x)

p̂(θ′|x)dθ′ (9)

and p̂(·|x) is the Nk(θ̂n, (nI(θ))−1) density. We present below a set of sufficient condi-
tions on the function d(·) under which the functional Ĵ(p) is asymptotically maximized
by the Jeffreys prior restricted to K.

We assume that d(·) is of the form

d(u) = A+Bd0(u) (10)

where A and B are constants and either

(i) d0(uv) = d0(u)d0(v) for all u, v > 0 (11)

or
(ii) d0(uv) = d0(u) + d0(v) for all u, v > 0. (12)

We also make the following assumptions
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A(i) For some constant B0 > 0 and for some u0 > 0 and α < 1,

|d0(u)|≤ B0u
α

for all u ≥ u0.

A(ii) The function d0(·) has a continuous derivative d′0(·).

A(iii) The function defined by d∗(u) = Bd0(1/u), u > 0, is a concave function of u.

We now have the following result.
Theorem 2.1. Consider priors p(θ), positive and differentiable on K with continuous
partial derivatives. Assume that I(θ) is positive and continuous on K. Then under
assumptions A(i) and A(ii), for any d(·) of the form given in (10)-(12), we have

Ĵ(p) = A+Bd0(n−k/2)

[
C0

∫
K

d0

(
p(θ)

|I(θ)|1/2

)
p(θ)dθ + o(1)

]
(13)

for some constant C0 > 0 for Case (i), and

Ĵ(p) = A+Bn +B

∫
K

d0

(
p(θ)

|I(θ)|1/2

)
p(θ)dθ + o(1) (14)

for some constant Bn depending on n for Case (ii).

Further, under assumption A(iii), for both the cases, Ĵ(p) is asymptotically maximized
by the Jeffreys prior restricted to K (unless d0(u) ≡ 1/u).

Proof. Making a change of variable t =
√
nI1/2(θ)(θ′ − θ̂n) in (9), we have

D̂p(x) = A+B

∫
Kn

d0

p
(
θ̂n + I−1/2(θ)t/

√
n
)

nk/2|I(θ)|1/2φk(t)

φk(t)dt, (15)

where Kn =
√
nI1/2(θ)(K− θ̂n) and φk(t) = (2π)−k/2 exp(− 1

2

∑k
i=1 t

2
i ) is the standard

k-dimensional normal density.

We first prove for Case (i). Let

∫
Kn

d0

p
(
θ̂n + I−1/2(θ)t/

√
n
)

nk/2|I(θ)|1/2φk(t)

φk(t)dt = I1 + I2 (16)

where I1 and I2 are the integrals over S1n = {‖t‖≤
√
c log n} ∩Kn and S2n = {‖t‖>√

c log n} ∩Kn respectively for a constant c > 0. Below, many of the statements made
are valid only for sufficiently large n but it will not be mentioned explicitly.



R. Liu, A. Chakrabarti, T. Samanta, J.K. Ghosh and M. Ghosh 339

Since I(θ) is positive and continuous on K, p(θ) is continuous on K and d0(u) is
continuous, we have

|I2| ≤ |d0(n−k/2)|·|d0(|I(θ)|−1/2)|

×
∫
S2n

∣∣∣d0

(
p
(
θ̂n + I−1/2(θ)t/

√
n
))∣∣∣ · |d0(φ−1

k (t))|φk(t)dt

≤ C1|d0(n−k/2)|
∫
{‖t‖>

√
c logn}

|d0(φ−1
k (t))|φk(t)dt

for some constant C1 > 0. By Assumption A(i), ‖t‖>
√
c log n implies |d0(φ−1

k (t))|≤
B0(φ−1

k (t))α and therefore,

|I2| ≤ B0C1|d0(n−k/2)|
∫
{‖t‖>

√
c logn}

(φk(t))1−αdt

≤ C2|d0(n−k/2)|n−(1−α)c/4 (17)

for some constant C2 > 0. The same arguments also lead to∣∣∣∣∣∣∣
∫
S2n

d0

p(θ̂n)n−k/2|I(θ)|−1/2φ−1
k (t)

φ−1
k (t)dt

∣∣∣∣∣∣∣
≤ C2|d0(n−k/2)|n−(1−α)c/4. (18)

Now, by the Mean-value Theorem,

d0

(
p

(
θ̂n + I−1/2(θ)

t√
n

))
= d0(p(θ̂n)) + d′0(p(θ∗n))p′(θ∗n)I−1/2(θ)

t√
n

(19)

where p′(θ) =

 ∂
∂θ1

p(θ), · · · , ∂
∂θk

p(θ)

 is the vector of partial derivatives of p(θ) and

θ∗n lies between θ̂n and θ̂n + I−1/2(θ) t√
n

. Therefore,

I1 =

∫
S1n

d0

p(θ̂n)n−k/2|I(θ)|−1/2φ−1
k (t)

φ−1
k (t)dt (20)

+ d0(n−k/2|I(θ)|−1/2)

∫
S1n

d′0(p(θ∗n))p′(θ∗n)I−1/2(θ)
t√
n
d0(φ−1

k (t))φk(t)dt.

Since d′0(·) and p′(·) are continuous and I(θ) is positive and continuous on K, the second
term on the right hand side of (20) is bounded above in absolute value by

C3|d0(n−k/2)|
(

log n

n

)1/2 ∫
Rk
|d0(φ−1

k (t))|φk(t)dt (21)
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for some constant C3 > 0. By Assumption A(i),∫
|d0(φ−1

k (t))|φk(t)dt <∞

and therefore, (21) is bounded above by C4

√
logn
n for some constant C4 > 0. Note that

all the constants C1, C2, C3 and C4 are free of θ and x. Thus we have from (16)-(18)
and (20),

∫
Kn

d0

p
(
θ̂n + I−1/2(θ)t/

√
n
)

nk/2|I(θ)|1/2φk(t)

φk(t)dt (22)

= d0(n−k/2)


∫

Kn

d0(φ−1
k (t))φk(t)dt

d0

p(θ̂n)/
√
|I(θ)|)

+ ζn(x,θ)


where

|ζn(x,θ)|≤ C5

[√
log n

n
+ n−(1−α)c/4

]
for some constant C5 > 0 not depending on x and θ. From (8), (15) and (22), by
application of the dominated convergence theorem twice, one can now show that

Ĵ(p) = A+Bd0(n−k/2)

C0

∫
K

d0

p(θ/√|I(θ)|

p(θ)dθ + o(1)


where C0 =

∫
Rk d0(φ−1

k (t))φk(t)dt. We here use the facts that under any fixed θ,

θ̂n → θ almost surely,
∫
|d0(φ−1

k (t))|φk(t)dt <∞, I(θ) is positive and continuous on K
and continuity of d(·) and p(·). By Assumption A(iii) and an application of Jensen’s
Inequality, the result is proved.

We now prove for Case (ii). From (12) and (19), we have

∫
Kn

d0

p
(
θ̂n + I−1/2(θ)t/

√
n
)

nk/2|I(θ)|1/2φk(t)

φk(t)dt

=

∫
Kn

d0

 p(θ̂n)

nk/2|I(θ)|1/2φk(t)

φk(t)dt

+

∫
Kn

d′0(p(θ∗n))p′(θ∗n)I−1/2(θ)
t√
n
φk(t)dt. (23)
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The second term in the right hand side of (23) is bounded above in absolute value by

C6
1√
n

∫
Rk
‖t‖φk(t)dt

which is bounded above by C7
1√
n

. Here C6 and C7 are positive constants not depending

on x and θ. Therefore, from (15) and (23), we have

D̂p(x) = A+Bd0(n−k/2)

∫
Kn

φk(t)dt

+ B

∫
Kn

d0(φ−1
k (t))φk(t)dt+Bd0

 p(θ̂n)√
|I(θ)|

∫
Kn

φk(t)dt+ ζn(x,θ),

where |ζn(x,θ)|≤ C8
1√
n

for some constant C8 > 0, not depending on x and θ. There-

fore, as in Case (i), using the dominated convergence theorem we have

Ĵ(p) = A+Bn +B

∫
K

d0

 p(θ)√
|I(θ)|

p(θ)dθ + o(1)

where Bn is a constant depending on n. Under assumption A(iii), the result follows
from an application of Jensen’s Inequalty. Q.E.D.

Remark 2.1. We would like to make some comments about the sufficient conditions
presented in Theorem 2.1 above. Consider the functional Ĵ(p) given by (8) and (9). By
a change of variable, we have

D̂p(x) =

∫
d

p
(
θ̂n + I−1/2(θ)t/

√
n
)

nk/2|I(θ)|1/2φk(t)

φk(t)dt, (24)

φk(t) being the standard k-dimensional normal density. Since the integration is with
respect to a normal density, for sufficiently well behaved d(·), the contribution to the
integral for t outside a set of the form {‖t‖≤

√
c log n} will be negligible for appropriate

c. Indeed, assuming a condition on the growth of d(·), (24) can be approximated as

D̂p(x) ≈
∫
d

 p(θ̂n)

nk/2|I(θ)|1/2φk(t)

φk(t)dt (25)

in an appropriate sense, so that the functional Ĵ(p) may be obtained as

Ĵ(p) = J∗n(p) + ζn (26)
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where

J∗n(p) =

∫ ∫
d

 p(θ)

nk/2|I(θ)|1/2φk(t)

φk(t)dtp(θ)dθ

and ζn is negligible with respect to J∗n(p). For example, if we assume that |d′(u)|≤ uλ

for some λ < 0, it also implies Condition A(i) of Theorem 2.1 and may be used to prove
(26).

We note that if the function d∗(u) = d( 1
u ) is a concave function of u, by Jensen’s

Inequality, J∗n(p) is maximized (with respect to p(·)) by the Jeffreys prior restricted to
K. But this does not ensure that Ĵ(p) is also asymptotically maximized by the Jeffreys
prior. For example, J∗n(p) may split into two parts as J∗n(p) = J1n+J2n(p) where J1n is
a term free of p(·) (as in the case of Kullback-Leibler divergence). In general we cannot
exclude the possibility that the part of J2n(p), that involves p(·), is of smaller order than
ζn in which case ζn cannot be neglected for the purpose of asymptotic maximization. A
natural way to ensure that the asymptotic maximizers of J∗n(p) and Ĵ(p) are the same
is to assume a form of d(·) such that the integral (24) can be simplified to a form where
a term only involving n (such as d0(n−k/2) in the proof of Theorem 2.1) comes out as

a multiplicative or an additive factor to an integral involving only p(θ̂n),
√
|I(θ| and

φk(t). Our conditions (10)-(12) ensure that this is indeed the case.

Remark 2.2. We have derived Jeffreys prior as an objective prior. Typically the Jef-
freys prior would be improper and hence there is a possibility of an improper posterior.
For any improper prior with a low-dimensional parameter, one typically requires a suf-
ficient amount of data to have a proper posterior. A rule of thumb that is often valid is
that one needs k units of data for k unknown parameters. Moreover, the Jeffreys prior
has a proper posterior in many examples. In fact there is a general belief that Jeffreys
prior always has a proper posterior under the condition mentioned above except for
mixture models. For mixture models the likelihood is rather complicated and even the
Jeffreys prior will have an improper posterior if the data do not have samples from all
components of the mixture.

We consider below examples of d(·) for which Theorm 2.1 holds.

Example 2.1 (Kullback-Leibler divergence). For the Kullback-Leibler divergence
d(u) = d0(u) = − log u, u > 0, which satisfies (12). The other conditions are also
satisfied and therefore,

Ĵ(p) = Cn +

∫
K

log
(
|I(θ)|1/2/p(θ)

)
p(θ)dθ + o(1)

which is the same as what is obtained in (3).

Example 2.2 (α-divergence). We now consider a class of divergence measures, known
as α-divergences (Amari 1982, 1985, Cressie and Read 1984), which are defined by (7)
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with
d(u) = (αu+ (1− α)− uα)/(α(1− α)). (27)

Particular choices of α correspond to standard divergence measures. The α-divergence
smoothly connects the squared Hellinger distance (α = 1/2), Kullback-Leibler diver-
gence (α→ 0), and Chi-square divergence (α = −1). It has the following basic proper-
ties:

� Nonnegativity: For any real valued α, the α-divergence is nonnegative, and equal
to zero if and only if the prior is identical to the posterior.

� Convexity: The α-divergence is convex with respect to both prior and posterior.

� Continuity: The α-divergence is a continuous function of the real variable α.

A very nice review of the α-divergence can be found in Cichocki and Amari (2010).

For the α-divergence measure d(·) can also be taken to be

d(u) =
1

α(1− α)
− 1

α(1− α)
uα, u > 0,

which satisfies (10) and (11) and also satisfies A(i) if α < 1. We consider the cases
−1 < α < 0 and 0 < α < 1. In both these cases d∗(u) = − 1

α(1−α)u
−α is a concave

function and by Theorem 2.1

Ĵ(p) =
1

α(1− α)
− n−α/2

α(1− α)

[
C0

∫
K

(
|I(θ)|1/2

p(θ)

)−α
p(θ)dθ + o(1)

]
(28)

which is asymptotically maximized by the Jeffreys prior restricted to K.

For the case α = −1, the conditions of the theorem are satisfied but
d0(u) = 1

u implies that the term that we maximize with respect to p, viz.,∫
d0

(
p(θ)/|I(θ)|1/2

)
p(θ)dθ, is free of p(·). Thus the approximation of Ĵ(p) obtained

in Theorem 2.1 cannot be used and we need to look at smaller order terms in the ex-
pansion of Ĵ(p) which can be obtained using an asymptotic expansion of posterior (see,
e.g., Ghosh 1994, p. 47).

What we have obtained in Theorem 2.1 is based on the leading term p̂(θ′|x) of the
expansion of the posterior. We could use such an expansion to get smaller order terms
of Ĵ(p) which could be maximized with respect to p(·) but the calculations would be
very messy. We present in Section 3.3 an alternative approach based on the so called
“shrinkage argument” due to one of the authors, which makes the derivation much
simpler. Interestingly, for the case of α = −1, the maximizer of J(p) turns out to be
different from the Jeffreys prior.

Example 2.3 (Hellinger distance). Recall that the squared Hellinger distance is
given by (7) with d(u) = (

√
u−1)2 or d(u) = 2−2

√
u for which Theorem 2.1 is applicable

as seen in Example 2.2 taking α = 1/2. For the Hellinger distance, Theorem 2.1 is not
directly applicable since J(p) corresponding to Hellinger distance is not expressible in
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the form (6) where Dp(x) is as in (7) for some d(·). Instead, we make a slight change

in the definition of Dp(x) (and D̂p(x)) as given in (7), by taking the square root of
the right hand side of (7) with d(u) = 2− 2

√
u. Again, as in (15), making a change of

variable t =
√
nI1/2(θ)(θ′ − θ̂n), we have

D̂p(x) =

2− 2

∫
Kn

d0

p
(
θ̂n + I−1/2(θ)t/

√
n
)

nk/2|I(θ)|1/2φk(t)

φk(t)dt

1/2

where d0(u) = u1/2, u > 0, and Kn and φk(t) are as in (15). Then as shown in the
proof of Theorem 2.1, Case (i), for any constant c > 0,

∫
Kn

d0

p
(
θ̂n + I−1/2(θ)t/

√
n
)

nk/2|I(θ)|1/2φk(t)

φk(t)dt

= d0(n−k/2)

[(∫
Kn

d0(φ−1
k (t))φk(t)dt

)
d0(p(θ̂n)/|I(θ)|1/2) + ξn(x,θ)

]
where |ξn(x,θ)|≤ C1

[
n−1/2(log n)1/2 + n−(1−α)c/4

]
for some constant C1 > 0 not de-

pending on x and θ. Therefore,

D̂p(x) =

[
2− 2n−k/4Bn(p(θ̂n)/|I(θ)|1/2)1/2 +O

(
(log n)1/2

n1/2nk/4

)]1/2

=
√

2

[
1− 1

2
n−k/4Bn(p(θ̂n)/|I(θ)|1/2)1/2 +O

(
(log n)1/2

n1/2nk/4

)
+O(n−k/2)

]
where Bn =

∫
Kn

d0(φ−1
k (t))φk(t)dt. As θ̂n → θ almost surely, we then have

Ĵ(p) =
√

2 +Bn−k/4
∫
K

g

(√
|I(θ)|
p(θ)

)
p(θ)dθ + o(n−k/4), (29)

with g(u) = −u−1/2, u > 0 (which is concave), and B = 1
2

∫
Rk d0(φ−1

k (t))φk(t)dt. Thus

the (asymptotic) maximizer of Ĵ(p) is the Jeffreys prior restricted to K.

Remark 2.3. We have proved Theorem 2.1 for sufficiently smooth functions d(·). The
function d(u) = |u− 1| that corresponds to L1-distance is not such a smooth function,
so the general arguments for a smooth d(·) does not work for L1-distance. For the L1-
distance, we take a somewhat different route from what is described above for a smooth
d(·). We show below that for the L1-distance, an expansion of Ĵ(p) similar to that
obtained in Theorem 2.1 can be obtained and Jeffreys prior asymptotically maximizes
Ĵ(p).

Proof for L1-distance. For simplicity we consider the case with k = 1. We assume that
I(θ) is positive and continuous and consider only positive, continuously differentiable
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priors p(θ) on a fixed compact subset [a, b] of Θ. For the L1-distance d(u) = |u− 1| and

therefore, from (9), making a change of variable t =
√
nI(θ)(θ′ − θ̂n), we have

D̂p(x) =

∫
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p

θ̂n + t/
√
nI(θ)


√
nI(θ)

− φ(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
dt

under a fixed θ, where φ(t) is the standard normal density. We then note that

∫
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p

θ̂n + t/
√
nI(θ)


√
nI(θ)

− φ(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
dt

= 2

∫
t∈A


φ(t)−

p

θ̂n + t/
√
nI(θ)


√
nI(θ)


dt

= 2− 2

∫
t∈Ac

φ(t)dt− 2

∫
t∈A

p
(
θ̂n + t/

√
nI(θ)

)
√
nI(θ)

dt (30)

where

{t ∈ A} =

t : φ(t) > p

θ̂n + t/
√
nI(θ)

/√nI(θ)


=

t : |t|<

 log n+ log(I(θ)/2π)− 2 log p

θ̂n + t/
√
nI(θ)




1
2

 .
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Using the Mean-value Theorem we have

∫
t∈A

p
(
θ̂n + t/

√
nI(θ)

)
√
nI(θ)

dt

=

∫
t∈A∩Kn

p(θ̂n)√
nI(θ)

dt+

∫
t∈A∩Kn

t/√nI(θ)

p′(θ∗n)

√
nI(θ)

dt (31)

where Kn = [
√
nI(θ)(a−θ̂n),

√
nI(θ)(b−θ̂n)] and θ∗n lies between θ̂n and θ̂n+t/

√
nI(θ).

By our assumptions on I(·) and p(·), and using tail properties of the standard normal
distribution, we have ∫

t∈Ac
φ(t)dt ≤ C1(n log n)−1/2 (32)

and by the same assumptions,

∫
t∈A∩Kn

∣∣∣(t/√nI(θ)
)
p′(θ∗n)

∣∣∣√
nI(θ)

dt ≤ C2
log n

n
(33)

where C1 and C2 are constants not depending on x, θ, n. As θ̂n → θ almost surely under
any fixed θ, using the dominated convergence theorem twice, we have from (30)-(33),

Ĵ(p) = 2 + 4

(
log n

n

)1/2
b∫
a

g

(√
I(θ)

p(θ)

)
p(θ)dθ + o

((
log n

n

)1/2
)

(34)

with g(x) = − 1
x , x > 0, which is concave. Now by an application of Jensen’s Inequality,

(34) is asymptotically maximized by Jeffreys prior restricted to [a, b]. Q.E.D.

The method used in the present section helps us make significant steps towards our
goal of characterizing the divergence measures leading to Jeffreys prior, i.e., to find
conditions on a divergence measure under which it is asymptotically maximized by the
Jeffreys prior. Here we work with the measure Ĵ(p), an idealized version of J(p) obtained
through a limit, as it is easier to deal with for the purpose of characterization. Above we
have obtained Jeffreys prior as the asymptotic maximizer of Ĵ(p). The prior maximizing
Ĵ(p) also (asymptotically) maximizes J(p) if J(p) can be approximated by Ĵ(p) up to
the correct order in the sense that the error in approximating J(p) by Ĵ(p) is of the
same order as the error term in the expansion of Ĵ(p). For instance, we have proved
this for the L1-distance (see Appendix for a formal statement). In the proof we need
to establish a certain asymptotic property of the L1-distance between p(·|x) and p̂(·|x).
This requires technical calculations and uses results already available in the literature
(namely, Ghosh et al. (1982)). For the case of α-divergence, we will need a similar
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result about the asymptotic property of the L1-distance between pα(·)p(1−α)(·|x) and
pα(·)p̂(1−α)(·|x). Proving such results will need more technical work compared to that
needed for the L1-distance. We didn’t try such calculations as we have an alternative
approach for the α-divergences based on the “Shrinkage Argument” presented in Section
3 that deals with J(p) directly. In the particular case of α = −1, we need to use an
asymptotic expansion of the posterior and we use the shrinkage argument to obtain our
results. The approach using the “Shrinkage Argument” directly expresses J through
an integral of the expectation of a power of the posterior density. An expansion of the
posterior density already available in the literature is employed while approximating the
said expectation, and this in turn produces an expansion for J . For the case of α 6= −1,
only the leading term of the expansion of J is needed, while for the case of α = −1,
higher order terms in the expansion are used since the first order term does not involve
the prior. If one wants to prove the result for the case of α = −1 in the approach
of Section 2, one would need two new major results. First, a result like Theorem 2.1
needs to be proved where in the definition of Ĵ , the posterior normal approximation
is replaced by a higher order expansion of the posterior. Proving such a result with
increasingly complex higher order terms will be messy. Once such a result is proved,
one has to then show that J is appropriately close to this new Ĵ . For this one would
need a result on asymptotic property of the L1 distance between pα(·)p(1−α)(·|x) and

pα(·)p̂(1−α)
1 (·|x) where p̂1(·|x) would be a higher order expansion of the posterior density

as just mentioned. The “Shrinkage Argument” deals with such higher order terms in a
simpler way.

3 An Alternative Approach to α-divergences – The Shrink-
age Argument

What we present in this section is a multiparameter generalization of previous work
of Ghosh, Mergel and Liu (2011). This result was briefly mentioned in Ghosh (2011).
Here we give a detailed description. We consider selection of priors for the regular
multiparameter family of distributions based on maximizing the α-divergence measures
(see (35) below). We first provide a general expression for the expected α-divergence
measure between the prior and the posterior and then use it to obtain a maximizing
prior.

3.1 The Expected α-divergence Between the Prior and the Posterior

Consider the set up of Section 2.1 and consider a prior p(θ) which puts all its mass
on a compact set in Rk. The general expected α-divergence between the prior and the
posterior is given by

Jα(p) =
1−

∫ [∫
pα(θ)p1−α(θ|x) dθ

]
m(x)dx

α(1− α)
(35)
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(see (7) and (27)). For α = 0 or 1, we need to interpret Jα(p) as its limiting value
(when it exists). In particular,

J0(p) =

∫ ∫ {
log

p(θ |x)

p(θ)

}
p(θ |x)m(x) dθdx, (36)

which is the KL divergence between the prior and the posterior considered for example
in Lindley (1956), Bernardo (1979), Clarke and Barron (1990, 1994), and Ghosh and
Mukerjee (1992).

From the relation p(x|θ)p(θ) = p(θ |x)m(x), one can reexpress Jα(p) given in (35) as

Jα(p) =
1−

∫ ∫
pα+1(θ)p−α(θ |x)p(x|θ) dx dθ

α(1− α)
(37)

=
1−

∫
pα+1(θ)E (p−α(θ |X)|θ) dθ

α(1− α)
,

where E(·|θ) denotes the conditional expectation given θ.

Let ln(θ) = n−1 log p(x|θ) and let I(θ) =
(
Ijr(θ)

)
k×k

denote the per observation Fisher

information matrix. We write I−1(θ) =
(
Ijr(θ)

)
k×k

. Let p(x|θ) denote the density of

a single observation.

Before stating the main theorem of this section, we need a few more notations. Let
θ̂n = (θ̂n1, · · · , θ̂nk)T denote the MLE of θ. Also, let ∇ln(θ) and ∇2ln(θ) denote the

gradient and the Hessian of ln(θ) and let În = −∇2ln(θ̂n). Further, let

ajrs =
[
∂3ln(θ)/∂θj∂θr∂θs

]
|
θ=

ˆθn
, ajrsu =

[
∂4ln(θ)/∂θj∂θr∂θs∂θu

]
|
θ=

ˆθn
,

Ajrs = E
[
∂3ln(θ)/∂θj∂θr∂θs|θ

]
, Ajrsu = E

[
∂4ln(θ)/∂θj∂θr∂θs∂θu|θ

]
,

pj(θ) = ∂p/∂θj , pjr(θ) = ∂2p/(∂θj∂θr), 1 ≤ j, r, s, u ≤ k.

The model assumptions for the following theorem are the same as the conditions (AI)-
(AV) of Ghosh et al.(1982, pp.416-418). These assumptions imply the strong consistency

of the maximum likelihood estimate θ̂n and the existence of the uniformly asymptotic
normal expansion of

√
n(θ̂n − θ). (Although the conditions in their paper are written

in the form of one-dimensional parameter space, they can be easily extended to the
multi-dimensional parameter space.)

The following is the main theorem of this section. This theorem is closely related to
the results in Clarke and Sun (1999). They considered asymptotic expansions for the
expected value of the posterior and squared posterior, which are, respectively, corre-
sponding to α = −1 and α = −2 in our theorem.
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Theorem 3.1. Let p(θ) be a density function which is positive and three times contin-
uously differentiable on the compact parameter space. Assume conditions (AI)-(AV) of
Ghosh et al. (1982). Then

E
[
p−α(θ|X)|θ

]
= (2π)

kα
2 n−

kα
2 |I(θ)|− 1

2α(1− α)−
k
2 (38)

×

1 + n−1

α(1− α)−1
∑

1≤j,r≤k

[
1

2
α|I(θ)|∂|I

−1(θ)|
∂θr

Ijr(θ) +
∂Ijr(θ)

∂θr

]
pj(θ)

p(θ)

+
2α− α2

2(1− α)

∑
1≤j,r≤k

pjr(θ)Ijr(θ)/p(θ)− 1

2
α

∑
1≤j,r≤k

pj(θ)pr(θ)

p2(θ)
Ijr(θ)

− α2

2(1− α)

∑
1≤j,r,s,u≤k

Ajrs
pu(θ)

p(θ)
Ijr(θ)Isu(θ) + k(θ)

+ o(n−1)

 ,

where k(θ) does not involve p(θ) or its derivatives and α < 1.

In the proof, we adopt the shrinkage argument due to Ghosh (1994, Chapter 9). The
shrinkage argument is a Bayesian approach for frequentist computations. Suppose that
X is a random vector with density function f(x; θ) where the parameter θ belongs to
an open subset of Rp. In general, for any given value of θ, the shrinkage argument is
used to find an asymptotic expansion for E[q(X, θ)|θ] where q is a measurable function,
and the expectation is known to exist. The use of this method can greatly simplify
the computation of the higher order asymptotic expansions in many applications. For
example, in the process of developing different kinds of probability matching priors,
people extensively use the shrinkage argument to evaluate the asymptotic frequentist
coverage probability of a posterior credible set. The shrinkage argument consists of three
steps, and a detailed description of this method can be found in Datta and Mukerjee
(2004, p.3). Also, we want to make it clear that neither the James-Stein shrinkage
estimator nor the lasso-type shrinkage estimators in regularized regression models have
connections to the shrinkage argument described here.

Proof. Step one. We consider any arbitrary thrice differentiable prior p̄ vanishing
outside a compact set and obtain M(X) =

∫
p−α(θ|X)p̄(θ|X)dθ. The expression of

M(X) is given in the following lemma.
Lemma 1. Let p(θ) and p̄(θ) be positive and three times continuously differentiable on
the compact parameter space. Assume conditions (AI)-(AV) of Ghosh et al. (1982), the
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asymptotic expansion of M(X) is:

M(X) =

∫
p−α(θ|X)p̄(θ|X)dθ (39)

= (2π)
kα
2 n−

kα
2 |În|−

α
2 (1− α)−

k
2

×

1− α

n(1− α)

∑
1≤j,r,≤k

pj(θ̂n)

p(θ̂n)

p̄r(θ̂n)

p̄(θ̂n)
Ijr(θ̂n)

+
α(α+ 1)

2n

∑
1≤j,r≤k

pj(θ̂n)pr(θ̂n)

p2(θ̂n)
Ijr(θ̂n)

− α2

2n(1− α)

∑
1≤j,r≤k

pjr(θ̂n)/p(θ̂n)

Ijr(θ̂n)

− α2

2n(1− α)

∑
1≤j,r,s,u≤k

ajrs

pu(θ̂n)/p(θ̂n)

Ijr(θ̂n)Isu(θ̂n)

+
k(θ̂n)

n
+ n−

3
2 k1(θ̂n, p)

.

The main difference between k(θ̂n) and k1(θ̂n, p) is that k(θ̂n) does not involve p(θ)

and its derivatives. The coefficient in front of k1(θ̂n, p) is n−
3
2 . Therefore, this term can

be treated as the approximation error term, and later will be labeled as o(n−1).

The proof of this lemma is given in the appendix. The main idea of the proof is based
on an asymptotic expansion for the posterior p(θ|X) in Datta and Mukerjee, (2004,
p.13). As they pointed out, the expansion for the posterior is valid for sample points in
a set S. The Pθ−probability of S is 1− o(n−1) uniformly on the compact parameters
space. The set S can be constructed in the line of Bickel and Ghosh (1990, Section 3).

Step two. For any θ in the interior of the support of p̄, we find λn(θ) = EθM(X)
which is the expectation of M(X) over the conditional distribution ofX given θ. Noting

that θ̂n − θ = Op(n
− 1

2 ) (Pθ) and using the argument applied in Datta and Mukerjee
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(2004, p.7), we get

λn(θ) = (2π)
kα
2 n−

kα
2 |In(θ)|−α2 (1− α)−

k
2 (40)

×

1− α

n(1− α)

∑
1≤j,r,≤k

pj(θ)

p(θ)

p̄r(θ)

p̄(θ)
Ijr(θ)

+
α(α+ 1)

2n

∑
1≤j,r≤k

pj(θ)pr(θ)

p2(θ)
Ijr(θ)

− α2

2n(1− α)

∑
1≤j,r≤k

pjr(θ)/p(θ)

Ijr(θ)

− α2

2n(1− α)

∑
1≤j,r,s,u≤k

Ajrs

pu(θ)/p(θ)

Ijr(θ)Isu(θ)

+
k(θ)

n
+ n−

3
2 k1(θ, p)

,

where k(θ) does not involve p or its derivatives.

Based on conditions (AI)-(AV) of Ghosh et al. (1982) and the uniformity property
about the Pθ−probability of the set S, using the method in Ghosh et al. (2011, 53-54),

one can get that the last term in (40), n−
3
2 k1(θ, p), is o(n−1) uniformly over compact

sets in the interior of the support of p̄(θ).

Step three. Step 3 of the shrinkage argument involves integrating λn(θ) with respect to
p̄(θ) and then making p̄(θ) degenerate at θ. In the present context, we need evaluation
of ∑

1≤j,r≤k

∫
pj(θ)

p(θ)
p̄r(θ)

Ijr(θ)

|I(θ)|α/2
dθ.

Integration by parts gives

∫
pj(θ)

p(θ)
p̄r(θ)

Ijr(θ)

|I(θ)|α/2
dθr = −

∫
d

dθr

{
pj(θ)

p(θ)

Ijr(θ)

|I(θ)|α/2

}
p̄(θ)dθr.
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Hence,

∑
1≤j,r≤k

∫
pj(θ)

p(θ)
p̄r(θ)

Ijr(θ)

|I(θ)|α/2
dθ (41)

= −
∑

1≤j,r≤k

∫ {
pjr(θ)

p(θ)
− pj(θ)pr(θ)

p2(θ)

}
Ijr(θ)

|I(θ)|α/2
p̄(θ)dθ

−
∑

1≤j,r≤k

∫
pj(θ)

p(θ)

{
−α

2
|I(θ)|−α2−1 d

dθr
|I(θ)|

+ |I(θ)|−α2 d

dθr
Ijr(θ)

}
p̄(θ)dθ.

Notice that p̄(θ) eventually will converge weakly to the degenerate prior at the true θ
which is an interior point of the support of p̄(θ). Using the fact noted after (40), and
combining (40), (41), one gets after some simplification,

∫
λn(θ)p̄(θ)dθ = (2π)

kα
2 n−

kα
2 (1− α)−

k
2

×


∫
|I(θ)|−α2 p̄(θ)dθ − α2

2n(1− α)

∑
1≤j,r≤k

∫
pj(θ) d

dθr
|I(θ)|

p(θ)|I(θ)|α2 +1
p̄(θ)dθ

+
α

n(1− α)

∑
1≤j,r≤k

∫
pj(θ)

p(θ)

d
dθr

Ijr(θ)

|I(θ)|α2
p̄(θ)dθ

− α

2n

∑
1≤j,r≤k

∫
pj(θ)pr(θ)

p2(θ)

Ijr(θ)

|I(θ)|α2
p̄(θ)dθ

+
2α− α2

2n(1− α)

∑
1≤j,r≤k

∫
pjr(θ)

p(θ)|I(θ)|α2
Ijr(θ)p̄(θ)dθ

− α2

2n(1− α)

∑
1≤j,r,s,u≤k

∫
Ajrs

pu(θ)

p(θ)
Ijr(θ)Isu(θ)p̄(θ)dθ

+ n−1

∫
k(θ)

|I(θ)|α2
p̄(θ)dθ + o(n−1)

.
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By making p̄(θ) degenerate at θ, and noting d
dθr
|I(θ)|= −|I(θ)|2 d

dθr
|I−1(θ)|, we have

λn(θ) = (2π)
kα
2 n−

kα
2 (1− α)−

k
2 |I(θ)|−α2

×

1 +
α2

2n(1− α)
|I(θ)|

∑
j,r

∂

∂θr
|I−1(θ)|Ijr(θ)

pj(θ)

p(θ)

+
α

n(1− α)

∑
j,r

∂

∂θr
Ijr(θ)

pj(θ)

p(θ)
− α

2n

∑
j,r

pj(θ)pr(θ)

p2(θ)
Ijr(θ)

+
2α− α2

2n(1− α)

∑
j,r

pjr(θ)

p(θ)
Ijr(θ)− α2

2n(1− α)

∑
j,r,s,u

Ajrsu
pu(θ)

p(θ)
Ijr(θ)Isu(θ)

+
k(θ)

n
+ o(n−1)

.
This proves the theorem.

Sections 3.2 and 3.3 will focus on derivation of optimal priors under the given divergence
loss.

3.2 Jeffreys Prior as Maximizer of Expected α-divergences

Here, we assume that (38) holds uniformly in θ on the compact parameter space. This
assumption is typically made in the reference prior literature. Formal justification of this
assumption is difficult and may need more conditions. But as pointed out by Clark and
Sun (1997), “Egoroff’s theorem guarantees the existence of a set with arbitrarily large
probability on which the convergence can be taken as uniform”. Here, we follow this
idea. In (37), we integrate with respect to θ over the compact set to get an asymptotic
expansion of Jα(p).

In view of (37) and Theorem 3.1, neglecting the Op(n
−1) term, the selection of a prior

p amounts to minimization of

1

α(1− α)

∫
p1+α(θ)|I(θ)|−α2 dθ =

1

α(1− α)

∫ (
|I(θ)|1/2

p(θ)

)−α
p(θ)dθ

with respect to a prior p. Note that this is similar to maximization of (28) of Section 2.2.
As argued in Section 2.2, one thus obtains the Jeffreys prior as the (asymptotic) maxi-
mizer of Jα(p) for −1 < α < 0 and 0 < α < 1.

When α −→ 0, using either the shrinkage argument, or alternatively from Clarke and
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Barron (1990, 1994), one gets

J0(p) =
p

2
log
( n

2πe

)
−
∫
p(θ) log

p(θ)

|I(θ)|1/2
dθ + o(1),

which is maximized up to first order of approximation by p(θ) ∝ |I(θ)|1/2.

Remark. When α < −1, for the one parameter case, Ghosh et al. (2011) showed that
Jeffreys prior is the minimizer of Jα(p), and there is no maximizer in this case. Their
result can be extended to the multiparameter case without difficulty.

3.3 Maximizing Prior for α-divergence with α = −1

In 3.2 we considered α-divergence measures for α < 1 and α 6= −1. For −1 < α < 1,
Jeffreys prior maximizes the α−divergence. When α < −1, Jeffreys prior turns out to
be the minimizer. Then what is the desired prior when α = −1? Intuitively, Jeffreys
prior may not be the choice, because α = −1 is the dividing point for choosing Jeffreys
prior or not choosing Jeffreys prior. Also, by looking at the expression of α−divergence,
we can confirm that α = −1 is a crucial point. The key component of the α−divergence

is
∫ [ p(θ)

p(θ|x)

]α
p(θ|x)dθ. When −1 < α < 0, the importance of those values of θ at

which the posterior is greater than the prior is lessened by the factor
[
p(θ)

p(θ|x)

]α
. On the

contrary, when α < −1, the importance of those values is increased by the same factor.

When α = −1, the corresponding divergence is called the chi-square divergence which
was considered in Clarke and Sun (1997) for the one parameter exponential family
and also in Ghosh, Mergel and Liu (2011) for the general one-parameter family of
distributions. The chi-square divergence is motivated by the chi-square goodness-of-fit
statistic. Clarke and Sun (1997) gave a nice discussion on this divergence.

In the following theorem, we give a complete result about the reference prior under the
chi-square divergence.
Theorem 3.2. Under the assumptions of Theorem 3.1, for the chi-square divergence,
the desired reference prior p(θ) is the solution of the following partial differential equa-
tions:

∂ log p(θ)

∂θi
= −1

4

k∑
j=1

k∑
r=1

Aj,r,iI
jr(θ) +

1

2
|I(θ)|−1 ∂|I(θ)|

∂θi
, i = 1, · · · , k,

where

Aj,r,i = E

(
∂ log p(X|θ)

∂θj

∂ log p(X|θ)

∂θr

∂ log p(X|θ)

∂θi

)
.

Proof. Here pα+1(θ) = 1 so that the first order term appearing in Theorem 3.1 will not
suffice in finding the prior p and the coefficient of n−1 is needed in finding the optimal
p. To this end, since α = −1 so that α(1−α) = −2, using (37), (38), and neglecting all
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terms which do not involve p or its derivatives, it suffices to maximize up to the second
order approximation,

∫
|I(θ)|1/2

 |I(θ)|
4

∑
j,r

{
∂

∂θr
|I−1(θ)|Ijr(θ)− 2

∂Ijr(θ)

∂θr

}
pj(θ)

p(θ)
(42)

− 3

4

∑
j,r

pjr(θ)

p(θ)
Ijr(θ) +

1

2

∑
j,r

pj(θ)pr(θ)

p2(θ)
Ijr(θ)

− 1

4

∑
j,r,s

Ajrs
pu(θ)

p(θ)
Ijr(θ)Isu(θ)

dθ.

Writing pjr(θ) = ∂
∂θr

(
pj(θ)

p(θ)

)
+

pj(θ)pr(θ)

p2(θ)
, (42) simplifies to

∫
|I(θ)|1/2

 |I(θ)|
4

∑
j,r

{
∂

∂θr
|I−1(θ)|Ijr(θ)− 2

∂Ijr(θ)

∂θr

}
pj(θ)

p(θ)
(43)

− 1

4

∑
j,r

pj(θ)pr(θ)

p2(θ)
Ijr(θ)− 3

4

∑
j,r

∂

∂θr

(
pj(θ)

p(θ)

)

− 1

4

∑
j,r,s

Ajrs
pu(θ)

p(θ)
Ijr(θ)Isu(θ)

dθ.
Let

y(θ) = (y1(θ), · · · ,yk(θ)) =

p1(θ)

p(θ)
, · · · , pk(θ)

p(θ)


∇y(θ) =

∂y1(θ)

∂θ1
, · · · , ∂y1(θ)

∂θk
, · · · , ∂yk(θ)

∂θ1
, · · · , ∂yk(θ)

∂θk

.
Note that (43) can be expressed as∫

F (θ,y(θ),∇y(θ))dθ, (44)
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so we need to find y(θ) to maximize the above integral. From Giaquinta (1983, p.8),
the maximizer should satisfy the Euler-Lagrange equations:

∂F

∂yi(θ)
−

k∑
j=1

∂

∂θj

 ∂F

∂(∂yi/∂θj)

 = 0, i = 1, · · · , k. (45)

Equivalently, the Euler-Lagrange equations are

k∑
j=1

pj
p
Iij(θ) = −1

2

k∑
j=1

k∑
r=1

k∑
s=1

AjrsI
jr(θ)Isi(θ) (46)

+
1

2

k∑
j=1

− 1

2
|I(θ)|∂|I

−1(θ)|
∂θj

Iij(θ) +
∂Iij(θ)

∂θj

, i = 1, · · · , k.

In matrix notations, (46) is:

I−1(θ)


p1
p
...
pk
p

 = −1

2
I−1(θ)

 A1

...
Ak

+
1

4
I−1(θ)

 B1

...
Bk

+
1

2
I−1(θ)

 C1

...
Ck

 , (47)

where

Ai =

k∑
j=1

k∑
r=1

AjriI
jr(θ), i = 1, · · · , k,

Bi = |I−1(θ)|∂|I(θ)|
∂θi

= −
k∑
j=1

k∑
l=1

Ijl(θ)
∂I lj(θ)

∂θi
, i = 1, · · · , k,

Ci =

k∑
l=1

Iil(θ)

 k∑
j=1

∂I lj(θ)

∂θj

 =

k∑
j=1

k∑
l=1

Iil(θ)
∂I lj(θ)

∂θj
, i = 1, · · · , k.

Next by the Bartlett identity (Bartlett (1953)),

Ajri =
1

2

Aj,r,i − ∂Iri(θ)

∂θj
− ∂Iji(θ)

∂θr
− ∂Ijr(θ)

∂θi

,
where

Aj,r,i = E

(
∂ log p(X|θ)

∂θj

∂ log p(X|θ)

∂θr

∂ log p(X|θ)

∂θi

)
.
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One can then simplify the Euler-Lagrange equations to

∂ log p(θ)

∂θi
= −1

4

k∑
j=1

k∑
r=1

Aj,r,iI
jr(θ) +

1

2
|I(θ)|−1 ∂|I(θ)|

∂θi
, i = 1, · · · , k. (48)

Then, the desired divergence prior p(θ) is obtained by solving 48. We will denote such
a prior p as pchi. Q.E.D.

Below we illustrate through a couple of examples how optimal priors can be obtained.
The optimal priors are different from Jeffreys prior but, by the observation made in
the paragraph following (5) of Section 2.2, are invariant under one-to-one differentiable
transformations.

Example 1. When p(x|θ) belongs to exponential family (θ is canonical parameter
vector), one can check that

Ai = Ci = −Bi; i = 1, · · · , k,

since Ajri = −∂Ijr(θ)
∂θi

and ∂Iik(θ)
∂θj

=
∂Ijk(θ)
∂θi

. Based on above relations, the Euler-

Lagrange equations are 
p1
p
...
pk
p

 =
1

4
|I−1(θ)|


∂|I(θ)|
∂θ1
...

∂|I(θ)|
∂θk

 .

Hence, p(θ) ∝ |I(θ)| 14 .

Remark. In general, it is hard to study the propriety of the posterior when using pchi.

The above example shows that pchi ∝ |I(θ)| 14 , when p(x|θ) belongs to the exponential
family, and θ is the canonical parameter vector. In this case, pchi may result in an
improper posterior for some models. But because pchi is the square root of Jeffreys
prior, the chance of getting an improper posterior when using pchi is smaller than the
chance of getting an improper posterior when using Jeffreys prior.

Outside the multiparameter exponential family, when α = −1, an optimal prior can
even be different from Jeffreys prior and the above prior. Here is one example:

Example 2. Consider the Inverse Gaussian distribution with probability density func-
tion

f(x|µ, λ) =
λ1/2

√
2πx3

exp

[
− λ

2x

(
x

µ
− 1

)2
]

=
λ1/2

√
2πx3

exp

[
−λ

2

(
x

µ2
− 2

µ
+

1

x

)]
.

One gets

E

[
− ∂2 log f

∂µ2

∣∣∣∣µ, λ] =
λ

µ3
, E

[
− ∂2 log f

∂µ∂λ

∣∣∣∣µ, λ] = 0,
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E

[
− ∂2 log f

∂λ2

∣∣∣∣µ, λ] =
1

2λ2

E

[
∂3 log f

∂µ3

∣∣∣∣µ, λ] =
6λ

µ4
, E

[
∂3 log f

∂µ∂λ2

∣∣∣∣µ, λ] = 0,

E

[
∂3 log f

∂µ2∂λ

∣∣∣∣µ, λ] = − 1

µ3
, E

[
∂3 log f

∂λ3

∣∣∣∣µ, λ] =
1

λ3
,

and

A1 =
6

µ
, A2 =

1

λ
, B1 = − 3

µ
, B2 = − 1

λ
, C1 =

3

µ
, C2 =

2

λ
.

Hence, according to (48), the prior p(µ, λ) should satisfy these equations:

∂ log p(µ, λ)

∂µ
= − 9

4µ
,

∂ log p(µ, λ)

∂λ
=

1

4λ
.

Therefore, the optimal prior p(µ, λ) is proportional to µ−
9
4λ

1
4 .

4 Reference Priors in the Presence of a Nuisance Param-
eter

For the multiparameter case, if we consider all the parameters to be equally important,
we maximize the average divergence

J(p) =

∫
Dp(x)m(x)dx

where Dp(x) = D(p(·), p(·|x)) is a divergence measure between the prior and the pos-
terior. It is known that for the Kullback-Leibler divergence, this leads to the Jeffreys
prior. In Section 2 above, we have also seen that J(p) is asymptotically maximized by
the Jeffreys prior for a class of divergence measures.

We now assume that there is an ordering of the parameters according to their impor-
tance. We consider the case with two parameters θ = (θ1, θ2) where θ1 is assumed
to be more important than θ2, e.g., θ2 is a nuisance parameter. We are interested in
the reference prior in the sense of Berger and Bernardo (1989, 1992a, 1992b). In this
approach, p(θ2|θ1) is chosen as a “reasonable” objective prior while p(θ1) is obtained as
the prior maximizing the functional J∗(p), given by

J∗(p) =

∫
Dp(x)m(x)dx,

where Dp(x) = D(p(.), p(.|x)). Here p(.) and p(.|x) are the prior of θ1 and posterior of
θ1 respectively and m(x) is the marginal density of the data with respect to the joint
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prior p(θ1, θ2) = p(θ2|θ1)p(θ1). Thus J∗(p) is the average divergence between p(θ1) and
p(θ1|x) with respect to the marginal density of the data. Usually p(θ2|θ1) is chosen
as the conditional Jeffreys prior which is proportional to

√
I22(θ). For the Kullback-

Leibler divergence, the prior p(θ1) maximizing J∗(p) is obtained as the geometric mean
of (I11(θ))−1/2 with respect to p(θ2|θ1) where I11(θ) denotes the (1, 1)-th element of
I−1(θ) (see, e.g., Ghosh et al. 2006, Sec. 5.1.10). Instead of the Kullback-Leibler, one
may consider a divergence measure obtained in Section 2 leading to the Jeffreys prior.
It is our interest to see if we get a satisfactory reference prior when the algorithm of
Berger and Bernardo is applied on such divergence measures. We consider below the
average α-divergence J∗(p) between p(θ1) and p(θ1|x) with

Dp(x) =

{
1

α(1− α)

∫
[αp(θ′1) + (1− α)p(θ′1|x)− pα(θ′1)p1−α(θ′1|x)]dθ′1

}
=

1

1− α
+

1

α
− 1

α(1− α)

∫ (
p(θ′1)

p(θ′1|x)

)α
p(θ′1|x)dθ′1.

We now briefly outline a derivation of the maximizer p(θ1) of J∗(p) without going into
the rigorous arguments. We take a compact rectangle K1 × K2. We fix p(θ2|θ1) as a
conditional prior for θ2 on K2 and consider priors p(θ1) supported on K1. Using normal
approximation of the posterior p(θ′1|x) and proceeding as in the one-parameter case we
can approximate J∗(p) as

J∗(p(.)) ≈ Constant− Constant n−α/2

α(1− α)

∫
K1×K2

(√
I11(θ)p(θ1)

)α
p(θ)dθ

= Constant +
Constant n−α/2

α(1− α)

∫
K1

ψ(θ1)pα(θ1)p(θ1)dθ1

where ψ(θ1) =
∫
K2

(I11(θ))α/2p(θ2|θ1)dθ2. The last expression above can be rewritten
as

Constant +
Constant n−α/2

α(1− α)

∫
K1

g

(
ψ−

1
α (θ1)

p(θ1)

)
p(θ1)dθ1,

where g(x) = −x−α. This is maximized if p(θ1) ∝ ψ−
1
α (θ1) for 0 < α < 1 and

−1 < α < 0 (see the result for the one-parameter case obtained in Section 2.2).

We now consider an example to see if the reference prior obtained above using the α-
divergence measure is a reasonable one. At least in the following example this is indeed
the case. Hopefully other examples will be found later.

Example 4.1. Consider the N(θ2, θ1) model for the data, where the variance θ1 is con-
sidered more important. We take p(θ2|θ1) as the conditional Jeffreys prior, proportional
to
√
I22(θ). Here

I(θ) =

(
1

2θ21
0

0 1
θ1

)
, I22(θ) =

1

θ1
, I11(θ) = 2θ2

1.
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Thus p(θ2|θ1) = c on K2 where c−1 = length of K2, and therefore,

ψ(θ1) =

∫
(2θ2

1)α/2c.dθ2 ∝ θα1

and

p(θ1) ∝ 1

ψ
1
α (θ1)

=
1

(θα1 )
1/α

=
1

θ1
.

5 Concluding Remarks

In this paper we have provided a sufficient condition for a divergence measure (between
prior and posterior) to be maximized by the Jeffreys prior. The Kullback-Leibler di-
vergence used by Bernardo, Hellinger distance, L1-distance and the α-divergences of
Amari with −1 < α < 0, 0 < α < 1, satisfy this condition. We believe that among
the divergence measures commonly seen in the literature, the divergences maximized
by the Jeffreys prior are only those which satisfy the sufficeint conditions obtained in
this paper. Although we have not verified this, it seems possible that for any particular
candidate divergence, some suitable numerical approach may settle the issue for that
particular divergence but developing such an approach would need further work. For
example, for a particular divergence, one may consider a simple model f(x|θ), such as
a location parameter family (or, more specifically, N(θ, 1) model) so that the Jeffreys
prior is constant, and depending on the divergence, try to find a prior p with a higher
value of J(p) than the Jeffreys prior. The calculation of J(p) may be done numerically
by simulating from the prior p(θ) and the density f(x|θ).

For all the divergences mentioned above, our proof is based on first order asymptotic
approximation of the average divergence measure J(p). For the α-divergence measure
with α = −1 (known as chi-square divergence) our sufficient condition is satisfied but
the first order approximation of J(p) is free of the prior p. Therefore we need to consider
the next smaller order term in the asymptotic expansion of J(p) which is maximized by
a prior different from the Jeffreys prior.

The new divergences that lead to Jeffreys prior strengthen the foundation of Jeffreys
prior. From these new divergence measures one can construct new reference priors,
enlarging the class of objective priors. They might provide in the future new insights
about a general notion of information in a prior and the concept of nonsubjective, low
information priors. The study of all such priors will help us settle whether inference
based on objective priors is robust with respect to choice of objective priors, at least
with respect to the reference priors arising as indicated above.

Such divergences also provide quantitative assessment of whether a given prior has
too much influence on the posterior for given data. Judging this visually has been a
standard practice among Bayesians. Our divergences provide a quantitative evaluation
of the closeness of prior to posterior for given data. Small values of the divergence will
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alert the analyst that the prior needs to be changed. This can help quantify the visual
comparisons of priors as done in Gelman (2006).

6 Appendix

We first present a proof of lemma (1) and then discuss on approximation of J(p) by
Ĵ(p).

6.1 Proof of Lemma 1

To prove this lemma, we begin with an asymptotic expansion of the posterior p(θ|X)
(Datta and Mukerjee, 2004, p.13 )

p(θ|X) = (2π)−
k
2 nk/2|În|1/2exp

[
−n

2
(θ − θ̂n)T În(θ − θ̂n)

]
(49)

×

1 + n−
1
2


k∑
j=1

√
n(θj − θ̂nj)

pj(θ̂n)

p(θ̂n)
+

1

6

∑
1≤j,r,s≤k

n
3
2 (θj − θ̂nj)(θr − θ̂nr)(θs − θ̂ns)ajrs


+n−1

1

2

∑
1≤j,r≤k

(
n(θj − θ̂nj)(θr − θ̂nr)− Ijr(θ̂n)

) pjr(θ̂n)

p(θ̂n)

+
1

6

∑
1≤j,r,s,u≤k

(
n2(θj − θ̂nj)(θr − θ̂nr)(θs − θ̂ns)(θu − θ̂nu)

− Ijr(θ̂n)Isu(θ̂n)− Ijs(θ̂n)Iru(θ̂n)− Iju(θ̂n)Irs(θ̂n)
)
ajrs

pu(θ̂n)

p(θ̂n)

+k∗(θ, θ̂n)

+Op(n
− 3

2 )

,

where k∗ involves functions of θ and θ̂n but not p or its derivatives.

The expansion for the posterior is valid for sample points in a set S. The Pθ−probability
of S is 1− o(n−1) uniformly on the compact parameters space. The set S can be con-
structed in the line of Bickel and Ghosh (1990, Section 3).

Using this expansion, one gets
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p−α(θ|Xn) = (2π)
kα
2 n−

kα
2 |În|1/2exp

[nα
2

(θ − θ̂n)T În(θ − θ̂n)
]

(50)

×

1− α

n1/2


k∑
j=1

√
n(θj − θ̂nj)

pj(θ̂n)

p(θ̂n)

+
1

6

∑
1≤j,r,s≤k

n
3
2 (θj − θ̂nj)(θr − θ̂nr)(θs − θ̂ns)ajrs


+
α(α+ 1)

2n


∑

1≤j,r≤k

n(θj − θ̂nj)(θr − θ̂nr)pj(θ̂n)pr(θ̂n)/p2(θ̂n)

+
1

3

∑
1≤j,r,s,u≤k

n2(θj − θ̂nj)(θr − θ̂nr)(θs − θ̂ns)(θu − θ̂nu)ajrspu(θ̂n)/p(θ̂n)


− α

2n

∑
1≤j,r,≤k

[
n(θj − θ̂nj)(θr − θ̂nr)− Ijr(θ̂n)

]
pjr(θ̂n)/p(θ̂n)

− α

6n

∑
1≤j,r,s,u≤k

{
n2(θj − θ̂nj)(θr − θ̂nr)(θs − θ̂ns)(θu − θ̂nu)

− Ijr(θ̂n)Isu(θ̂n)− Ijs(θ̂n)Iru(θ̂n)− Iju(θ̂n)Irs(θ̂n)
}
ajrs

pu(θ̂n)

p(θ̂n)

+k∗∗(θ, θ̂n) +Op(n
− 3

2 )

,

where once again k∗∗ does not involve the prior p or its derivatives. Now in step 1 of
the shrinkage argument, for any arbitrary thrice differentiable prior p̄ vanishing outside
a compact set, we have

p̄(θ|Xn) = (2π)−
k
2 nk/2|În|1/2exp

[
−n

2
(θ − θ̂n)T În(θ − θ̂n)

]
(51)



R. Liu, A. Chakrabarti, T. Samanta, J.K. Ghosh and M. Ghosh 363

×

1 + n−
1
2


k∑
j=1

√
n(θj − θ̂nj)

p̄j(θ̂n)

p̄(θ̂n)
+

1

6

∑
1≤j,r,s≤k

n
3
2 (θj − θ̂nj)(θr − θ̂nr)(θs − θ̂ns)ajrs



+Op(n
−1)

,
where p̄j(θ) is the first derivative of p̄(θ) with respect to θj and the Op(n

−1) terms
involve second derivatives of p̄.

Based on the properties of the multivariate normal distribution and noting that ajrs is
symmetric in its arguments, one can get the following result from (50) and (51)(omitting
terms which integrate out to zero.)

M(X) =

∫
p−α(θ|X)p̄(θ|X)dθ (52)

= (2π)
kα
2 n−

kα
2 |În|−

α
2 (1− α)−

k
2

×

1− α

n(1− α)

∑
1≤j,r,≤k

pj(θ̂n)

p(θ̂n)

p̄r(θ̂n)

p̄(θ̂n)
Ijr(θ̂n)

+
α(α+ 1)

2n

∑
1≤j,r≤k

pj(θ̂n)pr(θ̂n)

p2(θ̂n)
Ijr(θ̂n)

− α2

2n(1− α)

∑
1≤j,r≤k

pjr(θ̂n)/p(θ̂n)

Ijr(θ̂n)

− α2

2n(1− α)

∑
1≤j,r,s,u≤k

ajrs

pu(θ̂n)/p(θ̂n)

Ijr(θ̂n)Isu(θ̂n)

+
k(θ̂n)

n
+ n−

3
2 k1(θ̂, p)

,
where k(θ̂n) does not involve p or its derivatives but k1(θ̂, p) depends on the prior p.

This completes the proof.
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6.2 Approximation of J(p) by Ĵ(p)

We consider the functionals J(p) and Ĵ(p) with the L1-distance for priors p supported
on a compact subset [a, b] of the parameter space Θ. In Section 2.2 an approximation
to Ĵ(p) is obtained (see (15)). The same approximation can be shown to hold for J(p)
if we can show that√

n

log n
|J(p)− Ĵ(p)| is asymptotically negligible. (53)

For proving (53), it is enough to show that√
n

log n

∫
[a,b]

gn(θ)p(θ)dθ is negligible (54)

where

gn(θ) =

∫
‖p(·|x)− p̂(·|x)‖1p(x|θ)dx,

p̂(·|x) is the approximating N(θ̂, (nI(θ))−1) density and ‖p(·|x) − p̂(·|x)‖1 is the L1-
distance between p(·|x) and p̂(·|x).

To prove (54) we show the following:

(A) For some [an, bn] ⊂ [a, b], a < an < bn < b (an close to a, bn close to b),√
n

log n
gn(θ)→ 0 uniformly in θ ∈ [an, bn]

and

(B)
√

n
logn

∫ an
a

gn(θ)p(θ)dθ and
√

n
logn

∫ b
bn
gn(θ)p(θ)dθ are negligible.

(A) implies ∫ bn

an

√
n√

log n
gn(θ)p(θ)dθ → 0 as n→∞.

Thus (A) and (B) will imply (54) and hence will imply (53).

In order to prove (A), we need the result stated in Proposition 1 below. We do not
present the proof of Proposition 1 here. A proof is given in the supplemental materials.
For proving Proposition 1, we assume that Conditions (AI)-(AV) of Ghosh et al. (1982,
pp. 416-418) on the densities p(x|θ) hold for some intervals [c, d] and [a0, b0] containing
[a, b] in their interiors. We also assume that the prior density p(·) is positive and
continuous on [a, b] with a bounded derivative on (a, b).
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Proposition 1. Let X1, X2, . . . , Xn be i.i.d. observations with a common density p(x|θ),
θ ∈ Θ = R. Let X = (X1, X2, . . . , Xn) and x = (x1, x2, . . . , xn) and let p(x|θ) denote
the density of X under θ. Under the above assumptions on the densities p(x|θ) and
the prior p(θ), there exist constants M > 0, c > 0 and r ≥ 1/2 such that, with

an = a+ c
√

logn
n and bn = b− c

√
logn
n ,

Pθ[‖p(·|X)− p̂(·|X)‖1≤Mn−1/2] = 1−O(n−r)

uniformly in θ ∈ [an, bn] as n→∞.

We now prove (A) using Proposition 1. Splitting the integral∫
‖p(·|x)− p̂(·|x)‖1p(x|θ)dx

into two parts – one on the set {x : ‖p(·|x)− p̂(·|x)‖1> Mn−1/2} and the other on its
complement, one can show that

√
n√

log n

∫
‖p(·|x)− p̂(·|x)‖1p(x|θ)dx ≤

M√
log n

+
2
√
n√

log n
O(n−r)

uniformly in θ ∈ [an, bn]. This implies (A) with an = a+ c
√

logn
n and bn = b− c

√
logn
n

for some constant c > 0.

We now prove part (B). Let p∗ be a prior on Θ = R and p be its restriction on [a, b].
Let I1 and I2 denote respectively the first and second integral in part (B), i.e.,

I1 =

√
n

log n

∫ an

a

gn(θ)p(θ)dθ and I2 =

√
n

log n

∫ b

bn

gn(θ)p(θ)dθ.

We show that for sufficiently small a and sufficiently large b, I1 and I2 are negligible
for large n. The idea is as follows. We first choose a sufficiently large compact set [a, b]
so that I1 and I2 are negligible for sufficiently large n and then for this [a, b], apply
the result of part (A). We thus show that for large compact sets [a, b], for any prior
p∗ satisfying some conditions, J(p) with p = Jeffreys prior restricted to [a, b] is greater
than or equal to J(p) with p = p∗ restricted to [a, b] for sufficiently large n.

We note that, as gn(θ) ≤ 2,

I1 ≤ 2c sup{p(θ), θ ∈ [a, an]} and I2 ≤ 2c sup{p(θ), θ ∈ [bn, b]}.

If we use these bounds, in order to show that I1 and I2 are negligible, we need to assume
the following:

(B1) Given any ε > 0, there exists a0, b0, δ0 such that for a ≤ a0, b ≥ b0,

sup{p(θ), θ ∈ [a, a+ δ0]} < ε and sup{p(θ), θ ∈ [b− δ0, b]} < ε.
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The above condition (Condition (B1)) is satisfied if, for example, any one of the following
two conditions (B1a) and (B1b) holds.

(B1a) p∗(·) is a proper prior such that p∗(θ) decreases to zero as |θ| increases to ∞.

(B1b) p∗(·) is an improper prior such that for some a1 and b1,

sup
θ≤a1

p∗(θ) <∞ and sup
θ≥b1

p∗(θ) <∞.

Condition (B1b) holds, e.g., for the improper uniform prior over R which is the Jeffreys
prior for the location parameter case and for which the restriction on [a, b] is uniform
density over [a, b].

We note that scale parameter models like N(0, σ2), where the parameter space is (0,∞),
can also be treated as above if we consider the reparameterization θ = log σ. A method
that should work more generally is as follows. We truncate the parameter space (0,∞)
on the left, say at θ = a > 0 and extend the parameter space sufficiently to the right,
i.e., we consider compact subsets [a, b] of the parameter space for sufficiently large b so
that the condition on the prior for I1 and I2 to be negligible holds.

Summarizing the above discussion we have the following result about approximating
J(p) by Ĵ(p):

Suppose X1, . . . , Xn are iid observations with a common density p(x|θ), θ ∈ R and
p(x|θ) satisfies the conditions (AI)-(AV) of Ghosh et. al. (1982, pp. 416-418) for each
interval [a0, b0] and each interval [c, d] in R. Suppose further that θ has a prior density
p∗ which is positive and continuously differentiable on R such that condition (B1) above
is satisfied by its restrictions p on compact sets. Then, given any ε > 0, there exist l

and u such that for any interval [a, b] with a ≤ l and b ≥ u,
√

n
logn |J(p)− Ĵ(p)|< ε for

all sufficiently large n, where p is the restriction of p∗ on [a, b].

This result, in conjunction with the result proved in Section 2.2, gives the following.
Consider iid observations with density satisfying the above conditions. Suppose p∗ is a
prior satisfying the above conditions. Then for large compact sets [a, b], J(p) with p =
Jeffreys prior restricted to [a, b] is greater than or equal to J(p) with p = p∗ restricted
to [a, b] for sufficiently large n.
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