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Bayesian Demographic Accounts: Subnational

Population Estimation Using Multiple Data

Sources

John R. Bryant ∗ and Patrick J. Graham †

Abstract. Demographic estimates for small areas within a country have many
uses. Subnational population estimation is, however, difficult, requiring the syn-
thesis of multiple inconsistent datasets. Current methods have important limi-
tations, including a heavy reliance on ad hoc adjustment and limited allowance
for uncertainty. In this paper we demonstrate how subnational population esti-
mation can be carried out within a formal Bayesian framework. The core of the
framework is a demographic account, providing a complete description of the de-
mographic system. Regularities within the demographic account are described by
a system model. The relationship between the demographic account and the ob-
servable data is described by an observation model. Posterior simulation is carried
out using Markov chain Monte Carlo methods. We illustrate the methods using
data for six regions within New Zealand.

Keywords: demography, official statistics, population estimation, hierarchical Bayesian
model, MCMC

1 Introduction

Sensible decisions about the location of infrastructure, the distribution of health fund-
ing, the targeting of marketing, and much else besides require information about local
demographic trends. This information can be obtained from subnational population es-
timates and projections—that is, demographic estimates disaggregated by age, sex, and
geographical area. Except in a handful of countries with accurate population registers,
estimates must be constructed from multiple data sources of varying quality and com-
pleteness. In many countries, the most important such source, the population census,
faces an uncertain future because of funding pressures. Statistical agencies are seeking
to make better use of ‘administrative’ data produced by non-statistical organizations
such as tax authorities and schools. Due to improvements in information technology,
such data are becoming increasingly plentiful. However, using administrative data for
population estimation can be difficult because of non-standard target populations, the
absence of important variables, and frequent definitional changes.

Demographers and statisticians have developed many methods for adjusting, interpolat-
ing, and reconciling data from diverse sources to construct subnational estimates (e.g.
Rees et al. 2004; Smith and Morrison 2005; Boden and Rees 2010; Smith et al. 2010;
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Raymer et al. 2011; Wilson and Bell 2011). Although much has been achieved with
these methods, they have important limitations. Most are not based on explicit mod-
els for random variation in the demographic processes or in the measurement of these
processes. Instead, practitioners are required to use expert judgment to reconcile incon-
sistent data or to adjust values that are demographically implausible. The estimation
process is accordingly labour-intensive and difficult to replicate.

In this paper we set out a Bayesian statistical framework for subnational population es-
timation that is more efficient and transparent than traditional methods, and that deals
more satisfactorily with uncertainty. At the core of the framework is a ‘demographic
account’ (Rees 1979; Stone 1984), a complete description of the demographic stocks
and flows of interest, subject to accounting identities that relate stocks to flows. The
stocks are population counts, disaggregated by age, sex, and region; the flows are births,
deaths, and migrations. Regularities within the demographic account are captured by
a ‘system model’. The relationship between the demographic system and the available
data is captured by an ‘observation model’. Inference is carried out through Markov
chain Monte Carlo methods. We illustrate the framework by estimating the populations
of six subnational regions in New Zealand, using an eclectic mix of data sources.

Our approach is distinct from, and complementary to, capture-recapture and record
linkage approaches to population estimation (e.g. Fienberg et al. 1999; Elliott and Little
2000; Liseo and Tancredi 2011). The smallest unit in our method is a cell count;
the smallest unit in capture-recapture and record linkage methods is the individual
animal, person, or event. Our methods can exploit a wider range of data, and raise
fewer privacy concerns; capture-recapture and record linkage methods potentially yield
a richer individual-level dataset.

Bayesian methods similar to ours are common in the study of animal demography
(King et al. 2009; Link and Barker 2009). Some methods combine multiple data sources
and include system and observation models (e.g. King et al. 2009, chapter 10). In
human demography, use of Bayesian methods is less common, but is increasing rapidly.
Examples include the estimation and forecasting of mortality (Dellaportas et al. 2001;
Girosi and King 2008; Lynch and Brown 2010), fertility (Alkema et al. 2008; Rendall
et al. 2009; Alkema et al. 2011, 2012), migration (Brierley et al. 2008; Congdon 2008;
Bijak and Wísniowski 2010), and population (Daponte et al. 1997; Abel et al. 2010;
Raftery et al. 2012). Some important new features of our framework and application
are the use of a demographic account to link multiple demographic series, and the scale
of the application, as measured by the volume of data or the number of parameters and
sub-models.

We begin by presenting a high-level overview of our framework. We then develop system
and observation models specific to our New Zealand application, demonstrate how to
simulate from the posterior distribution, and present results. We conclude by describing
extensions, other possible applications, and potential objections to the use of Bayesian
methods in the production of official population statistics.
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2 The framework

Let Q denote a demographic account. Q consists of counts of population, births, deaths,
and migration, all cross-classified by region, sex, age, and time. The series making up
Q are linked by an accounting identity, typically stating that population at the end of
a period must equal population at the beginning of the period plus births minus deaths
plus in-migrations minus out-migrations. We treat Q as latent or unobserved.

Demographic systems exhibit strong regularities. For instance, death rates tend to be
similar across regions within a country, and regional populations tend to have distinctive
age-profiles that persist over time. Moreover, some of the regularities can be predicted
from characteristics such as income levels or the presence of universities. The regular-
ities, and their relationship to external characteristics, are represented by the system
model p(Q|θQ,Z). Quantity θQ contains the parameters for the model, and Z con-
tains covariates that help predict the value the parameters. Conditional on θQ, Q is
independent of Z, that is, p(Q|θQ,Z) = p(Q|θQ).

Data X consist of K datasets, X = (X1,X2, . . . ,XK). The relationship between
X and Q is governed by the observation model p(X|Q, θX). Each dataset Xk is
typically correlated with a different subset of Q. It is possible for multiple datasets
to be correlated with the same elements of Q. In general, the strength of correlations
varies from dataset to dataset. For some datasets, the strength may also vary across
dimensions such as age or time.

The two observable quantities X and Z have different characteristics and roles. All
cell values within X must be non-negative counts, while no such restriction is placed
on values within Z. X forms part of the observation model, while Z forms part of the
system model. Typically, X contains far more values than Z.

We assume that the system and observation models are distinct in the sense that θQ

and θX do not share any parameters, that p(θQ, θX |Z) = p(θQ|Z)p(θX), and that
p(Q,X|θQ, θX ,Z) = p(Q|θQ,Z)p(X|Q, θX). The relationship between Q, X, Z, θQ,
and θX is summarised in Figure 1.

The goal of inference is to obtain the joint posterior p(Q, θQ, θX |X,Z). Typically, a
summary of this, the marginal distribution p(Q|X,Z), is the main focus of attention.
However, the marginal distribution p(θQ, |X,Z) provides potentially useful information
about the demographic system. In addition, as illustrated below, p(θX |X,Z) may be
useful for diagnosing problems with the model or evaluating the datasets.

Given the assumptions described so far,

p(Q, θQ, θX |X,Z) ∝ p(X|Q, θQ, θX ,Z)p(Q|θQ, θX ,Z)p(θQ, θX |Z)

= p(X|Q, θX)p(Q|θQ)p(θQ|Z)p(θX). (1)

The joint posterior p(Q, θQ, θX |X,Z) can be simulated using a Gibbs sampler alter-
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Figure 1: Our framework. Q denotes the demographic account, X the data, Z covari-
ates for the system model, θQ parameters for the system model, and θX parameters for
the observation model. Squares represent observed quantities and circles unobserved
quantitites.

nating between the following full conditional distributions:

p(Q|θQ, θX ,Z,X) ∝ p(X|Q, θX)p(Q|θQ)

p(θQ|Q, θX ,Z,X) ∝ p(Q|θQ)p(θQ|Z)

p(θX |Q, θQ,Z,X) ∝ p(X|Q, θX)p(θX).

In the observation model p(X|Q, θX), the X plays the role of a response variable and
the Q plays the role of a predictor. Within this setup, dataset Xk can be less detailed
than the subset of Q to which it is linked. For instance, Xk need not have as many
dimensions as Q, or have values for all age groups. In such cases, values from Q are
subsetted or aggregated to obtain the predictor for Xk. This flexibility, combined with
the ability to deal with systematic and random variation in the relationship between
Xk and Q, means that messy or incomplete data can be accommodated much more
easily within our framework than they can within traditional approaches.

3 Application to subnational population estimation in New

Zealand

3.1 Scope and data

To illustrate our methods, we construct estimates and forecasts for six regions in New
Zealand over the period 1996-2011. The regions are artificial creations of approximately
equal population size, constructed by grouping contiguous ‘territorial authorities’. The
estimates and forecasts are disaggregated by region, sex, single year of age, and time.

New Zealand holds population censuses every five years. Statistics New Zealand is,
however, exploring alternatives to the traditional census, and has a long-term goal of
increasing the use of administrative data. Data on births and deaths are obtained from
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Table 1: Datasets used in the application

Dataset Associated
demographic
series

Expectations about relation-
ship between demographic
series and dataset

Sex, age, and time detail

Registered births Births Very close Sex and single year of
age for 1997-2011

Registered deaths Deaths Very close Sex and single year of
age for 1997-2011

Official estimates of
resident population
in census years

Population Very close Sex and single year of
age, 1996, 2001, 2006

Census data on 5-
year transitions from
elsewhere in NZ

Internal
in-migration

Approximated by summing
5 years of annual migration
counts, cohort by cohort.
Relationship likely to vary
by age.

Sex and single year of
age, 1996-2001 and 2001-
2006

Census data on 5-
year transitions to
elsewhere in NZ

Internal out-
migration

Approximated by summing
5 years of annual migration
counts, cohort by cohort.
Relationship likely to vary
by age.

Sex and single year of
age, 1996-2001 and 2001-
2006

Census data on 5-
year transitions from
overseas

External
in-migration

Approximated by summing
5 years of annual migration
counts, cohort by cohort.
Relationship likely to vary
by age.

Sex and single year of
age, 1996-2001 and 2001-
2006

International ‘perma-
nent and long-term’
arrivals

External
in-migration

Close, though data on re-
gion of destination often un-
reliable, and some difficulty
distinguishing long-term and
short-term movements

Sex and single year of
age, 1997-2011

International ‘perma-
nent and long-term’
departures

External out-
migration

Close, though data on re-
gion of origin often unre-
liable, and some difficulty
distinguishing long-term and
short-term movements

Sex and single year of
age, 1997-2011

Tax system data on
changes of address
from elsewhere in NZ

Internal
in-migration

Only includes people whose
income is taxed at source.
Relationship likely to vary
by age and sex.

For 2002-2008: sex
and mainly 5-year age
groups, ages 18+. For
2010-2011: sex and
single year of age, ages
18+.

Tax system data on
changes of address to
elsewhere in NZ

Internal out-
migration

Only includes people whose
income is taxed at source.
Relationship likely to vary
by age and sex.

For 2002-2008: sex
and mainly 5-year age
groups, ages 18+. For
2010-2011: sex and
single year of age, ages
18+.

Electoral roll Population Relationship known to vary
by age

No sex, mainly 5-year
age groups, ages 18+,
2004-2011

School roll Population Relationship known to vary
by age

Sex and single year of
age, ages 5-22, 2000-
2010.
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the vital registration system and are of excellent quality. Data on external migration are
obtained from international arrival and departure cards and are of good quality. There
are, however, no comparable data on internal migration. Moreover, New Zealand’s
internal migration rates are high by international standards (Greenwood 1997, Table
2). Estimation of internal migration is therefore the most difficult part of subnational
population estimation in New Zealand.

The datasets X1,X2, . . . ,XK used in our application are summarised in Table 1. The
table shows, for instance, that the relationship between the electoral roll data and
the underlying population counts varies by age, and that the electoral roll data lack
information on sex. All datasets are disaggregated by region. Information about the
datasets listed in Table 1 is available in Dunstan and Ryan (2011).

Covariate vector Z contains a single indicator variable taking a value of 1 if university
students comprised more than one third of the population of that region and age group
at the time of the 2006 census and 0 otherwise. In New Zealand, as elsewhere (Wilson
2010), regions with universities experience disproportionately high migration by young
people.

3.2 The demographic account

In our application, demographic account Q is composed of population, births, deaths,
internal (i.e. domestic) in-migration, internal out-migration, external in-migration, and
external out-migration,

Q = (n, b,d,mII,mIO,mEI,mEO).

Each component is a four-dimensional array with dimensions region, sex, age, and time.
Cell nrsat, for instance, records the population of region r belonging to sex s and age
group a at time t. Definitions for all seven demographic series are given in Table 2. In
Table 2, and throughout the paper, when referencing events, subscript t refers to the
period between exact times t− 1 and t. In addition, when referencing events, subscript
a refers to the age group that the person experiencing the event will belong to at time
t, not the age group that the person belongs to at the time of the event. Figure 6 in the
Supplementary Materials illustrates the distinction. The former definition is useful for
demographic accounting, since it unambiguosly identifies the cohort that is affected by
the event (Rees 1985). Age group A is open, and includes everyone aged A and older.

There are several standard ways of arranging data on internal migration, the most
complete of which is to record the origin and destination of each move (Rees 1985). We
use a simpler ‘migrant pool’ model (Wilson and Bell 2004; Alho and Spencer 2005),
whereby in-migrations are classified only by region of destination and out-migrations
only by region of origin. The number of internal in-migrations must by definition equal
the number of internal out-migrations, so we impose the constraint that, for all s, a,
and t,

R
∑

r=1

mII
rsat =

R
∑

r=1

mIO
rsat. (2)
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The advantage of the migrant pool model is that the number of counts rises in proportion
to the number of regionsR, in contrast to the full origin-destination model where it rises
in proportion to R2. In addition, an exploratory analysis of the New Zealand migration
data suggested that migration patterns have been relatively stable over time, implying
that the extra flexibility of the origin-destination model would not be needed.

The seven demographic series are linked through an accounting identity stating that
population at the end of a period must equal population at the beginning of the period,
plus increments, minus decrements. For a = 1, 2, . . . ,A− 1, the identity takes the form

nrsat = nr,s,a−1,t−1 − drsat +mII
rsat −mIO

rsat +mEI
rsat −mEO

rsat. (3)

For the first age group, births during the period replace population at the beginning of
the period,

nrs0t =
∑

a

brsat − drs0t +mII
rs0t −mIO

rs0t +mEI
rs0t −mEO

rs0t. (4)

For the oldest age group, the population at the beginning of the period includes those
who have already attained age A,

nrsAt = nr,s,A−1,t−1 + nr,s,A,t−1 − drsAt +mII
rsAt −mIO

rsAt +mEI
rsAt −mEO

rsAt. (5)

3.3 The system model

Overall structure

The system model p(Q|θQ,Z) consists of seven submodels, one for each of the de-
mographic series in Q. We assume a priori independence for the parameters of each
submodel, so that

θQ = (θN , θB, θD, θII , θIO, θEI , θEO)

p(θQ) = p(θN)p(θB)p(θD)p(θII)p(θIO)p(θEI)p(θEO).

Our model for the demographic account has the form

p(Q|θQ,Z) = C−1p(n|θN ,Z)p(b|n, θB)p(d|n, θD)p(mII |n, θII ,Z)

× p(mIO|n, θIO,Z)p(mEI |n, θEI)p(mEO|n, θEO)

× I(Q). (6)

The constant C could be obtained by integrating over the remainder of the right hand
side of (6), but is never needed in practice. The indicator I(Q) takes a value of 1
if all counts are non-negative and the demographic accounting and internal migration
constraints (2)–(5) are satisfied, and 0 otherwise. Inconsistent or impossible values for
the demographic account are thus given probability 0.

Our model captures dependencies between the component series in three ways. The first
is through explicitly conditioning on population counts, as is done in the submodels for
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Table 2: Demographic series recorded in the demographic account

Variable Notation Definition

Population nrsat The number of people in region r of sex s and age
group a at time t.

Births brsat The number of births in region r of sex s to women
in age group a during period t.

Deaths drsat The number of deaths in region r of people of sex s
and age group a during period t.

Internal
in-migration

mII
rsat The number of moves into region r from elsewhere

in the country by people of sex s and age group a
during period t.

Internal out-
migration

mIO
rsat The number of moves out of region r to elsewhere

in the country by people of sex s and age group a
during period t.

External in-
migration

mEI
rsat The number of moves into region r from overseas by

people of sex s and age group a during period t.

External out-
migration

mEO
rsat The number of moves out of region r to overseas by

people of sex s and age group a during period t.
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births, deaths, and migration. The second is through including the covariate vector
Z in several submodels. (In our application we only include Z in the submodels for
population and internal migration, but the technique could be carried further.) The
third way of capturing dependencies is through the use of demographic accounting
identities, which mean that a change in any component must be offset by changes in at
least one other component.

Given values for initial population, and for births, deaths, and migration, values for pop-
ulation in subsequent years can be derived by repeated application of the demographic
accounting identities. In fact, this is what demographic projections almost always do.
However, in the absence of an explicit prior model for the population, values for births,
deaths, and migrations are generated without regard to the plausibility of the implied
population patterns—or are subjected to ad hoc adjustments when population values
are obviously implausible. In contrast, by treating population symmetrically with the
other demographic series, and setting out an explicit prior model, we are able to in-
corporate the plausibility of population patterns into the estimates and forecasts in a
transparent and systematic way.

Each of the seven submodels making up the system model has a hierarchical Poisson-
gamma structure. Section 3.3 describes the specification used for population, and Sec-
tion 3.3 describes how the specification is varied to accommodate differences among the
remaining six series.

The Supplementary Materials contain sensitivity tests of some details of the specifica-
tions. The tests suggest that our results are robust to alternative formulations. We
emphasize, however, that our general framework can accommodate many specific mod-
els of demographic processes. We do not consider the models used here to be definitive
or final, and we intend to expore alternative models in future research.

Hierarchical Poisson-gamma model for population

To model population counts, we assume, for r = 1, . . . ,R, s = 1, 2, a = 0, . . . ,A, and
t = 0, . . . , T , that

nrsat|λ
N
rsat

indep
∼ Poisson(λN

rsat) (7)

λN
rsat|ξ

N, µN
rsat

indep
∼ Gamma(ξN, ξN/µN

rsat) (8)

logµN
rsat = αN,R

r + αN,S
s + αN,A

a + αN,T
t + αN,RS

rs + αN,RA
ra . (9)

The ‘
indep
∼ ’ symbol in equations (7) and (8) indicates that the variates on the left hand

side are drawn independently from the probability models defined on the right hand
side, conditionally on the entities after the conditioning symbol. The N superscripts
indicate that the parameter values are specific to the model for population. The first
four terms on the right hand side of (9) are region, age, sex, and time effects. The fifth
term is an interaction between region and age, and the sixth term an interaction between
region and sex. The interaction terms are included to account for the distinctive age-sex
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profiles of regional populations. Additional interaction terms could be added to (9) to
allow for more subtle dependencies. However, (9) only specifies the a priori form of
the expected values. With sufficient data, the posterior for the λN

rsat should be drawn
away from the prior model specified by (9), so that the extra interaction terms are not
needed. Sensitivity analyses in the Supplementary Materials show that this is indeed
the case. In other applications, more interaction terms might be warranted.

We model the region effects αN,R
r hierarchically, with the effects assumed a priori to be

drawn from a common normal distribution,

αN,R
r |ηN,R, τN,R indep

∼ N(ηN,R, τN,R), r = 1, . . . ,R. (10)

A flat prior is used for the parameters of the common normal distribution,

p(ηN,R, τN,R) ∝ 1. (11)

Gelman (2006) demonstrates that priors for variances of the form p(τ) ∝ 1 perform
better than the more standard p(log τ) ∝ 1 when sample sizes are small, as they often
are for group-level effects. A sensitivity test descibed in the Supplementary Materials
suggests that the choice of prior makes little difference in our particular application.
Similar hierarchically-structured priors are assumed for the age effects and sex-region
interactions,

αN,A
a |ηN,A, τN,A indep

∼ N(ηN,A, τN,A), a = 0, . . . ,A (12)

p(ηN,A, τN,A) ∝ 1 (13)

αN,RS
rs |ηN,RS, τN,RS indep

∼ N(ηN,RS, τN,RS), r = 1, . . . ,R, s = 1, 2 (14)

p(ηN,RS, τN,RS) ∝ 1. (15)

For time effects, we use a random walk with drift. The specification can be defined
using first differences,

(αN,T
t − αN,T

t−1 )|η
N,T, τN,T indep

∼ N(ηN,T, τN,T), t = 1, . . . , T (16)

together with
p(αN,T

0 ) ∝ 1 (17)

p(ηN,T, τN,T) ∝ 1. (18)

We use flat priors for the sex main effect.

The prior structure for region-age interactions includes the covariate Z, to allow regions
with large student populations to have distinctive age profiles,

αN,RA
ra |ηN,RA

0 , ηN,RA
1 , τN,RA indep

∼ N(ηN,RA
0 + ηN,RA

1 Zra, τ
N,RA),
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r = 1, . . . ,R, a = 0, . . . ,A (19)

with
p(ηN,RA

0 , ηN,RA
1 , τN,RA) ∝ 1. (20)

Finally, we assume

p(ξN) =
µN
0

(µN
0 + ξN)2

, (21)

which is a uniform shrinkage prior (Christiansen and Morris 1997; Daniels 1999). The
parameter µN

0 is the prior median of ξN . Larger values of µN
0 encourage greater shrinkage

towards the prior model (9). Strategies for choosing µN
0 are discussed in Daniels (1999)

and Young et al. (2006). For all analyses reported in this paper we use µN
0 = 10,

implying that we place equal weight on the prior model and on the direct estimate for a
cell when that cell has size 10. In practice, our results are highly robust to alternative
choices of µN

0 . Further detail on the uniform shrinkage prior and on the sensitivity test
can be found in the Supplementary Materials.

Hierarchical Poisson-gamma model for births, deaths, and migration

The principal difference between the models for births, deaths, and migration and the
model for population is that (7) is replaced by a model that includes an offset orsat,

brsat|λ
B
rsat

indep
∼ Poisson(λB

rsator1at) (22)

drsat|λ
D
rsat

indep
∼ Poisson(λD

rsatorsat) (23)

mII
rsat|λ

II
rsat

indep
∼ Poisson(λII

rsatorsat) (24)

mIO
rsat|λ

IO
rsat

indep
∼ Poisson(λIO

rsatorsat) (25)

mEI
rsat|λ

EI
rsat

indep
∼ Poisson(λEI

rsatorsat) (26)

mEO
rsat|λ

EO
rsat

indep
∼ Poisson(λEO

rsatorsat) (27)

where

orsat = 1
2 (nr,s,a−1,t−1 + nrsat) + ǫ, a = 1, . . . ,A− 1 (28)

ors0t = 1
2nrs0t + ǫ (29)

orsAt = 1
2 (nr,s,A−1,t−1 + nr,s,A,t−1 + nrsAt) + ǫ, (30)

and ǫ is a small positive constant that is included to avoid expected values being set to
zero.

The justification for the inclusion of the orsat term is most straightforward in the case
of the models for deaths (23), internal out-migration (25), and external out-migration
(27). In the case of deaths, orsat measures person-years of exposure to the risk of dying,
in the case of out-migration it measures exposure to the risk of out-migrating.
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No such exposure-to-risk interpretation is possible for the offset terms in the models for
internal in-migration (24) or external in-migration (26). The true population at risk
of internal in-migration to a given region is the population in all other regions of New
Zealand, and the population at risk of external in-migration is the population in the rest
of the world. The former varies little from region to region, and the latter is constant,
so neither has any predictive power. However, exploratory analyses showed that the
inclusion of offsets identical to those used in the out-migration models increased the
precision of the in-migration models almost as much as it increased the precision of
the out-migration models. We therefore included the offsets in the in-migration models
despite their less clear interpretation.

The model for births (22) states that the expected number of births of sex s in region
r during period t is proportional to the number of person-years lived by females aged
a in region r during period t (using s = 1 to denote females). In accordance with
standard ‘female-dominant’ model of fertility (Preston et al. 2001, p120), the number
of person-years lived by males does not affect the expected number of births.

The hyper-prior structures for internal in-migration and internal out-migration take
exactly the same form as the structure for population. The hyper-prior structures for
births, deaths, and external migration take the same form, except that the models for
region-age effects do not include covariate Z. Instead, region-age effects are drawn
from a common normal distribution, equivalent to that used for region-sex effects in the
model for population (14).

3.4 The observation model

The observation model p(X|Q, θX) consists ofK submodels, each relating a dataset Xk

to an associated demographic series. The demographic series associated with dataset
k is denoted Q[k]. Multiple datasets can be associated with the same demographic
series. For instance, of the 12 datasets used in our application, three are associated
with population (Table 1). We assume that the submodels are distinct in the sense that

θX = (θX1
, θX2

, . . . , θXK
)

p(θX) =

K
∏

k=1

p(θXk
)

p(X|Q, θX) =
K
∏

k=1

p(Xk|Q[k], θXk
).

Dataset Xk is composed of counts cross-classified by one or more of the dimensions used
by Q, that is, region, sex, age, and time. The school roll data, for instance, consist of
counts of people enrolled in school, classified by region of school, sex, and time, for ages
5 to 22. For each dataset Xk, we construct a predictor qk that has the same dimensions
as Xk. The predictor is constructed by subsetting and aggregating values from the
associated demographic series Q[k]. Let xjk denote the jth cell of Xk, and qjk the jth
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cell of qk. Then

qjk =
∑

r,s,a,t

Q
[k]
rsatI

jk
rsat + ǫ (31)

where Ijkrsat equals 1 if cell xjk falls within region r, sex s, age group a, or time t, and 0
otherwise. As will become apparent, the ǫ > 0 is necessary to allow for the possibility
that the dataset takes a positive value when the corresponding cells from Q[k] are all 0.

We assume that the xjk are independent conditional on qk and θXk
, so that submodel

k can be written as

p
(

Xk|Q[k], θXk

)

= p(Xk|qk, θXk
) =

∏

j

p (xjk|qjk, θjk),

where θjk is the jth cell of θXk
. We vary the specification for p (xjk|qjk, θjk), and for any

priors for θjk, to reflect what is known about the relationship between the dataset and
the associated demographic series. Registered births should be close to actual births,
for instance, since birth registration is rigorously enforced in New Zealand. In contrast,
the number of people on the school roll for a region should be close to number of people
in that region at ages 5 to 15, but lower at subsequent ages, reflecting the fact that New
Zealand children begin school at age 5 and start to leave from age 15.

Our baseline specification is

xjk|qjk, θjk
indep
∼ Poisson (θjkqjk) . (32)

The θjk term can usually be interpreted as a measure of coverage, with values greater
than 1 indicating overcount and values less than 1 indicating undercount. In the case
of the model for the school roll, for instance, we would expect θjk to be less than 1 for
ages 16 to 22.

The hyperprior structures for census migration counts, the school roll, the electoral roll,
and tax data are similar to those for demographic series. The main difference is that
the models for cell means are simpler than (9). In the case of census migration counts
and the school roll, the model consists of a single age effect,

logµrsat = αA
a .

For each of these datasets there is no reason to expect marked differences in coverage
by region, sex, or time. The model for the electoral roll is identical, except that µrat

replaces µrsat since the electoral roll data do not include information on sex. The model
for tax data is

logµrsat = αA
a + αS

s ,

reflecting the possibility that sex differences in employment rates lead to sex differences
in coverage.

In the case of the international arrivals and departures, we assume that
θjk ∼ Gamma(100, 100), which implies a mean of 1 and variance of 0.01. This reflects
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our belief that the arrivals and departures data are likely to be unbiased and accurate.
The specification does have some flexibility, however, and permits coverage rates that
depart from 1 given sufficiently strong evidence.

Using a Poisson distribution for the first stage of a model for xij means that the variance
of xjk cannot be lower than θjkqjk. This implies, for instance, that in a model for
registered births where θjk = 1, and qjk = 5, the probability that the registration data
are correct to within one birth is only about 0.5. This understates the accuracy of a
dataset such as registered births. To model such datasets, a distribution is needed that
is under-dispersed relative to the Poisson.

We model highly accurate datasets using a Poisson-binomial mixture,

xjk = gjk + hjk

where gjk ∼ Poisson (qjk(1− pk)) and hjk ∼ Binomial(qjk, pk). Parameter pk can be
interpreted as the probability that a person or event is detected and appropriately
enumerated by the dataset. The hjk term is then the number of people or events
that are correctly included in cell j. The gjk term measures ‘overcount’, the number
of people or events that are double-counted or that are incorrectly included in cell j,
which is assumed to be proportional to true cell count. The expected value of the
Poisson-Binomial mixture is qjk, and the variance is qjk

(

1− p2k
)

. When pk approaches
1, as it does with an accurate dataset, the variance is substantially less than the mean.
We use the Poisson-binomial mixture to model registered births, registered deaths, and
official census-year population counts. For all three datasets we set pk = 0.98, based on
discussions with Statistics New Zealand staff about likely levels of accuracy.

3.5 Posterior calculation

As stated in Section 2, our approach to simulating from the joint posterior distribution
p(Q, θQ, θX |X,Z) is to use a Gibbs sampler that alternates between updates of Q, θQ,
and θX . Updating θQ and θX can be done using standard methods for hierarchical
models, with Metropolis Hastings updates applied in cases where it is not possible to
draw directly from a full conditional distribution (Gelman et al. 2004). Updating Q,
however, is more challenging. Not only is Q very large, but, because of constraints
(2)–(5), entries within it do not follow standard distributions. Our approach is to use
Metropolis-Hastings updates that are highly customized for our application.

The first step is to generate a proposal Q∗. The proposal must satisfy the accounting
identities, but also be sufficiently close to the current value Qi that it has a reason-
able chance of being accepted. Early versions of our algorithm attempted to change
hundreds of cells per update and had acceptance rates well below 1%. Our current
version attempts to change only about 10–20 cells per update but has acceptance rates
of 40–50%.

To describe the procedure for generating proposals, it is helpful to extend the subscript
notation to provide a compact way of representing changes within cohorts. If ursat is a
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generic count or parameter such as brsat or λ
D
rsat, then

ursatv = ur,s,min(a+v,A),t+v. (33)

We also need the notion of an ‘expected offset’, which is defined in the same way as an
actual offset ((29)-(30)), but with expected population at the end of the period λN

rsat

taking the place of actual population at the end of the period nrsat.

It is simplest to begin with proposals that do not include changes to internal migration.
The process for generating such proposals is as follows. At each iteration i,

i. Randomly select a series to update, where the choices are initial population (i.e.
population at time 0), births, deaths, external in-migration, and external out-
migration.

ii. Randomly select a cell from within that series—that is, select a region r, sex s,
age group a, and (except in the case of initial population) period t.

iii. Draw a proposed value for the cell using the Poisson models (7), (22), (23), (26), or
(27), but with expected offset ôirsat taking the place of actual offset oirsat when the
series being updated is deaths, external in-migration, or external out-migration.

iv. Revise subsequent population counts to be consistent with the proposed value.
If the series chosen for updating is initial population, the subsequent population
counts are n∗

rsa0u, u = 1, 2, . . . , T . If births, the population counts are n∗
rs1tu,

u = 0, . . . , T − t. If deaths or external migration, the population counts are
n∗
rsatu, u = 0, 1, . . . , T − t.

v. Check that the subsequent population contains no negative values. If they do,
return to step 3.

A simplified example of the application of this algorithm is given in the Supplementary
Materials.

Using expected offsets to generate deaths and migration in step 3 is simpler than using
actual offsets because actual offsets depend on the number of deaths or external migra-
tions during the period. Using expected offsets is not necessary in the case of births,
since a change to the number of births affects the size of the cohort being born, not the
size of the cohort having the births.

Generating proposals that involve changes to internal migration is more complicated,
because internal migration is subject to constraint (2), stating that total in-migrations
equal total out-migrations. An obvious way to satisfy this constraint would be to match
any change to in-migration into a region with an equivalent change to out-migration
out of that region. However, this would mean that net migration to that region would
remain forever at its initial value. To allow net migration to vary freely, while ensuring
that (2) is satisfied, we generate proposals that change in-migration and out-migration
in two regions simultaneously, under the constraint that

∑

r=r1,r2

mII∗
rsat −

∑

r=r1,r2

mII,i
rsat =

∑

r=r1,r2

mIO∗
rsat −

∑

r=r1,r2

mIO,i
rsat. (34)
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Once values for three of the migration flows have been drawn from Poisson models (24)
and (25), a value for the fourth, residual, flow can be obtained from constraint (34).
The algorithm uses the flow with the highest expected value as the residual flow, with
expected value calculated using expected offsets. If this flow takes a negative value, new
draws are made for the other three flows. The remainder of the algorithm for internal
migration is identical to that for the other series, except that subsequent population
counts are changed in two regions rather than one.

Having generated a proposal, the next step is to calculate the Metropolis-Hastings ratio
rMH. Using J to denote the proposal density, rMH can be calculated as follows,

rMH =
p(Q∗|θi

Q, θi
XX,Z)

p(Qi|θi
Q, θi

X ,X,Z)

J(Qi|Q∗, θi
Q)

J(Q∗|Qi, θi
Q)

=
p(X|Q∗, θi

X)

p(X|Qi, θi
X)

p(Q∗|θi
Q)

p(Qi|θi
Q)

J(Qi|Q∗, θi
Q)

J(Q∗|Qi, θi
Q)

. (35)

The third term on the right of (35) is the probability of proposing Qi starting from
Q∗, divided by the probability of proposing Q∗ starting from Qi. A complete proposal
density would include the probability that a cell is chosen for updating. However, this
probability does not depend on the starting point, so it cancels out when the ratio is
taken. The range of valid values for the cell is constrained by the requirement that
subsequent population counts be non-negative. A complete proposal density would
include a normalizing constant to reflect this constraint, calculated by integrating over
the valid range. However, the range of valid values for the cell is identical for Qi and
Q∗, so a normalizing constant would again cancel out. Subsequent population counts
do not appear in J since they depend deterministically on the value of the cell chosen
for updating.

When the initial population is updated, the third term on the right of (35) equals
p(ni

rsa0|λ
N,i
rsa0)

p(n∗

rsa0|λ
N,i
rsa0)

, with p denoting the Poisson distribution. When births are updated, the

term equals
p(birsat|o

i
r1atλ

B,i
rsat)

p(b∗rsat|o
i
r1atλ

B,i
rsat)

, and when deaths are updated, it equals
p(di

rsat|ô
i
rsatλ

D,i
rsat)

p(d∗

rsat|ô
i
rsatλ

D,i
rsat)

.

The expressions for external migration have the same form as the one for deaths. The
expression for internal migration contains terms for the three flows in (34) that are
randomly generated. Each of these terms has the same form as the one for deaths. No
term is needed for the fourth flow in (34) since it is obtained deterministically from the
other three.

The second term on the right of (35) measures the effect on p(Q|X) of moving from
Qi to Q∗. Using n0 to denote population at t = 0 and n1+ to denote population at
t = 1, . . . , T , the term can be decomposed as follows,
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Figure 2: Estimated population counts, by region, age, and year, for males. The top
left panel, for instance, shows the number of males, by age, in region 1 in 2001.
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The first two terms on the right of (36) together represent the effect on p(Q|X) of
the change in initial population, births, deaths, or migration, holding all else constant,
including subsequent population. Changes in subsequent population affect p(Q|X) in
two ways. The first effect occurs via changes to Q itself. This effect is measured by the
third term in (36). The second effect occurs via changes to offsets, and hence expected
numbers of births, deaths, and migrations. This effect is measured by the fourth term
in (36). For instance, this term would be greater than 1 if, at iteration i, a cohort was
experiencing more deaths and migrations than would be expected for a cohort of that
size, and the proposal implied an increase in the cohort’s size. When the terms in (36)
are calculated, almost all the elements cancel out out, since few cells differ between Q∗

and Qi. Formulas are provided in the Supplementary Materials.

Finally, the first term on the right of (35) measures the effect on p(X|Q, θX) of moving
from Qi to Q∗. We have

p(X|Q∗, θi
X)

p(X|Qi, θi
X)

=
∏

k

p(Xk|Q
∗
[k], θ

i
Xk

)

p(Xk|Qi
[k], θ

i
Xk

)

=
∏

j,k

p(xjk |q
∗
jk, θ

i
jk)

p(xjk |qijk, θ
i
jk)

=
∏

q∗
jk

6=qi
jk

p(xjk |q
∗
jk, θ

i
jk)

p(xjk |qijk, θ
i
jk)

. (37)

Because there are few differences between Q∗ and Qi, there are few cases where q∗jk 6=

qijk, and few terms appearing in (37). Moreover, the procedure for obtaining qjk from Q,

set out in (31), is designed to make it easy to identify cases where q∗jk 6= qijk. Calculating
(37) is therefore simple.

Once the calculation of rMH is complete, proposal Q∗ is adopted with probability
min (rMH, 1).

The current version of our software, written in a mixture of R and C, carries out about
100,000 updates of Q per minute on a modest desktop computer. The results for six
regions shown in this paper come from simulation consisting of two chains, each of
which involves 200 million updates of Q and 20,000 updates of θQ and θX , preceded by
a burn-in of the same length. Convergence was assessed using potential scale reduction
factors for randomly-chosen cells within Q (Gelman and Rubin 1992).

3.6 Results

We present a small selection from the voluminous output produced by the model. The
first set of results, shown in Figure 2, are population estimates and forecasts, for males,
in all six regions, in selected years. Each regional population has a distinctive age profile,
which evolves over time. The grey bands in the figure denote 95% credible intervals.
The bands are widest for ages 15 to 39, reflecting the uncertainty created by these ages’
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high migration rates. The bands are too narrow to be visible during the census years
of 2001 and 2006, but widen from 2006 onwards. (A census was due to have been held
in 2011 but was cancelled because of an earthquake.)

Year
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1996 2001 2006 2011

Population

1996 2001 2006 2011
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20

40
60

Internal in−migration

Figure 3: Changes over time in the widths of credible intervals for population and
internal in-migration. The panels show the median width of region-sex-age-specific
credible intervals in each year. The vertical scales differ between the two panels.

Figure 3 provides more detail on how uncertainty changes over time. As can be seen in
the left panel, uncertainty about population counts is low throughout the 1996-2001 and
2001-2006 periods, when estimates are anchored by a census at each end. Uncertainty
rises steadily after 2006.

Figure 4 shows estimates and forecasts for internal in-migration, that is, annual mi-
grations into each region from elsewhere in New Zealand. The credible intervals for
internal migration are much wider, in relative terms, than the credible intervals for
population. Internal migration estimates are less certain because the data available for
estimating migration are less complete and less reliable: in particular, none provides
accurate annual counts for all age groups.

As can be seen in Figure 3, uncertainty about internal in-migration follows a different
trajectory from uncertainty about population. Uncertainty about internal in-migration
does not fall to low levels in census years because the census question on residence 5 years
earlier does not provide definitive information on annual migration counts. Instead,
uncertainty trends gradually upwards over time. We suspect that the slight fall between
2007 and 2010 reflects the fact that, for the years 2010 and 2011, highly detailed data
on changes of addresses of taxpayers were available (see Table 1).

Finally, Figure 5 shows output from the submodel relating the number of people on the
school roll to the number of people in that age group. As expected, coverage rates are
generally about 1 from ages 5 to 15, and fall in subsequent ages. Regions 1 and 2 are
an interesting exception: coverage rates are lower than expected in region 1 and higher
than expected in region 2. Region 1 is next to region 2, which contains Auckland, the
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Figure 4: Estimated internal in-migration by age, males, 2002-2011.

largest city in New Zealand. The most likely explanation for the anomalous coverage
rates is that children travel into region 2 to study, though the possibility of problems
with the data or the model also needs to be considered.

4 Discussion

We have shown how subnational population estimation, including the evaluation and
synthesis of multiple data sources, can be placed in a Bayesian statistical framework.
Expressing the problem in statistical terms permits greater transparency and efficiency,
as well as more satisfactory treatment of uncertainty. It also leads naturally to ideas
about possible extensions.

One such extension is to apply the framework to forecasting future values of demographic
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Figure 5: Numbers of people on the school roll for each person estimated to live in the
region, by age and year, females.

series. Forecasts can be obtained by definingQ to include future periods and then letting
the Gibbs sampler generate values for both historical and future periods. Data series do
not extend into the future (unless lagged values are used), but from the point of view of
the model, this is just another type of missingness. Because the system model does not
distinguish between past and future demographic values, both can be governed by the
same set of demographic assumptions. Moreover, uncertainty about historical values
can be carried through into forecast values.

Another extension is to develop special-purpose priors for the system and observation
models. Demographers have, for instance, developed parsimonious models for repre-
senting change over time in age profiles for fertility, mortality, and migration, which
could be used to construct prior distributions (Preston et al. 2001; Raymer and Rogers
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2006; Booth and Tickle 2008). If data from a sample survey such as a labor force sur-
vey were used, then the priors for the data model could include information about the
design of the survey. In models with many small geographical units, precision could be
increased by using priors that recognized similarity across space, and exploited spatial
correlations in demographic rates (Congdon 2010, chapter 4).

Covariates could be added to the observation model, in the same way that they are cur-
rently added to the system model. Using age-specific employment rates, for instance,
might predict how coverage by tax data varied across age group. In some cases, covari-
ates in the system or observation models might be included to investigate substantive
questions, and not just for their ability to improve the precision of the population esti-
mates.

A final way of extending the framework would be to expand the choice of dimensions
beyond that of region, sex, age, and time. Disaggregating by educational status, for
instance, might be an effective way to account for regional differences in migration pat-
terns, as well as having substantive interest in its own right. More generally, the frame-
work could be applied to moves that were entirely non-geographical, such as changes in
labor force status or health status (Schoen 1988; Rogers 1995). This would allow the
framework to be applied to a large class of estimation problems beyond that of subna-
tional population estimation, such as labor force projections, or measurement of trends
in population health. The common element would be production of internally-consistent
demographic estimates from multiple imperfect datasets.

Before our proposed methods could be used for our original application, the produc-
tion of official subnational population statistics, they would need to be tested on larger
datasets, benchmarked against traditional methods, and perhaps refined further. Fien-
berg (2011) and Little (2012) observe that, even when Bayesian methods perform well,
official statistical agencies are often reluctant to adopt them, because of concerns that
the use of priors compromises objectivity. Whether or not these concerns are justified
in general, we think that they are less relevant to the case of subnational population
estimation. As discussed in the Introduction, current subnational population estima-
tion methods rely heavily on expert judgment and ad hoc adjustments. The methods
proposed in this paper offer the possibility of reducing this reliance by making it easier
to exploit multiple data sources and hence bring more data to bear. Moreover, when
expert judgment is required, such as when specifying priors or selecting models for data
sources, analysts using our methods would specify their judgements explicitly, in the
form of computer code. This would provide a far clearer audit trail than is provided by
current population estimation methods.
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Supplementary material

Allocating events to age groups

As discussed in Section 3.2, we allocate events to age groups based on age at the end of
the period, not age at the time of the event. Figure 6, a Lexis diagram (Preston et al.
2001, pp. 31-34), illustrates the distinction.

Time

Exact age

t − 1 t

a − 1

a

a + 1

A

B

Figure 6: Allocating events to age groups. The shaded parallelogram shows our defini-
tion of age group a. Our definition and the standard age-at-event definition both imply
that event A should be allocated to age group a. However, our definition implies that
event B should also be allocated to age group a while the age-at-event defintion implies
that it should be allocated to age group a− 1.

Further details on the uniform shrinkage prior

Under the hierarchical Poisson Gamma model given by (7)–(9), and treating nrsat as
directly observed, the cell-specific Poisson parameters follow a Gamma distribution with
expectation

E[λrsat|nrsat,α, ξ] = Wrsatµrsat + (1−Wrsat)nrsat

where

Wrsat =
ξ

ξ + µrsat

(See, for example, Christiansen and Morris (1997, Equation 9)).
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We refer to the weight on the prior mean Wrsat as the shrinkage parameter for the
rsat cell. For the purposes of deriving a prior for ξ, the cell-specific prior mean can be
replaced by a constant µ0 to give

W0 =
ξ

ξ + µ0
,

which can be viewed as the shrinkage parameter for a hypothetical cell with prior mean
µ0. A uniform prior on [0, 1] for W0 implies

p(ξ) =
µ0

(µ0 + ξ)2
,

which has median µ0 (Christiansen and Morris 1997).

In our framework, the nrsat are not directly observed. Instead, the observed data X

contain coarsened versions of demographic variables. Consequently, the conditional
posterior for the cell-specific Poisson parameters is

E[λrsat|X,α, ξ] = E[E[λrsat|nrsat,Xα, ξ]]

= E[Wrsatµrsat + (1−Wrsat)nrsat|X,α, ξ]

= Wrsatµrsat + (1−Wrsat)E[nrsat|X,α, ξ].

Sensitivity tests

We carried out the following sensitivity tests:

i. All interactions. In all models for demographic series we used the complete set
of second-order and third-order interactions between region, age, and sex, rather
than just interactions between region and age, and region and sex.

ii. Alternative variance prior. In all hierarchical Poisson-gamma models, including
those for demographic series and for data sources, we used a prior for the top-level
variance (e.g. (11)) of p(log τ) ∝ 1, rather than p(τ) ∝ 1.

iii. Uniform shrinkage median 5 and 20. In all hierarchical Poisson-gamma models,
those for demographic series and for data sources, we used medians of 5 and 20,
rather than 10, in the uniform shrinkage prior prior for ξ.

The results of the sensitivity tests are summarized in Figure 7. The tests use a burnin of
10,000 iterations and production run of 10,000 iterations. This is only half the lengths
used for the results in the main body of the paper, and the tests are subject to some
Monte Carlo error. Neverthless, the clear message of the figure is that our results are
robust to the alternative specifications that were investigated.
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Population

Uniform shrinkage median 20

Uniform shrinkage median 5

Alternative variance prior

All interactions

Benchmark

Region 1, male, age 11, 2011

0 2000 4000 6000 8000

Region 1, male, age 25, 2000

Uniform shrinkage median 20

Uniform shrinkage median 5

Alternative variance prior

All interactions

Benchmark

Region 1, male, age 35, 2010 Region 2, female, age 16, 2005

Uniform shrinkage median 20

Uniform shrinkage median 5

Alternative variance prior

All interactions

Benchmark

Region 3, male, age 6, 2006 Region 4, male, age 96, 2001

Uniform shrinkage median 20

Uniform shrinkage median 5

Alternative variance prior

All interactions

Benchmark

Region 5, female, age 22, 1999 Region 5, male, age 37, 2010

Uniform shrinkage median 20

Uniform shrinkage median 5

Alternative variance prior

All interactions

Benchmark

0 2000 4000 6000 8000

Region 5, male, age 53, 2010 Region 5, male, age 57, 2006

Figure 7: Sensitivity tests. The figure shows posterior distributions for population
counts, for 10 randomly-chosen region-sex-age-time cells. The dots represent the medi-
ans of the distributions, and the bars represent 95% credible intervals. In many cases,
the credible intervals are too narrow to be distinguished from the medians. The ‘bench-
mark’ results come from the specification described in the main body of the paper.
The ‘all interactions’ results come from a specification in which all demographic models
contain a full set of interactions between region, sex, and age. The ‘alternative vari-
ance prior’ results come from a specification in which the prior for group-level effects is
p(log τ) ∝ 1. The ‘uniform shrinkage median 5’ and and ‘uniform shrinkage median 20’
results come from specifications in which µ0 values for the prior for ξ are 5 and 20.
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Simplified example of generating a proposal for Q

Figure 8 presents a simplified example of the generation of a proposal for Q.

External out-migration Population

2+ 1 3 1 2+ 4 7 5 7(5)
Age 1 2 3(5) 2 Age 1 5 4 6(4) 6

0 2 2 0 0 5 6 8 6

1 2 3 0 1 2 3
Period Time

Exposure

2+ 8 8 9(7)
Age 1 4.5 6(5) 7

0 3 4 3

1 2 3 Period

Predictor 1 Predictor 2

2+ 1 3 1 2+ 4 5
Age 1 2 3(5) 2 Age 1 5 6(4)

0 2 2 0 0 5 8

1 2 3 0 2
Period Time

Figure 8: A simplified example of the updating of Q. The cell to be updated is external
out-migration for age-group 2 during period 2, for a single region and sex. Only the
region and sex that were selected for updating are shown. Births, deaths, internal
migration, and external in-migration, which all remain unchanged, are not shown. The
current value for the cell is 3 and the proposed value is 5. Exposure is calculated
using ǫ = 0. Predictor 1 is calculated from external out-migration, and Predictor 2 is
calculated from population.

Additional formulas used in posterior calculation

Section 3.5 discusses how
p(Q∗|θi

Q)

p(Qi|θi
Q
)
can be decomposed into three terms. Formulas for

the three terms are given in Table 3. The p in the second column denotes Poisson
density. The CN in the third column and CBDM in the fourth column are introduced
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to save space. They are defined as follows, using the cohort notation set out in (33),

CN(r, s, a, t) =
T −t
∏

v=0

p
(

n∗
rsatv|λ

N,i
rsatv

)

p
(

ni
rsatv|λ

N,i
rsatv

)

CB(r, s, a, t) =

T −t
∏

v=0

S
∏

w=1

p
(

birwatv|o
∗
rsatvλ

B,i
rwatv

)

p
(

birwatv|o
i
rsatvλ

B,i
rwatv

) if s = 1 and 0 otherwise,

CD(r, s, a, t) =

T −t
∏

v=0

p
(

dirsatv|o
∗
rsatvλ

D,i
rsatv

)

p
(

dirsatv|o
i
rsatvλ

D,i
rsatv

)

CM(r, s, a, t) =
T −t
∏

v=0

p
(

mII,i
rsatv|o

∗
rsatvλ

II,i
rsatv

)

p
(

mII,i
rsatv|o

i
rsatvλ

II,i
rsatv

)

p
(

mIO,i
rsatv|o

∗
rsatvλ

IO,i
rsatv

)

p
(

mIO,i
rsatv|o

i
rsatvλ

IO,i
rsatv

)

×
p
(

mEI,i
rsatv|o

∗
rsatvλ

EI,i
rsatv

)

p
(

mEI,i
rsatv|o

i
rsatvλ

EI,i
rsatv

)

p
(

mEO,i
rsatv|o

∗
rsatvλ

EO,i
rsatv

)

p
(

mEO,i
rsatv|o

i
rsatvλ

EO,i
rsatv

)

CBDM = CBCDCIICIOCEICEO.
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Table 3: Formulas for components of
p(Q∗|θi

Q)

p(Qi|θi
Q
)

Updated
p

(

n
∗

0 |θ
i
Q

)

p

(

ni
0
|θi

Q

)

p

(

b
∗,d∗,m∗|n∗,θi

Q

)

p

(

bi,di,mi|n∗,θi
Q

)

p

(

n
∗

1+|θi
Q

)

p

(

ni
1+

|θi
Q

)

p

(

b
i,di,mi|n∗,θi

Q

)

p

(

bi,di,mi|ni,θi
Q

)

nrsa0

p

(

n∗

rsa0|λ
N,i

rsa0

)

p

(

ni
rsa0

|λ
N,i
rsa0

) CN (r, s,min(a + 1,A), 1) CBDM (r, s,min(a + 1,A), 1)

brsat
p

(

b∗rsat|o
∗

rsatλ
B,i
rsat

)

p

(

bi
rsat

|o∗
rsat

λ
B,i
rsat

) CN(r, s, 1, t) CBDM(r, s, 1, t)

drsat
p

(

d∗rsat|o
∗

rsatλ
D,i
rsat

)

p

(

di
rsat

|o∗
rsat

λ
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rsat
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p
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