
Bayesian Analysis (2013) 8, Number 3, pp. 553–568

On Asymptotic Properties and Almost Sure
Approximation of the Normalized

Inverse-Gaussian Process

Luai Al Labadi ˚ and Mahmoud Zarepour :

Abstract. In this paper, similar to the frequentist asymptotic theory, we present
large sample theory for the normalized inverse-Gaussian process and its corre-
sponding quantile process. In particular, when the concentration parameter is
large, we establish the functional central limit theorem, the strong law of large
numbers and the Glivenko-Cantelli theorem for the normalized inverse-Gaussian
process and its related quantile process. We also derive a finite sum representa-
tion that converges almost surely to the Ferguson and Klass representation of the
normalized inverse-Gaussian process. This almost sure approximation can be used
to simulate the normalized inverse-Gaussian process.

Keywords: Brownian bridge, Dirichlet process, Ferguson and Klass represen-
tation, Nonparametric Bayesian inference, Normalized inverse-Gaussian process,
Quantile process, Weak convergence

1 Introduction

The objective of Bayesian nonparametric inference is to place a prior on the space of
probability measures. The Dirichlet process, formally introduced in Ferguson (1973), is
considered the first celebrated example on this space. Several alternatives for the Dirich-
let process have been proposed in the literature. In this paper, we focus on one such
prior, namely the normalized inverse-Gaussian (N-IG) Process introduced by Lijoi et al.
(2005b). The authors in the foregoing paper used the normalized inverse-Gaussian pro-
cess in the context of mixture modeling and showed that this prior exhibits an attractive
and useful clustering behavior, quite different from that of the Dirichlet process. We re-
fer the reader to the original paper of Lijoi et al. (2005b) for a more detailed comparison
between the two processes. Relevant contributions to the normalized inverse-Gaussian
process include, among others, Favaro et al. (2012), Jang et al. (2010), James et al.
(2009) and Lijoi et al. (2007).

We begin by recalling the definition of the normalized inverse-Gaussian distribution.
The random vector pZ1, . . . , Zmq is said to have the normalized inverse-Gaussian distri-
bution with parameters pγ1, . . . , γmq, where γi ą 0 for all i, if it has the joint probability
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density function
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where K is the modified Bessel function of the third type, S “
␣

pz1, . . . , zmq : zi ě 0,
řm
i“1 zi “ 1

(

, and IS represents the indicator function of the set S. For more details
about the modified Bessel functions consult Abramowitz and Stegun (1972), Chapter 9.

Consider a Polish space X with the Borel σ´algebra A of subsets of X. Let H be a fixed
probability measure on pX,Aq and a be a positive number. Following Lijoi et al. (2005b),
a random probability measure PH,a “ tPH,apAquAPA is called a normalized inverse-
Gaussian process on pX,Aq with parameters a and H, if for any finite measurable parti-
tion A1, . . . , Am of X, the joint distribution of the vector pPH,apA1q, . . . PH,apAmqq has
the normalized inverse-Gaussian distribution with parameter paHpA1q, . . . aHpAmqq.
We assume that if HpAiq “ 0, then PH,apAiq “ 0 with probability one. The normalized
inverse-Gaussian process with parameters a and H is denoted by N-IGPpa,Hq, and we
write PH,a „ N-IGPpa,Hq.

One of the basic properties of the normalized inverse-Gaussian process is that for any
A P A,

EpPH,apAqq “ HpAq and V arpPH,apAqq “
HpAqp1 ´HpAqq

ξpaq
, (2)

where here and throughout this paper

ξpaq “
1

a2eaΓp´2, aq
(3)

and Γp´2, aq “
ş8

a
t´3e´tdt. Furthermore, for any two disjoint sets Ai and Aj P A,

EpPH,apAiqPH,apAjqq “ HpAiqHpAjq
ξpaq ´ 1

ξpaq
. (4)

Observe that, for large a and any real number r,

Γpr, aqa´rea «
1

a
`
r ´ 1

a2
`

pr ´ 1qpr ´ 2q

a3
` ¨ ¨ ¨ (5)

(Abramowitz and Stegun 1972, Formula 6.5.32), where we use the notation fpaq « gpaq

if limaÑ8 fpaq{gpaq “ 1. Consequently, ξpaq « a. It follows from (2) that H plays the
role of the center of the process, while a can be viewed as the concentration parameter.
The larger the value of a, the more likely the realization of PH,a will be close to H.
Specifically, for any fixed set A P A and ϵ ą 0, by Chebyshev’s inequality we have

Pr t|PH,apAq ´HpAq| ą ϵu ď
HpAqp1 ´HpAqq

ξpaqϵ2
. (6)
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That is, PH,apAq
p

Ñ HpAq as a Ñ 8.

Similar to the Dirichlet process, a series representation of the normalized inverse-
Gaussian process can be easily derived from the Ferguson and Klass (1972). See also
Nieto-Barajas and Prünster (2009). Specifically, let pEiqiě1 be a sequence of indepen-
dent and identically distributed (i.i.d.) random variables with an exponential distribu-
tion with mean of 1. Define

Γi “ E1 ` ¨ ¨ ¨ ` Ei. (7)

Let pθiqiě1 be a sequence of i.i.d. random variables with values in X and common
distribution H, independent of pΓiqiě1. Then the normalized inverse-Gaussian process
with parameters a and H has the series representation

PH,ap¨q “

8
ÿ

i“1

L´1pΓiq
ř8
i“1 L

´1pΓiq
δθip¨q, (8)

where

Lpxq “
a

?
2π

ż 8

x

e´t{2t´3{2 dt, for x ą 0, (9)

and δX denotes the Dirac measure at X (i.e. δXpBq “ 1 if X P B and 0 otherwise).
Note that, working with (4) is relatively difficult in practice because no closed form for
the inverse of the Lévy measure (6) exists. Moreover, to determine the random weights
in (4), an infinite sum must be computed. A remedy of such complexity will appear
in Theorem 4 of Section 5 in this paper, where an almost sure approximation to (4) is
given based on a similar result in Zarepour and Al Labadi (2012).

The main objective of the present paper is to study the weak convergence of the centered
and scaled process

DH,ap¨q “
?
a pPH,ap¨q ´Hp¨qq , (10)

as a Ñ 8. Nonparametric Bayesian procedures can be viewed as functionals on priors.
Therefore, like frequentists’ empirical process (Shorack and Wellner 1986), large sample
theory of many important functionals of the N-IGPpa,Hq will simply follow from this
result. For example, it will pave the way for studying the Bayesian bootstrap based on
the normalized inverse-Gaussian process. We point out that, the weak convergence of the
centered and scaled Dirichlet process was studied by Lo (1987) to establish asymptotic
validity of the Bayesian bootstrap. See also Ishwaran et al. (2009). An interesting
generalization of Lo (1987) to the two-parameter Poisson-Dirichlet process was obtained
by James (2008). We would like to emphasize that the result of James for the two-
parameter Poisson-Dirichlet process holds for any discount parameter α P r0, 1s. In
the two foregoing papers, the proofs of the results are based on constructing certain
distributional identities which conclude summability. We refer the reader to Proposition
4.1 of James (2008) for more details. Since constructing an analogous distributional
identity for the normalized inverse-Gaussian process does not seem to be trivial, the
approach of James (2008) is not followed in this paper.

This paper is organized as follows. In Section 2, as a Ñ 8, we show that the limiting
process for the process (10) is the Brownian bridge. In Section 3, we derive the limiting
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process for the quantile process

QH,ap¨q “
?
a
´

P´1
H,ap¨q ´H´1p¨q

¯

, (11)

as a Ñ 8, where, in general, the inverse of a distribution function F is defined by

F´1ptq “ inf tx : F pxq ě tu , 0 ă t ă 1.

The strong law of large numbers and the Glivenko-Cantelli theorem for the normalized
inverse-Gaussian process are discussed in Section 4. In Section 5, we derive a finite
sum-representation which converges almost surely to the Ferguson and Klass represen-
tation of the normalized inverse-Gaussian process. Section 6 contains some concluding
remarks.

2 Asymptotic Properties of the N-IG Process

In this section, we study the weak convergence of the process DH,a defined in (10) for
large values of a. Let S be a collection of Borel sets in R and H be a probability
measure on R. We recall the definition of a Brownian bridge indexed by S . A Gaussian
process tBHpSq : S P S u is called a Brownian bridge with parameter measure H if
E rBHpSqs “ 0 for any S P S and

Cov pBHpSiq, BHpSjqq “ HpSi X Sjq ´HpSiqHpSjq

for any Si, Sj P S (Kim and Bickel 2003).

The next lemma gives the limiting distribution of the process (10) for any finite Borel
set S1, . . . , Sm P S , as a Ñ 8. The proof of the lemma for m “ 2 is given in the
appendix and can be generalized easily to the case of arbitrary m.
Lemma 1. Let DH,a be defined by (10). For any fixed sets S1, . . . , Sm in S we have

pDH,apS1q, DH,apS2q, . . . , DH,apSmqq
d

Ñ pBHpS1q, BHpS2q, . . . , BHpSmqq ,

as a Ñ 8, where BH is the Brownian bridge with parameter H.

In this paper, Dr´8,8s denotes the space of càdlàg functions (right continuous with
left limits) on r´8,8s which is equipped with the Skorokhod topology. The process
DH,a in (10) can be defined on r´8,8s in which its sample path is in Dr´8,8s such
that DH,aptq “ DH,a pp´8, tsq. Right continuity at ´8 can be achieved by setting
DH,ap´8q “ 0; the left limit at `8 also equals zero, the natural value of DH,ap`8q.
For more details, consult Pollard (1984), Chapter 5. The following theorem shows
that the process DH,a converges to the process BH in Dr´8,8s. If X and pXaqaą0

are random variables with values in a metric space M , we say that pXaqa converges

in distribution to X as a Ñ 8 (and we write Xa
d

Ñ Xq if for any sequence panqn
converging to 8, Xan converges in distribution to X. The proof of the theorem is given
in the appendix.
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Theorem 1. We have, as a Ñ 8,

DH,ap¨q “
?
a pPH,ap¨q ´Hp¨qq

d
Ñ BHp¨q

in Dr´8,8s with respect to Skorokhod topology, where BH is the Brownian bridge
with parameter measure H.

3 Asymptotic Properties of the N-IG Quantile Process

Ferguson (1973) considered different estimation problems including estimation of the
median and quantiles using different loss functions under the Dirichlet prior. In this
section, similar to the frequentist asymptotic theory of quantile process, we establish
large sample theory for the normalized inverse-Gaussian quantile process. The following
corollary derives the weak limit of the inverse-Gaussian quantile process defined in (11)
when the concentration parameter a is large.
Corollary 1. Let 0 ă p ă q ă 1, and H be a continuous function with positive deriva-
tive h on the interval

“

H´1ppq ´ ϵ,H´1pqq ` ϵ
‰

for some ϵ ą 0. Let λ be the Lebesgue
measure on r0, 1s. Let QH,a be the normalized inverse-Gaussian process defined in (11).
As a Ñ 8, we have

QH,ap¨q
d

Ñ ´
Bλp¨q

hpH´1p¨qq
“ Qp¨q,

in Drp, qs. That is, the limiting process is a Gaussian process with zero-mean and
covariance function

Cov pQpsq, Qptqq “
λps^ tq ´ λpsqλptq

hpH´1psqqhpH´1ptqq
, s, t P R,

where s^ t denotes the minimum of s and t.

Proof. By Theorem 1, the process
?
a pPH,ap¨q ´Hp¨qq converges in distribution to the

process BH “ Bλ ˝ H. Notice that, almost all sample paths of the limiting process are
continuous on the interval

“

H´1ppq ´ ϵ,H´1pqq ` ϵ
‰

. By Lemma 3.9.23 of van der Vaart
and Wellner (1996), the inverse map H ÞÑ H´1 is Hadamard tangentially differentiable
at H to the subspace of functions that are continuous on this interval. By the functional
delta method (van der Vaart and Wellner 1996, Theorem 3.9.4) we have

QH,ap¨q
d

Ñ ´
Bλ ˝H ˝H´1p¨q

hpH´1p¨qq
“ ´

Bλp¨q

hpH´1p¨qq

in Drp, qs. This completes the proof of the corollary.

Remark 1. Parallel to Remark 1 of Bickel and Freedman (1981), if H´1p0`q ą ´8

and H´1p1q ă 8 and h is continuous on rH´1p0`q, H´1p1qs, the conclusion of Corol-
lary 1 holds in D

“

H´1p0`q,H´1p1q
‰

. For example, if H is a uniform distribution on
r0, 1s, then the convergence holds in Dr0, 1s.
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The following simple example shows how a practitioner can apply Corollary 1 to special
cases such as median and interquartile range.

Example 1. In this example we derive the asymptotic distribution for the median
and the interquartile range for the normalized inverse-Gaussian process. Let Q1

H,a,

Q2
H,a and Q3

H,a be the first, the second (median) and the third quartiles of PH,a (i.e.

P´1
H,ap0.25q “ Q1

H,a, P
´1
H,ap0.5q “ Q2

H,a and P´1
H,ap0.75q “ Q3

H,a). Let q1, q2 and q3 be the
first, the second (median) and the third quartiles of H. From Corollary 1, after some
simple calculations, the asymptotic distribution of the median and the interquartile
range are given, respectively, by

?
a
`

Q2
H,a ´ q2

˘ d
Ñ N

ˆ

0,
1

4h2pq2q

˙

and

?
a pIQR ´ pq3 ´ q1qq

d
Ñ N

ˆ

0,
3

h2pq3q
`

3

h2pq1q
´

2

hpq1qhpq3q

˙

,

where h “ H 1 and IQR “ Q3
H,a ´Q1

H,a. Note that, the asymptotic distributions of the
median and the interquartile range for the normalized inverse-Gaussian process coincide
with the asymptotic distribution of the sample median and the sample interquartile
range (DasGupta 2008, page 93).

4 Glivenko-Cantelli Theorem for the N-IG Process

In this section, we show that a similar form of the empirical strong law of large numbers
and the empirical Glivenko-Cantelli theorem continue to hold for the normalized inverse-
Gaussian process.

Theorem 2. Let PH,a „ N-IGPpa,Hq. Assume that a “ n2c, for a fixed positive
number c. Then, as n Ñ 8,

PH,n2cpAq
a.s.
Ñ HpAq

for any measurable subset A of X.

Proof. For any ϵ ą 0, by (6), we have

Pr
␣ˇ

ˇPH,n2cpAq ´HpAq
ˇ

ˇ ą ϵ
(

ď
HpAqp1 ´HpAqq

ξpn2cqϵ2
,

where ξpn2cq is defined by (3). Note that

lim
nÑ8

ξpn2cq

n2c
“ 1
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(Abramowitz and Stegun 1972, Formula 6.5.32). Since the series
ř8
n“1 1{n2 converges,

it follows by the limit comparison test that the series
ř8
n“1 ξpn2cq is also convergent.

Thus,

8
ÿ

n“1

Pr
␣

|PH,n2cpAq ´HpAq| ą ϵ
(

ă 8.

Therefore, by the first Borel-Cantelli lemma, the proof follows.

The next theorem establishes the Glivenko-Cantelli theorem for the normalized inverse-
Gaussian process. The proof of the theorem follows by arguments similar to that given
in the proof of the Glivenko-Cantelli theorem for the empirical process. See, for example,
Billingsley (1995), Theorem 20.6 and for the exchangeable sequences see Berti and Rigo
(1997).

Theorem 3. Let PH,a „ N-IGPpa,Hq. Assume that a “ n2c, for a fixed positive
number c. Then

sup
xPR

ˇ

ˇPH,n2cpxq ´Hpxq
ˇ

ˇ

a.s.
Ñ 0,

as n Ñ 8, where H and PH,a live in pX,Aq.

Remark 2. Results similar to Corollary 1 and Theorem 3 can also be established for
the two-parameter Poisson-Dirichlet process. The proof will based on Theorem 4.1 and
Theorem 4.2 of James (2008) and arguments analogous to that used in the present paper.

5 Monotonically Decreasing Approximation to the N-IG
Process

In next theorem, we mimic the approach of Zarepour and Al Labadi (2012) for the
Dirichlet process to derive a finite sum representation which converges almost surely
to the Ferguson and Klass sum representation of the normalized inverse-Gaussian pro-
cess. The proof of the theorem is similar to the proof of Lemma 2 in Zarepour and Al
Labadi (2012) and a simple application of the continuous mapping theorem. Hence, it
is omitted.

Theorem 4. Let pθiqiě1 be a sequence of i.i.d. random variables with values in X and
common distribution H, independent of pΓiqiě1, then as n Ñ 8

P new
n,H,a “

n
ÿ

i“1

F´1
n

´

Γi
Γn`1

¯

řn
i“1 F

´1
n

´

Γi
Γn`1

¯δθi
a.s.
Ñ PH,a “

8
ÿ

i“1

L´1pΓiq
ř8
i“1 L

´1pΓiq
δθi , (12)

where

Fnpxq “

ż 8

x

a

n
?
2π
t´3{2 exp

"

´
1

2

ˆ

a2

n2t
` t

˙

`
a

n

*

dt.

Here Γi and Lpxq are defined in (3) and (6), respectively.
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Note that, for any 1 ď i ď n, Γi{Γn`1 ă Γi`1{Γn`1 almost surely. Since F´1
n is a

decreasing function, we have F´1
n pΓi{Γn`1q ą F´1

n pΓi`1{Γn`1q almost surely. That
is, the weights of the new representation given in Theorem 4 decrease monotonically
for any fixed positive integer n. The suggested approximation in Theorem 4 and the
stick-breaking representation of the normalized inverse-Gaussian process (Favaro et al.
2012) have been studied and compared in Al Labadi and Zarepour (2012). We refer the
reader to the previous paper for more details.

Remark 3. For Pnew
n,H,a in Theorem 4, we can write

Pnew
n,H,a

d
“

n
ÿ

i“1

pi,nδθi , (13)

where pp1,n, . . . , pn,nq „ N-IG pa{n, . . . , a{nq,
d
“ denotes equality in distribution and

N-IG is the normalized inverse-Gaussian distribution with probability density function
given in (1). Therefore, a similar result to Theorem 2 of Ishwaran and Zarepour (2002)
for the normalized inverse-Gaussian process follows immediately. Similar to Pnew

n,H,a in
(12), representation (13) can be used for simulation purposes.

6 Concluding Remarks

The approach used in this paper can be applied to some similar processes with tractable
finite dimensional distributions. An interesting example is the class of the generalized
Dirichlet process introduced by Lijoi et al. (2005a) and further investigated in Favaro
et al. (2011). Another class of interest is the class of normalized generalized gamma
processes (Lijoi et al. 2007), which contains the normalized inverse-Gaussian process
as a special case (α “ 1{2). Unfortunately, the finite dimensional distributions of the
normalized generalized gamma processes are unknown. Therefore, a proper modification
of the approach discussed in this paper is necessary.

The results obtained in this paper can be applied to derive asymptotic properties of any
Hadamard-differentiable functional of the N-IGPpa,Hq as a Ñ 8. For different applica-
tions in statistics, we refer the reader to van der Vaart and Wellner (1996), Section 3.9
and Lo (1987). Moreover, the obtained results for the univariate cumulative distribu-
tion functions can be generalized to multivariate cumulative distribution functions. To
achieve these generalizations, the results of Bickel and Wichura (1971) can be employed
in the proof.
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Appendix

Proof of Lemma 1 for m “ 2: Let S1 and S2 be any two intervals in R. Without
loss of generality, we assume that S1 X S2 “ H. The general case when S1 and S2 are
not necessarily disjoint follows from the continuous mapping theorem.

Note that

pPH,apS1q, PH,apS2q, 1 ´ PH,apS1q ´ PH,apS2qq „ N-IG
`

aHpS1q, aHpS2q,

ap1 ´HpS1q ´HpS2qq
˘

,

where N-IG denotes the normalized inverse-Gaussian distribution with probability den-
sity function given in (1). For notational simplicity, set Xi “ PH,apSiq, li “ HpSiq and



L. Al Labadi and M. Zarepour 563

Di “
?
a pXi ´ liq for i “ 1, 2. Thus, the joint density function of X1 and X2 is

fX1,X2px1, x2q “
eaa3l1l2p1 ´ l1 ´ l2q

21{2π3{2
ˆ x

´3{2
1 x

´3{2
2 p1 ´ x1 ´ x2q´3{2

ˆK´3{2

¨

˝a

d

l21
x1

`
l22
x2

`
p1 ´ l1 ´ l2q2

1 ´ x1 ´ x2

˛

‚

ˆa´3{2

ˆ

l21
x1

`
l22
x2

`
p1 ´ l1 ´ l2q2

1 ´ x1 ´ x2

˙´3{4

“
a3{2eal1l2p1 ´ l1 ´ l2q

21{2π3{2
ˆ x

´3{2
1 x

´3{2
2 p1 ´ x1 ´ x2q´3{2

ˆK´3{2

¨

˝a

d

l21
x1

`
l22
x2

`
p1 ´ l1 ´ l2q2

1 ´ x1 ´ x2

˛

‚

ˆ

ˆ

l21
x1

`
l22
x2

`
p1 ´ l1 ´ l2q2

1 ´ x1 ´ x2

˙´3{4

.

It follows that, the joint probability density function of D1 “
?
a pX1 ´ l1q and D2 “

?
apX2´ l2q is

fD1,D2py1, y2q “
a1{2eal1l2p1 ´ l1 ´ l2q

21{2π3{2

ˆ
`

y1{
?
a` l1

˘´3{2 `
y2{

?
a` l2

˘´3{2

ˆ
`

1 ´ y1{
?
a´ l1 ´ y2{

?
a´ l2

˘´3{2

ˆK´3{2

˜

a

˜

l21
y1{

?
a` l1

`
l22

y2{
?
a` l2

`
p1 ´ l1 ´ l2q2

1 ´ y1{
?
a´ l1 ´ y2{

?
a´ l2

¸1{2¸

ˆ

˜

l21
y1{

?
a` l1

`
l22

y2{
?
a` l2

`
p1 ´ l1 ´ l2q2

1 ´ y1{
?
a´ l1 ´ y2{

?
a´ l2

¸´3{4

.

By Scheffé’s theorem (Billingsley 1999, page 29), it is enough to show that

fD1,D2
py1, y2q Ñ fpy1, y2q “

1

2π|Σ|1{2
exp

␣

´py1 y2qΣ´1py1 y2qT {2
(

,

where Σ “

„

l1 p1 ´ l1q ´l1l2
´l1l2 l2 p1 ´ l2q

ȷ

.
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Since, for large z and fixed ν, Kνpzq «
a

π{2z´1{2e´z (Abramowitz and Stegun 1972,
Formula 9.7.2) we get

lim
aÑ8

fD1,D2py1, y2q “ lim
aÑ8

«

l1l2p1 ´ l1 ´ l2q

2π

ˆ

˜

l21
y1{

?
a` l1

`
l22

y2{
?
a` l2

`
p1 ´ l1 ´ l2q2

1 ´ y1{
?
a´ l1 ´ y2{

?
a´ l2

¸´1

ˆ
`

y1{
?
a` l1

˘´3{2 `
y2{

?
a` l2

˘´3{2

ˆ
`

1 ´ y1{
?
a´ l1 ´ y2{

?
a´ l2

˘´3{2

ˆ exp

˜

a

˜

1 ´

˜

l21
y1{

?
a` l1

`
l22

y2{
?
a` l2

`
p1 ´ l1 ´ l2q2

1 ´ y1{
?
a´ l1 ´ y2{

?
a´ l2

¸1{2¸¸ff

.

Notice that,

l1l2p1 ´ l1 ´ l2q

2π

ˆ

˜

l21
y1{

?
a` l1

`
l22

y2{
?
a` l2

`
p1 ´ l1 ´ l2q2

1 ´ y1{
?
a´ l1 ´ y2{

?
a´ l2

¸´1

ˆ
`

y1{
?
a` l1

˘´3{2 `
y2{

?
a` l2

˘´3{2 `
1 ´ y1{

?
a´ l1 ´ y2{

?
a´ l2

˘´3{2

converges to 1{

´

2π
a

σ11σ22p1 ´ ρ212q

¯

, where

σ11 “ l1p1 ´ l1q, σ22 “ l2p1 ´ l2q, ρ12 “ ´

d

l1l2
p1 ´ l1qp1 ´ l2q

.

To prove the lemma, it remains to show that

a

˜

1 ´

˜

l21
y1{

?
a` l1

`
l22

y2{
?
a` l2

`
p1 ´ l1 ´ l2q2

1 ´ y1{
?
a´ l1 ´ y2{

?
a´ l2

¸1{2¸

converges to

´
1

2p1 ´ ρ212q

«

ˆ

y1
?
σ11

˙2

`

ˆ

y2
?
σ22

˙2

´ 2ρ12

ˆ

y1
?
σ11

˙ˆ

y1
?
σ11

˙

ff

.

The last argument follows straightforwardly from L’Hospital’s rule. ˝



L. Al Labadi and M. Zarepour 565

Proof of Theorem 1: Let panq be an arbitrary sequence such that an Ñ 8. To
simplify the notations, in the arguments below, we omit writing the index n of an.
Assume first that Hptq “ λptq “ t (i.e. λ is the Lebesgue measure on r0, 1s). Thus the
process (10) reduces to

Dλ,aptq “
?
a pPλ,aptq ´ tq .

To prove the theorem, we use Lemma 1 and Theorem 13.5 of Billingsley (1999). There-
fore, we only need to show that for any 0 ď t1 ď t ď t2 ď 1,

E
”

|Dλ,aptq ´Dλ,apt1q|
2β

|Dλ,apt2q ´Dλ,aptq|
2β
ı

ď |F pt2q ´ F pt1q|
2γ
,

for some β ě 0, γ ą 1{2, and a nondecreasing continuous function F on r0, 1s. Take
β “ γ “ 1 and F ptq “ 2t. Relying on the technique of James et al. (2006) for calculating
moments of random probability measures, we show that

E
”

pDλ,aptq ´Dλ,apt1qq
2

pDλ,apt2q ´Dλ,aptqq
2
ı

ď 4 pt2 ´ t1q
2
. (14)

Observe that

Dλ,aptq ´Dλ,apt1q “ Dλ,appt1, tsq and Dλ,apt2q ´Dλ,aptq “ Dλ,appt, t2sq.

Thus, the expectation in the left hand side of (14) is equal to

a2E
”

tPλ,appt1, tsq ´ λppt1, tsqu
2

tPλ,appt, t2sq ´ λppt, t2squ
2
ı

, (15)

where λppt, t2sq “ t2 ´ t and λppt1, tsq “ t´ t1. Expanding the expression

tPλ,appt1, tsq ´ λppt1, tsqu
2

tPλ,appt, t2sq ´ λppt, t2squ
2

gives

P 2
λ,appt1, tsqP

2
λ,appt, t2sq ´ 2λppt, t2sqP 2

λ,appt1, tsqPλ,appt, t2sq

` λ2ppt, t2sqP 2
λ,appt1, tsq ´ 2λppt1, tsqPλ,appt1, tsqP

2
λ,appt, t2sq

` 4λppt1, tsqλppt, t2sqPλ,appt1, tsqPλ,appt, t2sq ´ 2λppt1, tsqλ
2ppt, t2sqPλ,appt1, tsq

` λ2ppt1, tsqP
2
λ,appt, t2sq ´ 2λ2ppt1, tsqλppt, t2sqPλ,appt, t2sq ` λ2ppt1, tsqλ

2ppt, t2sq.

Applying the general technique of James et al. (2006) to calculate the moments yields

E
“

P 2
λ,appt1, tsqP

2
λ,appt, t2sq

‰

“
1

48

”´

3Γp0, aqa4ea ´ Γp´2, aqa6ea ´ 2a3 ` 6a` 6
¯

ˆλ2ppt1, tsqλ
2ppt, t2sq `

´

3Γp´1, aqa4ea

´Γp´3, aqa6ea ´ 2a2 ` 2a` 2
¯

λ2ppt1, tsqλppt, t2sq

`

´

3Γp´1, aqa4ea ´ Γp´3, aqa6ea ´ 2a2 ` 2a` 2
¯

ˆλppt1, tsqλ
2ppt, t2sq `

´

´ Γp´4, aqa6ea

`3Γp´2, aqa4ea ´ 3Γp0, aqa2ea ` a` 1
¯

ˆλppt1, tsqλppt, t2sq

ı

.
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Using the approximation (5) gives

Γp0, aqa4ea « a3 ´ a2 ` 2a´ 6 `
24

a
´

120

a2
` ¨ ¨ ¨

Γp´2, aqa6ea « a3 ´ 3a2 ` 12a´ 60 `
360

a
´

2520

a2
` ¨ ¨ ¨

Γp´1, aqa4ea « a2 ´ 2a` 6 ´
24

a
`

120

a2
´ ¨ ¨ ¨

Γp´3, aqa6ea « a2 ´ 4a` 20 ´
120

a
`

840

a2
´ ¨ ¨ ¨

Γp´4, aqa6ea « a´ 5 `
30

a
´

210

a2
` ¨ ¨ ¨

Γp´2, aqaea « a´ 3 `
12

a
´

60

a2
` ¨ ¨ ¨

Γp0, aqa2ea « a´ 1 `
2

a
´

6

a2
` ¨ ¨ ¨ .

Therefore,

E
“

P 2
λ,appt1, tsqP

2
λ,appt, t2sq

‰

«

´

1 ´
6

a
`

45

a2

¯

λ2ppt1, tsqλ
2ppt, t2sq

`

´1

a
´

10

a2

¯

λ2ppt1, tsqλppt, t2sq

`

´1

a
´

10

a2

¯

λppt1, tsqλ
2ppt, t2sq

`
1

a2
λppt1, tsqλppt, t2sq. (16)

Likewise,

E
“

P 2
λ,appt1, tsqPλ,appt, t2sq

‰

“
1

8

”´

Γp´1, aqa4ea ´ a2 ` 2a` 2
¯

λ2ppt1, tsqλppt, t2sq

`

´

Γp´2, aqa4ea ´ 2Γp0, aqa2ea ` a` 1
¯

ˆλppt1, tsqλppt, t2sq

ı

«

´

1 ´
3

a
`

15

a2

¯

λ2ppt1, tsqλppt, t2sq

`

´1

a
´

6

a2

¯

λppt1, tsqλppt, t2sq (17)
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and

E
“

Pλ,appt1, tsqP
2
λ,appt, t2sq

‰

“
1

8

”´

Γp´1, aqa4ea ´ a2 ` 2a` 2
¯

λppt1, tsqλ
2ppt, t2sq

`

´

Γp´2, aqa4ea ´ 2Γp0, aqa2ea ` a` 1
¯

λppt1, tsqλppt, t2sq

ı

«

´

1 ´
3

a
`

15

a2

¯

λppt1, tsqλ
2ppt, t2sq

`

´1

a
´

6

a2

¯

λppt1, tsqλppt, t2sq. (18)

On the other hand, by (2) and (4), the expectation of the expression

λ2ppt, t2sqP 2
λ,appt1, tsq ` 4λppt1, tsqλppt, t2sqPλ,appt1, tsqPλ,appt, t2sq

´ 2λppt1, tsqλ
2ppt, t2sqPλ,appt1, tsq ` λ2ppt1, tsqP

2
λ,appt, t2sq

´ 2λ2ppt1, tsqλppt, t2sqPλ,appt, t2sq ` λ2ppt1, tsqλ
2ppt, t2sq

simplifies to

3λ2ppt1, tsqλ
2ppt, t2sq ´ 6Γp´2, aqa2eaλ2ppt1, tsqλ

2ppt, t2sq

` Γp´2, aqa2eaλ2ppt1, tsqλppt, t2sq ` Γp´2, aqa2eaλppt1, tsqλ
2ppt, t2sq

« 3λ2ppt1, tsqλ
2ppt, t2sq ´ 6

ˆ

1

a
´

3

a2

˙

λ2ppt1, tsqλ
2ppt, t2sq

`

ˆ

1

a
´

3

a2

˙

λ2ppt1, tsqλppt, t2sq `

ˆ

1

a
´

3

a2

˙

λppt1, tsqλ
2ppt, t2sq. (19)

By (16), (17), (18) and (19), we have

E
”

tPλ,appt1, tsq ´ λppt1, tsqu
2

tPλ,appt, t2sq ´ λppt, t2squ
2
ı

«
3

a2
λ2ppt1, tsqλ

2ppt, t2sq

´
1

a2
λ2ppt1, tsqλppt, t2sq ´

1

a2
λppt1, tsqλ

2ppt, t2sq `
1

a2
λppt1, tsqλppt, t2sq

ď
4

a2
λppt1, tsqλppt, t2sq. (20)

Thus, by (15) and (20), we have

E
”

pDλ,aptq ´Dλ,apt1qq
2

pDλ,apt2q ´Dλ,aptqq
2
ı

ď 4λpt1, tsλpt, t2s

“ 4 pt´ t1q pt2 ´ tq

ď 4 pt2 ´ t1q
2
,

for 0 ď t1 ď t ď t2 ď 1. This proves the theorem in the case when Hptq “ t, i.e. H is the
uniform distribution. Observe that, the quantile function H´1psq “ inf tt : Hptq ě su
has the property: H´1psq ď t if and only if s ď Hptq. If Ui is uniformly distributed
over r0, 1s, then H´1pUiq has distribution H. Thus, we can use the representation
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ai “ H´1pUiq, where pUiqiě1 is a sequence of i.i.d. random variables with uniform
distribution on r0, 1s, to have

PH,aptq “ Pλ,apHptqq and DH,aptq “ Dλ,apHptqq “ Dλ,a ˝Hptq, t P R,

where Pλ,a is the normalized inverse-Gaussian process with concentration parameter
a and Lebesgue base measure λ on r0, 1s. From the uniform case, which was already

treated, we haveDλ,ap¨q “
?
a pPλ,ap¨q ´ λp¨qq

d
Ñ Bλp¨q. Define Ψ : Dr0, 1s Ñ Dr´8,8s

by pΨxqptq “ xpHptqq. Since the function Ψ is uniformly continuous (Billingsley 1999,
page 150; Pollard 1984, page 97), it follows, from the continuous mapping theorem and

the fact that Dλ,a
d

Ñ Bλ, that DH,a “ ΨpDλ,aq
d

Ñ ΨpBλq “ BH . This completes the
proof of the theorem. ˝
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