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Bayes Linear Sufficiency in Non-exchangeable
Multivariate Multiple Regressions

David A. Wooff ∗

Abstract. We consider sufficiency for Bayes linear revision for multivariate multi-
ple regression problems, and in particular where we have a sequence of multivariate
observations at different matrix design points, but with common parameter vector.
Such sequences are not usually exchangeable. However, we show that there is a
sequence of transformed observations which is exchangeable and we demonstrate
that their mean is sufficient both for Bayes linear revision of the parameter vector
and for prediction of future observations. We link these ideas to making revisions
of belief over replicated structure such as graphical templates of model relation-
ships. We show that the sufficiencies lead to natural residual collections and thence
to sequential diagnostic assessments. We show how each finite regression problem
corresponds to a parallel implied infinite exchangeable sequence which may be ex-
ploited to solve the sample-size design problem. Bayes linear methods are based on
limited specifications of belief, usually means, variances, and covariances. As such,
the methodology is well suited to high-dimensional regression problems where a
full Bayesian analysis is difficult or impossible, but where a linear Bayes approach
offers a pragmatic way to combine judgements with data in order to produce pos-
terior summaries.

Keywords: Bayes linear, Sufficient, Multivariate multiple regression, Approximate
Bayesian, Residual space, Diagnostics, Sequential, Sample-size design.

1 Introduction

We consider sufficiency for Bayes linear (BL) revision for multivariate multiple regression
problems of the form Y = Xβ + ϵ, where Y is a response vector, X is a design matrix,
β is a vector of parameters, and ϵ is a vector of error quantities. In particular, we
suppose that we will take n vector observations Y1, . . . , Yn at points X1, . . . , Xn with
error vectors ϵ1, . . . , ϵn, where each design point Xi is a matrix. The aim is to revise
beliefs over β. This is a familiar problem which has been extensively addressed from
classical and traditional Bayesian perspectives. What has not been addressed is the
role of sufficiency in the multivariate BL setting, largely because the sequence of vector
observables is not exchangeable. The aim of this paper is to reveal that there are
sufficiencies which may be exploited in this context. These sufficiencies vastly simplify
the computations required for the kinds of high-dimensional problems for which we use
BL methods.

Our perspective is twofold. First, BL methodology, based on expectation rather than
probability as a primitive, offers a rich pragmatic alternative to traditional Bayesian
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methods. Secondly, BL methods offer a practical linear approximation to full Bayesian
methods for very high dimensional problems where the burden of full multi-dimensional
probabilistic specification is too heavy or impossible, where computational tractability
is important, and in particular where there is a need to prioritize for diagnostic insights.
Recent examples motivated by such considerations include analysis of computer simu-
lators (Cumming and Goldstein 2009), climate prediction (Goldstein and Rougier 2006,
2009; Williamson et al. 2012), galaxy formation (Vernon et al. 2010), and other care-
ful high-dimensional modelling (Rougier and Kern 2010; Gosling et al. 2013). Because
this material serves two audiences, in this account we will tend to mix terminology in
order to make the content more familiar to those more used to traditional Bayesian
approaches, so for example we blur the distinction between adjustment and revision,
with context depending on one’s choice of paradigm.

Section 2 outlines the basic concepts and calculations employed in BL methodology,
introduces the idea of BL sufficiency, and identifies sufficiency with separation within
graphical models for such regession problems. In Section 3 we introduce a motivating
example. In Section 4 we establish notation and lemmas for subsequent theory. In
Section 5 we derive sufficiency results for multiple multivariate regression parameters. In
Section 6 we extend these results for prediction. In Section 7 we discuss the implications
of sufficiency for simplifying residual analyses and show a brief example of such analysis.
In Section 8 we show how the theory extends to problems where the parameter set β
varies according to design matrix. In Section 9 we exploit the sufficiency construction to
show how we may calculate approximately the sample size necessary to achieve specified
variance reductions for any linear combination of parameters.

2 Bayes linear methods: an outline

BL methods arise either by taking expectation as the primitive quantification of de-
gree of belief, replacing probability (de Finetti 1937, 1974; Goldstein 1981), or through
simple linear approximations to full Bayesian analyses. They require only limited prior
judgements and are easy to calculate, and so are well-suited to otherwise intractable
problems. Basic definitions and calculations for the BL approach are briefly as follows.
Further details may be found in Goldstein and Wooff (2007). The adjusted expectation
(informally, the posterior mean) for collection B given collection D is

ED(B) = E(B) + Cov(B,D)Var(D)†[D − E(D)]. (1)

When we observe the collectionD asD = d, we may evaluate (1) by replacing [D−E(D)]
by [d − E(D)]. We partition the variance matrix of B into components Var(B) =
Var(ED(B)) + VarD(B), being respectively the resolved variance matrix and the ad-
justed variance matrix (i.e. explained and residual variation), the residual portion being
computed as

VarD(B) = Var(B)− Cov(B,D)Var(D)†Cov(D,B). (2)

A† is the Moore-Penrose generalized inverse, and we restrict attention to non-negative
definite variance matrices with bounded positive trace. ED(B) and VarD(B) correspond
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informally with the conditional mean and variance E(B|D) and Var(B|D) in traditional
settings.

A measure of the relative difference between the data d and their prior expectations
E(D), is the discrepancy, Dis(d), the Mahalanobis distance between d and E(D):

Dis(d) = [d− E(D)]TVar(D)†[d− E(D)].

A priori, E(Dis(D)) = rank{Var(D)}, so that the discrepancy ratio

Dr(d) = Dis(d)/rank{Var(D)},

is a standardized measure for the diagnostic: E(Dr(D)) = 1. Large changes in expec-
tation coupled to small portions of variance explained would be quite surprising. Small
changes in expectation coupled to large changes in variance would also be surprising, al-
beit in a different way. We derive similar diagnostics for observed adjusted expectations;
the adjustment discrepancy is:

Disd(B) = [Ed(B)− E(B)]T [Cov(D,B)Var(D)†Cov(D,B)]†[Ed(B)− E(B)].

This is the squared change in expectation from prior to posterior, relative to variance
explained, and can be compared to its expected value:

E(Disd(B)) = rT = rank{Cov(D,B)}.

The resolution transform matrix is defined as

TB:D = Var(B)†Cov(B,D)Var(D)†Cov(D,B).

It is important because its eigenstructure provides the canonical form for a problem. The
canonical directions G1, . . . , GrB , where rB = rank{Var(B)}, derive from the normed
right eigenvectors of TB:D, which we write ṽ1, . . . , ṽrB , ordered by eigenvalues 1 ≥ λ1 ≥
. . . ≥ λrB ≥ 0, and scaled, for each i, as ṽTi Var(B)ṽi = 1. The canonical quantities are
then defined as Gi = ṽTi (B −E(B)). Properties of the canonical representation include
E(Gi) = 0, Var(Gi) = 1, Cov(Gi, Gj) = 0, and VarD(Gi) = 1− λi. The eigenvalues are
thus resolved variances for these uncorrelated components. The canonical form is useful
(1) for revealing the structural implications of belief specifications, for example revealing
those linear combinations for which data are expected to be informative/uninformative;
(2) for attaching appropriate diagnostics to uncorrelated components of the model; (3)
for sample-size design.

2.1 Bayes linear sufficiency

Consider a second-order exchangeable sample of vector random quantities D(n) =
D1, . . . , Dn which respects exchangeability with another vector of random quantities
B. That is, E(Di) and Var(Di) are the same for all i, Cov(Di, Dj) is the same for all
i ̸= j, and Cov(Di, B) is the same for all i. Then the sample mean vector D̄ = 1

n

∑
Di
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is BL sufficient for D(n) for adjusting B. Alternatively, this is the notion of sufficiency
which we may apply when we constrain ourselves to second-order specifications within
the full Bayesian setting. The practical implication, as for sufficiency in the classical
and full Bayesian paradigms, is to simplify the computations required for posterior anal-
ysis. We derive additional benefits in the BL setting, for example in making diagnostic
assessments. In particular, the canonical form for a sample size n can be constructed
from the canonical form for a sample size n = 1, using an underlying eigenvalue rela-
tionship. This permits us to quantify for design purposes the implications of sample size
changes on uncertainties for the variables of interest. These ideas are developed fully
in Goldstein and Wooff (1998, 2007). Note that the identification of low-dimensional
sufficient summaries is key to approximate Bayesian computation (Blum et al. 2013).

2.2 Sufficiency as separation between plates in a graphical model

Every multivariate multiple regression problem corresponds to a BL graphical model
(Goldstein andWooff 2007) which helps to clarify the role of sufficiency. For such graphs,
the fundamental notion is of BL separation (Goldstein 1986), for which the notation
⌊A⊥⊥B⌋/C indicates that collections A,B are separated by a collection C. Separation
on the directed acyclic graph is the property that for collections (nodes) A, B, C, we
have EC∪A(B) = EC(B); VarC∪A(B) = VarC(B); and TB:C∪A = TB:C . That is, C is
BL sufficient for A for adjusting B. If we want to revise beliefs for B knowing C and A,
we can discard A. One important consequence of belief separation is that covariances
between separated structures may be evaluated via the separator, as follows.

Lemma 1.

⌊A⊥⊥B⌋ / C ⇐⇒ Cov(A,B) = Cov(A,C)Var(C)†Cov(C,B).

Belief separation is a generalized conditional independence property (Goldstein 1990).
BL graphical models form the BL analogue of Bayesian belief networks, with similar
rules for node and arc operations, construction of junction trees and propagation of
information (Goldstein andWilkinson 2000; Goldstein andWooff 2007; Wilkinson 1998).

3 Example: multivariate regression with correlated errors

This example, adapted from Box and Tiao (1973), is discussed in Goldstein and Wooff
(2007). A chemical process leads to a product U and a by-product V . The yields of
the products are thought to be related to the temperature of the process, X̃. Twelve
experiments are performed with different temperature settings to study the effect of
temperature. In performing the analysis, we transform the temperature measurements
to X = (X̃−177.86)/100, where 177.86 is the mean temperature in degrees Fahrenheit.
The data (Table 1) are plotted in Figure 1. The model suggested to explain relationships
between the quantities is as follows:

Ui = a+ bxi + ei, and Vi = c+ dxi + fi, i = 1, . . . , 12. (3)
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Figure 1: Yield of main-product U and by-product V at twelve temperatures X̃.

The model reflects the beliefs that the relationships between yields U, V and temperature
X are approximately linear in X over the given range of temperature values. The
intercept terms a, c indicate the yields for average temperature settings, whilst the slopes
of the regressions are given by b, d. The models incorporate error components ei, fi.
Separate runs of the experiment are independent; however, in any particular run it is
felt that the error components will be correlated because slight aberrations in reaction
conditions or analytical procedures could simultaneously affect both product yields.
We will thus suppose that e1, e2, . . . are an uncorrelated sequence of error components
with expectation zero and variance σ2

e ; that f1, f2, . . . are an uncorrelated sequence of
error components with expectation zero and variance σ2

f ; and that all pairs of error
components ei, fj are uncorrelated except for Cov(ei, fi) = σef . Prior beliefs over
these quantities were specified as follows. For the error quantities, σ2

e = 6.25, σ2
f = 4,

σef = 2.5, so that the correlation between the two error components for any given run
is about 0.5. We specified (for details see Goldstein and Wooff (2007)) the following
prior expectations and covariances between the regression coefficients:

E(


a
b
c
d

) =


75
40
20
−30

 , Var(


a
b
c
d

) =


4 −6 −1 0
−6 225 0 −90
−1 0 1 −2.4
0 −90 −2.4 144

 . (4)
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i 1 2 3 4 5 6

X̃i 161.3 164.0 165.7 170.1 173.9 176.2
Ui 63.7 59.5 67.9 68.8 66.1 70.4
Vi 20.3 24.2 18.0 20.5 20.1 17.5

i 7 8 9 10 11 12

X̃i 177.6 181.7 185.6 189.0 193.5 195.7
Ui 70.0 73.7 74.1 79.6 77.1 82.8
Vi 18.2 15.4 17.8 13.3 16.7 14.8

Table 1: Yield of main-product U and by-product V at twelve temperatures X̃.

Our focus is on revising beliefs over the regression coefficients, which we arrange as the
collection β = {a, b, c, d}. We arrange the yields as the collections U = (U1 . . . U12)
and V = (V1 . . . V12), and the sequence of observables as Yi = {Ui, Vi}, i = 1, 2, . . . , 12.
The error vectors are ϵi = {ei, fi}, i=1,2,. . . ,12. The design matrices are

Xi =

[
1 xi 0 0
0 0 1 xi

]
, i = 1, 2, . . . , 12,

so that
Yi = Xiβ + ϵi, i = 1, 2, . . . , 12.

Note that the sequence of vectors Y1, Y2, . . . is not exchangeable because the design
matrices X1, X2, . . . typically differ. As such we cannot employ BL sufficiency directly.
Thus, the focus of what follows is to show that there is a transformation of the mul-
tivariate multiple regression problem which does lead to BL sufficiency of the sample
mean of transformed observables, and so which leads to virtually all the exploitable
qualities offered by exchangeable sequences.

3.1 Graphical representation using plates

A graphical model (more properly, a BL influence diagram) for this example is shown in
Figure 2. This is adapted from Figure 10.2 of Goldstein and Wooff (2007). The graph
is iteratively constructed from a consistent ordering of nodes according to rules given
in Goldstein and Wooff (2007, section 10.5). Directions of arrows reflect the order of
nodes in that consistent ordering: for convenience we have chosen an alphabetic ordering
where allowable. Different graphs can result from a different choice of ordering. The
arc directions have an implication for construction of the corresponding junction tree
and thence to belief propagation and sequential local computation.

A general reduced form of the graph is shown in Figure 3. The i-subscripted
quantities, Ki = {Ui, ei, fi, Vi, xi}, are separated from the j-subscripted quantities,
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Kj = {Uj , ej , fj , Vj , xj}, by the subcollection of parameters, β = {a, b, c, d}. That is,
⌊Ki ⊥⊥ Kj⌋ / β. Moreover, Ki has the same internal structure as Kj , and the arcs
between Ki and β are the same as those between Kj and β. Such duplication is typical
when random quantities are constructed to represent error terms and observables which
are connected through an underlying model. We indicate such duplicated structure on
the graph as a plate: we include a single collection of nodes Ki on the graph, draw a
dashed line about the collection, and indicate how many times this plate is repeated. A
similar plate representation exists for every linear model of the kind considered in this
paper. Correspondingly, a problem whose BL graphical model is representable in such
plate form may be analysed via the sufficiencies which we identify in later sections.GFED@ABCa
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Figure 2: BL graphical model with a plate indicating repeated structure.

4 Notation and covariance structures

In this section we introduce some notation and summarise the expectation and covari-
ance structures we will need in deriving subsequent theorems on sufficiency. We will
suppose that Yi is a k×1 vector of observables, β is an m×1 vector of parameters, Xi is
a k×m design matrix, and ϵi is a k×1 vector of error quantities. Gather the vectors Yi

into the nk × 1 vector Y T = [Y T
1 . . . Y T

n ], the vectors ϵi likewise into the nk × 1 vector
ϵ, and stack the design matrices X1, . . . , Xn as the nk ×m matrix XT = [XT

1 . . . XT
n ].

We thus have Y = Xβ + ϵ. We will assume the following basic prior specification. For
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Figure 3: A reduced template form for Figure 2.

i, j = 1, . . . , n and i ̸= j,

Var(β) = Γ, Var(ϵi) = Wi, Cov(ϵi, ϵj) = 0, Cov(β, ϵi) = 0. (5)

We will assume without loss of generality that Γ is a positive definite m × m matrix;
otherwise we can transform the elements of β to an equivalent set of full rank compo-
nents. We will require W1, . . . ,Wn to be positive definite k× k variance matrices. E(β)
is as specified a priori, and we assume that E(ϵi) = 0 for all i. For reasons which will
become clear, we introduce transformations of the observables as

Di = XT

i W
−1
i Yi, (6)

where Di is a m × 1 vector. Such transformations are familiar through traditional
generalized least squares and in other Bayesian contexts. Expectations and covariances
between the various quantities are as follows. Define

Fi = XT

i W
−1
i Xi, and F̄ =

1

n

n∑
i=1

Fi.

Fi and F̄ are non-negative definite but not necessarily positive definite. We will stack
the matrices F1, . . . , Fn as the nm×m matrix F T = [F T

1 . . . F T
n ]. For expectations,

E(Yi) = XiE(β), E(Di) = XT

i W
−1
i XiE(β) = FiE(β).

For covariances,

Var(Yi) = XiΓX
T

i +Wi, Cov(Yi, Yj) = XiΓX
T

j , Var(Y ) = XΓXT +W,

for i ̸= j, and where W is the direct sum W = ⊕n
i=1Wi, i.e. the block diagonal matrix

with diagonal elements W1, . . . ,Wn. We have also

Cov(β, Yi) = ΓXT

i , Cov(β, Y ) = ΓXT .
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Collect the constructed Di quantities into the nm × 1 vector DT = [DT
1 . . . DT

n ]. We
have

Var(Di) = FiΓFi + Fi, Cov(Di, Dj) = FiΓFj ,Var(D) = FΓF T +⊕n
i=1Fi,

where i ̸= j, and

Cov(β,Di) = ΓFi, Cov(β,D) = ΓF T .

Finally we have

Cov(Di, Yi) = (FiΓ + Im)XT

i = (Γ−1 + Fi)ΓX
T

i , Cov(D,Y ) = FΓXT +⊕n
i=1X

T

i .

Some of the constructed variance matrices are not necessarily full rank. As such, the
following results are useful.

Lemma 2.

Var(A)Var(A)†[A− E(A)] = A− E(A)

for any vector A of random quantities with coherent belief specifications and data con-
sistent with them. Equivalently, [A− E(A)] ∈ range{Var(A)}.

Lemma 3.

Var(A)Var(A)†Cov(A,B) = Cov(A,B)

for any vectors A,B of random quantities with coherent belief specifications. Equiva-
lently, we have Cov(A,B) ∈ range{Var(A)}.

Lemma 2 and Lemma 3 follow from Lemma 2.2.4 of Rao and Mitra (1971) and because
coherent expectations and covariances must lie in the range of the corresponding vari-
ance matrix. Coherence of belief specifications, and subsequent data consistency are
detailed in (Goldstein and Wooff 2007, Section 12.2).

Lemma 4. Bartlett’s identity (Bartlett 1951): for conformable matrices A,B,C, with
A,B positive definite,

(A+ CB−1CT )−1 = A−1 −A−1C(B + CTA−1C)−1CTA−1.

See also the Sherman-Morrison-Woodbury formulae.

5 Bayes linear updating of regression parameters

We begin by noting formulae for the posterior expectations and variances for the pa-
rameter set β given the observables and the prior formulation. These are formally the
appropriate adjusted expectations and variances within the BL paradigm, but also fa-
miliar within traditional linear Bayesian settings (Hartigan 1969; Mouchart and Simar
1980).
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Lemma 5. Given the observables, the BL revisions for the parameters β given single
observations Yi and all observations Y are as follows.

EYi(β) = E(β) + (Γ−1 + Fi)
−1XT

i W
−1
i [Yi − E(Yi)] (7)

= E(β) + (Γ−1 + Fi)
−1[Di − E(Di)] (8)

EY (β) = E(β) + (Γ−1 + nF̄ )−1XTW−1[Y − E(Y )] (9)

= E(β) + (Γ−1 + nF̄ )−1[D − E(D)] (10)

VarYi
(β) = (Γ−1 + Fi)

−1 (11)

VarY (β) = (Γ−1 + nF̄ )−1. (12)

These follow by (1) and (2) and because we may write, using Lemma 4,

Var(Y )−1 = W−1 −W−1X(Γ−1 + nF̄ )−1XTW−1.

Notice in particular that the adjusted expectations (7) have a natural representation in
terms of the transformed quantities Di = XT

i W
−1
i Yi, which raises the question: what

is the role of these quantities?

Theorem 6. ⌊β ⊥⊥ Yi⌋ / Di and the collection Di is BL sufficient for Yi for adjusting
β.

Proof. For any random vector A we must have, by Lemma 3,

Var(Di)Var(Di)
†Cov(Di, A) = Cov(Di, A).

Thus,

(FiΓFi + Fi)(FiΓFi + Fi)
†Cov(Di, A) = Cov(Di, A)

⇒ (Fi + Γ−1)ΓFi(FiΓFi + Fi)
†Cov(Di, A) = Cov(Di, A)

⇒ ΓFi(FiΓFi + Fi)
†Cov(Di, A) = (Fi + Γ−1)−1Cov(Di, A). (13)

Now observe that

Cov(β,Di)Var(Di)
†Cov(Di, Yi) = ΓFi(FiΓFi + Fi)

†Cov(Di, Yi)

= (Fi + Γ−1)−1Cov(Di, Yi) by (13)

= (Fi + Γ−1)−1(I + FiΓ)X
T

i

= ΓXT

i = Cov(β, Yi).

It follows by Lemma 1 that ⌊β ⊥⊥ Yi⌋ /Di, and this is necessary and sufficient to prove
the result.

The consequence is that we may update β either directly using Yi or via the construct
Di.
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Corollary 7. ⌊Di ⊥⊥Dj⌋ / β and ⌊Di ⊥⊥ Yj⌋ / β.

Proof.

Cov(Di, β)Var(β)
−1Cov(β,Dj) = F T

i ΓΓ
−1ΓFj = F T

i ΓFj = Cov(Di, Dj),

so that ⌊Di ⊥⊥Dj⌋ / β by Lemma 1. The second result follows similarly.

Corollary 8. The sample of transformed observables D is BL sufficient for the original
observables Y for adjusting β, ⌊β ⊥⊥ Y ⌋ / D.

Proof. ⌊Yi ⊥⊥ Yj⌋ / β for all i ̸= j and ⌊Yi ⊥⊥ β⌋ / Di for all i by Theorem 6, and the
result follows.

5.1 Bayes linear sufficiency of the mean transformation

The sample mean vector Ȳ of the sequence of observables Y1, Y2, . . . is not BL sufficient
for Y for adjusting β. However, we now show that the transformed quantities D possess
exploitable sufficiency properties. Begin by constructing the mean vector

D̄ =
1

n

n∑
i=1

Di = F̄ β +
1

n

n∑
i=1

XT

i W
−1
i ϵi,

and note, following Section 4, the consequent specifications and covariance structures:

E(D̄) = F̄E(β), Cov(D̄, β) = F̄Γ, Var(D̄) = (F̄ΓF̄ + n−1F̄ ); (14)

Cov(D̄,Di) = F̄ΓFi + n−1Fi, Cov(D̄,D) = F̄ΓF T + n−1F T . (15)

Theorem 9. The mean vector D̄ is BL sufficient for D for adjusting β, and ⌊β⊥⊥D⌋/D̄.

Proof. The proof is very similar to that of Theorem 6, with Di and A there being
replaced by D̄ and D here. So, by Lemma 3,

Var(D̄)Var(D̄)†Cov(D̄,D) = Cov(D̄,D)

⇒ (F̄ΓF̄ + n−1F̄ )(F̄ΓF̄ + n−1F̄ )†Cov(D̄,D) = Cov(D̄,D)

⇒ ΓF̄ (F̄ΓF̄ + n−1F̄ )†Cov(D̄,D) = (F̄ + n−1Γ−1)−1Cov(D̄,D).

Thus,

Cov(β, D̄)Var(D̄)†Cov(D̄,D) = ΓF̄ [(F̄ΓF̄ + n−1F̄ )†]Cov(D̄,D)

= (F̄ + n−1Γ−1)−1(F̄ΓF T + n−1F T )

= ΓF T = Cov(β,D).

The result follows by Lemma 1.
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Corollary 10. ⌊β ⊥⊥ Y ⌋ / D̄.

Proof. Follows similarly.

The consequence is that we may update β directly using the sequence Y1, Y2, . . . , Yn or
indirectly via the average D̄ of the transformed values of Yi.

6 Prediction of future observables

We have shown that ⌊β ⊥⊥ Y ⌋ / D̄, so that the transformed quantities are BL sufficient
for the parameter collection. We now extend this notion to prediction for a further
collection of observables, Yn+1, Yn+2, . . . , Yn+r. The following theorem is central.

Theorem 11. Partition the observables into two disjoint subsets, Y ∗ and Y ∗∗. Con-
struct the corresponding disjoint subsets of transformed quantities, D∗ and D∗∗, and
construct the mean vector D̄∗ for the first set. Then D̄∗ is BL sufficient for Y ∗ for
adjusting Y ∗∗, and ⌊Y ∗∗ ⊥⊥ Y ∗⌋ / D̄∗.

Proof. For any r > n and any 1 ≤ i ≤ n, we may use (13) to show that

Cov(Dr, D̄)Var(D̄)†Cov(D̄,Di) = FrΓF̄ (F̄ΓF̄ + n−1F̄ )†Cov(D̄,Di)

= FrΓFi = Cov(Dr, Di).

It follows that ⌊Dr⊥⊥Di⌋/D̄, and thence to ⌊D∗∗⊥⊥D∗⌋/D̄∗. The main result follows
similarly.

Corollary 12. The adjusted expectation for β given D̄∗, ED̄∗(β) is BL sufficient for
Y ∗ for adjusting Y ∗∗, and ⌊Y ∗∗ ⊥⊥ Y ∗⌋ / ED̄∗(β).

The main implication is that if we wish to revise our beliefs about a second set of
observables by a disjoint set of observables, we may do so via updating the intermediary
parameter set β by the mean of the first set of transformed observables.

7 Diagnostics, residuals, and sequential analysis

The parameter set β is m-dimensional, whereas the space of observables Y is nk-
dimensional. Linear fitting of β onto the linear space ⟨Y ⟩ implies (at most) an m-
dimensional subspace of ⟨Y ⟩ which is informative for β, and this subspace can now
be seen to be identified with ⟨D̄⟩. For general BL updating, this subspace is termed
the heart of the transform, denoted H(Y/β)=H(D̄/β), and it may be constructed via
the eigenstructure of the reverse transform TY :β (Goldstein and Wooff 2007). The re-
maining (nk−m)-dimensional subspace is denoted H⊥(Y/β), here being the orthogonal
complement of H(D̄/β) in ⟨Y ⟩. This is an ancillary space: it can tell us nothing about
the parameter collection β, but exploration of it might allow us to diagnose problems
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with our prior formulation. In order to do this, we may construct alternative sets of
residuals. In terms of the original observables, the appropriate residuals are the quan-
tities Yi −ED̄(Yi), which span the ancillary space H⊥(Y/β). It may also be valuable to
inspect the residuals of the transformed observables from their mean: Di − ED̄(Di) in
order to detect anomalies in the transformed space of pseudo-exchangeables.

For problems with a natural time-ordering, evaluation of sequential diagnostics is ap-
propriate as follows. We update expectations for the parameter vector β by observations
as they arrive. By Corollary 12, the adjusted expectation for β given D̄∗ is BL sufficient
for the early observations Y ∗ for adjusting later observations Y ∗∗. Consequently, the
time-order residuals of interest are the vectors Yr −EED̄∗ (β)(Yr), for Yr ∈ Y ∗∗. We dis-
cuss in Goldstein and Wooff (2007) how we may use residuals for variance learning. It
is then possible to employ updated variance components within two-stage BL analysis.

7.1 Example: multivariate regression with correlated errors

Figure 4 shows a BL influence diagram (Goldstein and Wooff 1995) produced by the
software package [B/D] (Wooff and Goldstein 2000). For interpreting such diagrams,
see Goldstein and Wooff (2007). Shown are two columns of residuals computed via
sufficiency. The left-hand column of residuals shows diagnostics for the simple two-
dimensional vector residuals Ri = Yi − ED̄(Yi), i.e. the residuals conditioning on the
full sufficient information D̄. The right-hand column of residuals shows the sequential
revision of the observable quantities as fresh information arises. That is, we exploit
sufficiency to compute Li = ED̄1,...,i

(β), the posterior vector of expectations for the
regression coefficients, given all observables up to and including observation Yi. The
sequential residuals of interest are the vectors R̃i = Yi−ELi(Yi). The first residual pair
is the same, R1 = R̃1.

There are many diagnostic features we might want to assess, including features in the
ancillary space. Typically our residual analyses relate back to the graphical templates
constructed over the duplicated structures of these multivariate multiple regression prob-
lems, however there is only scope here for a brief illustrative graphical assessment of
simple residuals and temporal behaviour. Among the features we see on the plot, D̄ is 4-
dimensional and sufficient for the 12-dimensional observation space ⟨Y ⟩. Once observed
it is used to update the parameter set β, which has 76.4% of its uncertainty explained.
The preponderance of dark shading implies that the data produce quite large revisions
of expectation relative to variation explained. The simple residuals Ri show different
patterns of substantial light and dark shading. Light shading implies unexpectedly small
revisions in expectation relative to variation explained. We tend to see unexpectedly
large revisions in early and late time, and unexpectedly small revisions in middle time.
These residuals should exhibit random diagnostic patterns, so a conclusion might be
that temporal assumptions about the error quantities are inappropriate.

The sequential residuals R̃i are used to assess temporal features in the revision pro-
cess, conditioning partially on the sufficient information as it arrives. Take for example
the node summarising R̃4 as information arrives. The node is divided into four sectors,
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Figure 4: Alternative diagnostic analyses produced by the BL computation package
[B/D]. G corresponds to β; Dbar to D̄, and R.i to residual diagnostics.

starting at 00 and moving anti-clockwise. These provide summary diagnostics, in se-
quence, for the revision of Y4 given the sufficient evidence D̄1 at time T1; diagnostics
for the partial revision of Y4 by new evidence D̄2 given D̄1, diagnostics for the partial
revision of Y4 by new evidence D̄3 given D̄1,2, and finally diagnostics for the observation
Y4 given new evidence D̄4 given D̄1,2,3. The arc lengths of sectors correspond to per-
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centages of variation explained at each stage. For Y4 we observe that the information
available at T1 is barely relevant. By T3 around 25% of variation has been explained,
but with larger revisions than anticipated. At T4 any remaining variation is explained,
but the light shading implies that the observation was much closer to its forecast then
expected. This is mostly the case for other residuals R̃i in middle time. Comparing the
two sets of residuals we see that the partial diagnostics tend to agree with those for the
simple residuals, suggesting that any aberrant behaviour in the revision process for Yi

can be attributed to aspects of its model and observation and not to other observations.

8 Parameters dependent on design point

We consider now extending to multiple multivariate regressions which do not share a
common parameter space, i.e. we replace β by βi and so have n separate multiple
regressions, each of the form Yi = Xiβi + ϵi. Generally, there are no sufficiencies to
exploit. However, there are situations where the model parameters are specific to a
design point, but related via a simple correlation structure. Such models are employed,
for example, in history matching of oil reservoirs. For vectors Yi, βi, ϵi, δi and design
matrices Xi, i = 1 . . . n, consider the set of models

Yi = Xiβi + ϵi, where βi = β̃ + δi,

with E(β̃) = E(β), Var(β̃) = Γ, and where δ1, . . . , δn is an uncorrelated sequence of
parameter perturbations, defined to be uncorrelated with β, and with Var(δi) = Ṽi.
This special case also includes the situation in which the βi vectors are themselves
exchangeable, in which case Ṽi is the same for all i. We may then express

Yi = Xiβ̃ + ϵ̃i, (16)

where ϵ̃i = ϵi + Xiδi and Var(ϵ̃i)=Wi + XiṼiX
T
i = W̃i. This is functionally identical

to the general model considered herein, and so can be treated in the same way, with
the sufficiencies depending on a transform of the error variance structure as well as the
observables.

9 Implied exchangeability and sample size design

We now show how to use the sufficiencies we have identified to drive sample-size de-
sign. Suppose we return to our example of Section 3. Suppose we ask two questions.
First, how many observations must we obtain in order to achieve a specified precision
in a particular linear combination of the parameters β? Secondly, where should we
design subsequent observations? The first of these questions can be answered at least
approximately as follows.

Theorem 13. The sequence of observables Y1, Y2, . . . , Yn and its implications for learn-
ing about β is consistent with the existence of an infinite second-order exchangeable se-
quence C1, C2, . . . and the use of this sequence for updating beliefs about its underlying
mean A.
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Proof. Construct an infinite second-order exchangeable series of vectors C1, C2, . . ., with
Ci = A + Si, such that prior beliefs concerning the sequence C1, C2, . . . are as follows.
For all i and j ̸= i,

E(A) = E(β), E(Si) = 0, Var(A) = Γ, Var(Si) = F̄ , Cov(Si,A) = 0, Cov(Si,Sj) = 0.

It is readily established that the revision of belief over β using data Y1, . . . , Yn matches
the revision of belief over A using “data” C1, C2, . . ., because

EY (β) = EC(A), VarY (β) = VarC(A), and Tβ:Y = TA:C .

We shall call C1, C2, . . . the implied infinite exchangeable sequence associated with the
observed non-exchangeable sequence Y1, Y2, . . . , Yn. We now exploit the implied se-
quence for sample-size design.

9.1 Approximate sample-size design

The study of sample-size implications for infinite exchangeable sequences is based on
the canonical form, considered in Goldstein and Wooff (1997, 1998) and, for finite
exchangeable sequences, Shaw and Goldstein (2012). Thus, when we may construct an
implied exchangeable sequence as above, the resolution transform matrix TA:C may be
used to explore sample size considerations, on the assumption that the mean weighted
precision matrix F̄ is “typical” of the weighted precision matrices

Fn+1 = XT

n+1W
−1
n+1Xn+1, Fn+2 = XT

n+2W
−1
n+2Xn+2 . . . .

for further observations. As an example, Figure 5 shows the implications of increas-
ing the number of observations beyond n = 12, assuming that the weighted precision
matrices for subsequent design points are typical of those encountered so far. Variance
resolutions for linear combinations hTβ of the parameter set are bounded by the maxi-
mal and minimal eigenvalues, λmax, λmin, of TA:C . The plot shows that further design
points would contribute only marginally to resolving the present residual uncertainty
in the parameter collection. It can be shown that the direction of maximal variance
reduction is approximately β3 − β1, and the direction of minimal reduction is approxi-
mately β3+2β1. For details and guidance on sample-size features for exchangeable and
co-exchangeable sequences, see Goldstein and Wooff (2007).

9.2 Deduction of appopriate linear transformation

We may apply the notion in reverse. Suppose that Q = Q1, . . . , Qn are any set of
observables linearly related to a parameter collection β, with Var(β) = Γ, where Γ is
positive definite, and suppose that it turns out that the posterior variance VarQ(β) is
of the form

VarQ(β) = (Γ−1 + nG)−1
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Figure 5: The implication of taking different sample sizes for explaining variance in the
regression parameters. Actual sample size is marked at n = 12.

for some non-negative definite matrix G which does not depend on n. Then there exists
an implied infinite second-order exchangeable sequence C1, C2, . . . with properties as
above. There may then exist linear transformations Q′

i = PiQi for some P1, . . . , Pn such
that ⌊Qi⊥⊥β⌋/Q′

i and such that the mean Q̄′ is BL sufficient for the original observables
for adjusting β. This suggests that if our starting position is a variance matrix with
such standard form, we should be able to deduce which linear transformations Pi of the
original observables to take in order to produce BL sufficient transformations.

9.3 Design of observations

To discuss the second question we posed, the idea that all multivariate multiple regres-
sions of the forms considered may be associated with an implied infinite exchangeable
sequence has interesting implications for sequential design of further observations for
non-excheangeable multivariate multiple regressions. This problem is already difficult
in the exchangeable setting: see, for example, Pilz (1991). That is, given n observations,
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choose the next design matrix Xn+1 to satisfy criteria such as maximising the portion
of residual variation in the parameter set explained by the additional observation. This
will be a focus of future work.

10 Discussion

The identification of sufficiency vastly simplifies computations and interpretations for
BL and approximate Bayesian inference for high-dimensional models. Further, the
associated residual structures form natural foci for diagnostic assessment, and the asso-
ciation of the regression problem with an implied infinite exchangeable sequence allows
tractable sample-size design even for very large scale problems.

The separation of information Yi into a transformed sufficient portion Di, together
with other identified sufficiencies and different kinds of residual structure, has an impli-
cation for the graphical models and plates which motivated this paper. In particular, in
future work we wish to propose different kinds of operations on such graphs which will
make plain the relationships between these components. This will clarify whether there
are further implications for the junction tree and for local computation (Goldstein and
Wilkinson 2000) over the graph. Further, these operations should allow us to focus more
on alternative ways of representing the ancillary space, namely the components which
are not useful in making revisions over the parameter set or in making predictions, but
which are useful in making diagnostic assessments of the prior formulation.
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