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Rejoinder

Peter Müller * and Riten Mitra �

We appreciate the many insightful comments and critiques in the discussions. Several
discussions pointed out important BNP models and classes of problems that we missed
in the paper. Gelman proposes consideration of models for classification trees (CART,
BART). We actually considered including the Bayesian CART (Chipman et al. 1998;
Denison et al. 1998) in the review paper, and strongly agree that models like the BART
model (Chipman et al. 2010) turn out to be amazingly versatile in many applications.
Kolossiatis draws attention to recent literature on correlated NRMI’s as an alternative
to DDP priors for multiple related random probability measures. We appreciate the
discussed models as alternatives to the DDP, and also for their elegance. See Sections
2.3. and 4.3. of the main paper for the definition of NRMI’s and the DDP model.
Kottas, DeYoreo and Poynor highlight curve fitting regression approaches as another
important alternative implementation of fully nonparametric regression. We strongly
agree and appreciate that their discussion added this important class of approaches
to the review. Perron mentions models for copulas. Tokdar reviews quantile curves
as another great example for problems where principled BNP inference can address
limitations in currently used approaches.

Several discussions highlight some features and limitations of BNP inference, beyond
what is already discussed in the paper. Robert and Rousseau point out that while
asymptotic properties of the estimation of the random curve or probability measure are
understood for many BNP priors, asymptotics for other important inference summaries
are not. We agree that this is an important current limitation of BNP and thank the
discussants for highlighting this issue. Carlin and Murray give a spirited discussion
as die hard Bayesian parametricians. By re-analyzing some of the data used in the
paper they argue for alternative parametric models. We comment on details for the
specific examples below. But we agree with the overall assertion that well chosen para-
metric models can often achieve similarly flexible inference. Parmigiani and Trippa
make a related comment, by pointing out the sometimes blurred nature of the boundary
between parametric and BNP methods in Bayesian inference. Hoff argues that BNP
priors in practice rarely represent actual prior beliefs. In many cases, and with respect
to many details of the BNP prior, this is probably true. However, several steps can
be taken, and are used by many authors, to mitigate this concern. Many BNP priors
allow convenient prior centering. In the manuscript we discussed this for the DP and
the PT prior. Also, investigators can use prior simulation to verify that typical prior
realizations do in fact match actual prior beliefs. We did this, for example, when setting
up the prior in Example 4 (Berger et al. 2012). However, in many cases BNP priors in-
clude features that are not directly related to actual prior information. For example, the
hierarchical prior on the partition boundaries in mixture of PT models is used only to
reduce the posterior sensitivity with respect to partition boundaries. Hoff’s discussion
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offers an interesting approach to avoid related problems by using a pseudo likelihood for
some low-dimensional summary of interest θ of the infinite dimensional quantity only.
We agree with this recommendation when it is feasible. Such approaches are genuinely
nonparametric, in the sense of avoiding a full specification and parametrization of the
sampling model. For example, inference under the quantile pyramid model of Hjort and
Walker (2009) can be implemented with a pseudo likelihood based on quantiles only.
Also O’Hagan critically discusses prior specification in BNP models. He argues that
it is difficult to model judgements about quantities that are meaningful in the original
problem, such as, for example, the mean µ(F ) of a random probability measure F . We
agree. For prior specification, simple prior simulation can be helpful. O’Hagan also com-
ments that µ(F ) is random, even when the prior mean were fixed, say at E(µ(F )) = 0.
This is important when modeling random effects distributions or residual distributions.
The non-zero mean can complicate the interpretation of posterior inference. We com-
mented on this issue in the paper, in the paragraph following equation (9). Clarke
and Holt argue that an interesting and in the literature mostly overlooked application
of BNP occurs in testing. We appreciate the example that they construct to make the
point, and strongly agree with the conclusion. We would add that some interesting uses
of BNP arguments also occur in inference for multiple comparison problems (Guindani
et al. 2009; Leon-Novelo et al. 2013) Kárný argues that also inference under BNP priors
is still making specific model assumptions. Inference should be interpreted as providing
the best projection of reality to the assumed model class. This important point puts the
argument from the opening paragraph of the paper in perspective. Arbel and Nipoti
discuss an important and perhaps little known property of DPM models by arguing that
inference is amazingly robust with respect to different scales of the data.

Finally, some discussions critically review the examples from the paper and add
some more. Hoff argues that in Example 1 (T-cell receptors) the data provides little
information about F (0). We disagree. Consider the counts fj in Figure 1a, for j =
4, 3, 2, 1. In an ad-hoc analysis one could consider an extrapolation to f0. Adding
some uncertainty one could argue for inference on f0, and thus N . The BNP model
formalizes this argument. Related, Carlin and Murray compare BNP inference in
Example 1 with several alternative parametric models. However, the hurdle Poisson
model parametrizes the model such that the implied prior on F (0) is independent of
F (j)/(1−F (0)). This implies that one can not possibly learn about F (0) from the data
under the hurdle Poisson model. The model does not formalize the informal notion
of extrapolation that we mentioned before. The zero-inflated Poisson model, on the
other hand, does not impose independence, but still fails to formalize extrapolation of
a trend in F (4), . . . , F (1). The seemingly poor fit of F (1) in Figure 1a to the empirical
frequency f1 is due to sampling conditional on yi > 0. For a better comparison we
should have perhaps plotted the estimates for F (1)/(1−F (0)). Aitkin and Polak also
discuss Example 1 and question the use of overly complex models for this application
with limited data. While we appreciate much of the argument, in particular the useful
references, we feel that n = 55 observations might allow some flexibility in inference for
a discrete distribution. The BNP model only formalizes what one could do by ad-hoc
extrapolation of the frequencies fj to f0. O’Hagan draws attention to the fact that
the use of the DP mixture model in Example 1 is not motivated by the need for a
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continuous distribution. In fact, F (y) in Example 1 is a discrete distribution. Rather,
the motivation for the DP mixture in Example 1 is the fact that it formalizes the
notion of extrapolating the trend in F (4), . . . , F (1) to the unknown F (0). We should
have pointed that out more prominently in the discussion. Also, while we agree with
O’Hagan’s cautioning advice against extrapolation in general, in this particular example
we feel that the extrapolation to y = 0 is reasonable. It is based on the assumption that
the change in F (y) from y = 1 to 0 should be commensurate with the changes from y = 4
through 1. Carlin and Murray also briefly discuss inference in Example 2 (prostate
cancer study). Inference that is reported in Figure 2 is based on a PT prior for the
distribution of the time to progression times, without use of the longitudinal covariate
and without additional frailties. The discrepancy of the estimated survival functions
Sj(y) and the Kaplan-Meier (KM) estimate is only due to the extensive censoring for
large y. The KM estimate eventually levels off, while the model-based estimate under
the PT prior includes an imputation of the censored event times. The estimated survival
functions continue to decrease towards 0. We thank the discussants for pointing out the
switched labels. An earlier version of the manuscript had G1 and G2 wrongly matched
with the two treatments CH and AA. We corrected the error. Carlin and Murray
also consider inference in Example 3 (sarcoma trial) and point out that an exchangeable
parametric prior leads to very similar estimates as we show for the BNP prior in Figure 4.
The example highlights a common feature of BNP inference. In hindsight one can often
find a parametric model that could have matched BNP inference, as is the case here using
the exchangeable model proposed by Carlin and Murray. However, the exchangeable
parametric model would have probably not been chosen up front to set up a regression
on prognosis. We feel that a partially exchangeable model might have been a more
natural model choice, perhaps even including a monotonicity constraint across different
prognoses. Surprisingly, posterior inference actually shows the opposite trend from
what one might have expected. Posterior mean success probabilities for sarcomas with
“good” prognosis are below the posterior means of several sarcomas with “intermediate”
prognosis. A strength of the BNP model is that we can set up a prior model that is
centered around some parametric assumptions, while allowing for posterior inference
to deviate from these assumptions when the data so require. While similar flexibility
can be imitated in parametric models with model selection one would always have to
anticipate the nature of the model alternatives. Paddock and Savitsky introduce
an interesting application of BNP methods to modeling random effects distributions,
highlighting an important feature of typical BNP priors in this context. Using discrete
random probability measures gives rise to a clustering of experimental units. This
becomes important when the number of observations per experimental unit would be too
small for the desired inference without some borrowing of strength across experimental
units. The latter can be achieved by forming clusters of experimental units that share
common random effects. We agree with this observation. As Paddock and Savitsky
point out, the use of the BNP prior in Example 6 is similarly motivated. A single
triple (yi1, yi2, yi3) would not allow meaningful inference on and decisions related to the
tripeptide and organ-specific random effects (µi, βi, δi). Only by borrowing strength
across similar experimental units by way of clustering are we able to report meaningful
posterior probabilities of increasing mean counts.
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In summary, we appreciate the many insightful and clarifying comments in the dis-
cussion. In particular, we agree with some of the cautioning comments, including Carlin
and Murray’s advice to avoid “flexibility for flexibility’s sake.” And we agree with Hoff’s
comment that BNP procedures are not without strong modeling assumptions. And we
share O’Hagan’s concerns about the importance of prior specification in BNP models.
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