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On Numerical Aspects of Bayesian Model
Selection in High and Ultrahigh-dimensional

Settings

Valen E. Johnson ∗

Abstract. This article examines the convergence properties of a Bayesian model
selection procedure based on a non-local prior density in ultrahigh-dimensional
settings. The performance of the model selection procedure is also compared to
popular penalized likelihood methods. Coupling diagnostics are used to bound the
total variation distance between iterates in an Markov chain Monte Carlo (MCMC)
algorithm and the posterior distribution on the model space. In several simulation
scenarios in which the number of observations exceeds 100, rapid convergence and
high accuracy of the Bayesian procedure is demonstrated. Conversely, the coupling
diagnostics are successful in diagnosing lack of convergence in several scenarios for
which the number of observations is less than 100. The accuracy of the Bayesian
model selection procedure in identifying high probability models is shown to be
comparable to commonly used penalized likelihood methods, including extensions
of smoothly clipped absolute deviations (SCAD) and least absolute shrinkage and
selection operator (LASSO) procedures.

Keywords: MCMC algorithm, convergence diagnostic, coupling, SCAD, sure inde-
pendence screening, penalized likelihood, variable selection

1 Introduction

Non-local prior densities were proposed by Johnson and Rossell (2012, JR12) as a
mechanism to improve the performance of Bayesian model selection procedures in high-
dimensional settings. The distinguishing feature of non-local prior densities on regres-
sion parameters is that such densities are identically zero whenever any component of
the parameter vector equals its null value (typically 0). For variable selection in linear
models, if p denotes the number of potential regressors and n the number of observa-
tions, JR12 showed that Bayesian model selection procedures based on non-local prior
densities are model consistent if p < n as n increases (i.e., the posterior probability of
the true model converges to 1 as n → ∞), provided that the design matrix satisfies cer-
tain regularity constraints. They also proposed a Markov chain Monte Carlo (MCMC)
algorithm that could be used to sample from the posterior distribution on the model
space. Further details regarding this method and the underlying model are provided in
Section 2.

The MCMC algorithm proposed in JR12 proceeds by sequentially inserting or deleting
individual regressors from the model based on comparisons of posterior model probabil-
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ities. Although the consistency results cited in JR12 do not extend to cases for which
p > n, the MCMC algorithm proposed in JR12 can nevertheless be applied in such
settings. It thus provides a potential alternative to the Sure Independence Screening
(SIS) and Iterated SIS (ISIS) algorithms that are currently used in conjunction with
penalized likelihood variable selection techniques (e.g., Fan and Lv (2008, 2010)). In
contrast to the MCMC algorithm, SIS uses a screening procedure to identify subsets of
components of the regression vector that contain fewer than n regressors. Penalized like-
lihood methods are then applied to these subsets to perform model selection. The ISIS
algorithm is an iterative version of SIS in which subsets of regression components are
iteratively considered for inclusion in a model that already contains regressors selected
in previous SIS updates. Both SIS and ISIS methods have demonstrated substantial
success in identifying important covariates in p ≫ n settings.

In this article, I examine the feasibility of extending the MCMC algorithm proposed
in JR12 to ultrahigh dimensional settings. Two issues arise in making this extension:
(i) evaluating the convergence properties of the resulting MCMC algorithms, and (ii)
assessing the effectiveness of the algorithms in finding high probability models.

Convergence issues are of most concern when there are high correlations between columns
of the design matrix. In practice, this problem tends to be most severe when there are
groups of regressors that are highly correlated both with the response vector and other
members of their group. Once one of these regressors is added to the current state of
the MCMC chain, it can difficult for another regressor from the same group to also be
included in the model. Because it is difficult for the chain to transition to a state that
contains no members from the group, it then becomes difficult for the MCMC chain to
transition between models that contain only one of the highly correlated regressors. To
ameliorate this difficulty, I propose a modification of the MCMC algorithm proposed in
JR12 that includes a “swap” step.

The convergence diagnostics studied in this article use coupling methods to obtain ap-
proximate bounds on the total variation distance (TVD) between the distribution of
models sampled from the MCMC algorithm and the posterior distribution (e.g., Lind-
vall (1992); Johnson (1996, 1998)). Perhaps surprisingly, these diagnostics suggest that
the distributions of iterates from a single MCMC chain often differ from the target dis-
tribution by less than 0.05 in TVD after only a few complete updates of the parameter
vector. In fact, fewer than five updates are enough to achieve this level of convergence
in several of the simulation studies considered below. In other settings, however, the
coupling diagnostics show that the MCMC algorithm fails to converge even after several
thousand updates of the parameter vector. Importantly, the proposed diagnostic pro-
vides a simple mechanism for determining whether a given chain is converging quickly,
slowly, or at an intermediate rate. It also provides an estimate of how many updates
are required to obtain what are essentially independent draws from the posterior distri-
bution on the model space.

To assess the effectiveness of the proposed MCMC scheme and associated non-local
prior specification for determining high probability models, several of the numerical
experiments reported in Fan and Lv (2008, FL08) are repeated using Bayesian model
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selection procedures based on non-local prior densities in conjunction with this MCMC
algorithm. In each of these experiments, the number of covariates p is much larger than
the number of observations n. Because the numerical results obtained by Fan and Lv
using sure independence screening-smoothly clipped absolute deviations (SIS-SCAD)
and iterative sure independence screening-smoothly clipped absolute deviations (ISIS-
SCAD) have proven to be among the most successful model selection procedures used
in practice, they provide a useful benchmark for assessing model selection procedures
in ultrahigh-dimensional settings. Simulation studies reported in Section 3 suggest
that the Bayesian procedure, when implemented with the modified MCMC algorithm
proposed in Section 2, is competitive with the SIS-SCAD and ISIS-SCAD procedures
in identifying the correct model, at least for this set of simulation studies.

The remainder of this article is organized as follows. In the next section, I describe
coupling algorithms that can be used to evaluate the convergence of MCMC algorithms
for model selection. Section 3 illustrates the application of this coupling algorithm in
several simulated data sets and provides a comparison of the performance of the Bayesian
variable selection procedure proposed in JR12 to penalized likelihood methods based
on SIS-SCAD and ISIS-SCAD in FL08. Concluding comments and discussion appear
in Section 4.

2 Coupling diagnostics for Bayesian variable selection

To fix notation, let k denote a statistical model indexed by a p dimensional parameter
vector β. I assume that a component βj , 1 ≤ j ≤ p, is excluded from a model if its
value is 0, and I denote a model by j = {j1, . . . , jk}, (1 ≤ j1 < · · · < jk ≤ p) if and
only if βj1 ̸= 0, · · · , βjk ̸= 0 and all other elements of β are 0. The number of non-zero
components in model j is denoted by |j|. The regression parameter associated with
model j is denoted by βj = (βj1 , . . . , βj|j|)

′, and K denotes the set of 2p possible models
that are indexed by the p components of β. Model j∪ i denotes model {j1, . . . , jk}∪{i},
the model obtained by adding the ith component of the parameter vector β to βj.
Similarly, j \ i denotes the model obtained by excluding βi from βj.

The prior distribution on the model space is denoted by πK, and the posterior distribu-
tion on the model space, based on a data vector y (assumed to be generated by a “true”
model t ∈ K), is denoted by pK. The marginal density of the data y under model k is
denoted by mk(y). In this article, a statistical model k refers to a sampling density for
the data y and a proper prior density on the model parameter βk.

The class of prior densities imposed on β in this article consists of the product moment
(pMOM) densities, which are defined in JR12 by the equation

π(β | τ, σ2, r) = dp(2π)
−p/2(τσ2)−rp−p/2|Ap|1/2exp

[
− 1

2τσ2
β′Apβ

] p∏
i=1

β2r
i , (1)

where τ > 0, Ap is a p×p non-singular scale matrix, and r = 1, 2, . . . . The normalizing
constant dp is independent of σ2 and τ . The parameter r is called the order of the
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density, and in this manuscript is assigned the fixed value r = 1. Throughout this
article, Ap is assumed to be the p×p identity matrix. Posterior model probabilities are
calculated according to the formula

pK(k |y) = mk(y)πK(k)∑
j∈K mj(y)πK(j)

.

Marginal densities mj(y) are estimated using Laplace approximations. JR12 describe
a Metropolis-Hastings (MH) algorithm that can be used to sample from the posterior
distribution.

The coupling diagnostics proposed in this article are applied to the following modifica-
tion of the MH algorithm proposed by JR12 for sampling from the model space:

Metropolis Hastings algorithm (MH)

(i) Draw k0 from initialization distribution W on the model space K, and set t = 1.

(ii) Set k∗ = kt−1. Draw St
p = (ht

1, . . . , h
t
p) as a random permutation of the inte-

gers 1, . . . , p. For j = ht
1, . . . , h

t
p,

(a) Define kcand = k∗ \ j if k∗ includes βj . Otherwise, define kcand = k∗ ∪ j.

(b) Draw u ∼ U(0, 1) and define

r =
mkcand(y)π(kcand)

mk∗(y)π(k∗)
. (2)

(c) If r > u, set k∗ = kcand.

(iii) Swap step: If t mod 5 = 0,

(a) For j′ = 1, . . . , p − 1 and for k′ = j + 1, . . . , p, let j = ht
j′ and k = ht

k′ .

Determine if exactly one of βj and βk is in the model. If so, define kcand to
be the model obtained by switching the inclusion status of βj and βk.

(b) Draw u ∼ U(0, 1) and define

p =
mkcand(y)π(kcand)

mkcand(y)π(kcand) +mk∗(y)π(k∗)
. (3)

(c) If p > u, set k∗ = kcand.

(iv) Increment t and return to step 2.

Provided that it is possible to move between any two models in the discrete space K, this
sampler produces a chain of models k0,k1, ... that converges to the posterior distribution
on the model space. The use of a Gibbs rather than a Metropolis update in Step 3 of
the algorithm is discussed below.
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It is important to note that switching the inclusion status of variables in Step 3 of the
algorithm requires O(p × |k∗|) model updates. This number of updates may not be
computationally feasible if the number of covariates included in the current model is
large. It is for this reason that I recommend making this pass through the model space
only infrequently within the MH algorithm, in this case only after every five repetitions
of Step 2.

To apply coupling diagnostics to this MH algorithm, introduce a second chain, say
j0, j1, . . . that is updated synchronously with the first chain. That is, suppose kT is
the model sampled after T updates from algorithm above. In the coupling version of
the MH algorithm, both {js}Ss=0 and {kT+s}Ss=0 are updated according to the following
modification of the MH algorithm.

Coupled MH algorithm (CMH)

(i) Draw j0 from W , and set s = 1.

(ii) Set k∗ = kT+s−1 and j∗ = js−1. Draw St
p = (ht

1, . . . , h
t
p) as a random permutation

of the integers 1, . . . , p. For j = ht
1, . . . , h

t
p,

(a) Define kcand = k∗ \ j if k∗ includes βj . Otherwise define kcand = k∗ ∪ j.
Similarly, if j∗ includes βj , define jcand = k∗ \ j. Otherwise define jcand =
j∗ ∪ j.

(b) Draw u1 ∼ U(0, 1). If j∗ and k∗ either both contain βj or both exclude βj ,
set u2 = u1. Otherwise, define u2 = 1− u1.

(c) Define

r1 =
mkcand(y)π(kcand)

mk∗(y)π(k∗)
(4)

and

r2 =
mjcand(y)π(jcand)

mj∗(y)π(j∗)
. (5)

(d) If r1 > u1, set k
∗ = kcand. If r2 > u2, set j

∗ = jcand.

(iii) Swap step: If t mod 5 = 0,

(a) For j′ = 1, . . . , p − 1 and for k′ = j + 1, . . . , p, let j = ht
j′ and k = ht

k′ .

Determine if exactly one of βj and βk is in model k∗. If so, define kcand

to be the model obtained by switching the inclusion status of βj and βk.
Otherwise, do not update k∗. Similarly, determine if exactly one of βj and
βk is in model j∗. If so, define jcand to be the model obtained by switching
the inclusion status of βj and βk. Otherwise, do not update j∗.

(b) Draw u1 ∼ U(0, 1). If both k∗ and j∗ are being updated and agree on the
inclusion of βj , or if only j∗ is being updated, define u2 = u1. Otherwise,
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define u2 = 1− u1. Define

p1 =
mkcand(y)π(kcand)

mkcand(y)π(kcand) +mk∗(y)π(k∗)
(6)

and

p2 =
mjcand(y)π(jcand)

mjcand(y)π(jcand) +mj∗(y)π(j∗)
. (7)

(c) If p1 > u1, set k
∗ = kcand. If p2 > u2, set j

∗ = jcand.

(iv) If kt+s = js, set S = s and exit. Otherwise, set kT+s = k∗, js = j∗, increment s
and return to step 2.

The operation of this coupling scheme, which represents a Metropolis-Hastings version
of the coupling scheme proposed in Johnson (1998), can be understood by examining the
outcomes of component updates when kcand and jcand agree or differ in their inclusion
of the parameter βj being updated.

If the two chains agree on the inclusion or exclusion of βj , then the use of a common uni-
form deviate u1 to update both chains is likely to result in both chains either accepting
the candidate draw or both chains rejecting it. Indeed, if the chains are identical before
the update, they will remain so afterwards and are said to have coupled. The num-
ber of parameter updates required to obtain coupled chains, S, provides a convergence
diagnostic for the chain.

Conversely, if the two chains disagree on the inclusion or exclusion of βj , then the use of
u1 and u2 = 1−u1 in the acceptance step of the algorithm will increase the probability
that one chain rejects the candidate draw while the other accepts it. If this event occurs,
then the chains will agree in their inclusion or exclusion of βj after the update. This
coupled update procedure thus encourages the two chains to move closer to a coupled
state.

The swap step requires a slight modification of the acceptance probability in (7) to
encourage this type of coupling. To see why, note that if the probability that the
two model configurations obtained by switching the inclusion status of two variables in
one chain are exactly equal, then variables will always be switched according to (7).
Thus, if the primary and secondary chains disagree before the swap step, they will
disagree afterwards. It is for this reason that a Gibbs update, rather than a standard
Metropolis-Hastings update, is performed in this step of the algorithm. If a Gibbs
update is proposed and the primary and secondary chains agree on the inclusion of the
variables prior to the proposed swap, then the same uniform deviate is used to update
both chains. That is, if u ∼ U(0, 1), then the variables in each chain are swapped if
p1 > u and p2 > u. If the two chains disagree on the inclusion status of the swapped
variables before the proposed switch, then the variables in the second chain are swapped
if p2 > 1 − u. This represents the maximal coupling procedure for this step in the
algorithm (Lindvall (1992)).
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Convergence diagnostics for the MH algorithm follow from the coupling inequality (e.g.,
Lindvall (1992)), which states that

P[s > S] ≥ ||L(jS)− L(kT+S)||, (8)

where ||L(a)−L(b)|| denotes the TVD between the distributions of the random vectors
a and b.

If the MH algorithm is run for a sufficiently large number of updates, then kT and kT+S

represent draws from the posterior distribution on the model space. Provided that T is
large enough, this means that (8) provides a bound on the TVD distance between the
Sth iterate in the chain (initialized from distribution W ) and the posterior distribution.

In practice, the use of the coupling inequality to obtain a bound on the TVD between
iterates in the chain and the stationary distribution requires an estimate of the number
of updates T for the first chain {kt} to reach its stationary distribution, as well as an
empirical estimate of P[s > S], the coupling time distribution. I propose the following
lead-in procedure to obtain preliminary estimates of both quantities.

First, an initial estimate of the burn-in period T is specified, and a preliminary run of the
CMH algorithm is performed for that number of iterations. As soon as the two chains
k and j couple, the “auxiliary” chain j is restarted at a random draw from distribution
W . In implementing this procedure, it is important to define W so that it represents
a disperse distribution on the model space K, meaning that random draws from W
are likely to fall within the domains of attraction of different posterior modes when
multiple modes are likely to exist. During the preliminary run of the CMH algorithm,
both the number of couplings and the lengths of time required to obtain each coupling
are recorded and used to plan the inferential run of the MCMC algorithm.

In the examples that follow, W was defined so that each regressor had a small, indepen-
dent probability of being included in the initial models. To insure both that neither the
null model nor inappropriately large models were assigned too much prior probability,
the prior probability that each variable was sampled was arbitrarily set to q = 8/p. The
resulting probability mass function of W can be expressed as

w(k) = q|k|(1− q)p−|k|.

If a large number of chains initialized from this distribution have converged to the
same primary chain k when it is run for T iterations, then it is likely that the primary
chain has reached the stationary distribution (Johnson 1996). Conversely, if numerous
couplings have not occurred, then it is probable that convergence has not occurred
within T iterations. In this case, a larger value of T should be selected and the lead-in
procedure should be repeated.

At the completion of the lead-in procedure, a “restart” interval I is defined to be some
multiple of the maximum coupling time observed during lead-in. A factor of three
was used in the numerical studies reported in Section 3. Using this restart interval, a
second run of the CMH algorithm is performed, but in the second run the auxiliary
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chain j is re-initialized after every I updates of the primary chain, whether or not it
has coupled with the primary chain k. If the auxiliary chain has not coupled with the
primary chain, then a right-censored coupling time of I is recorded. It is important to
choose the interval I so that coupling occurs with high probability within I updates.
Otherwise, the bounds on the TVD between the target distribution and iterates in the
MCMC algorithm prescribed in (8) will not be sufficiently tight for practical use, and
there will tend to be a high correlation between the coupling times used to estimate
P (S > s).

By re-initializing the secondary chain at fixed intervals, biases in the distribution of the
coupling distribution that might result from more frequent restarts when the primary
chain was near the posterior mode (or other high probability states) can be avoided.

The coupling times obtained using the fixed restart intervals are then used to obtain
empirical estimates of the coupling survival function P (S > s). This estimate of the
survival function provides an estimate of the bound on the TVD distance between the
sth iterate in a chain initialized from distribution W and the stationary distribution
based on equation (8).

The quantity P (S > s) also provides an estimate of the number of updates required
to obtain what are essentially independent draws of the target distribution after the
burn-in period. Letting pK× pK denote the distribution of two independent draws from
the stationary distribution of the chain and qT × qT+r the distribution of two updates
separated by r updates in the MH algorithm, it follows that (Johnson 1998)

P(S > r) ≥ ||pK × pK − qT × qT+r||. (9)

By choosing r large enough so that P(S > r) is small, this inequality provides a bound
on the number of updates in the MCMC algorithm that are required to obtain draws
that would, with high probability, be accepted as independent draws from the posterior
distribution in an acceptance sampling scheme.

3 Applications

In order to evaluate the performance of coupling diagnostics for assessing convergence
of the MH algorithm, they were used to assess the convergence of this algorithm for
variable selection based on non-local prior densities. To facilitate comparisons with the
SIS and ISIS algorithms, the diagnostics were applied to a number of simulation studies
presented in FL08. These studies focused on variable selection for linear models having
sampling densities of the form

y |βk, σ
2 ∼ Nn(Xkβk, σ

2In). (10)

Throughout the remainder of this article, the prior densities for the parameters appear-
ing in (10) are assumed to be expressible as

σ2 ∼ IG(10−3, 10−3), π(k) ∝ B(k + a, p− k + b), (11)
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π(βk | τ, σ2) = (2π)−k/2(τσ2)−3k/2 exp

[
− 1

2τσ2
β′
kβk

] k∏
i=1

β2
ki
. (12)

In these equations, IG(·, ·) denotes an inverse gamma distribution, B(·, ·) denotes the
beta function, Xk denotes the design matrix containing those covariates that correspond
to βk, In is an n×n identity matrix, and τ is a prior hyperparameter. The prior model
assumed for βk is a particular case of the first-order pMOM prior proposed in JR12,
and the prior on the model space is the beta-binomial prior proposed by Scott and
Berger (2010). The default values of a and b recommended by Scott and Berger are
a = b = 1. However, these hyperparameter values assign the same prior mass to the null
and saturated models when p = n, and lead to the same paradox confronting empirical
Bayes methods when the marginal density of the data is maximized at the saturated
model (c.f. Lemma 4.1, Scott and Berger (2010)). To avoid this paradox, the values of a
and b were fixed at 1 and 20, respectively, in the examples that follow. Loosely speaking,
this means that each variable was assigned a 1/20 chance of being included in a model
a priori. The value of τ was fixed at 2.85, which corresponds to the assignment of 0.05
prior mass to values of each regression coefficient that are less than σ in magnitude
in settings for which the columns of the design matrix have been standardized. This
value of τ is larger than the value of τ suggested in JR12 for p < n settings, in which
standardized regression coefficients greater than 0.2 in magnitude were sought. The
modes of the corresponding standardized pMOM prior density (i.e., when σ2 = 1) occur
at ±2.39, which means that the posterior mean of regression coefficients will tend to
be shrunk toward one of these modes. In practice, the identification of the maximum a
posteriori (MAP) model does not seem to be highly sensitive to the choice of τ , although
the choice of τ does affect the bias of the posterior mean, particularly for small n.

3.1 Study 1

The first set of simulation studies was patterned after the simulations presented in
Section 3 of FL08 and involved five parameter settings (i.e., simulation truths). In
the first two settings, the elements of the design matrix were generated as independent
standard normal variables. For the final three settings, the columns of the design matrix
X were correlated.

Two sets of simulation parameters were tested for the independent design. In the first
case, n = 200, p = 1000, and the dimension of the true model t was 8. The values of
the non-zero regression coefficients were independently set to (−1)u(c log(n)/

√
n+ |z|),

where u was a Bernoulli random variable with success probability 0.4, z was a standard
normal deviate, and c = 4. The second case was defined by taking n = 800, p = 20000,
t = 18, and c = 5. The observational variance was chosen to be σ2 = 1.52 in both cases.

For the dependent designs, three additional scenarios were defined by taking
(n, p, t, c, σ) = (200, 1000, 5, 2, 1.0), (200,1000,8,4,1.5), and (800,20000,14,4, 2.0), respec-
tively. To generate correlated design matrices, the columns of X were generated by first
simulating a t× t symmetric matrix A with condition number n1/2 log(n) and a sample
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of t predictors X1, . . . , Xt ∼ N(0,A). Next, p − t vectors were simulated according to
Zt+1, . . . , Zp ∼ N(0, Ip−t); these vectors were then used to define the remaining predic-
tors as Xi = Zi + rXi−t, i = t + 1, . . . , 2t, and Xi = Zi + (1 − r)X1, i = 2t + 1, . . . , p,
where r = 1−d log(n)/n. The values of d used in the three scenarios were d = 4, 4, and
5, respectively (FL08).

It is important to note that the columns of the design matrix X were not standardized in
the dependent scenarios. Ideally, this standardization should be performed so that τ can
be interpreted in terms of standardized regression coefficients. However, the columns
of the design matrix were not standardized in FL08, even though a common tuning
parameter λ was used for all regression coefficients. To maintain comparability across
studies, the columns of the design matrix were therefore not standardized here, either.

Two hundred data sets were generated under each of the five scenarios. Before con-
ducting the coupling experiment for each data set, the CMH algorithm was run for 100
iterations. During this burn-in period, the auxiliary chain j was reinitialized imme-
diately after coupling with the primary chain k. The coupling times observed during
burn-in were then used to establish the re-initialization period I for the coupling exper-
iment performed on each data set. These re-initialization periods were defined to be the
maximum of 150 and three times the longest coupling times observed during burn-in.

Following burn-in, the CMH algorithm was used to obtain 20 coupling times for each
data set. The primary chain was initialized with its value at the end of the burn-in phase.
The auxiliary chains were reinitialized every I iterations from W by independently
including each regressor in the chain with probability 8/p. If a chain did not couple
before I iterations, a censored coupling time was recorded.

The survival functions for the coupling times obtained under the five simulation sce-
narios are displayed in Figure 1. Under all five scenarios, coupling occurred within 5
iterations with probability exceeding 0.995. In practical terms, this means that 5 it-
erations are enough for a chain initialized from W to reach the target distribution in
these simulation scenarios, and that essentially independent draws from the posterior
distribution are obtained after every 5 iterations.

The speed with which coupling occurred in these experiments is somewhat surprising,
and may be be attributed to the fact that the posterior distribution is relatively concen-
trated for values of n = 200 or 800. The next two studies illustrate scenarios in which
convergence was substantially slower.

The accuracy of the Bayesian variable selection algorithm in identifying the true model
compared well with the penalized likelihood methods proposed by FL08. Estimation
errors for the Bayesian variable selection routine, along with the SIS-SCAD and ISIS-
SCAD procedures from FL08, are reported in Table 1. In all five scenarios, the median
model size identified by each method is listed in the row labeled “t”. The median model
size estimated by the pMOM procedure matched the true model size in each scenario. In
fact, the MAP model estimated by the pMOM procedure corresponded to the simulation
truth with probability 0.99 or greater under all five scenarios. The rows labeled “MEE”
provide the median estimation error for each method; standard errors of estimation
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Figure 1: Survival function of coupling times for simulation scenarios in Study 1.

based on the 200 simulated data sets are provided in parentheses. The MEE values
listed for the “LSE-Truth” correspond to the least squares estimates obtained under the
true model. Because of the high probability assigned to the true model by the pMOM
procedure, there is close agreement between the LSE-Truth values and that procedure.
In general, the MEE reported in FL08 for SIS-SCAD and ISIS-SCAD appear to be
comparable in magnitude to the values obtained using the Bayesian procedure. From
the standard deviations of the MEE values reported for the MAP model in this table,
it is clear that substantially larger simulation studies would be required to determine
which of the methods provided the smallest MEE for these simulation scenarios.

3.2 Study 2

In the next simulation study, linear models of the form (10) were again considered,
but now the true model size was fixed at 3 and the regression coefficient was set to
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Scenario 1 2 3 4 5

n 200 800 200 200 800
p 1000 20,000 1000 1000 20000
t 8 18 5 8 14

LSE-Truth MEE 0.30 (0.08) 0.22 (0.04) 0.21 (0.07) 0.38 (0.10) 0.40 (0.08)

pMOM med(t) 8 18 5 8 14
MEE 0.30 (0.08) 0.22 (0.04) 0.19 (0.08) 0.39 (0.10) 0.37 (0.09)

SIS-SCAD med(t) 15 37 21 18 36
MEE 0.37 0.29 0.33 0.46 0.37

ISIS-SCAD med(t) 13 31 11 13.5 27
MEE 0.33 0.25 0.22 0.37 0.32

Table 1: Summary statistics for the MAP models and penalized likelihood methods in
ultrahigh dimensional settings for Study 1. The median model sizes, med(t), listed for
the Bayesian model correspond to the true model sizes in all studies. MEE denotes
median estimation error, or the median of ||β̂ − β|| across datasets. For the penal-

ized likelihood methods, β̂ represents the penalized MLE; for the Bayesian methods it
represents the posterior mean of β obtained under the MAP model. Summaries for
SIS-SCAD and ISIS-SCAD are taken from FL08; standard errors of estimation are not
available for these summaries but are likely similar to those reported for the pMOM
estimates.

β = (5, 5, 5, 0, . . . , 0)′. Each row of the design matrix X was independently drawn
from a multivariate normal distribution having mean 0 and covariance matrix Σ with
diagonal entries equal to 1 and off-diagonal entries equal to 0.5. Five combinations of
(n, p) were considered: (20,100), (50,100), (20,1000), (50,1000), and (70,1000). These
scenarios mimic simulation studies reported in Section 4.2.1 of FL08. Two hundred
data sets were simulated under each scenario.

The lead-in experiments conducted for Scenario 3 indicated that coupling of the auxiliary
chain with the primary chain did not occur within 100 parameter updates for a majority
of simulated data sets. For this reason, the CMH algorithm described in Study 1 was
modified so that 2,000 burn-in iterations were performed for each simulated data set
under this scenario. Following burn-in of the primary chain, the restart interval for the
auxiliary chains was set to 500 iterations, and 20 auxiliary chains were run for each
simulated data set. The coupling procedures described in Study 1 were applied to all
other scenarios.

Figure 2 displays the estimates of the survival distributions obtained for the coupling
times under each of the five scenarios. As is evident from this figure, the coupling times
obtained under Scenario 3 suggest that convergence of the MH algorithm for these data
sets required far more than 500 iterations. Indeed, by extrapolating the extreme tail of
its survival curve, it appears that more than 5,000 parameter updates are likely to be
needed to achieve burn-in of the MH algorithm under this scenario.

The convergence of the MH algorithm under Scenario 1, the other scenario with a sam-
ple size of 20, was also substantially slower than it was under Scenarios 2, 4, and 5,
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which had sample sizes of 50 or 70. This suggests that the convergence of the MH
algorithm was driven more by sample size than it was by the number of possible covari-
ates, at least in this study. Evidently, larger sample sizes provide more concentrated
posterior distributions, and thus more rapid convergence to high probability models.
For sample sizes of 50 and 70, convergence of the MH algorithm was again quite rapid,
requiring fewer than 10 iterations to obtain iterates that differed from the true posterior
distribution by less than 0.025 in TVD.

1 2 5 10 20 50 100 200 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Coupling Time

S
u

rv
iv

a
l 
F

u
n

c
ti
o

n

Scenario 3

Scenario 1

Scenario 4
Scenario 2

S5

Scenario 3

Scenario 1

Scenario 4
Scenario 2

S5

Scenario 3

Scenario 1

Scenario 4
Scenario 2

S5

Scenario 3

Scenario 1

Scenario 4
Scenario 2

S5

Scenario 3

Scenario 1

Scenario 4
Scenario 2

S5

Figure 2: Survival function of coupling times for simulation scenarios in Study 2.

Table 2 provides a comparison of the performance of the Bayesian model selection proce-
dure against SIS-SCAD and ISIS-SCAD. Numerical estimates of the summary statistics
for the penalized likelihood methods are taken from FL08. For the SIS and ISIS proce-
dures, n variables were (iteratively) preselected for inclusion in the final model, and Fan
and Lv retained n−1 variables in the final models in order to make comparisons between
SIS, ISIS, and LASSO more commensurate. For this reason, the median model sizes
reported for these methods overestimate the median model sizes that might otherwise
have been obtained for each of these methods. The inclusion probabilities reported for
these methods refer to the proportion of final models that contained the true model.

The summary statistics reported for the Bayesian methods refer to the maximum a
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Scenario 1 2 3 4 5
n 20 50 20 50 70
p 100 100 1000 1000 1000
t 3 3 3 3 3

pMOM med(t) 3 3 3 3 3
inclusion prob. 1.0 1.0 1.0 1.0 1.0

SIS-SCAD med(t) 19 49 19 49 69
inclusion prob 0.69 1.0 0.15 0.87 0.97

ISIS-SCAD med(t) 19 49 19 49 69
inclusion prob 1.0 1.0 1.0 1.0 1.0

Table 2: Summary statistics for the MAP models and penalized likelihood methods in
ultrahigh dimensional settings for Study 2. The median model sizes (t) listed for the
Bayesian model correspond to the true model sizes in all studies. For the Bayesian
selection based on the pMOM prior, inclusion probabilities refer to the probability that
the MAP model was identical to the true model. For the penalized likelihood methods,
the inclusion probabilities refer to the probability that a final model of dimension n− 1
included the true model. The MAP model identified by the Bayesian procedure always
identified the (exactly) true model. Summaries for SIS-SCAD and ISIS-SCAD are taken
from FL08.

posteriori (MAP) model identified through the CMH algorithm. It is important to note
that the search for the MAP model utilized states visited by both the primary and
auxiliary (coupling) chains. For all but the third scenario, the MAP model identified by
both chains always corresponded to the true model. However in the third scenario, the
MAP model was often only identified by one or more of the 20 auxiliary chains that were
reinitialized from W every 500 updates. This is an important observation, because it
shows that the use of the coupling diagnostics not only provided information regarding
the convergence of the primary chain, but also led to better coverage of the posterior
distribution on the model space. This confirms the assertion made by many researchers
(e.g., Gelman and Rubin (1992)) that it is often advantageous to use multiple runs of
an MCMC algorithm to explore highly multimodal target distributions.

Interestingly, the Bayesian model selection procedure identified the (exactly) correct
model in all 200 data sets under every simulation scenario examined in this study.

3.3 Study 3

The scenarios studied in the final simulation study were very similar to those exam-
ined in Study 2, except that the true model was augmented by an additional non-zero
regression coefficient whose magnitude was equal to −15

√
ρ ≈ −10.607. The value of

this coefficient was selected so that the marginal correlation between the fourth ex-
planatory variable and the response variable was 0, which means that this variable
is unlikely to be included in a regression model that does not contain at least one



V. E. Johnson 755

of the other three variables. With the addition of the fourth variable, linear mod-
els of the form (10) were again considered, but now the true model size was 4 and
the regression coefficient was set to β = (5, 5, 5,−15

√
ρ, 0, . . . , 0)′, with ρ = 0.5. As

in Study 2, each row of the design matrix X was independently drawn from a mul-
tivariate normal distribution having mean 0 and covariance matrix Σ with diagonal
entries equal to 1 and off-diagonal entries equal to 0.5. Six scenarios were considered:
(n, p) = (20, 100), (50, 100), (70, 100), (20, 1000), (50, 1000), and (70,1000). These sce-
narios mimic simulation studies reported in Section 4.2.2 of FL08. Two hundred data
sets were simulated under each scenario.

The lead-in experiments conducted for Scenarios 1 and 4 produced only a few couplings
during a burn-in period of 100 updates. As a consequence, the CMH algorithm was
again modified so that 2,000 burn-in iterations were performed for each simulated data
set under these scenarios. Following burn-in of the primary chains, the restart interval
for the auxiliary chains was set to 500 iterations, and 20 auxiliary chains were run for
each simulated data set. The coupling procedures described in Study 1 were applied to
all other scenarios.

Figure 3 displays the estimates of the survival distributions for the coupling times under
the six scenarios. As is evident from this figure, the coupling times obtained under Sce-
narios 1 and 4 suggest that the MH algorithm has not converged within 500 iterations.
Extrapolating the survival distributions suggests that in excess of 2,000 updates would
be required to achieve convergence for data sets simulated under Scenario 1, and that
more than 5,000 updates are required to achieve convergence under Scenario 4. As in
Study 2, the slowest convergence occurs with the smallest sample size (i.e., n = 20), sug-
gesting again that sample size plays a more critical role in determining the convergence
of the chains than p does. Of course, this observation should be qualified by noting
that one iteration of the chain was defined as an update of the inclusion status of all
p variables, which means that the magnitude of p has a direct effect on the number of
MCMC acceptance steps that must be performed.

Convergence to the target distribution was achieved with high probability within 500
updates for each of the other scenarios.

Table 3 provides a comparison of the performance of the Bayesian model selection
procedure against SIS-SCAD and ISIS-SCAD. The entries in this table have the same
interpretation as the entries in Table 2. The summary statistics for the penalized
likelihood methods were again taken from FL08. As in Study 2, the Bayesian model
procedure (exactly) identified the correct model for every dataset simulated under each
scenario.

4 Discussion

The coupling diagnostics proposed in this article provide a convenient mechanism for
evaluating the convergence of many MCMC algorithms for model selection. The basic
requirement for their implementation is that updates within an MCMC algorithm be
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Figure 3: Survival function of coupling times for simulation scenarios in Study 3.

“synchronizable” in the sense that the same regression components in two chains can
be updated at the same time, without altering the update procedure of either chain.

From a numerical standpoint, the cost of implementing the coupling diagnostics is ap-
proximately a two-fold increase in computation time. This cost is offset, however, by
the fact that the auxiliary chains provide additional information about the posterior
distribution. In several of the simulation scenarios considered in this article, they were
critical in identifying high probability models when it was not feasible to run an MH
algorithm long enough to thoroughly explore the target distribution.

There is one additional aspect of the simulation studies that deserves comment. Namely,
the convergence properties of an MH algorithm often depend on the particular design
matrix and observation vector specific to a problem. There is often substantial varia-
tion between the coupling-time distributions obtained for data simulated under similar
scenarios. For this reason, it is important to apply coupling diagnostics to individual
data sets, rather than relying on summary properties obtained from data sets generated
under similar conditions.

The Bayesian selection procedure, based on the specification of non-local prior densities
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Scenario 1 2 3 4 5 6
n 20 50 70 20 50 70
p 100 100 1000 1000 1000 1000
t 4 4 4 4 4 4

pMOM med(t) 4 4 4 4 4 4
prob. 1.0 1.0 1.0 1.0 1.0 1.0

SIS-SCAD med(t) 19 49 69 19 49 69
prob 0.025 0.49 0.74 0.00 0.00 0.00

ISIS-SCAD med(t) 19 49 69 19 49 69
prob 1.0 1.0 1.0 1.0 1.0 1.0

Table 3: Summary statistics for the MAP models and penalized likelihood methods in
ultrahigh dimensional settings for Study 3. The median model sizes (t) listed for the
Bayesian model correspond to the true model sizes in all studies. For the Bayesian
selection based on the pMOM prior, inclusion probabilities refer to the probability that
the MAP model was identical to the true model. For the penalized likelihood methods,
the inclusion probabilities refer to the probability that a final model of dimension n− 1
included the true model. The MAP model identified by the Bayesian procedure always
identified the (exactly) true model. Summaries for SIS-SCAD and ISIS-SCAD are taken
from FL08.

on regression coefficients, identified the correct model with an accuracy that matched
or exceeded the ISIS-SCAD and SIS-SCAD algorithms described in FL08 in all of the
simulation examples considered. Furthermore, the availability of coupling diagnostics
for the Bayesian procedure is important for providing some assurance that the selection
procedure has adequately probed the model space in order to identify high probability
models. Of course, these advantages do not come without cost: the Bayesian procedure
requires substantially more computational resources to implement than do penalized
likelihood methods. For very large p (i.e., p > O(106)), computational costs may pre-
clude the use of the Bayesian selection procedure without specialized software and/or
computational infrastructure.

Finally, the simulation studies conducted in this article suggest that convergence proper-
ties of model selection algorithms depend critically on the sample size and concentration
of the posterior distribution. Even for settings in which p ≫ n, the MCMC algorithm
converged quickly to the target distribution–often in fewer than 10 iterations–provided
that the sample size exceeded about 100. Conversely, great caution should be exercised
in attempting to apply Bayesian methods with this MCMC algorithm when n is very
small (n ≈ 30). In such settings, the convergence of the MCMC algorithm can be ex-
ceedingly slow, and it may be necessary to perform long runs of multiple chains in order
to adequately probe the posterior distribution on the model space.
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