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Matrix-Variate Dirichlet Process Priors
with Applications

Zhihua Zhang ∗ and Dakan Wang † and Guang Dai ‡ and Michael I. Jordan §

Abstract. In this paper we propose a matrix-variate Dirichlet process (MATDP)
for modeling the joint prior of a set of random matrices. Our approach is able
to share statistical strength among regression coefficient matrices due to the clus-
tering property of the Dirichlet process. Moreover, since the base probability
measure is defined as a matrix-variate distribution, the dependence among the
elements of each random matrix is described via the matrix-variate distribution.
We apply MATDP to multivariate supervised learning problems. In particular, we
devise a nonparametric discriminative model and a nonparametric latent factor
model. The interest is in considering correlations both across response variables
(or covariates) and across response vectors. We derive Markov chain Monte Carlo
algorithms for posterior inference and prediction, and illustrate the application
of the models to multivariate regression, multi-class classification and multi-label
prediction problems.

Keywords: Dirichlet processes, nonparametric dependent modeling, matrix-variate
distributions, nonparametric discriminative analysis, latent factor regression

1 Introduction

Given a set of observed data pairs, {(xi,yi)}n1 , classical multiple regression aims to
model the dependency between xi and yi. In an increasingly broad class of problem
domains it is desirable to capture additional dependencies in such paired data sets, in
particular dependence among the {xi} (which induces dependence among the {yi}),
and dependence among the components of the vectors yi (Ibrahim and Kleinman 1998;
Gelfand et al. 2005; Xue et al. 2007; Dunson et al. 2007). The latter dependency is
particularly important in the setting of classification (where the components of yi are
binary); a variety of so-called multi-class and multi-label classification problems involve
dependencies among these components (Caruana 1997; Tewari and Bartlett 2007).

Bayesian nonparametric models have shown promise in treating general classes of de-
pendencies such as these, with the dependent Dirichlet process (DDP) of MacEachern
(1999) providing a flexible general framework for Bayesian nonparametric model speci-
fication in which dependencies are captured via dependent collections of random mea-
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sures. Other methods based on dependent stochastic processes include Gelfand et al.
(2005), who developed a spatial DP model in which the base distribution is defined as a
Gaussian process. This spatial DP can be regarded as a “single-p” DDP (MacEachern
2000).

While these general nonparametric frameworks provide the requisite flexibility, they
can be challenging to deploy in practice, particularly in the setting of large-scale data,
due to the complex procedures that are generally required for posterior inference. For
example, the spatial DP model typically requires repeatedly inverting n×n matrices or
computing the determinant of n×n matrices, which limits the efficient application of
the model in large-scale datasets.

In the current paper, we explore a simpler approach; namely, we use a classical Dirichlet
process (DP) mixture (Antoniak 1974; Ferguson 1973), but with a base measure that
is a matrix-variate distribution. We refer to the resulting prior as a matrix-variate
DP (MATDP). The nonparametric component of the model is a DP mixture, and the
MATDP can be viewed as a “single-p” DDP. Thus, we can proceed via a straightforward
application of well-established Markov chain Monte Carlo (MCMC) techniques (Bush
and MacEachern 1996; Escobar and West 1995; MacEachern 1998; Neal 2000), capturing
the two kinds of dependencies referred to above with a model that is relatively easy to
fit in practice. A particular advantage of our approach over the spatial DP is the
computational efficiency.

Our focus in this article is the use of the MATDP prior in latent factor analysis, building
on the Bayesian latent factor regression model of West (2003). In the latter model, which
is geared to high-dimensional problems, it is assumed that x and y follow latent factor
models, with a connection between x and y implemented via the sharing of a common
latent vector. We place MATDP priors on the loading matrices for the two latent factor
analyzers and thereby obtain a flexible Bayesian prior for high-dimensional x and y.
The overall model is a DP-based Latent Factor Model (DP-LFM).

Our DP-LFM can be viewed as finding a low-dimensional latent space and implementing
a regression on the latent subspace, and can thus be regarded as an approach to jointly
carry out dimensionality reduction and regression. This highlights an advantage of
DP-LFM over some related models that separate these processes, in particular the
Dirichlet process multinomial logit (dpMNL) model of Shahbaba and Neal (2009) and
the DP-generalized linear model (DP-GLM) of Hannah et al. (2010). However, our
DP-LFM retains the nonlinear aspect of the dpMNL. Within each component of the
MATDP mixture, the relationship between y and x (i.e., p(y|x)) is expressed using a
(generalized) linear function. The overall relationship becomes piecewise linear because
the mixture typically contains many components. Thus, the overall model is essentially
nonlinear.

We also show how to extend DP-LFM to classification problems, in particular multi-
class and multi-label prediction. We note that nonparametric latent factor models have
been studied in this setting by Rai and Daumé III (2009, 2010), who proposed an infinite
canonical component analysis (CCA) model based on the Indian buffet process (Griffiths
and Ghahramani 2005). In fact, our DP-LFM can be also regarded as a nonparametric
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extension of probabilistic CCA, but in our case we build on DP mixtures.

Although our focus is latent factor analysis, as a stepping stone we also present a model
in which the MATDP is used as a prior for a multinomial probit regression model.
Our model is discriminative (Ng and Jordan 2002), because it estimates the conditional
distribution p(y|x), but not the distribution of covariates, p(x). In contrast, the dpMNL
and DP-LFM models are generative.

The remainder of the paper is organized as follows. Section 2 overviews our notation
and Section 3 presents the matrix-variate DP model. We discuss an application to
multinomial probit regression in Section 4 and a nonparametric latent factor model in
Section 5. Experimental analyses are presented in Section 6. Finally, we conclude our
work in Section 7.

2 Notation

We let 0 represent the zero vector (or matrix) whose dimensionality is dependent upon
the context, 1m be them×1 vector of ones, and Im denote them×m identity matrix. Let
Ga(α|aα, bα) denote that positive random variable α follows a Gamma distribution with
shape parameter aα and scale parameter bα, and G ∼ DP(αG0) denote that random
measure G follows a DP prior with base probability measure G0 and concentration
parameter α > 0. We employ the notation of Gupta and Nagar (2000) for matrix-
variate distributions. That is, for a p×q random matrix Y, Y ∼ Np,q(·|M,A⊗B)
means that Y follows a matrix-variate normal distribution with mean matrix M (p×q)
and covariance matrix A⊗B, where A (p×p), B (q×q) are positive definite, and A⊗B
is the Kronecker product of A and B. Additionally, for an s×s random matrix C,
let C ∼ Ws(·|r,D) denote that C follows a Wishart distribution with r (≥ s) degrees
of freedom and an s×s positive definite parameter matrix D. Finally, we let x ∈ Rp

and y ∈ Rq for the covariate vector and response vector, respectively. We also use the
terminology “input vector” for the covariate vector.

3 Matrix-variate DP Priors

In a conventional Dirichlet process mixture (DPM) model, one assumes that the ob-
servations zi, for i = 1, . . . , n, are drawn from a mixture component parameterized by
θi ∈ Θ. Furthermore, the θi’s are generated by the distribution G, which is in turn
assumed to follow the DP prior DP(αG0).

In this paper we are concerned with the case that the parameters are a set of p×q
random matrices Θi. To capture relationships among the Θi’s, we introduce a DP
prior to model the joint distribution of the Θi’s. That is,

[Θi|G]
iid∼ G, i = 1, . . . , n,

G ∼ DP(αG0).
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We assume that the base probability measure G0 follows a matrix-variate distribu-
tion. We thus refer to the resulting DP as a matrix-variate DP (MATDP). Please also
see Zhang et al. (2010) for an earlier use of the MATDP prior in the setting of linear
regression.

As in the case of the conventional DP prior (Blackwell and MacQueen 1973), integrating
over G yields a Pólya urn scheme for the Θi’s; that is,

Θ1 ∼ G0,

[Θi|Θ1, . . . ,Θi−1] ∼
αG0 +

∑i−1
l=1 δΘl

α+ i− 1
,

where δΘl
is a point mass at Θl. Obviously, as α → 0 all the Θi’s are identical to Θ1,

which follows G0. The Θi’s are drawn iid from G0 when α → ∞.

The Pólya urn representation of the marginals of the random distribution G leads to
the well-known clustering property of the DP, which plays a central role in Bayesian
nonparametric inference and computation. Assume that there are c distinct values
among the Θi’s, denoted Φ = {Φ1, . . . ,Φc}, and assume that there are nk occurrences
ofΦk such that

∑c
k=1 nk = n. The vector of configuration indicators, w = (w1, . . . , wn),

is defined by wi = k if and only if Θi = Φk for i = 1, . . . , n. Thus (Φ,w) is an equivalent
representation of Θ. Considering that the Θi’s are exchangeable, we rewrite the Pólya
urn scheme as

[Θi|Θ−i] ∼
αG0 +

∑c
k=1 nk(−i)δΦk

α+ n− 1

and
Φk

iid∼ G0, k = 1, . . . , c.

Here Θ−i represents {Θl : l ̸= i} and nk(−i) refers to the cardinality of cluster k, with
Θi removed.

In the MATDP mixture specification, we accordingly have

[zi|Θi]
ind∼ F (zi|Θi),

[Θi|G]
iid∼ G,

G ∼ DP(αG0).

As a concrete example, let G0 follow a matrix-variate normal distribution of the form

G0(·|Σ,Λ) = Np,q(·|M, A⊗B).

It is worth emphasizing that the dependence between the Θi’s is characterized by the
DP prior, while the dependence among the elements of each matrix Θi is represented
by the covariance matrix A⊗B. This prior can be regarded as a specific instance of a
single-p dependent Dirichlet prior (MacEachern 2000). In Sections 4 and 5, we illustrate
the application of this MATDP prior in multi-class discriminant models and latent factor
models, respectively.
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4 Multinomial Probit Regression via MATDP Mixing

In this section we present an application of the MATDP prior to the multi-class (or
polychotomous) classification problem. We consider a q-class classification problem in
which the training dataset is {(xi,yi)}n1 , with covariates xi ∈ Rp and response vectors
yi ∈ {0, 1}q. Note that yi = (yi1, . . . , yiq)

′ is the multinomial indicator vector with
elements yij = 1 if xi belongs to the jth class and yij = 0 otherwise.

In order to facilitate the implementation of Bayesian inference, we employ a classical
data augmentation technique to deal with non-Gaussian distributions (Albert and Chib
1993; Holmes and Held 2006). We define {z1, . . . , zn} ⊂ Rq as a set of auxiliary vectors,
and relate yi = (yi1, . . . , yiq)

′ to zi = (zi1, . . . , ziq)
′ through the probit link (Denison

et al. 2002) due to its tractability in Bayesian inference.

Additionally, we consider a set of regression functions, {fj(x)}, defined as linear com-
binations of m basis functions {gl(x)}; that is,

fj(x) = bj0 +
m∑
l=1

bjlgl(x), j = 1, . . . , q,

where the bj0’s are offset terms and the bjl’s are regression coefficients. An important
and popular choice for the basis function is gl(x) = K(xl,x) where K(·, ·) is a repro-
ducing kernel function (Schölkopf and Smola 2002). We will employ this choice in this
paper due to its ability to capture nonlinear relationships. In this case, we have m = n.

Let B = [b1, . . . ,bq] where bj = (bj0, bj1, . . . , bjm)′ for j = 1, . . . , q, and g(x) =
(1, g1(x), . . . , gm(x))′. We define the following regression model:

zi = B′gi + ϵi,

where gi = g(xi) for short and ϵi is a Gaussian error. We aim to capture the depen-
dence among the response variables and among the data samples. To take a Bayesian
nonparametric approach, we allow each gi to have its own regression coefficient matrix
Bi, placing a MATDP prior on the joint distribution of the Bi.

In summary, we have

yij =

{
1 if j = argmax1≤k≤q{zik},
0 otherwise,

i = 1, . . . , n

[zi|Bi,Σ]
ind∼ Nq(zi|B′

igi, Σ), i = 1, . . . , n,

[Bi|G]
iid∼ G, i = 1, . . . , n, (1)

G ∼ DP(αG0).

Furthermore, we define G0 as

G0(·|Σ,Λ) = Nm+1,q(·|0, Λ⊗Σ).
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Here Σ is a q×q positive semidefinite matrix. To make the model identifiable, one
typically imposes the constraint that

∑q
j=1 zij = 0 for i = 1, . . . , n. This implies that

the variates of zi are mutually dependent. We impose the constraint via the use of
a singular normal distribution for zi (Mardia et al. 1979). In particular, we assume
that Σ is of rank q−1 and satisfies the condition Σ1q = 0. In this case, we can write

Σ =

[
Iq−1

−1′
q−1

]
Σ11[Iq−1,−1q−1] where Σ11 is a (q−1)×(q−1) positive definite matrix.

Since the Moore-Penrose pseudoinverse Σ+ of Σ is

Σ+ = HqΣ
−1
11 H

′
q,

where Hq (q×(q−1)) contains the first q−1 columns of the centering matrix Cq =
Iq− 1

q1q1
′
q, the conditional density of zi on Bi is

(2π)−
q−1
2

q1/2|Σ11|1/2
exp

(
− 1

2
(zi−B′

igi)
′HqΣ

−1
11 H

′
q(zi−B′

igi)

)
.

Considering that the rows of Bi are associated with the basis functions which are
typically independent, we set Λ = diag(λ1, λ2, . . . , λm+1), a diagonal matrix with
λi > 0 for i = 1, . . . ,m+1. We will see that such a setting can make computa-
tions efficient. In addition, we assume that α and λ−1

i follow Gamma distributions:
Ga(α|aα, bα) and Ga(λ−1

i |ai

2 ,
bi
2 ); and we assume that Σ−1

11 follows a Wishart distribu-

tion: Wq−1(Σ
−1
11 |ρ, R

−1
11 ).

Since our model directly describes the conditional distribution p(y|x), it can be regarded
as a nonparametric discriminative model. Recall that the relationship between zi and gi

is linear; that is, E[zi|gi] = B′
igi. However, distinct pairs zi and gi possibly correspond

to distinct regression coefficient matrices Bi, which implies that the overall relationship
is piecewise linear. Thus, the nonparametric specification for Bi makes the resulting
model nonlinear.

Finally, the clustering property of DPs mentioned in Section 3 naturally allows the
sharing of statistical strength between the covariate vectors and between the response
variables. Moreover, the clustering property is able to transfer statistical strength from
existing regression coefficient matrices to new regression coefficient matrices (see equa-
tion (4)), and thus yield out-of-sample prediction as will be discussed in more detail in
the following section.

4.1 Posterior Sampling and Prediction

We now devise a posterior sampling MCMC algorithm for our model. Posterior sampling
is built on the Pólya urn scheme of the DP so as to take advantage of the clustering
property.
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Using the same notation as in Section 3, we have

[Bi|B−i] ∼
αNm+1,q

(
· |0, Λ⊗Σ

)
+
∑c

k=1 nk(−i)δQk

α+ n− 1
, (2)

where Q = {Q1, . . . ,Qc} includes c distinct values among the Bi, and

Qk
iid∼ Nm+1,q

(
Qk|0, Λ⊗Σ

)
, k = 1, . . . , c.

Consequently, we can express the joint distribution of Z = [z1, . . . , zn]
′ (n×q) as

[Z|w,Q] ∼
c∏

k=1

∏
i: wi=k

Nq(zi|Q′
kgi, Σ).

Integrating out the Qk yields the conditional (on w) marginal distribution of Z as

[Z|w,Λ,Σ] ∼
c∏

k=1

Nnk,q

(
Zk|0, (Ink

+GkΛG′
k)⊗Σ

)
,

where Zk and Gk are respectively nk×q and nk×(m+1) matrices consisting of those zi
and gi with wi = k. For each k = 1, . . . , c, we have

[Qk|Z,w,Λ,Σ] ∼ Nm+1,q

(
Qk|ΘkG

′
kYk, Θk⊗Σ

)
, (3)

where Θk = (Λ−1 +G′
kGk)

−1.

Since given Z, Y = [y1, . . . ,yn]
′ (n×q) is independent of the other model parame-

ters, posterior sampling is achieved by generating realizations of the parameters from
the conditional joint density [{Bi}ni=1,Λ,Σ|Z] (see Appendix I for a detailed presen-
tation). As for the estimate of Z, we only need to insert a step of updating Z from
p(Z|Y, {Bi}ni=1,Σ) into the MCMC algorithm in Appendix I. To estimate zi, we first
sample an auxiliary vector si = (si1, . . . , si,q−1) from the truncated normal; that is,
[sij |gi, yij ] ∼ N(sij |σjB

′
igi, 1) subject to sij > max(max

l ̸=j
{sil}, 0) if yij = 1 when

j = 1, . . . , q−1, and [sij |gi, yij ] ∼ N(sij |σjB
′
igi, 1) subject to sij < 0 if yiq = 1.

We then let zi = HqΣ
1/2
11 si. Here σj is the jth row of Σ

−1/2
11 H′

q.

Our method groups the regression coefficient matrices Bi into c clusters by using the
MATDP prior. The main computational burden of our method comes from the calcula-
tion ofΘk, but fortunately we can use the Sherman-Morrison-Woodbury formula (Golub
and Loan 1996) to calculate Θk efficiently. In particular, we have

Θk = (Λ−1 +G′
kGk)

−1 = Λ−ΛG′
k(Ink

+GkΛG′
k)

−1GkΛ.

Thus, the above formula allows us to invert an nk×nk matrix instead of an n×n matrix
when the basis functions gj(x) are defined as the kernel function K(xj ,x) for j =
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1, . . . , n (see Appendix I). Since nk is typically far smaller than n, the algorithm can be
efficient for a large-scale dataset.

Given a new input vector x0, let us now consider how to predict its label y0 ∈ {0, 1}q.
Assume B0 and z0 are the coefficient matrix and the auxiliary vector associated with
y0 = (y01, . . . , y0q)

′. We have

[B0|Q,w, α,Λ] ∼
α

α+n
Nm+1,q(·|0, Λ⊗Σ) +

1

α+n

c∑
k=1

nkδQk
, (4)

which yields out-of-sample prediction. The posterior distribution of y0 is given by

p(y0|x0,Y) =

∫
p(y0|x0,B0)p(B0|Q)p(Q|Y)dQdB0.

To approximate this integral via Monte Carlo integration, we draw B
(t)
0 from equation

(4) and then compute

p̂(y0l = 1|x0,Y) =
1

T

T∑
t=1

p

(
y0l = 1|x0,B

(t)
0 ,Ω(t)

)
,

where the Ω(t) are the MCMC realizations of all the model parameters (after the burn-
in) but the Qk.

4.2 Related Work

In related work, Ibrahim and Kleinman (1998) and Xue et al. (2007) suggested assigning
a DP prior to the columns (denoted bj) of B ∈ Rp×q. Relative to the hierarchical model
in equation (1), the model of Ibrahim and Kleinman (1998) and Xue et al. (2007) for
the multivariate generalized linear regression problem is specified as

[yi|B,xi]
ind∼ F (yi|B′xi), i = 1, . . . , n,

[bj |G]
iid∼ G, j = 1, . . . , q, (5)

G ∼ DP(αG0).

This model is able to capture the dependence among the response variables but ignores
the dependence among the covariate vectors. Moreover, since the dimensionality q of
the response is usually not too large in practical applications, the clustering property of
DPs might place all of the columns in a single class, enforcing too much sharing (Bush
et al. 2010). Thus, it is necessary to take a larger mass parameter in practice. It is
worth pointing out that the limiting case of the model in equation (5) at α = ∞ is
identical to the limiting case of the corresponding MATDP model at α = 0.
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Alternatively, Gelfand et al. (2005) proposed the spatial DP (sDP) model, which is[
y·j |sj , σ2

] ind∼ Nn(y·j |sj , σ2In), j = 1, . . . , q,

[sj |G]
iid∼ G, j = 1, . . . , q,

G ∼ DP(αG0),

G0(·|K, τ) = Nn(·|0, τ−1K),

where y·j = (y1j , . . . , ynj)
′ and K = [K(xi,xj)] is the n×n kernel matrix. We see that

the base distribution in the sDP is defined as a Gaussian process (GP). Specifically, this
model describes the dependence among the response variables via a DP, and the depen-
dence among the samples via a GP. A difficulty with this approach is that the MCMC
algorithm for the sDP involves the computation of n×n matrices at each sweep; in par-
ticular, the algorithm needs to calculate the densities of n-variate normal distributions
in obtaining the posterior distribution p(sj |s−j ,Y). This n3 computational complexity
limits the applicability of the sDP model for large-scale datasets.

Figure 1 provides a graphical representation of all three of these three models in the
setting of regression.

(a) (b) (c)

Figure 1: Graphical representations under regression setting: (a) MATDP, (b) sDP, and
(c) the model defined in equation (5) (called DPC in Section 6.1).

Another example of related work is the kernel weighted mixture of DPs (Dunson et al.
2007), which is able to capture the relationship among the covariate vectors. However,
it does not capture dependence among the response variables. Our approach is also
different from the method of Dunson et al. (2008) in which only one regression coefficient
matrix is employed for all samples and a so-called matrix stick-breaking process is
proposed to define a joint prior for the elements of this regression coefficient matrix.
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5 Nonparametric Latent Factor Models

We turn to our proposed framework for Bayesian nonparametric latent factor analysis,
with application to classification problems in which yi ∈ {0, 1}q. We build on the latent
factor analysis model of West (2003), which has the following specification:

xi = Aηi + µ+ ϵi,

ηi ∼ Nr(·|0, Ir),
ϵi ∼ Np(·|0,Σ),

where ηi is a r-dimensional vector of latent factors, µ is a p-dimensional offset term
and A is a p×r matrix of factor loadings. The corresponding response yi is obtained
from a coupled latent factor analysis model:

yi = Bηi + ν + εi,

εi ∼ F (·|0, Λ),

where B is a q×r matrix of factor loadings, ν is a q-dimensional offset term and F (·)
can be defined by an exponential family distribution, e.g., Gaussian or multinomial. We
will assume a Gaussian distribution in the following presentation, because of our use of
Gaussian-based data augmentation techniques (see Section 4).

As we see, the latent factor model of West (2003) connects xi and yi through the latent
vector ηi. Moreover, the original input xi does not enter the model directly; that is, yi

is conditionally independent of xi given ηi. Typically, r is less than p. Thus, the model
directly addresses both dimensionality reduction and regression. When the F (εi|0, Λ)
are Gaussian, West (2003) showed that the conditional distribution for yi given only xi

and the model parameters is still Gaussian. This implies that the relationship between
yi and xi is linear.

Carvalho et al. (2010) extended the work of West (2003) by incorporating additional
latent factors for responses. To relax the Gaussian assumptions for the latent factors,
they used a DP prior to describe the joint distribution of the extended latent factors.
We now turn to a new nonparametric extension of the model of West (2003) which
preserves its virtues for high-dimensional data while also addressing the issue of potential
dependency among the data samples and among the components of the covariate or
response vectors, and also capturing nonlinear relationships between the covariates and
response variables.
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5.1 The Model

Our framework extends the latent factor analysis model of West (2003) to incorporate
a MATDP prior. For i = 1, . . . , n, the specification is

xi ∼ Np

(
· |Aiηi + µi, Σi

)
,

yi ∼ F (·|Biηi + νi, Λi),

ηi ∼ Nr(·|0, Ir)[
θi|G

]
∼ G,

G ∼ DP (αG0),

where Σi = diag(σ2
i1, . . . σ

2
ip), Λi = diag(λ2

i1, . . . , λ
2
iq), and θi = {Ai,Bi,µi,νi,Σi,

Λi} are the parameters which follow a joint DP prior DP(αG0).

The base distribution G0 over θi is as follows:

Ai ∼ Np,r(·|0, Ψ1⊗Φ1),

Bi ∼ Nq,r(·|0, Ψ2⊗Φ2),

µi ∼ Np(·|mµ, diag(vµ)
2),

νi ∼ Nq(·|mν , diag(vν)
2),

log(σ2
ij) ∼ N(·|mσ,j , v

2
σ,j),

log(λ2
il) ∼ N(·|mλ,l, v

2
λ,l).

Here vσ,j represents the jth entry of the vector vσ. The concentration parameter α
follows log(α2) ∼ N(·|aα, bα). We further assume that the priors of mµ,j , v

2
µ,j , mσ,j and

v2σ,j are mµ,j ∼ N(·|0, aµ), log(v2µ,j) ∼ N(·|0, bµ), mσ,j ∼ N(·|0, aσ), and log(v2σ,j) ∼
N(·|0, bσ). The prior for Ψ1 follows the setting for Λ in the previous section, but we now
assume that Φ−1

1 follows a Wishart distribution Wp(·|ρ1,R−1
1 ). Moreover, we suggest

that ρ1 = p+1 and R1 = Ip+
1
p1p1

′
p. The setting for R1 makes the covariates be

mutually equicorrelated. Hyperparameters associated with yi are defined analogously.

In the above DP-based Latent Factor Model (DP-LFM), the dimensionality of the latent
vector ηi (i.e., the number of factors) is assumed to be prespecified by practitioners.
Although one can potentially assign a sparsity prior for Ai or Bi as in Carvalho et al.
(2010) to address this issue, we have not investigated such an extension in this paper.

It can be shown that the joint distribution of (xi,yi) under the DP-LFM follows a
mixture-of-Gaussians distribution. In each mixture component, there is a component-
specific regressor Bi responsible for generating the response yi. Therefore, in different
mixture components, covariates and responses are related differently. This piecewise
linear relationship implies that the overall model is nonlinear. A related nonlinear
model, referred to as dpMNL, has been described by Shahbaba and Neal (2009); we
compare the two models graphically in Figure 2. We also note that our model can be
viewed as an infinite mixture of factor analyzers, a model which has been considered
by Chen et al. (2010) and Görür and Rasmussen (2007). Our work differs in that we
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employ a MATDP prior for the loading matrices, allowing us to capture dependencies
in these matrices across data samples.

It is worth pointing out that instead of directly relating the input to the response,
the factor model introduces a normal latent variable to bridge the input and the re-
sponse. This brings three benefits for our model over the dpMNL model. First, for
high-dimensional inputs, our model transforms the input into a low-dimensional sub-
space and therefore decreases the complexity of the overall mapping. Second, for inputs
with noise, our model denoises the data and therefore makes the training of the esti-
mation of the loading matrices more robust. Third, our model has the capability of
accommodating inputs with missing entries.

Finally, to extend the nonparametric specification so that it can handle classification
problems, where y is a label instead of a q-dimensional real vector, we follow the path
discussed in Section 4 and assume that y follows a probit model given η. We will
conduct the empirical analysis of this model in Section 6.3.

(a) dpMNL (b) DP-LFM

Figure 2: Graphical model representations for dpMNL and DP-LFM.

5.2 Posterior Sampling

We devise algorithms for fitting {θi}ni=1 and {ηi}ni=1. Let θi,x = (Ai,µi,Σi) be the
parameters associated with xi, and let θi,y define the analogous parameters associated
with yi. In this section, we present a posterior sampling algorithm for θi,x; note that
the sampling algorithm for θi,y is a notational variant of that for θi,x.

Given the discreteness of the random measure G, we assume that there are c distinct
values among {θi}ni=1, denoted {τ j = (Aj ,µj ,Σj ,Bj ,νj ,Λj)}cj=1. We further intro-
duce n auxiliary variables w = {wi}ni=1 indicating the component membership of the
parameter θ, i.e., θi = τwi . Instead of directly sampling θi, we sample {wi}ni=1 and
{τ j}cj=1. The detailed sampling algorithm is given in Appendix II.
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5.3 Prediction

After the burn-in iterations, we denote by (τ (t),w(t)) the parameters we sampled in the
tth iteration. Given a new input x, the predictive distribution of y is defined by

p(y|τ (t),w(t),x) =
α
∫
p(x,y|θ)G0(dθ) +

∑c(t)

j=1 n
(t)
j p(x,y|τ (t)

j )

α
∫
p(x|θ)G0(dθ) +

∑c(t)

j=1 n
(t)
j p(x|τ (t)

j )
,

where

p(x,y|θ) =
∫

p(x|θ,η)p(y|θ,η)p(η)dη.

Although p(x,y|θ) can be shown to be a Gaussian, the parameterization is quite com-
plicated. To make prediction more efficient, we use a different scheme. Note that

p(y|x, τ (t),w(t)) =

∫
p(y|η,θ)p(η|x,θ)p(θ|x, τ (t),w(t))dηdθ.

In order to sample θ(t) from p(·|x, τ (t),w(t)), we first sample τ
(t)
new from G0 and then

sample θ(t) based on

[
θ(t)|x, τ (t),w(t)

]
∼

c(t)∑
j=1

n
(t)
j p(x|τ j)δτ (t)

j

+ α · p(x|τ (t)
new)δτ (t)

new
.

Letting θ(t) = {A(t),µ(t),Σ(t),B(t),ν(t),Λ(t)}, we sample the predicted response, de-
noted by y(t), from the following distribution

p(y(t)|θ(t),x) =

∫
p(y(t)|η,θ(t))p(η|x,θ(t))dη. (6)

Here p(η|x,θ(t)) = Nr(·|m(t)
η ,V

(t)
η ) where

V(t)
η = [(A(t))′(Σ(t))−1A(t) + Ir]

−1,

m(t)
η = V(t)

η (A(t))′(Σ(t))−1(x− µ(t)),

and the integral in equation (6) turns out to be Nq(y
(t)|m(t)

y ,V
(t)
y ), where

V(t)
y = B(t)

[
V(t)

η +m(t)
η (m(t)

η )′
]
(B(t))

′
+Λ(t),

m(t)
y = B(t)m(t)

η + ν(t).

This distribution generates the predicted response y(t) for the tth iteration. Assume
that posterior sampling is carried out for T time steps. Discarding the first T0 iterations
for the burn-in, the predicted y is

y =
1

T − T0

T∑
t=T0+1

y(t).
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6 Experimental Analysis

In this section we present the results of numerical experiments that evaluate the per-
formance of our proposed Bayesian nonparametric models based on the matrix-variate
Dirichlet process (MATDP) prior. We first present results for the DP-based multinomial
probit regression (DP-MNP) presented in Section 4. We then discuss an experimental
analysis of the matrix-variate DP Latent Factor Model (DP-LFM) in multivariate re-
gression, multi-class classification, and multi-label prediction problems.

6.1 DP-MNP for Multi-class Classification

To evaluate the performance of our proposed DP-MNP method, we conducted empiri-
cal studies on several benchmark datasets and compared our method with two closely
related classification methods: the multi-class Gaussian process classification method
(GPC) (a degenerate sDP at α = ∞), the model of Ibrahim and Kleinman (1998) and
Xue et al. (2007) that we refer to as DPC (see Figure 1).

In the experiments we employed four multi-class classification datasets from the UCI
database (http://archive.ics.uci.edu/ml/). These four datasets are the Car Eval-

uation database, the Synthetic Control database, the Waveform database, and the
Balance Scale database, respectively.

− The Car Evaluation dataset was derived from a simple hierarchical decision
model originally developed for the demonstration of DEX (Bohanec and Rajkovic
1990). It contains 1728 samples of 4 classes, each instance with 6 attributes.

− The Synthetic Control dataset was originally used for a clustering problem (Al-
cock and Manolopoulos 1999). It contains 600 samples of synthetically generated
control charts, and each instance with 60 attributes. Moreover, there are six dif-
ferent classes of control charts, i.e., normal, cyclic, increasing trend, decreasing
trend, upward shift, and downward shift. Here we treat this dataset as a six-class
classification problem.

− The Waveform database contains 5000 samples of 3 classes of waves, and each
instance with 21 attributes with continuous values between 0 and 6. In essence,
each class is generated from a combination of 2 of 3 “base” waves.

− The Balance Scale database was originally generated to model psychological
experimental results. It contain 625 samples with 3 classes, and each instance
with 4 attributes. Specifically, each instance is classified as having the balance
scale tip to the right, tip to the left, or be balanced, and the attributes are the
left weight, the left distance, the right weight, and the right distance.

Table 1 gives a summary of these benchmark datasets. In our experiments, each dataset
was randomly partitioned into two disjoint subsets as the training and test, with the per-
centage of the training data samples also given in Table 1. Ten random partitions were
chosen for each dataset, and the average and standard deviation of their classification
error rates over the test data were reported. For the sake of simplicity, in the following

http://archive.ics.uci.edu/ml/
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experiments, the radial basis function (RBF) kernel, K(xi,xj) = exp(−∥xi −xj∥2/σ2),
was employed and σ was set to the mean Euclidean distance among the input vec-
tors. For our DP-MNP method, the other parameters were set as follows: αa = 4,
αb = 1, ai = 4 and bi = 1 for i = 1, . . . ,m + 1. Additionally, we set ρ = q and
R11 = Iq−1 + 1

q−11q−11
′
q−1 (the equicorrelation matrix). These simple settings were

found to be effective, although we make no claims of optimality.

Dataset q p k n/k
Car Evaluation 4 6 1728 10%
Synthetic Control 6 60 600 40%
Waveform 3 21 5000 2.5%
Balance Scale 3 4 625 40%

Table 1: Summary of the benchmark datasets: q—the number of classes; p—the di-
mensionality of the input vector; n—the number of training samples; k—the size of the
dataset.

Table 2 shows the corresponding test results. From the table, we can see that the
overall performance of our DP-MNP method is slightly better than the two competing
methods. In the comparison to GPC, the difference is presumably due to the ability of
the DP-MNP to capture relationships among data points, whereas in the comparison
to the DPC the DP-MNP profits from its ability to exploit relationships among the
components of the response vector.

Note that the dimensionality of the response q is not large in the four datasets. For DPC,
the clustering property of DP could place all of the regression vectors in a single class,
enforcing too much sharing. Thus, we took a larger mass parameter in implementing
DPC, as suggested by Bush et al. (2010). Recall that the limiting case of the DPC
model at α = ∞ is identical to a degenerate DP-MNP method at α = 0, while the GPC
method can be regarded as a degenerate sDP model at α = ∞.

6.2 DP-LFM for Multivariate Regression

We test the effectiveness of our proposed nonparametric factor analyzers in a collection
of experiments. We first demonstrate our DP-LFM in the multivariate regression setting
using the chemometrics dataset and the robot arm dataset. The chemometrics data
taken from Skagerberg et al. (1992) were used in Breiman and Friedman (1997) to

Dataset GPC DPC DP-MNP

Car Evaluation 26.64 (±1.24) 28.18 (±1.51) 26.31 (±1.28)
Synthetic Control 16.32 (±0.98) 16.42 (±1.97) 15.42 (±1.34)
Waveform 17.96 (±0.12) 16.50 (±1.14) 15.84 (±0.85)
Balance Scale 16.22 (±2.10) 16.31 (±2.63) 15.03 (±1.93)

Table 2: Classification error rates (%) and standard deviations on the four datasets.
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analyze their regression methods. The robot arm dataset was used by Teh et al. (2005)
for modeling in the domain of multi-joint robot arm dynamics. Both datasets have six
responses. The chemometrics data has 58 samples and the dimensionality of x is 22.
The robot arm data has 1500 samples and the dimensionality of x is 12.

In the experiments we preprocessed the data to have zero mean and unit variance. We
used the same setup for the hyperparameters in the two datasets: aα = −2, bα = 3,
aµ = aν = 1, bµ = bν = 1, aσ = aλ = 1 and bσ = bλ = 1. Our competitor is the
Dirichlet process regression model (dpReg) in Shahbaba and Neal (2009). We tested
dpReg’s performance on the data preprocessed by principal component analysis.

For both the datasets, we set the latent variable dimensionality equal to four for the
DP-LFM. For comparison, we also projected the data onto a four-dimensional subspace
and fit a dpReg model in that subspace. Furthermore, to evaluate the benefits of a
nonlinear model, we compared to the West (2003) model (LFR for short) by setting
α in DP-LFM to zero. We used 35 data samples in the chemometrics and 1000 data
samples in the robot arm for training respectively. We compared the mean squared
error on each response and summarize the results in Figure 3(a) and Figure 3(b). Dif-
ferent bar groups correspond to different regression responses. The experimental results
demonstrate that the DP-LFM outperforms PCA+dpReg and LFR, illustrating the
advantages that accrue to a model that can capture nonlinearity and can perform su-
pervised dimensionality reduction.

(a) Chemometric Data (b) Robot Arm Data

Figure 3: Performance comparison of DP-LFM, dpReg, and LFR on datasets for re-
gression.

6.3 DP-LFM for Multi-Class Classification on Synthetic Data

In this experiment, we focused on a four-way classification problem on synthetic data
similar to Shahbaba and Neal (2009), but in a slightly different generative setting.
Setting the dimensions of x and η to be 10 and 2 respectively, we first generated two
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components and related parameters {θi = {Ai,Bi,µi,νi,Σi,Λi}}2i=1 as follows

Ai(j, k) ∼ N(·|0, σ2
Ai
),

µi(j) ∼ N(·|0, 22),
log(Σi(j, j)

2) ∼ N(·|0, 1),
log(σ2

Ai
) ∼ N(·|0, 22).

The parameters for generating y were specified similarly. Afterwards, we generated the
latent variable η from N2(η|0, I2) and then randomly chose the component η belonging
to, say θi. Then x and y were sampled from a Gaussian distribution and a multinomial
logit distribution respectively.

The goal in this experiment was to evaluate the advantage of doing dimensionality reduc-
tion and classification jointly. Evaluation is based on the F1-score (Murphy 2012). Let
ŷi ∈ {0, 1} be the predicted label, and yi ∈ {0, 1} be the true label. Then the “accuracy”

is defined as A ,
∑

i yiŷi+(1−yi)(1−ŷi)∑
i ŷi+(1−ŷi)

, the “precision” as P ,
∑

i yiŷi∑
i ŷi

and the “recall” as

R ,
∑

i yiŷi∑
i yi

. Accordingly, the “F1-score” is F1 , 2PR
R+P =

2
∑

i yiŷi∑
i(yi+ŷi)

. In the multi-class

(q-class) case, there are two approaches to generalize the F1-score: “macro-averaged
F1” and “micro-averaged F1.” Let (ŷij , . . . , ŷiq)

T ∈ {0, 1}q and (yij , . . . , yiq)
T ∈ {0, 1}q

be the predicted and true label vector, respectively. Then the F1-Macro is defined as
1
q

∑q
j=1

2
∑

i yij ŷij∑
i(yij+ŷij)

, while the F1-Micro is defined as
2
∑q

j=1

∑
i yij ŷij∑q

j=1

∑
i(yij+ŷij)

.

We compared two models: the first was our DP-LFM with the original x as its in-
put, and the second was the dpMNL model (Shahbaba and Neal 2009) with the input
preprocessed by principal component analysis (PCA). More specifically, for the DP-
LFM model, we first set the dimensionality of the latent variable to be d and trained
it with the original data. For the dpMNL, we first projected the original data into a
d-dimensional space using PCA and trained the dpMNL model on the transformed data.

The hyperparameters for the matrix-variate prior were set as follows: ΣMDP
Φ = ΣMDP

Ψ =
Ir, a

MDP
ν = 10, and bMDP

ν = 1. Note that for simplicity we directly set ΣMDP
Φ and ΣMDP

Ψ

to be identity matrices and eliminated their hyperparameters ρMDP and RMDP as in the
previous subsection. The hyperparameters aα and bα were set to -2 and 3 respectively.
All the other hyperparameters were set to be 1 in this experiment.

We randomly generated 20 datasets, each of which contained 100 data points for train-
ing and 1900 for test. We ran 5000 MCMC iterations for each model and used the
last 4000 iterations for prediction. We adopted accuracy and F1-MACRO (the average
F1-Score over all categories) as performance metrics and evaluated the two models’ av-
erage performance on these datasets. The performance of the two models was compared
for different choices of d ranging from two to five and is depicted in Figure 4. From
the figure, we can see that handling dimensionality reduction and classification jointly
improves the performance. It should be noted that the experiment does not establish
that DP-LFM is a better model than dpMNL. Indeed, PCA could be an inappropriate
preprocessor that leads to dpMNL’s poorer performance. The experiment only demon-
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strates that for high-dimensional classification problem, it may be a bad idea to separate
dimensionality reduction and classification.

(a) Accuracy (b) F1 Score

Figure 4: Performance comparison of DP-LFM and dpMNL on synthetic datasets.

6.4 Application to Parkinson’s disease data

In this section, we test our DP-LFM on real world datasets for classification. We used
the Parkinson dataset, which was obtained from the UCI Repository. Each instance has
22 features and a binary label indicating whether he/she is a patient with Parkinson’s
disease. Note that Shahbaba and Neal (2009) used PCA to preprocess the data and chose
the first ten principal components in implementing their dpMNL model. Our method
does not need this preprocessor, because it implements classification and dimensionality
reduction simultaneously. To compare our DP-LFM with dpMNL, we correspondingly
set the number of factor loadings r in our model equal to ten.

The hyperparameters for the matrix variate DP prior were set as in the above section.
The other hyperparameters were set as follows: aα = −2, bα = 3, aµ = aν = 1,
bµ = bν = 2, aσ = aλ = 1 and bσ = bλ = 2. In this experiment, we ran MCMC
for 5000 iterations, discarding the first 1000 burn-in iterations. The typical number of
components in the MCMC iterations ranges from 5 to 7. We compared DP-LFM with
baselines provided in Shahbaba and Neal (2009), which are summarized as follows:

� MNL & qMNL: Multinomial logit models and MNL with quadratic terms.

� SVM & SVM-RBF: Support vector machines and SVM with RBF-Kernel.

� dpMNL: Dirichlet process multinomial logit model (Shahbaba and Neal 2009).

As in Shahbaba and Neal (2009), we used a five-fold cross validation scheme to get a
reliable performance estimate of our proposed models. The evaluation metrics we used to
compare algorithms were “accuracy” and F1-Score. The results are reported in Table 3,
which shows the average performance and standard deviation for five randomly split
datasets. It can be seen that DP-LFM outperforms the other models. We attribute the
performance improvement to two reasons. First, our dimensionality reduction procedure
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is supervised. While dpMNL used PCA to preprocess the data for their model, our
model does dimensionality reduction and classification jointly and estimates the factor
loading matrixA with the information from the given labels. Second, our dimensionality
reduction was carried out locally instead of globally. While PCA globally reduces the
data to a ten-dimensional subspace, our model assumes that each instance has its own
factor loading matrix. By imposing a MATDP prior, we cluster data into regions and
estimate the region-specific factor loading matrix. This also provides potential evidence
that DP-LFM and dpMNL outperform the other discriminative methods. That is, the
clustering property of the DP can make DP-LFM and dpMNL reveal some information
about the underlying structure in the data (Shahbaba and Neal 2009).

models Performance
Accuracy F1

MNL 0.856 (±0.022) 0.797 (±0.028)
qMNL 0.861 (±0.015) 0.797 (±0.021)
SVM 0.872 (±0.023) 0.806 (±0.028)
SVM-RBF 0.872 (±0.027) 0.799 (±0.032)
dpMNL 0.877 (±0.033) 0.826 (±0.025)
DP-LFM 0.882 (±0.035) 0.843 (±0.024)

Table 3: Performance comparison for Parkinson’s disease data.

6.5 DP-LFM for Multi-Label Prediction

Finally, we evaluated our DP-LFM model in the setting of the multi-label prediction
problem, where each input vector xi is associated with a vector of responses yi. The
datasets we used here were Yeast and Scene from the UCI repository. The Yeast

dataset consists of gene-expression data. The number of data samples is 2417, with 1500
data samples for training and the others for test. Each input vector has 103 features
and may belong to any of the 14 predefined groups. The Scene dataset has a total of
2407 data samples, 1211 for training and 1196 for test. The feature dimensionality in
this dataset is 294 and the number of classes for each data instance is 6.

For both datasets, we preprocessed the data so that the input vectors for our algorithm
had zero mean and unity variance. The hyperparameters for the matrix-variate prior
were defined identically to those in the above experiment. The number of factor loadings
r was chosen to be 20. Hyperparameters for our model were set as follows: aα = −2,
bα = 3, aµ = aν = 5, bµ = bν = 2, aσ = aλ = 1 and bσ = bλ = 2.

In this experiment, we ran MCMC for 3000 iterations, discarding the first 1000 burn-in
iterations. The typical number of components in the MCMC iterations ranged from 4
to 6 for the Yeast dataset, and from 18 to 20 for the Scene dataset. We compared our
DP-LFM with the following algorithms:

� PCA: Principal component analysis which projects the data into a latent subspace
in an unsupervised manner. A nearest-neighbor classifier is trained for the data
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after projection.

� PLS: Partial least squares which finds the common structure between explanatory
variables and responses.

� SPPCA and SSPPCA: Supervised versions of probabilistic principal component
analysis. SPPCA incorporates the label in the training data to guide the projec-
tion, while SSPPCA further leverages the information of the explanatory variables
in the test data.

� SInf-CCA: Semi-supervised infinite version of canonical correlation analysis which
aims to principally find the correlation between the exploratory variables and
responses.

These algorithms have been studied by Yu et al. (2006) and Rai and Daumé III (2009).
Note that the SInf-CCA of Rai and Daumé III (2009) is a Bayesian nonparametric
method. We did not implement the dpMNL model (Shahbaba and Neal 2009) given
that it was designed for classification and not for multi-label prediction. Moreover, the
data samples in the two datasets we studied are both high-dimensional, which presents
a scalability issue for the dpMNL.

We summarize the performance of our algorithm and the other algorithms in Table 4.
The evaluation metrics are F1-MACRO and F1-MICRO (the average F1-measure over
all data samples) (Yu et al. 2006). The results of the compared algorithms are directly
cited from Yu et al. (2006) and Rai and Daumé III (2009), where we have chosen the
best-performing algorithms from their comparison. It can be seen from the table that
our algorithm outperforms the other ones in three out of the four entries. Moreover,
while SSPPCA outperforms our algorithm in the F1-MACRO metric on the Yeast

dataset, it must be kept in mind that SSPPCA uses test data during training, which
may not be feasible in real-world applications.

models Yeast Scene
F1-MACRO F1-MICRO F1-MACRO F1-MICRO

PCA 0.3723 0.5537 0.2857 0.2834
PLS 0.3799 0.5208 0.5745 0.5831
SPPCA 0.3859 0.5571 0.5173 0.5309
SSPPCA 0.3976 0.6012 0.5537 0.5783
Inf-CCA 0.3463 0.4954 0.3742 0.3825
DP-LFM 0.3903 0.6389 0.5871 0.6014

Table 4: Performance comparison for multi-label prediction.

7 Conclusion and Future Work

We have proposed the notion of matrix-variate DP priors. Based on this notion, we
have developed a Bayesian nonparametric discriminative model and a Bayesian non-
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parametric latent factor model for multivariate supervised learning problems. We have
also devised MCMC algorithms for inference and prediction. Our models are nonlin-
ear. Moreover, our nonparametric latent factor model has the advantage of performing
dimensionality reduction and regression or classification jointly.

In our nonparametric latent factor model, the dimensionality of the latent vector (i.e.,
the number of factors) is assumed to be prespecified by practitioners. It is desirable to
address the automatic choice of this value. A potential approach for handling this issue
is to assign a sparsity prior for loading matrices as in West (2003) and Carvalho et al.
(2010). Another possibility is to make use of nonparametric model-averaging methods,
in particular methods based on Beta process priors (Paisley and Carin 2009; Rai and
Daumé III 2009).
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Appendix I: The MCMC Algorithm for Multivariate Re-
gression

In this paper we define gj(x) = K(xj ,x) for j = 1, . . . , n. This implies that we have n
basis functions; that is, m = n. We can use Gibbs sampling to draw [Bi

n
i=1,Σ,Λ, α|Z].

The required full conditionals are

(a) [(Bi, wi)|(B−i,w−i), α,Λ,Σ,Z] for i = 1, . . . , n;

(b) [Qk|w,Λ,Σ, α,Z] for k = 1, . . . , c;

(c) [Σ−1|Z,B,R, ρ];

(d) [λ−1
i |{β(k)

i }ck=1,Σ, ai, bi] for i = 1, . . . , n+1;

(e) [α|aα, bα, c].

The Gibbs sampler exploits the simple structure of the conditional posterior for each
Bi. That is, for i = 1, . . . , n, the conditional distribution is given by

[Bi|B−i, Z,Λ,Σ] ∝ q0Nq(zi|B′
igi, Σ)Nn+1(Bi|0, Λ⊗Σ) +

∑
j ̸=i

qjδBj , (7)
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where qj = Nq(zi|B′
jgi, Σ) and

q0 = α

∫
Nq(zi|B′

igi, Σ)Nn+1,q(Bi|0, Λ⊗Σ)dBi

= α ·Nq(zi|0, (g′
iΛgi + 1)Σ).

Note that Nq(zi|B′
jgi, Σ) and Nq(zi|0, (g′

iΛgi+1)Σ) are multivariate singular normal
distributions, which can be computed via the nonzero eigenvalues of Σ (Mardia et al.
1979). According to equation (2), (7) thus reduces to

[Bi|B−i, zi,Λ,Σ] ∝ q0 ·Nn+1,q(Bi|Aigiz
′
i, Ai ⊗Σ) +

c∑
k=1

nk(−i)qkδQk
,

where Ai = (Λ−1+gig
′
i)

−1. Thus, given B−i, with probability proportional to nk(−i)qk,
we draw Bi from distribution δQk

, or with probability proportional to q0, we draw Bi

from Nn+1,n(·|Aigiz
′
i, Ai ⊗ Σ). Here we again use the Sherman-Morrison-Woodbury

formula to calculate Ai. That is,

Ai = (Λ−1 + gig
′
i)

−1 = Λ−Λgi(1 + g′
iΛgi)

−1g′
iΛ,

which involves reciprocal computations.

To speed mixing of the Markov chain, Bush and MacEachern (1996) suggested resam-
pling the Qk after every step. For each k = 1, . . . , c, we have

[Qk|Z,w,Λ,Σ] ∝ Nn+1,q(Qk|0, Λ⊗Σ)
∏

i: wi=k

Nq

(
zi|Q′

kgi, Σ
)
,

from which it follows that the conditional distribution of Qk is given by equation (3).

The update of Σ11 is given by

[Σ−1
11 |Z,B, ρ,R11] ∼ Wq−1

(
Σ−1

11

∣∣∣∣∣ρ+ n,R11 +

n∑
i=1

Hq(zi−B′
igi)(zi−B′

igi)
′H′

q

)
.

Since the λi for i = 1, 2, . . . , n+1 are only dependent on the Qk, we use the Gibbs
sampler to update them from their own conditional distributions as

[λi
−1|Q, ai, bi] ∼ Ga

(
λi

−1

∣∣∣∣∣ai+qc

2
,
bi +

∑c
k=1(β

(k)
i )′HqΣ

−1
11 H

′
qβ

(k)
i

2

)
,

where (β
(k)
i )′ is the ith row of Qk.

As for the estimate of α, we directly follow the data augmentation technique proposed
by Escobar and West (1995). That is, given the currently sampled values of c and α,
one samples a random variable ω from Beta distribution Be(α+1, n); one then samples
a new α from the following mixture as

[α|ω, c] ∼ π0Ga(α|aα+c, bα− log(ω)) + (1− π0)Ga(α|aα+c−1, bα− log(ω))

with π0 = α+c−1
aα+c−1+n(bα− log(ω)) .
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Appendix II: Posterior Sampling for DP-LFM

Given the discreteness of the random measure G, we assume that there are c distinct
values among {θi}ni=1, denoted {τ j = (Aj ,µj ,Σj ,Bj ,νj ,Λj)}cj=1. We further intro-
duce n auxiliary variables w = {wi}ni=1 indicating the component membership of the
parameter θ, i.e., θi = τwi . Instead of directly sampling θi, we sample {wi}ni=1 and
{τ j}cj=1. The main sampling algorithm is listed as follows:

� Let (xi,yi) be the last observed data instance, and denote by nj(−i) the number
of samples except (xi,yi) in the jth component. We have the following posterior
distribution for wi:

p(wi|(xi,yi), τ , α,G0) ∝
{

nj(−i)p((xi,yi)|ηi, τ j) wi = j ≤ c,
α
∫
p((xi,yi)|ηi,θ)G0(dθ) wi = c+ 1.

Here the likelihood of (xi,yi) is

p((xi,yi)|τ j ,ηi) = Nq(yi|Bjηi + νj , Λj)Np(xi|Ajηi + µj , Σj).

For simplicity, we do not write the likelihood function explicitly in the rest of the
paper.

In many cases, the integral in the above sampling formula can be difficult to
evaluate. To circumvent this issue, we avail ourselves of a trick proposed by Neal
(2000); Shahbaba and Neal (2009) where we first sample m additional components
{τ c+1, τ c+2, . . . , τ c+m} independently from G0 and then sample the component
which {xi,yi} belongs to. If {xi,yi} belongs to the component in {τ c+1, τc+2, . . . ,
τc+m}, a new component is generated and we set wi to be c+1.

� Denoting by nj the number of (xi,yi) with wi = j, we sample µj according to
the Np(·|mj ,Vj), where

Vj = (Σ−1
j + diag(vµ)

−2)−1

mj = Vj

[
Σ−1

j (
∑
wi=j

xi −Ajηi) + diag(vµ)
−2mµ

]
.

� The posterior distribution of Σj = diag(σ2
j1, . . . , σ

2
jp) does not have a closed form.

However, we can use slice sampling (Neal 2003) to sample from the following
distribution:

p
(
log(σ2

jl)
∣∣∣{xi}ni=1,µj ,Aj

)
∝ N(log(σ2

jl)|mσ,l, v
2
σ,l)

∏
wi=j

p(xi|τ j).

� For those input vectors xi with wi = j, we have xik ∼ N(·|ajkηi+µjk, σ
2
jk), where

ajk is the kth row of Aj . This indicates that the elements of xi are independent.
The posterior inference for Aj directly follows from the setting in the previous
section.
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� Assuming that wi = j, we sample ηi from Nr(·|mηi ,Vηi), where

Vηi = [B′
jΛ

−1
j Bj +A′

jΣ
−1
j Aj + Ir]

−1,

mηi = Vηi

[
B′

jΛ
−1
j (yi − νj) +A′

jΣ
−1
j (xi − µj)

]
.
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