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Bayesian Nonparametric ROC Regression
Modeling

Vanda Inácio de Carvalho, ∗† Alejandro Jara, ‡ Timothy E. Hanson, §

and Miguel de Carvalho ¶∥

Abstract. The receiver operating characteristic (ROC) curve is the most widely
used measure for evaluating the discriminatory performance of a continuous biomarker.
Incorporating covariates in the analysis can potentially enhance information gath-
ered from the biomarker, as its discriminatory ability may depend on these. In
this paper we propose a dependent Bayesian nonparametric model for conditional
ROC estimation. Our model is based on dependent Dirichlet processes, where the
covariate-dependent ROC curves are indirectly modeled using probability models
for related probability distributions in the diseased and healthy groups. Our ap-
proach allows for the entire distribution in each group to change as a function of
the covariates, provides exact posterior inference up to a Monte Carlo error, and
can easily accommodate multiple continuous and categorical predictors. Simula-
tion results suggest that, regarding the mean squared error, our approach performs
better than its competitors for small sample sizes and nonlinear scenarios. The
proposed model is applied to data concerning diagnosis of diabetes.

Keywords: Conditional area under the curve, related probability distributions,
dependent Dirichlet process, Markov chain Monte Carlo

1 Introduction

The statistical evaluation of diagnostic and screening procedures, such as biomarkers
and imaging technologies, is of great importance in public health and medical research.
The receiver operating characteristic (ROC) curve is a popular tool for evaluating the
performance of continuous markers and it is widely used in medical studies. The ROC
curve is a plot of the true positive rate (TPR; the probability that a diseased subject
has a positive test) versus the false positive rate (FPR; the probability that a healthy
subject has a positive test), across all possible threshold values used to classify subjects
as healthy or diseased. That is, the ROC curve represents the plot {(FPR(k),TPR(k)) =
(1−F0(k), 1−F1(k)),−∞ < k <∞}, where F0 and F1 are the cumulative distribution
functions of the marker in the healthy and diseased populations, respectively. For
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0 ≤ u ≤ 1, the ROC curve is given by ROC(u) = 1 − F1{F−1
0 (1 − u)}. Related to the

ROC curve, several measures, such as the area under the curve (AUC) or the Youden
index, are considered as summaries of the discriminatory accuracy of the biomarker.

The AUC, given by
∫ 1

0
ROC(u)du, is most common—it is related to the Mann–Whitney

statistic—and can be interpreted as the probability that the marker value of a diseased
individual exceeds the one of a nondiseased individual.

It has been recently recognized that several factors can affect the marker distribution
beyond the disease status (see for instance Pepe 1998, Faraggi 2003, González-Manteiga
et al. 2011, Rodŕıguez-Álvarez et al. 2011a); examples of such factors include different
test settings and subject-specific characteristics (Pepe 2003, Chapter 3). For instance,
we are interested in evaluating the influence of age on the performance of blood glucose
to accurately diagnose individuals with diabetes. It is therefore important to understand
the influence of the covariates to determine the optimal and suboptimal conditions or
populations to perform such tests on. Ignoring the covariate information may yield
biased or oversimplified inferences, whereas stratifying by covariates may be either im-
practical (for continuous covariates) or incur a loss in power.

Several methods have been proposed to assess covariate effects on the ROC curve.
The so-called “induced methodology” models the distribution of the marker in healthy
and diseased populations separately and then computes the induced ROC curve (Pepe
1998; Faraggi 2003; González-Manteiga et al. 2011; Rodŕıguez-Álvarez et al. 2011a).
Alternatively, direct methodology regresses the shape of the ROC curve directly onto
covariates through a generalized linear model (Alonzo and Pepe 2002; Pepe 2003; Cai
2004). We refer the reader to Rodŕıguez-Álvarez et al. (2011b) for a comparative study
of both methodologies. A crucial aspect of such methodologies is the use of parametric
assumptions to model the effect of covariates on the ROC curve. For instance, the use of
a parametric location model for F0 and F1 under the induced methodology framework
may lead to misleading results if the effects are incorrectly specified. Although there
is a vast literature dealing with nonparametric approaches for the estimation of ROC
curves in the absence of covariates (Hsieh and Turnbull 1996; Zou et al. 1997; Lloyd 1998;
Zhou and Harezlak 2002; Peng and Zhou 2004), few approaches have been developed for
nonparametric estimation of the conditional ROC curve, in the presence of covariates.

The current approaches to ROC regression, within the induced context, are based on
homoscedastic linear models with parametric errors (Faraggi 2003), parametric location
models with unspecified error distributions (Pepe 1998), and heterocedastic nonpara-
metric models based on kernel–type regression methods (see for instance González-
Manteiga et al. 2011, Rodŕıguez-Álvarez et al. 2011a). In this work we propose a
Bayesian nonparametric approach for modeling conditional ROC curves, within the in-
duced methodology context. Our approach is based on dependent Dirichlet processes,
and thus allows for the entire distribution to smoothly change as a function of covari-
ates in the healthy and diseased groups and—unlike the kernel-based approaches—it
allows for the inclusion of continuous and discrete predictors. Full inference for the
covariate-specific ROC curves, as well as for the AUC, is easily obtained using Markov
chain Monte Carlo (MCMC). Bayesian nonparametric techniques allow for broadening
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the class of models under consideration and hence for the development of a widely appli-
cable approach that can be used for practically any population and for a large number
of diseases. Recent applications of Bayesian nonparametric models in ROC analysis can
be found in Erkanli et al. (2006), Branscum et al. (2008), Hanson et al. (2008a), Hanson
et al. (2008b), and Inácio et al. (2011).

The paper is organized as follows. Our modeling framework for the estimation of con-
ditional ROC curves and its theoretical justification are presented in Section 2. In
Section 3, a simulation study is carried out to assess and illustrate the performance of
our model. In Section 4, the proposed methodology is applied to the analysis of diabetes
data. Concluding remarks are given in Section 5.

2 The Bayesian nonparametric model

2.1 The modeling approach and its justification

Let y0i and y1j be real-valued continuous random variables denoting the marker result
for the ith and jth subjects in the healthy and diseased group, respectively, i = 1, . . . , n0,
j = 1, . . . , n1. Assume that p-dimensional covariate vectors x0i ∈ X ⊂ Rp and x1j ∈
X ⊂ Rp are recorded for the ith and jth subject in the healthy and diseased group,
respectively. We assume that, given the covariates, the marker results are independent
in the healthy and diseased groups and that

y0i | x0i
ind.∼ f0( · | x0i), i = 1, . . . , n0,

and
y1j | x1j

ind.∼ f1( · | x1j), j = 1, . . . , n1,

where f0( · | x) and f1( · | x) denote the conditional densities of the marker, given the
predictors x, in the healthy and diseased group, respectively.

We propose a model for the conditional ROC curves based on the specification of a
probability model for the entire collection of densities F0 = {f0( · | x) : x ∈ X} and
F1 = {f1( · | x) : x ∈ X}. Instead of specifying a Gaussian location–scale regression
model for the marker values in each population (Pepe 1998; González-Manteiga et al.
2011; Rodŕıguez-Álvarez et al. 2011a), we model the conditional densities in each group
using predictor-dependent mixtures of Gaussian models,

fh( · | x) =
∫
ϕ( · | µ, σ2)dGhx(µ, σ

2), h ∈ {0, 1},

where ϕ( · | µ, σ2) denotes the density of the Gaussian distribution with mean µ and
variance σ2, and, for every x ∈ X , G0x and G1x are probability measures defined on
R × R+. The probability model for the conditional densities is induced by specifying
a probability model for the collection of mixing distributions GX

0 = {G0x : x ∈ X}
and GX

1 = {G1x : x ∈ X}. Justified by results in Barrientos et al. (2012), on the
full support of models for predictor-dependent probability measures, we focused on
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predictor-dependent discrete mixing distributions where only the support points are
indexed by the predictor values. Specifically, we consider independent ‘single–weights’
dependent Dirichlet process priors (DDP) for GX

0 and GX
1 (MacEachern 2000). A ‘single–

weights’ DDP prior involves a countable mixture of stochastic processes over X , with
weights matching those from the standard Dirichlet process (DP). Therefore, the prior
for GX

h , h ∈ {0, 1}, has an almost sure discrete representation which extends the DP
stick–breaking representation (Sethuraman 1994), where, for every x ∈ X ,

Ghx(·) =
∞∑
k=1

wh
kδθh

k(x)
(·), h ∈ {0, 1},

where δ(·) denotes the Dirac measure, {θh
k(x) : x ∈ X}, k ∈ N and h ∈ {0, 1}, are

independent stochastic processes with index set X , and the weights arise from a stick–
breaking construction: wh

1 = vh1 and wh
k = vhk

∏k−1
r=1

(
1− vhr

)
, for k = 2, 3, . . ., with

vhr | αh
i.i.d.∼ Beta(1, αh), for αh ∈ R+, independent across h and of the support point

processes.

In our context, we consider θh
k(x) = (mh

k(x), τ
h
k )

′ ∈ R × R+, where {mh
k(x) : x ∈ X},

k = 1, 2, . . ., are i.i.d. Gaussian processes, with parameters Ψh, and independent across
h. The notation GX

h | αh,Ψh ∼ DDP(αh,Ψh), h ∈ {0, 1}, is used to denote the resulting
DDP prior for the corresponding collection of predictor–dependent mixing distributions.
Under this formulation, the resulting model for the conditional densities takes the form
of an infinite mixture model

fh( · | x) =

∫
ϕ( · | µ, σ2)dGhx(µ, σ

2),

=

∞∑
k=1

wh
kϕ( · | mh

k(x), τ
h
k ), h ∈ {0, 1}. (1)

The conditional cumulative distributions can be expressed as

Fh( · | x) =
∞∑
k=1

wh
kΦ( · | mh

k(x), τ
h
k ), h ∈ {0, 1}.

Thus, for a given value of the covariate, the conditional ROC curve is defined, for
0 6 u 6 1, as

ROC(u | x) = 1− F1{F−1
0 (1− u | x) | x}.

The use of our modeling approach for conditional ROC curves is justified by the full
support property of the induced model under a product space topology, defined using
the uniform norm. The following theorem is proved in Appendix A of the supplementary
material.
Theorem 5. Let (Ω,A,P) be the underlying probability space associated with the DDP
mixture of Gaussian distributions, with trajectories given by expression (1). For almost
every ω ∈ Ω and every x ∈ X , let ROCω( · | x) be a trajectory of the ROC curve under
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the proposed DDP mixture model. Then, for every T ∈ N, ϵ > 0, and x1, . . . ,xT ∈ X ,
it follows that

P

(
ω ∈ Ω : sup

u∈[0,1]

|ROCω(u | xt)− ROC(u | xt)| < ϵ, t = 1, . . . , T

)
> 0,

for every collection of continuous ROC curves {ROC( · | xt) : t = 1, . . . , T}.

Theorem 1 establishes that the probability measure, induced by the use of fully specified
DDP mixture models where only the support points are indexed by the predictors,
assigns positive mass around any collection of ROC curves. Since alternative modeling
frameworks could be considered, where only the weights or both weights and support
points are indexed by predictors, the results summarized in Theorem 1 justify our
modeling choice.

2.2 The B–splines DDP mixture model

Although flexible, priors such as the ones discussed in the previous section require
sampling realizations of the Gaussian processes at each distinct value of the covariates
and, thus, inferences could take prohibitively long to obtain. Therefore, we elaborate
on a linear DDP (LDDP) prior formulation (De Iorio et al. 2004, 2009). Since the full
support property of our proposal depends on the flexibility of the Gaussian processes
defining the support points, we explore an approximation to the full model where the
Gaussian processes are replaced by ‘sufficiently rich’ linear (in the coefficients) functions,
mh

k(x) = z′βh
k , where z is a q-dimensional design vector possibly including non-linear

transformations of the continuous predictors. To this end, we consider an additive
model formulation based on B–splines (see, e.g., Eilers and Marx 1996), referred to as
B–splines DDP,

mh
k(x) = βh

k0 +

p∑
l=1

(
Kl∑
n=1

βh
klnψn(xl, dl)

)
,

where ψn(x, d) corresponds to the nth B–spline basis function of degree d, evaluated
at x and βh

k = {βh
k0, . . . , β

h
kpKp

}. The previous formulation allows for the inclusion of
discrete and continuous predictors.

It is important to stress that the theoretical result on the support of the process ap-
plies for a fully specified DDP mixture model, by considering well-defined Gaussian
processes for the support point functions. The proposed B–splines DDP mixture model
corresponds to an approximation of the fully specified DDP mixture model, where the
well-defined Gaussian processes are approximated by finite–dimensional B–spline regres-
sions; a standard practice in the nonparametric regression literature (see, e.g., Eilers
and Marx 1996) and which is typically justified from a theoretical point of view by
making assumptions on the smoothness of the functions to be approximated. Instead
of providing a theoretical justification of the proposed model, by making unverifiable
assumptions on the smoothness of the collections of ‘true’ densities and by assuming
that the number of nodes goes to infinity, a simulation study is performed in Section
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3 to illustrate the performance of the model under complex ‘true’ scenarios even when
the number of nodes is very small (Kl = 3 is used in our applications).

Under the LDDP formulation, the base stochastic processes are replaced with a group-
specific distribution G∗

h0 that generates the component specific regression coefficients
and variances. Therefore, the B–splines DDP mixture model can be equivalently for-
mulated as a DP mixture of Gaussian regression models

fh( · | x) =

∫
ϕ(· | z′β, σ2)dGh(β, σ

2), (2)

and

Gh | αh, G
∗
0h

ind.∼ DP(αh, G
∗
0h), (3)

h ∈ {0, 1}. For each group, we consider normal–inverse–gamma distributions for the
independent DP baselines, i.e.,

G∗
0h ≡ Nq(µh,Σh)× Γ−1(τh1/2, τh2/2), (4)

where Nq(µ,Σ) denotes the q-variate normal distribution with mean µ and covariance
matrix Σ, and Γ−1(a, b) refers to the inverse–gamma distribution with parameters a
and b. The model specification is completed by assuming, for h ∈ {0, 1}, the following
independent hyper–priors:

αh | ah, bh ∼ Γ(ah, bh), τh2 | τsh1
, τsh2

∼ Γ(τsh1
/2, τsh2

/2), (5)

µh | mh,Sh ∼ Nq(mh,Sh), Σh | νh,Ψh ∼ IWq(νh,Ψh), (6)

where Γ(a, b) refers to a gamma distribution with parameters a and b, and IWq(ν,Ψ)
denotes a q-dimensional inverted–Wishart distribution with degrees of freedom ν and
scale matrix Ψ, parameterized such that E(Σ) = Ψ−1/(ν − q − 1).

2.3 The prior specification

Many authors advocating infinite mixture models choose hyperprior values that seem
reasonable, and in fact are reasonable for the data they consider (De Iorio et al. 2009;
Jara et al. 2010). Here, following the literature on finite mixture models (see, e.g.,
Richardson and Green 1997; Xu et al. 2010), we develop reasonable data-driven priors
that encourage mixture components within a certain size range and complexity. We em-
phasize that the prior is data-driven mostly regarding the predictors, which are treated
as fixed, and not the response.

Let τ = σ−2 be a Gaussian precision parameter and assume that τ | a, b ∼ Γ(a/2, b/2)
and b ∼ Γ(c/2, d/2). It follows that the marginal distribution for τ is a compound
gamma distribution (Dubey 1970),

p(τ) =

∫ ∞

0

f(τ | b)f(b)db =
τ

a
2−1d

c
2Γ
(
a+c
2

)
Γ(a2 )Γ(

c
2 )(τ + d)

a+c
2

, τ > 0.
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This can be used to show that

E(σ2) =
c

d(a− 2)
, var(σ2) =

2c(a+ c− 2)

d2(a− 2)2(a− 4)
.

The improper prior p(τ) ∝ 1/τ is approximated by a = 2, c = ϵ, d = ϵ, where ϵ is small
(e.g. ϵ = 0.001). Clearly, a > 2 for the mean to exist and a > 4 for the variance to
exist. If we have prior guesses η = E(σ2) and v = var(σ2), then solving the system of
nonlinear equations for c and d yields

c =
2η2(2− a)

2η2 + 4v − av
, d =

−2η

2η2 + 4v − av
.

To keep c > 0 and d > 0, an a such that a > 4 + 2η2/v is required. An estimate σ̂2

from fitting a single trend, i.e. with Ghx(·) = δθh(x)(·), serves as an upper bound, as
mixtures of flexible regressions can only decrease variability. However, in some parts
of the predictor space there may be essentially only one regression necessary, and so
σ̂2 should be within the realm of non–negligible mass under the prior. One possible
prior might be η = v = σ̂2/4. The rule-of-thumb that a random variable is within one
standard deviation of its mean 68% of the time would imply that the value σ̂2 should
be well–supported under the prior. We need a > 4 + 0.5σ̂2. Increasing a pushes mass
toward zero and infinity for fixed mean and variance, i.e., gives weight to really big
and/or really small precisions; setting a = 5+ 0.5σ̂2 seems reasonable. Collecting all of
this together, in the context of our model, we propose to set

τh1 = 5 + 0.5σ̂h
2, τsh1

=
(τh1 − 2)σ̂h

2

2τh1 − 8− σ̂h
2 , τh2 = 2, h ∈ {0, 1}.

We now turn attention to the prior specification for the mean and covariance matrix of
the normal centering distribution. Using the same linear predictor as in the B–splines
DDP mixture model, let µ̂h be the least squares estimate µ̂h = (Z′

hZh)
−1Z′

hyh, and
let σ̂2

h = ∥yh − Zhµ̂h∥2/(nh − p), where n0 = n and n1 = m. Under normal theory,
µh ∼ Nq(µ̂h, σ̂

2
h(Z

′
hZh)

−1), approximately. Thus, we propose to set mh = µ̂h and Sh =
σ̂2
h(Z

′
hZh)

−1. Finally, it might make sense to allow for more variability than σ̂2
h(Z

′
hZh)

−1

for the inverted–Wishart prior distribution for Σh, allowing for quite different regression
coefficients in the mixture model. We considered 5 standard deviations, set ν = q + 2
and Ψ−1

h = 25σ̂2
h(Z

′
hZh)

−1.

2.4 Posterior inference

We use a marginal Gibbs sampling algorithm (MacEachern 1994; MacEachern and
Müller 1998; Neal 2000) for simulation from the posterior distribution arising from
expressions (2)–(6). Under this approach, the mixing distributions G0 and G1 are in-
tegrated out from the model and the algorithm uses the Polya urn representation of
the DP predictive measure (Blackwell and MacQueen 1973). A full description of the
conditional distributions needed for the implementation of the algorithm is given in
Appendix B of the supplementary material.
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Inferences on the induced conditional ROC curves require the sampling of the DP ran-
dom measures. To this end, the ϵ–DP approximation (Muliere and Tardella 1998) is
employed. Under this approach samples of the DP random measure are approximated
by a finite-dimensional discrete distribution such that the total variation distance be-
tween the full realization and the approximation is smaller than ϵ; the value ϵ = 0.01 is
used in the applications of the model.

Finally, the computation of the induced conditional ROC curve requires the evaluation
of the quantile function of a mixture of Gaussian distributions, which is computed nu-
merically. The algorithm previously described is implemented in the function LDDProc,
of the library DPpackage (Jara 2007; Jara et al. 2011), in the R program (R Development
Core Team 2012).

3 A simulation study

To evaluate the performance of the estimators associated with our model, we analyzed
simulated data sets under three different scenarios. Specifically, we considered a linear–
mean scenario, a nonlinear–mean scenario with constant variance, and a nonlinear–
mean scenario with predictor dependent variance and multimodality. For each of the
scenarios 100 data sets were generated for each of the sample sizes: n ≡ n0 = n1 =
50, 100, 200. Using the simulated data sets the proposed model was compared with
its main competitors. Given that the nonparametric kernel estimator can only handle
univariate continuous predictors, we restricted the simulation study to this framework.

3.1 The simulation scenarios

In the first case (Scenario I), we consider different homoscedastic linear-mean regression
models for the diseased and healthy groups. Specifically, we assume that, for i =
1, . . . , n,

y0i | x0i
ind.∼ N

(
0.5 + x0i, 1.5

2
)
, y1i | x1i

ind.∼ N
(
2 + 4x1i, 2

2
)
.

The purpose of including this linear scenario is to ascertain the loss of efficiency of the
estimator associated to our model when the standard parametric assumptions hold.

In Scenario II, we assume different homoscedastic nonlinear-mean normal regression
models for both groups:

y0i | x0i
ind.∼ N

(
sin{π × (x0i + 1)}, 0.52

)
, y1i | x1i

ind.∼ N
(
0.5 + x21i, 1

2
)
.

Finally, in Scenario III we assume non-standard regression models for both groups. In
this case, a two-component mixture of normals model with non-linear mean function
and smoothly changing non-unimodal conditional distribution for the diseased group.
For the healthy group, a heteroscedastic nonlinear-mean normal regression model was
assumed. Specifically, we assume that, for i = 1, . . . , n,

y0i | x0i
ind.∼ N (sin(πx0i), 0.2 + 0.5 exp(x0i))
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and
y1i | x1i

ind.∼ exp(x1i)

1 + exp(x1i)
N
(
x1i, 0.5

2
)
+

1

1 + exp(x1i)
N
(
x31i, 1

2
)
.

In all cases, the predictor values were independently generated from a uniform distri-

bution, x0i
i.i.d.∼ U(−1, 1) and x1i

i.i.d.∼ U(−1, 1).

3.2 The models

For each simulated dataset we fit the B–splines DDP mixture model by assumingK1 = 3
and the prior specification described in Section 2.3. In all cases, 2000 MCMC samples
were kept after a burn-in period of 2000 scans of the posterior distribution. Our model
was compared with the semiparametric approach of Pepe (1998) and the nonparametric
kernel estimator of Rodŕıguez-Álvarez et al. (2011a). González-Manteiga et al. (2011)
and Rodŕıguez-Álvarez et al. (2011a) proposed nonparametric kernel estimators, whose
main difference is the order of the local polynomial smoothers used for estimating the
regression functions. González-Manteiga et al. (2011) employed a local constant fit (or-
der 0), while Rodŕıguez-Álvarez et al. (2011a) considered a linear fit (order 1). Since
local constant regression suffers from boundary–bias problems (see, e.g. Fan and Gijbels
1996), we only considered the approach of Rodŕıguez-Álvarez et al. (2011a). Further-
more, in addition to the original approach proposed by Pepe (1998), we considered an
extension of this approach by using a B–splines trend. To distinguish between these
semiparametric approaches, we have designated Pepe’s original estimator as semipara-
metric linear and the other as semiparametric B–splines. For the implementation of
the kernel estimator, regression and variance functions were estimated using local linear
and local constant fits, respectively. The Gaussian kernel was chosen and generalized
cross-validation was used to select the optimal bandwidth; more details on the imple-
mentation of the kernel-based approach is given in Appendix C of the supplementary
material.

3.3 The results

Following Rodŕıguez-Álvarez et al. (2011a) and González-Manteiga et al. (2011), the
discrepancy between estimated and true ROC curves was measured using the empirical
global mean squared error

EGMSE =
1

nx

nx∑
l=1

1

nu

nu∑
r=1

{
R̂OC(ur | xl)− ROC(ur | xl)

}2

≈
∫
X

∫ 1

0

{
R̂OC(u | x)− ROC(u | x)

}2

dudx

= EX

[∫ 1

0

{
R̂OC(u | x)− ROC(u | x)

}2

du

]
,

where nx = 25, nu = 100, and xl and ur lay on an evenly–spaced grid over the predictor
space X and [0, 1], respectively. Table 1 and Figure 1 summarize the EGMSE for each
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scenario, approach, and sample size.

Approach
Scenario n Sem. Linear Sem. B–splines Kernel B–splines DDP

I 50 0.0084 (0.0057) 0.0140 (0.0080) 0.0131 (0.0073) 0.0138 (0.0075)
100 0.0045 (0.0026) 0.0076 (0.0048) 0.0074 (0.0043) 0.0079 (0.0048)
200 0.0022 (0.0014) 0.0037 (0.0023) 0.0036 (0.0020) 0.0042 (0.0022)

II 50 0.0385 (0.0056) 0.0122 (0.0058) 0.0130 (0.0064) 0.0125 (0.0061)
100 0.0364 (0.0037) 0.0076 (0.0037) 0.0079 (0.0041) 0.0079 (0.0039)
200 0.0345 (0.0022) 0.0045 (0.0015) 0.0042 (0.0017) 0.0047 (0.0017)

III 50 0.0534 (0.0090) 0.0218 (0.0112) 0.0302 (0.0156) 0.0162 (0.0090)
100 0.0499 (0.0057) 0.0127 (0.0052) 0.0155 (0.0064) 0.0091 (0.0055)
200 0.0470 (0.0036) 0.0091 (0.0032) 0.0098 (0.0041) 0.0062 (0.0031)

Table 1: Simulated data: Average (standard deviation), across simulations, of the
empirical global mean squared error of the ROC curve for the different approaches
under consideration. The results are presented for each of the simulation scenarios and
sample sizes (n).

As expected, under the linear scenario (Scenario I), the semiparametric linear approach
showed the best performance. The kernel, the semiparametric B–splines and the B–
splines DDP mixture model have similar performances, although the kernel estimator
was slightly better. The higher EGMSE values observed for the B–splines DDP mix-
ture model, kernel and semiparametric B–splines estimators are explained by the bigger
variability of the corresponding estimates when a simple parametric model holds. The
difference between the semiparametric linear approach and the other competitors de-
creases as the sample size increases, which is explained by the reduction in the variance
of the estimators for the more flexible models. Figure 2 depicts the estimated AUC
function, along with the 2.5% and 97.5% simulation quantiles, under Scenario I. In
this case, all methods recovered the functional form of the true AUC function success-
fully. Again, the semiparametric linear estimator showed a better performance than the
other competitors and the difference between the estimators vanished as the sample size
increases.

Under Scenario II, the results show that Pepe’s semiparametric linear approach is clearly
unsuitable and, as expected, its poor performance fails to improve as the sample size
increases. Figure 3 shows that the B–splines DDP mixture model, the kernel method and
the semiparametric B–splines estimator successfully recover the form of the true AUC
function and illustrate that misleading results can be obtained using the semiparametric
linear approach for this important functional.

Finally, under Scenario III, the B–splines DDP mixture model clearly outperformed
the kernel method and the semiparametric B–splines approach for all sample sizes.
Again the semiparametric linear approach showed poor behavior. Figure 4 shows that
the nonparametric estimators recover the true AUC function successfully, whereas the
semiparametric linear estimator produces misleading results.
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The results of the simulation studies, therefore, strongly suggest that precise estimates
of the conditional ROC curves and other functionals of interest can be obtained under
the B–splines DDP mixture model.
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Figure 1: Simulated data: Box plots of the empirical global mean squared error
(EGMSE) across simulations for the B–splines DDP mixture model (M1), kernel estima-
tor (M2), semiparametric linear estimator (M3) and semiparametric B–splines estimator
(M4). Panels (a)–(c), (d)–(f) and (g)–(i) and (j)–(l) display the results for Scenario I,
II and III, respectively.
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Figure 2: Simulated data: True (dotted line) and mean across simulations (solid
line) of the posterior mean of the AUC function under Scenario I. A band constructed
using the point-wise 2.5% and 97.5% quantiles across simulations is presented in gray.
Panels (a)–(c), (d)–(f), (g)–(i) and (j)–(l) display the results for the B–splines LDDP
mixture model, kernel, semiparametric linear and semiparametric B–splines approaches,
respectively, for the sample sizes under consideration.
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Figure 3: Simulated data: True (dotted line) and mean across simulations (solid
line) of the posterior mean of the AUC function under Scenario II. A band constructed
using the point-wise 2.5% and 97.5% quantiles across simulations is presented in gray.
Panels (a)–(c), (d)–(f), (g)–(i) and (j)–(l) display the results for the B–splines DDP
mixture model, kernel method, the semiparametric linear and semiparametric B–splines
approaches, respectively, for the sample sizes under consideration.
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Figure 4: Simulated data: True (dotted line) and mean across simulations (solid line)
of the posterior mean of the AUC function under Scenario III. A band constructed using
the point-wise 2.5% and 97.5% quantiles across simulations is presented in gray. Panels
(a)–(c), (d)–(f), (g)–(i) and (j)–(l) display the results for the B–splines DDP mixture
model, kernel method, semiparametric linear and semiparametric B–splines approaches,
respectively, for the sample sizes under consideration.
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3.4 The sensitivity analysis

To investigate the influence of the specification of the hyper-parameter values we carried
out a sensitivity analysis using the hyper-parameter values that are commonly used in
the literature (De la Cruz et al. 2007; Jara et al. 2010, 2011). Specifically, we set:
a0 = a1 = 5, b0 = b1 = 1, m0 = m1 = (0, 0, 0, 0), S0 = S1 = 102 × I4, ν0 = ν1 = 6,
Ψ0 = Ψ1 = I4, τs01 = τs11 = 6.01, τs02 = τs12 = 2.01, and τ01 = τ11 = 6.01. To
distinguish the resulting models under these prior specifications, in what follows, we have
designated the B-splines DDP mixture model under these hyper-parameter values as B-
splines DDP II. The results are shown in Appendix D of the supplementary material.
As can be seen, the results of both prior specifications are the same.

4 Application to diabetes diagnosis

4.1 Data description

Diabetes is a metabolic disease mainly characterized by high blood sugar concentration
and insulin deficiency or resistance. It is believed that the aging process may be as-
sociated with relative insulin deficiency or resistance among persons who are healthy
(Smith and Thompson 1996). Diabetes doubles the risk of cardiovascular disease (Sar-
war et al. 2010). In 2000, according to the World Health Organization (WHO), at least
171 million people worldwide suffered from diabetes, which corresponds to 2.8% of the
World population. Its incidence is increasing rapidly, and it is estimated by 2030, this
number will almost double (Wild. et al. 2004).

Our motivating data set comes from a population–based pilot survey of diabetes in
Cairo, Egypt, in which postprandial blood glucose measurements were obtained from a
fingerstick on 286 subjects. The gold standard for diagnosing diabetes, according to the
WHO criteria, consists of a fasting plasma glucose value > 140 mg/dl or a 2 hour plasma
glucose value > 200 mg/dl following a 75g oral glucose challenge (Smith and Thompson
1996). Based on these criteria 88 subjects were classified as diseased and 198 as healthy.
These data have also been analyzed in Smith and Thompson (1996), Faraggi (2003),
and in González-Manteiga et al. (2011). In the analyses presented here, we considered
a subset of 258 subjects with age ranging from 27 to 78 years old. We restricted the
analysis to this range of age because both groups had observations there. Figure 5 shows
the histograms of the glucose levels for the healthy and diseased groups, along with DPM
mixture of normals estimates of the densities. As expected, the distribution of glucose
concentration in the diseased group tends to have more probability mass for higher
values than the corresponding distribution of the healthy group. An initial analysis of
the data, using independent DPM mixture of normal models for the log–concentration
of glucose in both groups, showed a good marginal discriminatory performance of the
marker to detect patients having a higher risk of diabetes. The estimated ROC curve
from the preliminary analysis is shown in Figure 6. The corresponding estimated AUC
is 0.885 (0.823, 0.934).
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Figure 5: Glucose data: Histogram of the glucose concentration in the healthy (Panel
a) and diseased group (Panel b). The posterior mean of the density for each group
under (independent) DPM of normals models is displayed as a solid line.
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Figure 6: Diabetes data: Estimated ROC curve of the glucose levels (with no age
effect). The estimate was obtained using a DPM mixture of normal models. The
posterior mean (solid line) is presented along with the point-wise 95% highest posterior
density (HPD) intervals.

4.2 The results

We fit the B–splines DDP mixture model for the glucose concentration by assuming
K1 = 3 and the prior specification described in Section 2.3. Figure 7 presents the esti-
mated predictive density of glucose concentration on the healthy and diseased groups.
The results suggest that the glucose level is much more concentrated in the healthy than
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in the diseased group, across age. Interestingly, the healthy group showed a positive
linear behavior in the conditional location of the glucose concentration and with an
almost constant variability across age. On the other hand, the diseased group showed
a nonlinear behavior on the location of the conditional distributions and a reduction
of the dispersion as the age increases. The linear and nonlinear behavior of the loca-
tion of the conditional distributions in the healthy and diseased group, respectively, is
illustrated in panels (g) and (f) of Figure 7, which shows the posterior inference for the
conditional mean functions. In the healthy population, the older the subject the higher
the glucose level, which is in agreement with the results by Smith and Thompson (1996),
who suggested that the aging process is associated with relative insulin deficiency or
resistance among people who are healthy.

The posterior mean of the conditional ROC curves across age is shown in Figure 8 (a).
In Figure 8 (c), (d), (e), and (f) we present the estimated posterior mean for the ROC
curves over different ages.

Specifically, we considered in Figure 8 (c–f) the ages 31, 43, 60, and 70, which cor-
respond to the 5%, 25%, 75%, and 95% quantiles of the empirical distribution of the
age, respectively. The corresponding AUC (95% point-wise HPD interval) were 0.909
(0.661, 0.998), 0.877 (0.752, 0.954), 0.887 (0.788, 0.953), and 0.865 (0.683, 0.964), respec-
tively. Comparing these results with the one obtained by ignoring age, which was 0.885
(0.823, 0.934), we see that ignoring age results in an over-or under-estimation of the
AUC for certain ages. To examine the age effect further, Figure 8 (b) displays the
posterior mean for the AUC as a function of the age. This figure clearly shows that
age has an important impact on the discriminatory capacity of the glucose, with this
marker having a better discriminatory capacity for ages between 27 and 70. After the
age of 70 the discriminatory capacity of blood glucose as a marker to detect diabetes
reduces substantially and, ignoring the factor age, will lead to an overestimated AUC
for individuals older than 70 years old. We also point out that inferences are more
precise for younger individuals than for older ones, where the credible band is wider.

4.3 Sensitivity analysis

We performed a sensitivity analysis using the B-splines DDP II mixture model (see,
Section 3.4). Under this prior formulation, the log-pseudo-marginal likelihood (LPML)
statistics for the diseased and healthy groups are −529.31 and −778.53, respectively.
In turn, the LPML values obtained under the B-splines DDP mixture model (described
in Section 2.3 and used in Section 4.2) are −528.78 and −774.88 for the diseased and
healthy groups, respectively. Thus, from a predictive point of view, the latter model
seems to be slightly preferable.
We point out that the two prior specifications are quite different. While the prior
specification under the B-splines DDP mixture model is essentially data-driven, the
prior specification under the B-splines DDP II mixture model is concentrated around
the values listed in Section 3.4. In a sense, the latter prior is contradicting the data,
since the glucose values vary from 57 to 484. However, the results under the two prior
specifications, which are shown in Appendix E of the supplementary material, are not
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contradictory.
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Figure 7: Glucose data: Conditional densities. Panels (a) and (b) display the surface
of the posterior mean of the conditional densities across age for the healthy and diseased
group, respectively. Panels (c) and (e), and (d) and (f) show the posterior mean and a
95% point-wise HPD band for the conditional densities corresponding to the 25% and
75% quantiles of the empirical distribution of the age in the healthy and diseased group,
respectively. The posterior mean and 95% point-wise HPD band for the conditional
mean function in the healthy and diseased group are displayed in panel (g) and (h),
respectively.
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(c) 31 years old

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e
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Figure 8: Glucose data: Conditional ROC curve. Panel (a) displays the surface of
the posterior mean of the conditional ROC curves across age. Panel (b) displays the
posterior mean (solid line) and 95% point-wise HPD band for the area under the curve
(AUC) as a function of the age. Panels (c), (d), (e) and (f) display the posterior mean
and 95% point-wise HPD bands for the ROC curve corresponding to the 5%, 25%, 75%
and 95% quantiles of the empirical distribution of the age, respectively.
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5 Concluding remarks

We have proposed a Bayesian nonparametric framework for conditional ROC curve
estimation using continuous and discrete predictors. Our approach is based on depen-
dent Dirichlet processes and justified by the full support of the resulting model on the
functional parameters of interest. Using simulated data, we have shown that an approx-
imated version of the general model, based on B–splines, can outperform its competitors
under non-standard assumptions for the ‘true’ underlying model. The results also sug-
gest that there is little price to be paid for the extra generality when standard parametric
assumptions hold.

Our methodology was applied to data concerning diagnosis of diabetes. We found
that glucose has a good performance in diagnosing diabetes in young individuals, but
its ability to distinguish diabetic and nondiabetic individuals decreases for older ages.
This observation should be taken into account in the use of this marker in the clinical
diagnosis of diabetes.
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Manteiga for having shared his expertise on kernel techniques with her. The research of

V. Inácio de Carvalho is funded by the Portuguese Foundation for Science and Technology

through PEst-OE/MAT/UI0006/2011 and PTDC/MAT/118335/2010. A. Jara’s research is

supported by Fondecyt grant 11100144. M. de Carvalho is funded by the Portuguese Founda-

tion for Science and Technology through PEst-OE/MAT/UI0297/2011 and by the Fondecyt

grant 11121186.

References
Alonzo, T. A. and Pepe, M. S. (2002). “Distribution-free ROC analysis using binary
regression techniques.” Biostatistics, 3: 421–432. 624

Barrientos, A. F., Jara, A., and Quintana, F. (2012). “On the support of MacEachern’s
dependent Dirichlet processes and extensions.” Bayesian Analysis, 7: 277–310. 625

Blackwell, D. and MacQueen, J. (1973). “Ferguson distributions via Pólya urn schemes.”
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