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Spatio-Temporal Modeling of Legislation and
Votes

Eric Wang ˚, Esther Salazar :, David Dunson ; and Lawrence Carin §

Abstract. A model is presented for analysis of multivariate binary data with
spatio-temporal dependencies, and applied to congressional roll call data from the
United States House of Representatives and Senate. The model considers each
legislator’s constituency (location), the congressional session (time) of each vote,
and the details (text) of each piece of legislation. The model can predict votes
of new legislation from only text, while imposing smooth temporal evolution of
legislator latent features, and correlation of legislators with adjacent constituencies.
Additionally, the model estimates the number of latent dimensions required to
represent the data. A Gibbs sampler is developed for posterior inference. The
model is demonstrated as an exploratory tool of legislation and it performs well in
quantitative comparisons to a traditional ideal-point model.

Keywords: Factor analysis, Indian buffet process, latent Dirichlet allocation, po-
litical science, topic modeling

1 Introduction

Quantitative analysis of legislative processes can help researchers better understand the
underlying factors at work in legislative bodies. Roll call data collects the votes of
legislators on bills and constitutes useful behavioral data political scientists may use
to uncover the political tendencies and leanings of politicians. Most approaches to
modeling roll call data rely on latent factor models called ideal point models (Poole
and Rosenthal 1985; Clinton et al. 2004b). Roll call data are attractive for study
because the results from model-based analysis can be compared to real-world intuitions.
Additionally, time-stamps of votes, spatial location of legislators, and associated text
of legislation are often available to augment the roll call data, offering opportunities for
interesting spatio-temporal modeling extensions.

Traditionally, the modeling of roll call data has been split into two distinct tasks:
exploratory analysis to uncover latent factors, and confirmatory analysis to test certain
assumptions and hypotheses about the data given the latent factors (Hahn et al. 2012).
However, these models are limited in vote prediction, since they can only fill in ran-
domly missing votes, an ability with limited utility to political scientists. A much more
useful ability would be to predict all votes of unseen or new legislation, based upon
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the associated text legislation. Recently, Wang et al. (2010) addressed this problem
by proposing a joint latent factor topic model that considers both roll call data and
its associated legislative text. This powerful new paradigm in roll call analysis opens
new possibilities for political scientists, such as making and testing predictions on how
entire legislative bodies will vote on a new piece of legislation, and helping to better
understand the nature of the latent factors by associating them with topics.

Before Wang et al. (2010), the analyses of text and roll call data were considered
two separate lines of research. The most common tool for the analysis of text corpora
are topic models. While latent factor models and ideal point models have been well
established for several decades, the modeling of documents via topic modeling, especially
probabilistic topic models, is relatively new (Wallach 2008). Early models for text,
such as latent semantic indexing (LSI) (Deerwester et al. 1990), were primarily used
for document retrieval, whereas most modern topic models are probabilistic and are
primarily used to analyze document corpora (Steyvers and Griffiths 2007). The reason
that probabilistic topic models allow intuitive analysis of documents is that they treat
documents as finite mixtures of topics, where topics are discrete distributions over words.
Another advantage probabilistic topic models have over models like LSI is that they
incur significantly less parameter growth as the number of documents increases. This
makes them well suited for the analysis of large datasets (Wallach 2008). Perhaps the
best known probabilistic topic model is latent Dirichlet allocation (LDA) (Blei et al.
2003). LDA and its many derivatives have been applied to analyze political documents,
including studying the press releases of senators to analyze the way they communicate
with their constituencies (Grimmer 2010), time-dependent analysis of of Senate speeches
(Quinn et al. 2006), and analysis of State of the Union addresses (Pruteanu-Malinici
et al. 2010).

Another direction that has received relatively limited interest in roll call analysis
via ideal point models is modeling spatio-temporal dependencies. It has been shown
that significant gains in predictive performance on unseen data can be realized when
model parameters are assumed to be drawn dependent on one another, either temporally
(Quinn et al. 2006; Pruteanu-Malinici et al. 2010) or spatially (Dunson and Park 2008).
Despite this, most ideal point models assume both spatial independence and temporal
stationarity of legislator latent features. However, legislators’ views typically evolve
gradually over time. Moreover, regardless of party affiliation they are shaped by the
region they represent (e.g., in the current U.S. Congress, there are significant differences
between the more liberal “Northern” Democrat and a moderate “Southern” or “Blue-
Dog” Democrat, even though they caucus together). A model that imposes both spatial
correlation and smooth temporal evolution of legislator latent feature information over
time has greater utility as an exploratory tool of roll call data. Considering these
dependencies can also improve a model’s predictive ability on unseen data, since it will
tighten the generally diffuse posterior distributions of roll call analysis (Jackman 2001).

In addition to lacking spatial and temporal dependencies, most ideal point models
employ a single latent feature (Jackman 2001; Clinton et al. 2004b; Gerrish and Blei
2011). Single-dimensional ideal point models are generally able to capture political
leanings (liberal/conservative bias) of the legislators, but are unable to describe local
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geographic effects unrelated to party affiliation. Some latent factor models have adopted
shrinkage priors (Salakhutdinov and Mnih 2008) or max-margin constructions (Srebo
et al. 2005) for controlling model complexity; however, they do not yield truly sparse
solutions. Wang et al. (2010) used the beta process (BP) coupled with the Bernoulli
process (Paisley and Carin 2009) to select the active latent feature dimensions via
a latent binary vector. This construction simultaneously infers the number of latent
feature dimensions while favoring a simple solution.

In this paper a model is proposed for jointly modeling time- and location-stamped
text and roll call data. The proposed model assumes that the latent features of leg-
islators are generated from a random-walk process in time, as in Wang et al. (2010),
with a graphical prior on the legislator precision matrix (Dawid and Lauritzen 1993);
this imposes that legislators from adjoining constituencies are likely dependent. A re-
gression from the parameters of the topic model to the legislation latent feature is used
to jointly model the legislation from the perspective of both text and roll calls. The
proposed model is applied to time- and location-stamped roll call and corresponding
legislative text data from the United States Senate and House of Representatives. The
utility of the model is demonstrated not only as an exploratory tool of the Senate and
the House (as in Poole and Rosenthal (1985) and Clinton et al. (2004b)) but also as a
tool for predicting votes on unseen legislation (as in Wang et al. (2010) and Gerrish and
Blei (2011)). Finally, the effects of including spatio-temporal dependencies are studied,
comparing the performance of the model in the prediction task to models that assume
independence of legislations in time and/or space.

The remainder of the paper is organized as follows. In Section 2, related and past
work are reviewed in topic modeling and roll call analysis. Section 3 presents the pro-
posed model, and details its individual components. An inference algorithm is developed
in which local conjugacy allows analytic conditional distributions and therefore simple
Gibbs sampling, as discussed in Section 4. Section 5 presents experimental results, and
conclusions are provided in Section 6.

2 Related Work

2.1 Roll Call Analysis via Ideal Point Models

Most modern statistical analyses of roll call data are related to ideal point models (Poole
and Rosenthal 1985; Clinton et al. 2004b). In such models, each legislator i is associated
with an ideal point xi P RK and each bill j is associated with a latent position yj P RK ,
although in practice K is often set to one for computational considerations (Jackman
2001). In order to link the continuous valued random processes xi and yj to the observed
binary votes, a link function is used. Poole and Rosenthal (1985) used the logistic link
function while Clinton et al. (2004b) adopted a probit link function; the probit model
is employed in this paper.

The probit ideal point model is summarized as follows. Consider a binary matrix
C P t0, 1uNlˆM , where Nl is the number of legislators and M is the number of bills
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voted on. C is assumed to be generated from an underlying matrix S P RNlˆM through
a probit model (Chib and Greenberg 1998) with random effects βj for j P t1, . . . ,Mu

cij “

"

1 if sij ą 0
´1 if sij ď 0

(1)

where i P t1, . . . , Nlu,
sij “ x

T
i yj ` βj ` εij , (2)

and εij „ N p0, 1q. The relationship of legislator latent features xi P RK and legislation
latent features yj P RK determines the voting behavior of legislator i on bill j. If xi
is proximate to yj in latent space (and both are some distance away from the origin),
then sij will likely be a large positive number, encouraging cij “ 1. If xi and yj are
distant from each other and the origin, sij will likely be highly negative, encouraging
cij “ ´1.

The random effects βj are useful in modeling bills with a large fraction of unani-
mous “Yea” votes (corresponding to large and positive βj); these votes may mask more
partisan characteristics of the legislators. Such votes are generally procedural in nature
and noninformative regarding the political leanings of the legislators, and are not well
explained by xi and yj . In these cases βj must be a relatively large positive value to
explain the affirmative votes (βj is large and negative for votes that are unanimously
“Nay”, although they are rare). If such popular votes are not pruned either by random
effects or manually as in earlier works such as Poole and Rosenthal (1985), they can
significantly skew the analysis, resulting in noticeably degraded interpretability of the
latent features. In previous work (Wang et al. 2010; Jackman 2001), a zero mean Gaus-
sian prior was placed on βj . This construction works well in analysis of legislation, but
does not allow for effective prediction of random effects of unseen legislation.

2.2 Topic Models

Consider a corpus of documents dj , j “ 1, . . . , J where each dj is a Vj dimensional vector
of order-exchangeable word indices dvj , v “ 1, . . . , Vj , and each dvj points to a word in
a globally defined dictionary of size W . In topic models, each document is modeled as a
mixture of H discrete topics, where each topic is a specialized discrete distribution with
support on the global dictionary. Latent Dirichlet allocation (LDA) (Blei et al. 2003) is
the most commonly used topic model. Hierarchically, LDA is represented as

dvj „ Multp1,φzvj
q

zvj „ Multp1,θjq

θj „ Dirpζ{H, . . . , ζ{Hq

φh „ Dirpρ{W, . . . , ρ{W q, (3)

where topic h is characterized by a distribution over words φh, and document j has
a distribution θj over the topics; ζ and ρ are Dirichlet concentration parameters, and
zvj P t1, . . . ,Hu is an indicator assigning word v in document j to a topic. In the above,
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Multp1,φq is meant to denote a single draw from a multinomial distribution with prob-
ability vector φ, and the associated indicator variable so drawn is associated with the
non-zero component of this draw. The probability distribution Dirpζ{H, . . . , ζ{Hq corre-
sponds to a Dirichlet distribution, with homogeneous hyperparameters ζ{H. Compared
to previous optimization-based topic models, such as latent semantic analysis (Deer-
wester et al. 1990), LDA maintains a significantly smaller parameter set, is stochastic
and has a locally conjugate construction that facilitates efficient posterior inference
through variational approximation (Blei et al. 2003) or Gibbs sampling (Porteous et al.
2008).

2.3 Joint Analysis of Roll Call Data and Text

Wang et al. (2010) were the first to perform joint analysis of roll call data and the
associated text legislation. The proposed approach used a mixture model to jointly
cluster the legislation latent features yj and document-dependent probability of topic
usage θj . Each piece of legislation is associated with a cluster m, and each cluster
is jointly characterized by a K dimensional Gaussian distribution on legislation latent
features with mean µm and covariance matrix Σ´1

m , as well as a discrete distribution
over topics τm. If legislation j is associated with cluster m, then its latent features
are drawn as yj „ N pµm,Σ´1

m q, and θj “ τm. A Dirichlet process (DP) (Ferguson
1973) prior was placed on the mixture model in order to infer the appropriate number
of clusters. The primary novelty of this model is that votes could be predicted on
new legislation based solely on the legislative text by first determining a bill’s cluster
association via the topic model, and then mapping the bill to a latent feature fixed at
the associated cluster center.

In addition, Wang et al. (2010) also introduced a simple time-series construction
that allowed the latent features of the legislators to “drift” smoothly in latent space
over time, and inferred the dimension of the latent space through the beta process (BP)
coupled with the Bernoulli process (Paisley and Carin 2009). Let t “ t1, . . . , T u denote
the time stamps, where here t indicates a congressional session. Hierarchically, their
construction for the legislator latent features is

xit “ bd x̂it

x̂it „ N px̂i,t´1, σ
´1IKq

bk „ Bernoullipπkq

πk „ Betape{K, fpK ´ 1q{Kq, (4)

where bk P t0, 1u and b “ pb1, . . . , bKq
T is a K-dimensional sparse binary latent vector,

x̂it P RK is a latent position of legislator i in session t, σ is a precision term, d denotes
a Hadamard or point-wise product and IK is a K ˆ K identity matrix. Notice that
the mean of x̂it is legislator i’s latent feature in the previous session t ´ 1, and that b
controls the dimensionality of the latent space by setting bk “ 0 for unused dimensions.

The model proposed in Wang et al. (2010) worked well and was novel in its applica-
tion, but the link between the factor model and topic model (via the joint clustering of



238 Spatio-Temporal Modeling of Legislation and Votes

legislation latent features yj and the document-dependent probability of topic usage θj)
was weak, and the factor model numerically dominated the topic model. This resulted
in a model that was primarily driven by the roll call data and not particularly influenced
by the text documents. Moreover, the clustering structure imposed that all legislation
sharing the same cluster m had the same distribution over topics τm, reducing model
flexibility. Finally, since new legislation was mapped only to its associated cluster mean
in latent space, careful attention had to be paid to the setting of the hyperparameters
to favor a mixture model with many compact Gaussian clusters in latent space rather
than a single large Gaussian.

Gerrish and Blei (2011) replaced the mixture model construction by proposing sev-
eral models that incorporated text regression to join the topic and factor models. Recall
that Gerrish and Blei (2011) only used a single factor, and therefore vector yj becomes
scalar yj ; they modeled the latent features of bill j as

yj „ N pηT z̄j , γ´1
pŷqq, (5)

where η P RH are regression weights, γpŷq is a precision term, and

z̄jh “
ẑjh

řH
h1“1 ẑjh1

(6)

is the fraction of words in bill j drawn from topic h, where ẑjh “
ř

v 1pzvj “ hq defines
the total number of words in bill j drawn from topic h, and 1p¨q “ 1 if the argument is
true, and it is zero otherwise. The regression weights η were fit without regularization.
In this paper (5) is extended to multiple latent dimensions, and the appropriate number
of latent dimensions is inferred.

Besides being able to predict votes for unseen bills from text, another important
aspect of Wang et al. (2010) and Gerrish and Blei (2011) is the inclusion of random
effects terms that act as intercepts and give the model significantly improved robustness
to unanimous votes. Previous work such as Poole and Rosenthal (1985) and Clinton
et al. (2004b) required the pruning of bills with unanimous votes from the dataset.
Wang et al. (2010) assigned zero mean Gaussian priors to the random effects, while
Gerrish and Blei (2011) proposed regressing to βj in a manner similar to how it was
done for yj , giving their paper the unique ability to predict the contentiousness of new
legislation.

We note that, to the authors’ knowledge, there has not been previous work within
the political science statistics literature on utilizing the text of the legislation when
performing roll-call analysis. However, Jackman (2009) shows that a hierarchical model
over legislator preferences does tighten up the inferences with respect to the ideal points;
he also makes the point that because of the bilinear form of the model, prior information
about bill parameters are informative about ideal points, and vice-versa. Therefore,
while the text of legislation has not been used previously by political scientists in roll-call
studies, the potential value of such has been understood. It appears that the principal
reason the traditional ideal-point model (Poole and Rosenthal 1985; Clinton et al. 2004b)
has been retained (without modeling text) was not because of a lack of recognition of
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the potential value of incorporating information like text/legislation, but rather because
of a desire to stay close to the “rational actor” nature of such traditional models. There
has recently been increasing interest within the political science community on topic
models (Grimmer 2010; Grimmer and Stewart to appear in 2013).

3 Model Specification

3.1 General Structure

Suppose that now the binary matrices Ct are time-stamped by t P t1, . . . , T u, and for
each time t we also have an NlˆNl binary adjacency matrix Gt that encodes the spatial
adjacency of the legislators. The legislators and edges in Gt define a graph where two
legislators i and i1 are connected (gii1t = 1) if their congressional districts (House of
Representatives) or states (Senate) share a common border. All elements along the
main diagonal of Gt are one. Finally, for each piece of legislation j in session t, we have
a document djt defined as in (3).

The underlying matrix St is generated as in (2)

sijt “ x
T
ityjt ` αit ` βjt ` εijt, (7)

but a time indicator t is added and an additional per-legislator random effect αit is em-
ployed for symmetry (although in practice this term can be eliminated). The following
sections discuss each term in (7) in detail.

3.2 Imposing Spatio-Temporal Dependencies on the Legislators

Let x̂it P RK correspond to the latent features of legislator i at time t, and let x̂pkqt P RNl

represent the kth feature vector for all Nl legislators at time t. In order to account for
both temporal and spatial dependencies in the legislator latent features x̂it, the second
expression of (4) is modified as

x̂pkqt „ N px̂pkq,t´1,Ωtq, (8)

where the mean of x̂pkqt, x̂pkq,t´1, is the kth latent feature of all legislators from time

t ´ 1, x̂pkq,0 is a vector of zeros with dimension Nl and Ωt P RNlˆNl is a covariance
matrix drawn from a Hyper-Inverse-Wishart (HIW) distribution (Dawid and Lauritzen
1993). A key property of Ωt is that its inverse, Ω´1

t , is a sparse precision matrix with
non-zero elements at the positions where links exist in Gt. Specifically,

Ωt „ HIWGt
pκ,Ω0q, (9)

where Gt is the adjacency matrix described in Section 3.1, Ω´1
0 “ INl

, and κ is a
scale term set to 10 ` Nl. The model has been found to be insensitive to the setting
of κ (many “reasonable” values of κ yielded similar results). The HIW provides a
computationally convenient method of generating sparse precision matrices, such that
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two entries are conditionally independent if they are not connected in Gt (however,
while the precision matrix is sparse, the covariance matrix is generally not, implying the
opportunity for correlation between legislators from distant regions, as desired). Note
that in this construction the absolute locations of the legislators are discarded. The
legislators take the role of nodes in a graph whose edges are defined by the adjacency of
their constituencies. For inference, the efficient sampling scheme proposed in Carvalho
et al. (2007) is employed.

It is desirable to impose identifiability in the latent factor model. Previous work
fixed the ideal points of several well known legislators to impose identifiability (Poole
and Rosenthal 1985; Clinton et al. 2004b; Gerrish and Blei 2011). However, assigning
ideal points in higher dimensions can still lead to rotationally non-identified solutions
(Jackman 2001). Here a block lower-triangular construction is imposed as,

x̂ik1t “ 0 for k1 ą i

x̂iit “ 1 for i “ 1, . . . ,K. (10)

Imposing identifiability is important in obtaining interpretable latent features. Note
that when K “ 1, this approach to imposing identifiability is equivalent to setting the
first legislator’s ideal point to 1. As the number of dimensions increases, the lower
block-triangular structure of our model imposes rotational identifiability. Note that our
experiments also indicated insensitivity to the ordering of the legislators, embedded in
index i.

3.3 Controlling Model Complexity

In Clinton et al. (2004b) and Gerrish and Blei (2011), the dimension of latent vectors xit
and yjt was set to one. However, the existence of additional dimensions has received
mention even in early literature (Poole and Rosenthal 1985). A generative process
is developed that simultaneously infers the number of latent features and imposes a
parsimonious model:

xit “ bd x̂it

yjt “ bd ŷjt (11)

where, as in (4), x̂it P RK and ŷjt P RK are real vectors, b is a sparse binary vector,
and d denotes a Hadamard or point-wise product. In (11), b is used to define both
xit and yjt for clarity, while in practice it is only necessary to attach b to either xit or
yjt. This construction is attractive because unlike the maximum margin optimization
of Srebo et al. (2005) or shrinkage priors of Salakhutdinov and Mnih (2008), it assumes
a sparse generative process on xit and yjt that sets unused dimensions to exactly zero.

In order to generate a sparse binary vector b, a truncated beta process (BP) prior is
placed on b in a manner similar to Paisley and Carin (2009) as in (4) where we set K to
be a large integer. For most “reasonable” settings of e and f , this prior favors a sparse
b (most of its values set to zero). By integrating out the πk, k “ 1, . . . ,K, one can show
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that the expected number of ones in b is eK{re` fpK ´ 1qs, and that the total number
of non-zero components in b is drawn from BinomialpK, eK{re ` fpK ´ 1qsq. This
construction represents a finite approximation to the Indian Buffet Process (Griffiths
and Ghahramani 2005), but has the advantage that the samples b can be block-sampled
from its posterior.

3.4 Topic Regression to Latent Space
The legislation latent features ŷjt are given an informative prior whose mean is con-
structed via a regression that maps from the normalized topic frequency to the latent
features. Since there are multiple dimensions, a regression model similar to (5) is needed
for each latent dimension, and is written as

ŷjkt „ N pηTk z̄jt ` ηk0, γ
´1
pŷkq

q, (12)

where intercept term ηk0 is introduced, and z̄jt is defined as in (6), except with the
addition of the time indicator t.

The regression weights ηk P RH and the corresponding offset term ηk0 have their
own respective Gaussian priors

ηk „ N p0, γ´1
pηkq

IHq

ηk0 „ N p0, γ´1
pηk0q

q. (13)

Note that the parameters for topic regression for latent dimension k — ηk, ηk0 and
the predictor ŷjkt — are constructed independently from the other latent dimensions.
Diffuse Gammap10´3, 10´3q priors are assigned for γpyq, γpηkq and γpηk0q.

A drawback of linking the topic model and the factor model through this construction
is significantly increased computational complexity in the inference of the per-word
topic indicators zvjt. This is especially pronounced when modeling large datasets such
as the House of Representatives. To ease the computational burden of the model in
these situations, it is also possible to perform topic modeling on the legislative text
as a separate stand-alone step before the vote matrices (after which each document is
characterized by a distribution over topics, with which the aforementioned regression
is performed; the distribution over topics may be viewed as a covariate for the matrix
analysis). This can be done by first running LDA as described in (3) and fixing the
topic assignments zvjt (and correspondingly ẑjt and z̄jt) for example based on the
maximum-likelihood sample, before running the rest of the model as discussed in this
section. Doing so decouples the inference of the topic model from the factor model.
Inference of the topic model parameters can then be performed via high-speed methods
(Porteous et al. 2008). The model that estimates the zvjt in situ with the rest of the
model is referred as the “one-step” model and the model that performs topic modeling
before the factor model is termed the “two-step” model.
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3.5 Legislation and Legislator Random Effects
Two random effect terms are considered in the model, αit and βjt: αit is a legislator-
specific random effect that impacts the probability of legislator i votes “Yea” or “Nay”,
and βjt is a legislation specific random effect that reflects the “difficulty” of the vote.
If |βjt| is relatively large, then all legislators are more apt to vote one way or the other,
while if |βjt| is small, then the inner product of the latent features xTityjt strongly
impacts the votes. Random effects allow the factor model (defined by xit and yjt) to
impact only those contentious pieces of legislation that are highly informative. We find
that the random effects for legislation plays an important role in predicting votes, while
the random effects for legislators are relatively small, since typically no legislator votes
“Yea” or “Nay” constantly.

The prior for the legislator random effect αit is zero mean Gaussian

αit „ N p0, γ´1
pαqq; (14)

however, because βjt is connected to the legislation, it is drawn from a Gaussian distri-
bution whose mean is constructed as a regression with z̄jt as covariates,

βjt „ N pλT z̄jt ` λ0, γ
´1
pβqq

λ „ N p0, γ´1
pλqIHq

λ0 „ N p0, γ´1
pλ0q
q, (15)

where γpβjtq, γpλq and γpλ0q are all given diffuse Gammap10´3, 10´3q priors and λ P RH
and λ0 denote the random effect regression weights and intercept, respectively. This
construction of βjt is attractive because it allows for accurate prediction of the legislation
difficulty from text.

An advantage of the regression construction for βjt and ŷjt is the ease of inter-
pretability of the results for the legislation latent features, particularly with respect to
βjt and the primary dimension of ŷjt. This is illustrated with two examples. In the
following let h and h1 denote different topics and k denote the dominant latent dimen-
sion (largest variance). Consider a topic with index h that is generally popular. This
type of legislation is generally strongly approved by Congress, and will have a relatively
positive associated random effect regression weight λh. A document that uses topic h
heavily will be encouraged to have a large positive random effect a priori. By contrast,
a contentious topic h1 will have a λh1 that is relatively close to 0, and an ηh1k that is
distant from 0. Since the dominant dimension generally captures liberal/conservative
affiliation (Wang et al. 2010), a large (positive or negative) ηh1k can indicate a topic is
strongly affiliated with one political ideology (conservative or liberal) and a document
that has significant mass in topic h1 will then tend to have a small random effect and
significant displacement in the primary dimension. Notice that while the topics them-
selves do not reside in latent space, studying how they map into latent space via their
regression weights can give useful insight into the meaning of the latent dimensions.
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3.6 Model Summary

The proposed model has several components, and therefore it is desirable to provide a
concise summary, as depicted in Figure 1. In this diagram Vjt represents the number
of words in document/legislation j in year t, Jt represents the number of pieces of
legislation in year t, and Nl represents the number of legislators. In this “plate” diagram,
the number of draws of a given type is indicated by the number associated with a given
rectangle/plate. The words, denoted by d, and the votes, denoted by c, are observed,
and the remaining parameters are random variables, with statistics to be inferred.

At left in Figure 1 is a relatively standard Bayesian topic model (Blei et al. 2003).
The topics employed, defined by indicator variable z, are used via regression to represent
the legislation-dependent random effect β as well as the legislation-dependent feature
vector y. Each legislator has a latent feature vector x, which is connected to his/her
ideal point. Via x and y, and random effects α and β, a probit model is employed
to represent the generative process for the vote. Each legislator also has an associated
random effect α (for model symmetry, although in most cases this will be negligible).
The dimension of the latent space in which legislators and legislation reside is defined
by the number of non-zero components in the binary feature vector b.

c

d 

Figure 1: Graphical representation of the model.
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3.7 Special Cases

In terms of constructing the latent features of the legislators x̂it and legislation ŷjt, the
model can be shown to be a generalization of previous Bayesian matrix factorization
models. Specifically, it can be shown that the inclusion of the topic model via regression
can collapse back to Gaussian priors when the text documents are non-informative or
when no text is available. Additionally, the spatial effects imposed by the HIW distribu-
tion on the covariance matrix of the legislators can be shown to also be a generalization
of the construction found in Wang et al. (2010)

In the hypothetical case of a completely non-informative topic model for legislation
j, assume that z̄jt is a uniform discrete distribution of dimension H. In the limit as
the number of topics H Ñ 8, the elements of z̄jt approach 0. Thus, regardless of the
regression weight vectors ηk or λ, the contribution of the topic model to the mean of
ŷjt is zero. This leads to the prior on ŷjt to be

ŷjkt „ N pηk0, γ
´1
pŷkq

q, (16)

for all k, where ηk0 is the intercept term for latent dimension k. Likewise, the prior on
the random effect βjt in this situation is

βjt „ N pλ0, γ
´1
pβqq. (17)

In the case where a piece of legislation has no text associated with it, (6) is indeterminate
due to division by 0 in its denominator. It is therefore defined that when no text is
present z̄jh “ 0 @ h. This definition also leads to the prior on ŷjt and βjt shown in
(16) and (17), respectively.

The proposed model is a generalization of many previous Bayesian matrix factoriza-
tion methods but with a non-zero mean prior. Notice, however, that if ηk0 “ λ0 “ 0 for
all k, then we arrive at the widely used zero mean Gaussian priors on both ŷjkt and βjt
(Clinton et al. 2004b; Salakhutdinov and Mnih 2008).

Furthermore, if the graph of the legislators Gt is set to INl
, then both the precision

matrix Ω´1
t and thus the covariance matrix Ωt of the legislator latent features become

diagonal. This allows the construction on the kth latent feature of legislator i at time
t, x̂ikt, to be written as

x̂ikt “ N px̂ik,pt´1q, ωiitq (18)

where ωiit is the ith diagonal element of Ωt; (18) is identical to the simple random-walk
process on legislator latent features in Wang et al. (2010).

4 Posterior Inference
A Gibbs sampler is employed for posterior inference (Wang et al. 2010; Jackman 2001;
Clinton et al. 2004b). Let

Ψt “ tSt, X̂t,Ωt, Ŷt,αt,βt, zjt,θjt, u (19)
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be the set of model parameters of the model specific to session t and let Γ denote the
set of all specified Gaussian precision parameters for all sessions. The goal of posterior
inference is to find the posterior

P ptΨtut“1:T , tηk, η0kuk“1:K , tφhuh“1:H ,λ, λ0, b,π,Γ|tCt,Gt,Dtut“1:T q, (20)

where Ct is the vote matrix, Gt is the graph of the legislators, andDt is the collection of
documents, all for session t. The topic model is as described hierarchically in (3), with
the addition of the time indicator t on dvjt, zvjt, and θjt. The hierarchical representation
of the factor model is shown below:

cijt “

"

1 if sijt ą 0
´1 if sijt ď 0

sijt “ xTityjt ` αit ` βjt ` εijt

xit “ bd x̂it, x̂it “ tx̂iktuk“1:K

yjt “ bd ŷjt, ŷjt “ tŷjktuk“1:K

bk|πk „ Bernoullipπkq, πk „ Betape{K, fpK ´ 1q{Kq

x̂pkqt|x̂pkq,t´1,Ωt „ N px̂pkq,t´1,Ωtq, Ωt „ HIWGtpκ,Ω0q

ŷjkt|ηk, ηk0, γpŷkq, z̄jt „ N pηTk z̄jt ` ηk0, γ
´1
pŷkq

q

βjt|λ, λ0, γpβq, z̄jt „ N pλT z̄jt ` λ0, γ
´1
pβqq

ηk|γpηkq „ N p0, γ´1
pηkq

IHq, ηk0|γpηk0q „ N p0, γ´1
pηk0q

q

λ|γpλq „ N p0, γ´1
pλqIHq, λ0|ηpλ0q „ N p0, γ´1

pλ0q
q

αit|γpαq „ N p0, γ´1
pαqq

εijt „ N p0, 1q. (21)

Gamma hyperpriors are placed on all the gamma precision terms in the normal distri-
butions (e.g., on γpβq), and the z̄jt are linked to the topic model, as in (3). The most
interesting (not widely used) Gibbs parameter updates are presented in the Appendix,
specifically those having to do with x̂pkqt, Ωt, ŷjt, βjt, and zvjt.

5 Experimental Results
The model is applied for joint analysis of votes and documents in both the House
of Representatives and Senate. The 103rd to 107th House of Representatives (1993 to
2003) and the 106th to 111th Senate (1999 to 2011) are considered. The two houses were
considered independently, with the “one-step” model used to model the Senate dataset,
and the “two-step” model used to model the significantly larger House of Representatives
dataset. For both the House and Senate, bills with multiple rounds of voting were
pruned to a single bill since the additional rounds are usually on minor changes. The
Senate dataset contains 416 bills, and the House dataset contains 1260 bills. For each
congressional session t, there is a graph Gt that encodes the adjacency of districts or
states.
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Each bill’s text was processed into n-grams, resulting in a vocabulary size of 4743
n-grams, with n ranging from 1 to 5. This means that the individual tokens in the vocab-
ulary can be more than single words; they can be informative phrases of up to 5 words.
For more information on the specific processing of the text, see Gerrish and Blei (2011).
Unless specified otherwise, all Gaussian precision parameters have Gammap10´3, 10´3q

priors. We initialized each experiment by setting the latent position in all dimensions of
Republican legislators to ´1, Democrats to 1 and Independents to 0. The model was run
with this initialization and with random initialization, and the effect on the quantitative
prediction results were negligible; however, the specified initialization yielded slightly
improved and more interpretable qualitative results. Each experiment was run for 5000
iterations for each experiment, with the first 2500 iterations discarded as burn-in. We
set the BP parameters e “ f “ 1, and truncated the number of latent dimensions to
K “ 20. The number of topics H was truncated as an upper bound to 32, and both
Dirichlet concentration parameters were set ξ “ ζ “ 1.

5.1 Legislators in Latent Space

The model learned ||b||0 “ 3 dimensions for the Senate and ||b||0 “ 4 for the House
of Representatives. In both cases, a single dimension had significantly higher variance
than the others. This dimension is termed the dominant dimension, and the dimension
with the second largest variance is termed the secondary dimension. In Figure 2 the
Senators are shown in the first 2 latent dimensions, from 1999 to 2011, with Democrats
in blue, Republicans in red, and Independents in black.

The dominant dimension in latent space seems to encode the party affiliation of the
senators. This result agrees with Gerrish and Blei (2011) and Poole and Rosenthal
(1985), although unlike them the model does not require strong party members fixed
to opposite ends of latent space. From 2001 to 2005, in the wake of the September 11,
2001 attacks, the Senate was apparently more bipartisan than in later years. From 2005
onward, there is generally greater party divide between the Republicans and Democrats.
This is consistent with the increased partisanship that has been observed by political
researchers (Hahn et al. 2012).

In Figure 3, a selection of prominent senators is highlighted and their position in the
dominant latent dimension is examined over time. We separate the senators by party
affiliation with Democrats (Clinton, Obama, Kennedy, Kerry, Edwards, Feingold) in
blue, Independents (Lieberman) in black and Republicans (McCain, McConnell, San-
torum) in red. The darker colored lines show the party mean for the Democrats (blue)
and Republicans (red) and the error bars denote the standard deviation. These sena-
tors are examined because they are prominent enough to have made serious runs at the
presidency, or — as in the case of McConnell, Feingold and Kennedy — are well known
party stalwarts.

In addition to providing interesting insight into congressional voting patterns, the
model offers a temporal evolving analysis of legislators. For example, considering John
McCain, due to his opposition to some early President Bush era policies (after 2000), his
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Figure 2: Latent positions of senators in the dominant and secondary latent dimensions
from 1999 to 2011. Republicans are shown in red, Democrats are shown in blue and
Independents are shown in black.
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Figure 3: Trajectories in the dominant dimension of prominent senators. Republicans
are shown in red, Democrats are shown in blue and Independents are shown in black.
Party means for the Democrats and Republicans are shown in darker lines.

latent position became more liberal in 2002. In 2004 he supported the war in Iraq and
made a distinct movement toward the right that session. One Senate session earlier,
in 2002, McCain and Feingold co-sponsored the McCain-Feingold campaign finance
reform act (also known as the Bipartisan Campaign Finance Reform Act), and this is
represented primarily by Feingold’s movement toward conservatism and by McCain’s
small shift toward the center.

The model also captured interesting movement during the 2004 Presidential election.
Joe Lieberman ran for the Democratic nomination on a “hawkish” platform, reflected in
his conservative position in that year. Also in 2004, both John Kerry and John Edwards
made dramatic centrist shifts from previously highly liberal positions, presumably in
order to garner a wider swath of voters. Kerry moved back to his previous highly
liberal position after the 2004 election.

In Figure 4, the latent positions of Representatives is shown in the dominant and
secondary dimensions over time (1993-2003). The House of Representatives is generally
considered more partisan than the Senate, and Representatives usually vote along party
lines. This is manifested as a distinct separation along party lines in the dominant
dimension. Additionally, Representatives are here characterized by greater tightness in
latent feature space (relative to senators) of their latent positions within their party
clusters.
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Figure 4: Latent positions of Representatives in the dominant and secondary latent di-
mensions. Republicans are shown in red, Democrats are shown in blue and Independents
are shown in black.
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5.2 Topics and Latent Space

The relationship between topics and latent space is examined. As described in Sec-
tion 3.5, topic h is associated with K regression coefficients for latent space ηh “
tηh1, . . . , ηhKu, and a regression coefficient for the random effect ηh0. Topics with large
regression weights in a latent dimension are highly influential in that dimension. Sim-
ilarly, topics with large positive random effect weights tend to be those for which all
legislators vote “Yea”. Analyzing the regression weights of the topics along with the
topics themselves can provide useful insight to better interpret the latent space.

In Figures 5 and 6 are shown the topics for the Senate and their regression weights
in latent space plotted against their difficulty regression weights, respectively. Figures 7
and 8 show the topics and regression weights for the House of Representatives, respec-
tively. The sizes of the dots represent the relative usage of the topics and shown are
only those topics containing more than 1% of the corpus. In the dominant dimensions
of both Figures 6 and 8 the Republicans are to the left and the Democrats are to the
right.

Several topics are highlighted in the Senate latent space. Senate Topic 2 is by far the
most popular topic in the Senate dataset and describes Department of Defense (DoD)
acquisitions. The years we considered (2000 to 2010) saw Congress allocate significant
increases in military expenditures due to the war in the Middle East and the fight against
terrorism. The increases in military spending generally had bipartisan support during
this period, thus explaining the relatively large positive difficult regression weight. This
topic is slightly conservative, although the large random effect regression weight makes
its position in latent space relatively inconsequential.
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Figure 5: Topics for the Senate, 106th to 111th Congress (principal words depicted).
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Figure 6: Regression weights for the Senate, 106th to 111th Congress. Each topic h
plotted with the (a) regression weights for difficulty λh (vertical axis) vs. regression
weights for dominant latent feature k, ηhk (horizontal axis) (b) Regression weights for
difficulty λh (vertical axis) vs. regression weights for secondary latent feature k1, ηhk1

(horizontal axis). The number labels correspond to Senate topics and the size of the
dots indicates the mass of the topic listed in Figure 5.
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Another interesting topic with bipartisan support is Topic 4, pertaining to the Iraq
conflict. Although this topic could potentially be controversial and contentious, closer
examination reveals that most of the bills using this topic are primarily bills dealing
with honoring fallen American soldiers, and condemning the treatment of American
prisoners of war.

By contrast, Topic 7, dealing with foreign surveillance and sensitive documents, is
much more contentious. Most of the bills using this topic seek to amend the Foreign
Surveillance Act of 1978. This topic is the most conservative topic in the Senate. One
of the most liberal topics is Topic 8, describing prescription drug benefits. Interest-
ingly, Topic 19, tort reform, receives little support from both parties. Topic 9 is the
second most liberal topic we found and is primarily used by bills seeking to amend the
Commodity Exchange Act to prevent excessive price speculation.

The House of Representatives corpus used more topics than the Senate, reflecting
the larger variety of bills considered by the lower assembly. The most popular topic
in the House of Representatives is Topic 4, having to do with Department of Defense
acquisitions. Like its counterpart in the Senate, it has a large random effect regression
weight, and generally enjoyed bipartisan support. Other noncontroversial issues that
pass almost unanimously include Topic 24 (supporting and commending humanitarian
and peacekeeping missions abroad), Topic 16 (Coast Guard activities and regulation),
Topic 6 (National Science Foundation funding), Topic 20 (military construction fund-
ing), and Topic 9 (hydroelectric power funding allocation).

Perhaps the most striking topic in our analysis of the House of Representatives
is also one of the smallest. Topic 18 is primarily used to describe the Partial-Birth
Abortion Ban Act and its many amendments. While the bill itself had near unanimous
Republican and limited Democratic support, it was the subsequent Democrat supported
initiatives to remove or repeal certain parts of the act that dominate the topic’s use and
cause the topic to display significant liberal bias

House Topic 14 is primarily used to describe the Medicare Prescription Drug, Im-
provement, and Modernization Act of 2003. This Republican backed bill was very hard
fought in both the Senate and the House, with multiple members of Congress changing
their votes at the last minute. The bill had opposition and support from both parties,
explaining its small random effect weight and its slightly conservative position in the
dominant dimension. However, this topic has a relatively large movement away from
the origin in the secondary dimension, a sign that factors other than party affiliation
are at work.
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Figure 7: Topics for the House of Representatives, 103rd to 107th Congress (principal
words depicted).
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Figure 8: Regression weights for the House of Representatives, 103rd to 107th Congress.
Each topic h plotted with the (a) regression weights for difficulty λh (vertical axis) vs.
regression weights for dominant latent feature k, ηhk (horizontal axis). (b) Regression
weights for difficulty λh (vertical axis) vs. regression weights for secondary latent feature
k1, ηhk1 (horizontal axis). The number labels correspond to House topics and the size
of the dots indicates the mass of the topic listed in Figure 7.



256 Spatio-Temporal Modeling of Legislation and Votes

It should be noted that the direct association of topics with ideological positions must
be interpreted carefully. Above, Senate Topic 7 (relating to defense and intelligence)
is deemed the most conservative topic; however, it is not difficult to imagine bills that
relate to defense and intelligence from either a liberal or conservative perspective. This
is true for any of the topics listed in above: one might create or eliminate restrictions
on abortion (House Topic 18), raise or lower taxes (House Topic 26), etc. The fact
that the defense and intelligence topic is associated with bills supported by conservative
legislators is a contingent fact about the political climate of the mid-2000s; it might
be completely different in another era (like the post-Watergate 1970s). Other work
on ideology combines content-based topics with additional word distributions covering
ideological perspectives (Ahmed and Xing 2010). Such an approach might allow one
to maintain the part of the model which associates controversiality with topics, while
modeling ideology separately.

5.3 Inferred Random Effects

The random effects in the model play a vital role by helping to explain unanimous
votes. Although the per-legislator random effect αit is not strictly necessary, and is
often not included (see e.g., Gerrish and Blei (2011) and Jackman (2001)), we include
it for symmetry.

In Figure 9 are shown the histograms of the random effects for the Senators and the
Senate bills. Figure 9(a) shows that the Senator random effects are closely clustered
around 0 with small variance. This is repeated for the Representatives’ random effects
histogram shown in Figure 10(a).

The Senate legislation random effects histogram in Figure 9(b) has a peak near
0.7 and is significantly tailed toward positive values, from the large number of near-
unanimous “Yea” votes on procedural or non-contentious bills. In Figure 10(b) is shown
the histogram of House bill random effects. An interesting feature of the House random
effects is the bi-modal nature of the histogram with a peak near 0 and a peak near 1.8.
The bi-modal nature of this histogram suggests that a significant portion of the bills
in the House are procedural and non-contentious. Recall that a large per-bill random
effect means that the latent features xit and yjt have little influence in the votes of
the legislators, and indeed this appears to be true. In the House, representatives voted
“Yea” 91% of the time on bills with βjt ą 1 , and that number drops to 66% of the time
for 0 ă βjt ă 1, showing that βjt is small for contentious votes (where xit and yjt have
significant impact). For reference, the percent of “Yea” votes across the House dataset
is 74%.

5.4 Prediction of Held-Out Legislation

Like Gerrish and Blei (2011) and Wang et al. (2010), the model can predict votes on held
out legislation. To do this, following Gerrish and Blei (2011), the data are partitioned
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Figure 9: (a) Histogram of all Senator random effects αit, (b) Histogram of all Senate
bill random effects βjt.

into 6 folds, removing whole columns of votes. Training is performed on the five folds
and tested on the sixth, rotating through until all six folds are tested, predicting each
piece of legislation once. The results are aggregated over all six folds.

The full model as presented in Section 3 is considered, as well as limited versions of
the model with only spatial or temporal dependency and a model that considered no



258 Spatio-Temporal Modeling of Legislation and Votes

−6 −4 −2 0 2 4 6
0

200

400

600

800

α
it

F
re

q
u
e

n
c
y

Density of Random Effect  α
it
 (House)

(a)

−6 −4 −2 0 2 4 6
0

50

100

150

β
jt

F
re

q
u
e
n
c
y

Density of Random Effect  β
jt
 (House)

(b)

Figure 10: (a) Histogram of all Representative random effects αit, (b) Histogram of all
House bill random effects βjt.

spatio-temporal dependencies. To remove the spatial model the graph Gt is set to INl
.

To remove temporal dependencies, (4) is modified to

x̂it „ N p0,Ωtq, (22)

where Ωt is drawn as in (9). The full model is termed “Temporal+Graphical”; the
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model with only the random-walk process on the legislators is termed “Temporal”; the
model with only the graphical model is termed “Graphical”; and the model with neither
the random-walk nor graphical model is termed “No Dependencies”.

For the Senate, a comparison is made to a traditional ideal point version of our
model without spatio-temporal dependencies and the random effect αit removed. To
do this, the number of latent dimensions K is set to 1, and the latent position of Ted
Kennedy is set to 1 and that of Mitch McConnell to ´1. This ideal point model is
similar to that proposed by Gerrish and Blei (2011), except that the model inference
is done using a Gibbs sampler (rather than a variational Bayes approximation), and a
probit link is used to generate the votes. We note that adopting a probit ideal point
model is equivalent to using quadratic utility functions as in Clinton et al. (2004b). This
model is denoted “Ideal Point Probit”.

Probabilistic link functions, of which the probit model is a member, are able to yield
a prediction confidence with the predicted vote. For each held-out vote by legislator
i on legislation j, the model yields a probabilitiy of “Yea”, ppcijt “ 1|sijtq, and a
probability of “Nay”, 1´ppcijt “ 1|sijtq. Model confidence can be assessed by collecting
maxtppcijt “ 1|sijtq, 1´ ppcijt “ 1|sijtqu for each held out vote, irrespective of whether
the actual prediction is “Yea” or “Nay”, and placing them into one of 5 probability
bins, ranging from “highly unsure” r0.5, 0.6q to “highly sure” r0.9, 1q.

Prediction confidence is a highly useful metric to compare different models, but it
is even more important to examine whether the model performance actually matches
the model confidence, e.g., the votes in the r0.6, 0.7q probability bin should ideally have
an empirical probability of being correct between 0.6 and 0.7. In other words, if the
model prediction confidence is in the bin r0.6, 0.7q, we expect that from 30 to 40% of
the time the prediction will be wrong; we wish to examine this empirically. Any model
with probabilistic predictions whose behavior follows such a fashion is, in this sense,
correct; however, the best model is the one that puts the most predicted votes into the
“highly confident” r0.9, 1q bin.

Figure 11(a) shows a comparison of the models on the Senate data. The full “Tempo-
ral+Graphical” model performs the best of all the models studied, with the most votes
in the [0.9,1) confidence bin. All models perform well, in that the empirical prediction
performance matches the model prediction; the “Temporal+Graphical” is deemed best
because it places the most votes in the highest-confidence bin. Both the “Graphical”
and “Temporal” models outperform the “No Dependencies” model, although the ad-
vantage of the spatial information in the “Graphical” model is much smaller than that
of the “Temporal” model. This is due to the relatively coarse state-level spatial depen-
dency in the Senate data. The “Temporal” model performs almost equal to the full
“Temporal+Graphical” model. This suggests that most of the gains of the full model
are from smoothing the temporal evolution of the legislators. However, all of our mod-
els outperform the “Ideal Point Probit” model. This is primarily due to the additional
information captured by considering multiple latent dimensions.

In Figure 11(b) the models are compared on the House of Representatives dataset.
The “Graphical” model performs the best due to the fine-grain district-level spatial
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0.5-0.6 1828 0.53 1610 0.56 1594 0.55 1508 0.54 2213 0.53 

0.6-0.7 2234 0.65 1919 0.66 1711 0.66 1598 0.64 2290 0.64 

0.7-0.8 2352 0.79 2356 0.79 1974 0.78 1902 0.77 2062 0.72 

0.8-0.9 3074 0.88 3361 0.88 2871 0.88 2683 0.87 3692 0.81 

0.9-1 7401 0.93 7654 0.93 8750 0.93 8920 0.93 6624 0.92 
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Empirical  
% Correct 

Votes in 
Confidence 

Bin 
Empirical  
% Correct 

0.5-0.6 76386 0.56 71292 0.56 72737 0.57 72533 0.56 

0.6-0.7 77164 0.65 72354 0.66 73639 0.66 73897 0.66 

0.7-0.8 86779 0.75 83387 0.77 83855 0.77 84010 0.77 

0.8-0.9 129457 0.85 132453 0.86 133027 0.86 131305 0.86 

0.9-1 189420 0.92 199719 0.93 195950 0.93 197461 0.93 

(b)

Figure 11: Comparison of various models in prediction confidence of new legislation
based on the associated text for the (a) Senate and (b) House of Representatives. For
each model, the left column denotes the number of votes in each probability bin, and
the right column is the empirical probability of correct prediction for that bin.

structure present in the House data. The “Temporal” model resulted in improved per-
formance over the “No Dependencies” model but performed worse than the “Graphical”
and the “Temporal+Graphical” model. Additionally, the “Temporal+Graphical” model
performs slightly worse than the “Graphical” model. Our results suggest that the tem-
poral evolution structure in the model may not be flexible enough to account for the
rapidly evolving latent space, but that strong spatial effects are at work between the
representatives.

6 Conclusions

A model has been developed for the joint analysis of multivariate binary data and
text with spatio-temporal dependencies, and it has been applied to model congressional
roll call data. The model can predict all votes of new legislation from only text, via
a regression construction from a topic model to the factor model. Random effects
are included to help the model handle non-informative unanimous (or near-unanimous)
votes, and the legislation random effect can also be predicted from text. The appropriate
number of latent features is inferred, and a temporal evolution of the legislators is
learned, allowing for fine-grained temporal analysis of their political leanings. The model
has utility as an exploratory tool of legislative space, being able to assign meaning to the
latent dimensions, inferring the liberal/conservative bias of topics. Experimental results
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demonstrated the value of spatio-temporal dependencies in improving vote prediction
performance compared to models that did not incorporate them.

While the model provides a flexible and powerful framework for the analysis of roll
call data with text, its versatile framework allows additional opportunities for exten-
sions. Dynamic topic models such as Pruteanu-Malinici et al. (2010) or Blei and Lafferty
(2006) have been shown to offer gains in per-word prediction over the LDA used in our
model. Incorporating such a topic model could offer improvements in vote prediction.
Party effects could be incorporated into our model to improve the estimation of la-
tent space, and a Gaussian Process (GP) could be used to replace the graphical model
construction of the legislator latent feature covariance matrix Σ´1

t , with district/state
locations as covariates, at the cost of increased computation complexity. A different
direction would be to extend the random effects by assuming that they are drawn from
different clusters with varying precisions, allowing such a model to cluster legislators or
bills into different groups with different “volatilities”.

Legislative data offers a rich body of textual data beyond legislative text. For ex-
ample, transcripts of floor debates, committee meetings, and written communications
(Grimmer 2010) can be incorporated to provide textual data for the legislators. Bill
co-sponsorship may also offer meaningful improvements in prediction performance. The
model is also applicable to data outside of roll calls; applications include the analysis
and prediction of weather based features across large areas based on textual weather
observations, joint analysis of stocks and business news, or predicting possible terrorist
activity patterns in conflict areas based on intelligence gathered on the ground.

The time dependence investigated here concerned the time evolution of the legislator
features (related to their ideal point) as a function of time. However, this analysis has
not been placed within the context of political theory, which may be of interest to polit-
ical scientists. For example, in Clinton and Meirowitz (2003) the authors discussed how
the sequence of votes on legislation should often be viewed from a strategic perspective
(the votes on a sequence of pieces of legislation may not be independent). This is a
form of temporal dependence that has not been considered here, and is worthy of future
study within a model of the type developed here.

One of the key aspects of the model concerns its predictive power, particularly for
cases in which the prediction of votes is performed only based upon the text of the
legislation. Further, temporal dependence of the legislator feature vectors, and spatial
locations of the congressional districts (or states) has been accounted for. While this
significantly improves prediction, it may undermine the ability to interpret the results.
For example, the topics are linked to prediction of the feature vectors of the legisla-
tion. This may aid model predictive power, but it may make the inferred topics less
interpretable (interpretability is of course not explicitly accounted for in the model).
This is meant to emphasize and acknowledge that the increased predictive power of a
model like that developed here is well within the capability of many statistically inclined
political scientists (to cite a few, see Jackman (2009); Clinton and Meirowitz (2003);
Clinton et al. (2004b); Poole and Rosenthal (1985); Jackman (2001); Poole and Rosen-
thal (1997); Quinn et al. (2006); Grimmer (2010); Clinton et al. (2004a)). However,
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often in political science studies, model simplicity is a strength, aiding interpretation
and grounding the model in a “rational actor” setting. Going forward, a challenge for
the statistics and political science communities is to strike a proper balance between
model interpretability and prediction power.
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Appendix

‚ Update for x̂pkqt
The latent features of the legislators, encoded in the matrix X̂t, are tasked with imposing
both spatio-temporal dependence and identifiability. Jackman (2001) discussed the
difficulty in imposing identifiably via ideal point models to multiple dimensions. A
lower-block triangular structure is imposed on X̂t, enforcing its main diagonal to be
1 as in (10). The posterior of the latent features of all legislators in dimension k and
session t, x̂pkqt, is a Gaussian

P px̂pkqt|´q “ N pµ˚
px̂pkqtq

,Σ˚´1
px̂pkqtq

q (23)

where the posterior mean µ˚
px̂pkqtq

and precision matrix Σ˚
px̂pkqtq

can take different forms

depending on the status of the legislator at time t. Specifically, a legislator may be
serving his/her only term, first term, last term, or a term that is neither the first nor
last. In each case, the temporal dependence of the legislator is different. Defining
ρjkt “ psijt ´ x

T
ityjt ´ αit ´ βjt ` xiktyjktq{yjkt, and Ωt as the prior covariance matrix

of x̂pkqt, the posterior updates for x̂pkqt are as follows.

If the legislator is in their first and last (only) term, then there are no temporal
dependencies

Σ˚
px̂pkqtq

“
ÿ

j

b

|yjkt|

µ˚
px̂pkqtq

“ Σ˚´1
px̂pkqtq

p
ÿ

j

ρjkt

b

|yjkt|q. (24)

If the legislator is in the first of multiple terms, then the posterior is dependent on
the legislator’s latent features of the following session t` 1

Σ˚
px̂pkqtq

“ Ω´1
t`1 `

ÿ

j

b

|yjkt|

µ˚
px̂pkqtq

“ Σ˚´1
px̂pkqtq

pΩ´1
t`1x̂pkq,t`1 `

ÿ

j

ρjkt

b

|yjkt|q. (25)

If the legislator is in the last of multiple terms, then the posterior is dependent on
the legislator’s latent features of the previous session t´ 1

Σ˚
px̂pkqtq

“ Ω´1
t´1 `

ÿ

j

b

|yjkt|

µ˚
px̂pkqtq

“ Σ˚´1
px̂pkqtq

pΩ´1
t´1x̂pkq,t´1 `

ÿ

j

ρjkt

b

|yjkt|q. (26)

If the legislator is in the middle of multiple terms, then the posterior is dependent
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on the legislator’s latent features at both the previous and following sessions

Σ˚
px̂pkqtq

“ Ω´1
t´1 `Ω´1

t`1 `
ÿ

j

b

|yjkt|

µ˚
px̂pkqtq

“ Σ˚´1
px̂pkqtq

pΩ´1
t´1x̂pkq,t´1 `Ω´1

t`1x̂pkq,t`1 `
ÿ

j

ρjkt

b

|yjkt|q. (27)

‚ Update for Ωt

The posterior for covariance matrix Ωt is HIW,

P pΩt|´q “ HIWGt
pκ`Nl,Ω0 ` px̂pkqt ´ µ

˚
px̂pkqtq

qpx̂pkqt ´ µ
˚
px̂pkqtq

qT q, (28)

where κ “ 10`nt, Ω0 “ INl
and Ωt is sampled using the scheme proposed by Carvalho

et al. (2007).

‚ Update for ŷjt
The posterior for the legislation latent features ŷjt is Gaussian and is influenced by the
regression from the topic model parameters,

P pŷjt|´q “ N pµ˚
pŷjtq

,Σ˚´1
pŷjtq

q (29)

wtih posterior hyperparameters

Σ˚
pŷjtq

“ γpŷq `
ÿ

i

xitxit
T

µ˚
pŷjtq

“ Σ˚´1
pŷjtq

pγpŷqpη̂
T z̄jt ` η0q `

ÿ

i

s
p´yq
ijt xiq, (30)

where s
p´yq
ijt “ sijt ´ αit ´ βjt and η̂ P RHˆK is a matrix of mixing weights whose kth

column contains the regression weights for the kth latent dimension.

‚ Update for βjt
The posterior update for the random effect βjt is very similar to that of the legislation
latent features

P pβjt|´q “ N pµ˚
pβjtq

,Σ˚´1
pβjtq

q (31)

where

Σ˚
pŷjtq

“ γpβq `Nl

µ˚
pβjtq

“ Σ˚´1
pβjtq

pγβ̂pλ
T z̄jt ` λ0q `

ÿ

i

s
p´βq
ijt xiq, (32)

and s
p´βq
ijt “ sij ´ x

T
ityjt ´ αit is the contribution of βjt to sijt.

‚ Update for zvjt
The posterior update for the per-word topic indicator zvjt is identical to that in LDA
in the two-step model. However, the additional dependencies induced by the one-step
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model increase the complexity of this update. The posterior probability of word v in
bill j and session t being drawn from topic h is

P pzvjt “ h|´q “
τvjth

řH
h1“1 τvjth

, (33)

where

τvjth “ P pdvjt|φhqP pzvjt “ h|s
p´vq
jt ,η,η0, γpŷkq, bqP pzvjt “ h|s

p´vq
jt ,λ, λ0, γpβkq, bqP pφhq

and z
p´vq
jt is the counts of topics for each document with the vth word’s topic assignment

removed. Compared to the standard LDA topic assignment update, equation (34)
includes two additional likelihood terms that deal with the effect the topic assignment
of word dvjt has on the regression covariates zjt.
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