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A Simple Class of Bayesian Nonparametric
Autoregression Models

Maria Anna Di Lucca ˚, Alessandra Guglielmi :, Peter Müller ;

and Fernando A. Quintana §

Abstract. We introduce a model for a time series of continuous outcomes, that
can be expressed as fully nonparametric regression or density regression on lagged
terms. The model is based on a dependent Dirichlet process prior on a family of
random probability measures indexed by the lagged covariates. The approach is
also extended to sequences of binary responses. We discuss implementation and
applications of the models to a sequence of waiting times between eruptions of
the Old Faithful Geyser, and to a dataset consisting of sequences of recurrence
indicators for tumors in the bladder of several patients.

Keywords: binary data, dependent Dirichlet process, hierarchical Bayesian model,
latent variables, longitudinal data

1 Introduction

Consider a sequence of continuous random variables tYt : t ě 1u. A very popular class
of models for such time series data is autoregressive models that relate Yt with a number
of lagged terms Yt´1, Yt´2, . . . , Yt´p. In the simplest scenario, it is assumed that p “ 1,
and that conditional on Yt´1, Yt “ β`αYt´1 `ϵt, for t ě 2, where tϵtu is a conveniently
chosen sequence of residuals.

The assumptions made on tϵtu are crucial for the specification and statistical analysis

of AR(1) models. Consider, for instance, a white noise process ϵt | σ2 iid
„ Np0, σ2q. It

then follows that, conditionally on σ2, all random variables Yt are normally distributed.
While convenient, such assumptions may be too restrictive in many practical cases.

We present here a general framework for nonparametric autoregressive modeling,
that can be easily modified to accommodate the special cases of binary and ordinal
outcomes. The main idea is to provide an extension of the usual normal dynamic
models. We focus on a joint model for tYtu, which can be equivalently done by con-
sidering the sequence of increasing conditionals Yt | Yt´1, . . . , Y1. To fix ideas, con-
sider again the order-one dependence case, and assume that the conditional distribution
Yt | Yt´1, . . . , Y1 depends only on Yt´1 for t ě 2, and denote Yt | Yt´1 “ y „ Fy for any
t ě 2. We also assume homogeneity, in the sense that the distribution of Yt | Yt´1 “ y
does not change with t. We define a prior probability model for F “ tFy : y P Yu.
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We construct the desired family of random probability measures (RPMs) using the
Dirichlet Process (DP) introduced by Ferguson (1973). It is well known that the DP is
almost surely discrete, and that if G „ DP pM,G0q, a DP with total mass parameter
M ą 0 and baseline distribution G0, then G can be represented as (Sethuraman 1994)

Gp¨q “
ÿ

hě1

whδθhp¨q, (1)

where δθp¨q is a point-mass at θ, the weights follow a stick-breaking process, wh “
ś

iăhp1´ ViqVh, with Vh
iid
„ Betap1,Mq, and the atoms tθhuhě1 are such that θh

iid
„ G0.

MacEachern (1999, 2000) extended (1) by introducing the dependent Dirichlet pro-
cess (DDP) as a collection of RPMs of the form Gy “

ř

hě1 whpyqδθhpyq, y P Y, such
that each RPM Gy is marginally distributed according to a certain DP, and with the
property that Gy varies smoothly with y. In particular, this implies that Gy and Gy1

should be correlated for y ‰ y1 and that Gy Ñ Gy1 in some sense as y Ñ y1. A pri-
mary application of dependent models is to the case where y represents some (possibly
vector-valued) covariate. De Iorio et al. (2004) explored an ANOVA formulation for
categorical covariates, with weights that do not vary with y. Many other variations of
DDPs have been proposed for various settings. De Iorio et al. (2009) applied the DDP to
survival analysis, and Caron et al. (2008) and Rodŕıguez and ter Horst (2008) considered
a time-dependent version of DDPs. Griffin and Steel (2006) proposed the order-based
DDP, where weights are sorted according to the values of covariates. Other approaches
that explicitly introduce covariate dependence in the weights include the kernel-stick
breaking of Dunson and Park (2008), and the probit-stick breaking of Chung and Dun-
son (2011). See additional references in Hjort et al. (2010). An early development of
dependent Dirichlet models appears in Cifarelli and Regazzini (1978), where the depen-
dence on the covariates is introduced as a regression in the base measure of marginally
Dirichlet process distributed random probability measures. Cruz-Marcelo et al. (2010)
review and compare some covariate-dependent models. For an approach via parametric
mixtures of autoregressive models with a common but unknown lag see Wood et al.
(2011).

In practice, the discreteness associated with DPs and the DDP extension is in-
appropriate for the modeling of continuous data. A common way of addressing this
limitation is by introducing an additional convolution with a continuous kernel, so that
the resulting model can be expressed as a countable mixture of absolutely continuous
distributions.

Our model uses the DDP. We propose modeling a sequence of continuous outcomes
by means of a DDP with an additional normal kernel as a prior for the regression on
lagged terms in an autoregression. In the general case, denoting y “ pyt´1, . . . , yt´pq,
with possible values on Y, we assume that Yt | pYt´1, . . . , Yt´pq “ y „ Fy where
Fy is a location mixture of normals, with a DDP prior on the mixing measures. We
further assume that the weights twhpyqu and atoms tθhpyqu are defined in terms of two
independent sequences of stochastic processes defined on Y, as discussed in MacEachern
(1999, 2000) and in Barrientos et al. (2012).
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Of course, there are similarities between the proposed approach and those in the
soaring literature on Bayesian nonparametric dependent models. For instance, the com-
mon framework between our models and those in Caron et al. (2008), Rodŕıguez et al.
(2010), and Rodŕıguez and Dunson (2011) consists of the adoption of mixture models
with (dependent) stick-breaking random probabilities as mixing measures, where the
dependence is on spatial or temporal covariates, and the type of dependence for the
observations (or latent processes, or hidden states) is Markovian.

In particular, Rodŕıguez and Dunson (2011) propose mixture models where the stick-
breaking mixing measure has constant atoms, but covariate-varying weights. In con-
trast, we consider varying atoms. In Rodŕıguez and Dunson (2011) the weights are
defined via a probit transformation of a Gaussian latent process that determines the
stick-breaking ratios. Specifications of this model include autoregressive dependence in
the Gaussian latent process and random effects models for different population distri-
butions, and the latent variables defining probit weights share information across pop-
ulations (but apparently there is no autoregression). In contrast, we propose a model
where dependence on previous states or observations and on covariates defining popu-
lation subgroups is considered in the state of the latent process at time t. Rodŕıguez
et al. (2010) assume the stick-breaking framework for the mixing measure of the mixture
model; however marginally their stick-breaking covariate-dependent processes share the
same dependent distribution. The latent process there drives the selection of the atoms
at each location/covariate. In contrast, all the stick-breaking processes we propose have
marginal distributions depending on time and covariates. Caron et al. (2008) is one of
the first papers where Dirichlet processes were used in the context of dynamic linear
models; more recent works include Fox et al. (2011). In particular, they model the hid-
den/latent state at time t, which is a known linear combination of the hidden state at
time t´ 1, plus an error which is distributed as a Dirichlet process mixture of Gaussian
distributions. This approach is similar to one of our models, where we adopt a Gaus-
sian latent process as well. In both cases, conditioning on the label which identifies the
component in the mixture, the latent process at time t is Gaussian distributed, but the
temporal assumptions on the means differ. Specifically, in Caron et al. (2008) the mean
at time t is the sum of a linear transformation of the previous latent state and a linear
transformation of the mean of the Gaussian component of the error. On the other hand,
in our case, the mean is a linear transformation of the mean of the Gaussian component
of the error, but the transformation matrix depends on the previous latent state.

Our proposed approach differs also from previous models for hidden Markov models
(see Zucchini and MacDonald 2009, for instance) in that the dependence is directly
either on previous outcomes or latent variables, rather than on a sequence of likelihood
parameters. The type of dependence that we consider includes also that implied by the
model in Lau and So (2008), who considered the case where the atoms are defined as
linear combinations of lagged terms. As we will discuss later, posterior simulation for
the proposed model can be carried out using standard techniques for DP mixtures.

The rest of this paper is organized as follows. Section 2 introduces the model,
discussing some of its main features. Extensions to ordinal outcomes by means of a
latent autoregressive process are also considered. Section 3 illustrates the model in two



66 Bayesian Nonparametric Autoregressions

examples. In Section 3.1 the Old Faithful geyser dataset (Härdle 1991) is analyzed,
while Section 3.2 addresses the bladder cancer example of Quintana and Müller (2004)
and Giardina et al. (2011). In Section 3.1 we consider more complex alternative models
for the Old Faithful geyser dataset, but conclude that no substantial differences are
found when comparing with the previous results. We conclude with a discussion in
Section 4.

2 The Model

2.1 Setup

The class of models that we consider is based on dependent Dirichlet processes (DDP).
Given the vector y P Y of p lagged responses at times t´1, . . . , t´p, we consider a model
for the conditional distribution of Yt given y, i.e., we assume prYt | pYt´1, . . . , Yt´pq “

ys “ Fy . We define a prior distribution on the collection of random probability measures
F “ tFy : y P Yu. To do so, we consider two sequences of independent stochastic
processes, tVhpyq : y P Y, h ě 1u and tθhpyq : y P Y, h ě 1u on Y such that marginally
for every y P Y and h ě 1 we have Vhpyq „ Betap1,Mq and θhpyq „ G0,y . We also
require continuity of trajectories for all these processes, which is satisfied when they are
constructed using suitable families of copulas, as described in Barrientos et al. (2012).
Setting whpyq “

ś

jăh Vjpyqp1 ´ Vhpyqq for h ě 1, we define

Gyp¨q “

8
ÿ

h“1

whpyqδθhpyqp¨q. (2)

The above choices guarantee that Gy „ DP pM,G0,yq for every y P Y. The proposed
model can then be expressed in the general case as

Yt | pYt´1, . . . , Yt´pq “ y,mt „ Npmt, σ
2q, mt | pYt´1, . . . , Yt´pq “ y „ Gy , (3)

where Npm,S2q indicates a normal distribution with mean m and variance S2.

We will discuss M and G0,y for specific applications later. Note that the resulting
conditional distribution for Yt, given pYt´1, . . . , Yt´pq “ y is a location mixture of
normals, where the mixing measure G comes from the DP. By the discussion around (1),
this implies that the model for Yt | pYt´1, . . . , Yt´pq “ y can be equivalently represented
as

Yt | pYt´1, . . . , Yt´pq “ y „
ÿ

hě1

whpyqNpYt | θhpyq, σ2q. (4)

Assuming common weights, i.e. whpyq ” wh, model (3) can be further simplified to a
countable mixture of autoregressive models, where each mixture component has a mean
defined by its own stochastic process θhpyq, h ě 1. Moreover, the exact nature of the
dependence on lagged terms y encoded in the random probability measure (2) is very
general.
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Despite the great generality of the proposed construction, it is in practice useful to
resort to simple and manageable specifications. The main motivations for the simplifica-
tion are easier implementation and parsimony. As we will later demonstrate, inference in
the more general model is practically equivalent to inference under the proposed simpli-
fication. We just mentioned the simplification with a common-weights DDP (Barrientos
et al. 2012), where it is assumed that whpyq “ wh for all h ě 1, i.e., we assume the
stochastic processes tVh : h ě 1u to have constant trajectories on Y. In addition, we
may assume specific forms for the stochastic processes defining the atoms. For instance,
we may assume that each θhpyq is a Gaussian process with mean and covariance func-
tions expressed in terms of y. Later in Section 3 we will consider the special case where
each θhpyq corresponds to a polynomial function of the first lagged response, or to a
linear combination of the p elements of y. A related mixture model approach, with
weights depending on previous responses was proposed in Müller et al. (1997). Lau and
So (2008) considered similar types of models, where each atom included a formulation
involving infinite mixtures of order-p linear autoregressions.

Observe that, when tGy : y P Yu is a common-weights DDP, i.e., whpyq “ wh,
model (4) can be alternatively expressed as a DP mixture (DPM) model as follows.
This is best seen in the marginal model for Yt. Marginally, for each t,

Yt | pYt´1, . . . , Yt´pq “ y „

ż

NpYt | θpyq, σ2q dGpθq, G „ DP pM,G0,yq, (5)

where the above integration is interpreted as a marginalization over the stochastic pro-
cess θ, which does not eliminate the dependence on y in (5).

As is usual in DPM models, computation is simplified by introducing latent variables
and breaking the mixture (5). Since details are model-specific, we consider here as
an illustration, the case where p “ 1, whpyq “ wh, and θhpyq “ βh ` αhy, i.e., the
common-weights DDP where the atoms correspond to linear trajectories of the first
lagged response. We call this the AR(1)-DDP model. The model can alternatively be
written as

Yt | Yt´1 “ y, pβt, αtq, σ
2 „ NpYt | βt ` αty, σ

2q,

pβt, αtq | G
iid
„ G, G „ DP pM,G0q,

(6)

Representation (6) provides a hierarchical definition and also highlights the fact that
the dependence is introduced at the level of responses, and not in terms of the latent
parameters tpβt, αtqu. The Bayesian model specification would then be completed by
assigning a prior distribution to σ2 and a distribution for Y1. Specific prior choices for
relevant parameters will be later discussed in Section 3.

A simplified version of models (4) or (5) can be sometimes convenient from a com-
putational viewpoint. This is achieved by truncating the infinite mixture implied
by the DP to a finite mixture of a sufficiently large number of components, say H.
This simplified model also implies a stick-breaking definition of the mixture weights
twhpyq : h “ 1, . . . ,Hu, with whpyq “

ś

iăhp1 ´ VipyqqVhpyq, for h “ 1, . . . , H, where
each Vhpyq has marginally a Betap1,Mq distribution for h ă H, and VHpyq “ 1 for all
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y P Y, which guarantees P p
řH
h“1 whpyq “ 1q “ 1 for all y P Y (Ishwaran and James

2001). In the particular case of (6) and whpyq “ wh for all h,y, and introducing la-
tent mixture component indicators trtu, with P prt “ hq “ wh, 1 ď h ď H, the model
becomes

Yt | Yt´1 “ y, rt “ h, tpβj , αjqu, σ2 „ Npβh ` αhy, σ
2q,

P prt “ hq “ wh, pβh, αhq
iid
„ G0, h “ 1, . . . , H.

(7)

Finally, it is worth pointing out some properties of the proposed model. There are
no constraints to stationarity of the time series. In fact, the prior puts zero probability
on stationarity, which would only arise as a special case of the auto-regression. Only the
regressions ppyt | yt´1q are assumed to be constant through time, which contrasts with
the method of Mena and Walker (2005) for constructing strictly stationary AR(1)-type
models via nonparametric Bayes. The model inherits regularity properties of density
estimation with a DP mixture of normals.

2.2 Binary Outcomes

The previous construction can easily be extended to the binary case, using ideas from
Albert and Chib (1993), and model (5), or (4), on a latent scale. Assume Yt is binary
for all t, and introduce latent scores Zt so that Yt is defined by means of

Yt “ 1 if and only if Zt ą 0, (8)

and, as consequence, Yt “ 0 iff Zt ď 0. The extension can now be stated as

Zt | pYt´1, . . . , Yt´pq “ y „

ż

NpZt | θpyq, σ2q dGpθq, G „ DP pM,G0,yq. (9)

In other words, the proposed continuous nonparametric autoregressive model is used to
define the distribution of the latent score Zt. Of course, given tZtu, the observations
tYtu are deterministic, which means that the desired distribution for the observed binary
sequence is completely specified. Moreover, in terms of the observables, this model has
the following probit-type structure:

Yt | pYt´1, . . . , Yt´pq “ y „ Bepptpy, σqq, ptpy, σq “

ż

Φ

ˆ

θpyq

σ

˙

dGpθq. (10)

Here Beppq indicates a Bernoulli distributed (binary) random variable with success
probability p. Note that a truncated version of (9) can be also considered, exactly
as in the discussion leading to (7).

An alternative model specification for the binary case considers the sequence of
conditional distributions entirely in the latent scale. By this we mean a nonparametric
autoregressive model directly in terms of the latent sequence of scores tZtu. Parallelling
(5) we consider

Zt | pZt´1, . . . , Zt´pq “ z „

ż

NpZt | θpzq, σ2q dGpθq, G „ DP pM,G0,zq. (11)
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In this case, the model representation in terms of the observables is not as simple as be-
fore; in fact, conditioning on the parameters, the joint distribution of Yt, pYt´1, . . . , Yt´pq,
can be expressed as

Lpyt,y|parq

“

ż

Lpyt,y|Zt “ zt, pZt´1, . . . , Zt´pq “ z, parqfZt,pZt´1,...,Zt´pqpzt, zqdztdz

“

ż

`

Ip0,`8qpztq
˘yt `Ip´8,0sqpztq

˘1´yt Lpy|pZt´1, . . . , Zt´pq “ z, parq

ˆ fZt|pZt´1,...,Zt´pqpzt|zqfpZt´1,...,Zt´pqpzqdztdz.

(12)

From (10) and (12), it is clear that the two models are different. In particular, the
former defines a Markovian process of order p on tYtu, unlike the latter. A formulation in
terms of latent variables has an advantage though: it can be readily extended to ordinal
outcomes. Indeed, assume Yt is ordinal, with support t0, 1, . . . , κ´ 1u for some integer
κ ě 2. The binary case follows when κ “ 2. Let ´8 “ γ0 ă γ1 ă ¨ ¨ ¨ ă γκ´1 ă γκ “ 8

be ordered cutoffs. We then assume the tYtu to be defined through a latent sequence
tZtu by means of

Yt “ j if and only if γj ă Zt ď γj`1, j “ 0, 1, . . . , κ´ 1. (13)

Kottas et al. (2005) argue that the cutoffs can be fixed without loss of generality. In
particular, when κ “ 2 we take γ1 “ 0, and we have Yt “ 1 if and only if Zt ą 0, just as
before. Conditional on the latent variables Zt, the observations are deterministic, and
it is therefore natural to consider exactly the same nonparametric autoregressive model
(3), or (4), on this latent scale.

The model can easily be extended to multiple subjects. In particular, in the following
section, we will fit model (8) with (9) or (11) using a common-weights model with
p “ 1 and atoms defined as simple linear trajectories, to binary data representing the
recurrences of a disease in patients at different times. In this case, since the AR(1)-
dependence is on the latent scores, we guess that this model could produce a good fit
when the data consist of several short sequences, a situation that prevents us from using
a higher-order dependence specification. On the other hand, we expect that model (3)
will fit one single longer sequence of data well, since it assumes the order p Markovian
property directly on the continuous responses.

3 Applications

In this section, we illustrate the class of models with applications to two datasets, the
Old Faithful geyser (Sect. 3.1) and the bladder cancer (Sect. 3.2) dataset. First we
summarize some implementation details for the following examples. In the Old Faithful
geyser example, inference was implemented in R as Markov chain Monte Carlo (MCMC)
posterior simulation, using the first 100, 000 iterations as burn-in, and saving every 20-th
iteration after burn-in. On the other hand, all inference for the latter example was coded
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in JAGS with the same burn-in, but with a larger thinning interval (100 iterations). In
all cases, a posterior Monte Carlo sample of size 5, 000 was saved. Standard convergence
diagnostics criteria such as those available in the R package CODA (Plummer et al.
2006) were applied to all parameters, indicating that convergence had been achieved.

3.1 Old Faithful Geyser

Inference under the AR(1)-DDP Model

We illustrate the proposed AR(1)-DDP model (6), or its simplified version (7), using
the easily accessible Old Faithful geyser data set. For an extensive description of the
data, see Härdle (1991) and Azzalini and Bowman (1990). Old Faithful is a geyser
in the Yellowstone National Park in Wyoming, USA. The data consist of 299 pairs of
measurements, referring to the time interval between the starts of successive eruptions,
and the duration of the subsequent eruption. Here we only use the 272 data points that
are readily available in the R dataset (Härdle 1991).

We focus on the waiting times tyt, t “ 1, . . . , 272u between the eruptions (yt is the
waiting time before the t-th eruption of the geyser), and fit model (7) to the dataset.
Figure 1 plots yt versus yt´1. As the lagged data point yt´1 varies across the x-axis one
can clearly recognize how the autoregressive model ppYt | Yt´1 “ yt´1q changes from a
unimodal distribution around yt´1 “ 50 to a bimodal distribution around yt´1 “ 80.
For later comparison, three pairs of vertical lines pick out three groups of data, with
lagged waiting times yt´1 in the interval 50 ˘ 5, 65 ˘ 5 and 80 ˘ 5, respectively. We
fitted model (7) using H “ 20 and a total mass parameter of M “ 1. The point
masses in the DDP are assumed to be simple linear functions, θhpyq “ βh ` αhy. The
base measure G0 is a (bivariate) Gaussian distribution with independent components,
with mean p0, 0qT , and variances of the βh and αh components equal to 400 and 5,
respectively. We consider fixed kernel variance σ2 “ 25, and alternatively an inverse
gamma prior, pp1{σ2q “ Gap2, 2q, i.e., Ep1{σ2q “ 1, and Varp1{σ2q “ 0.5.

Figure 2 shows the posterior mean of the autoregressive model Fyp¨q in (5) for y
corresponding to a first-lag response of ỹ1 “ 50, ỹ2 “ 65, and ỹ3 “ 80, respectively. Let
F̄yp¨q denote the posterior expectation

F̄y “ EpFy | dataq,

and let f̄yp¨q denote the corresponding probability density function. The three panels of
Figure 2 show f̄ỹj , j “ 1, . . . , 3. For comparison the figures also show a kernel density
estimator (dashed line) using a subset of the data with yt´1 within ỹj ˘ 5. Figure 3
shows the posterior mean of fyt´1p¨q for yt´1 “ 80 under the 1{σ2 „ Gap2, 2q prior,
M “ 1 and H “ 50, together with 95% point-wise posterior credible bands.

Finally, we carried out sensitivity analysis to investigate variations in the prior as-
sumptions. For example, we found that substantially increasing the value of fixed σ2

beyond σ2 “ 50 lead to poorly mixing MCMC. On the other hand, increasing the prior
mean for 1{σ2 by assuming 1{σ2 „ Gap2, 10q leads to only negligible changes in the
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Figure 1: Old Faithful geyser: yt versus yt´1. The pairs of vertical lines pick out groups of
data with yt´1 around 50 ˘ 5, 65 ˘ 5 and 80 ˘ 5, respectively. Notice the different form of the
empirical distributions of yt within each of the groups.
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Figure 2: Old Faithful geyser data. Posterior means f̄yt´1pytq for yt´1 “ 50 (left panel),
65 (central) and 80 (right). The continuous (black) line shows inference under the prior
1{σ2 „ Gap2, 2q, the (red) dash-dotted line shows inference under σ2 “ 25 (practically
indistinguishable from the solid line), and the dashed (blue) shows a kernel density
estimate.

inference. We investigated robustness with respect to prior parameters of the finite DP
prior. IncreasingH to 50 andM to 10, we observed little change in the estimated autore-
gressive models f̄yt´1pytq. Figure 4 shows the estimates of fyt´1p¨q for yt´1 “ 80 under
a variety of choices for M and H. The different curves are almost indistinguishable.
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Figure 3: Old Faithful geyser data. Posterior mean f̄yt´1p¨q for yt´1 “ 80 (blue semi-
dashed line), together with pointwise 95% credible bands (red dotted lines) and median
(solid black line).

Model Variations

In the construction of the proposed AR(1)-DDP model (6) we made a sequence of
simplifying assumptions. The question arises whether a more general model without
some of these simplifications could lead to a practically meaningful extension, trading
parsimony with more flexibility. The answer, of course, is always dependent on the
particular application. In a sequence of alternative implementations we investigate this
question for the particular example of the Old Faithful Geyser example.

We first considered the truncation to the finite DDP. We implemented an alternative
model as in (6), without approximating the DP random measure G to finitely many,
H, point masses. Figure 5 shows the resulting posterior means of fyt´1p¨q, for yt´1 “

50, 65 and 80. Compared with Figure 2 we find virtually the same inference. Another
major simplification was the use of simple polynomials for the trajectories θhpyq to
replace more flexible alternatives, such as a Gaussian process (GP) prior for θhpyq.
In the special case of lag p “ 1 regression the more general GP model is easy to
implement. In particular, we considered an Ornstein-Uhlenbeck (OU) process, a GP
with covariance function covrθpsq, θptqs “ τ2ρ|s´t|, for 0 ă ρ ď 1. The attraction of
the OU process is the Markovian nature of the process that greatly simplifies posterior
computation. We thus implemented (4) with common weights wh and point masses
θhpyq “ b` ahy`OUpρ, τ2q, where OUpρ, τ2q denotes the OU process with parameters
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Figure 4: Old Faithful geyser data. Posterior means of fyt´1
p¨q, for yt´1 “ 80. The

(red) semi-dashed line is the estimate under M “ 1, H “ 20, the (orange) dotted line
for M “ 10, H “ 20, the (green) dashed line is for M “ 1, H “ 50 and the (blue) long
dashed line is for M “ 10, H “ 50. The estimates are almost indistinguishable.
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Figure 5: Old Faithful geyser data. Posterior means f̄yt´1p¨q under the AR(1)-DDP
model (6) with H “ 8, i.e., without truncation, for yt´1 “ 50 (left), yt´1 “ 65 (center)
and yt´1 “ 80 (right).

pρ, τ2q in the covariance function. A priori, ρ was assumed uniform on (0,1), while
1{τ was given a Gap0.1, 0.1q prior, while b „ Np110, 1q and ah | a0 „ Npa0, σ

2
aq, with

a0 „ Np´0.5, 1q, σ´2
a „ Gap0.1, 0.1q. For a fair comparison we used the same setup as

above, now saving 10, 000 iterations for the inference. The estimated distributions f̄yp¨q

for y “ 50, 65 and 80 (not shown) after the same number of iterations look very different
from Figure 2, including a unimodal distribution f̄50p¨q and f̄65p¨q lacking the secondary
mode around y “ 50. We conclude a serious lack of convergence with the same number
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of iterations, which may be related to the fact that the GP model is over-parametrized.
This leads us to prefer the parsimonious implementation of the AR(1)-DDP.

Finally we considered a variation with varying weights whpyq. Similar to what was
proposed in Rodŕıguez and Dunson (2011), we used a logit model to replace the beta
distributed fractions Vh in (2), with logitpVhpyqq “ ηh1 ` ηh2y. We continue to use a
finite truncation with H “ 20. The resulting estimates f̄yp¨q are shown in Figure 6. We
see no practically meaningful differences in the inference. We therefore recommend the
more parsimonious model (6).
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Figure 6: Old Faithful geyser data. Posterior means f̄yt´1p¨q under the AR(1)-DDP
model (6) with H “ 8, but with varying weights whpyq for yt´1 “ 50 (left), yt´1 “ 65
(center) and yt´1 “ 80 (right).

3.2 Bladder Cancer Data

To illustrate the nonparametric autoregressive approach for latent scores, as described in
the previous section, we consider many short sequences of binary variables. The dataset
is part of a bladder cancer study conducted in the USA by the Veterans Administration
Cooperative Urological Research Group (VACURG). The purpose of the study was to
compare the effectiveness of three treatments (placebo, pyridoxine, and topical thiotepa)
in preventing recurrence of Stage I bladder cancer (Byar et al. 1977).

Many authors, including Quintana and Müller (2004), have analyzed this dataset.
The study conducted by VACURG enrolled m “ 81 patients with up to a maximum of
ni “ 12 observations taken every three months for each patient. We restrict ourselves
to only patients grouped into treatment (thiotepa) and placebo: group T (36 subjects)
and group P (45 subjects). See Davis and Wei (1988) for the original dataset. Each
observation records an indicator of recurrence of bladder cancer tumors, i.e. yit “ 1 if an
increased number of tumors was detected at time t for patient i, and yit “ 0 otherwise,
where i “ 1, . . . ,m denotes individuals and t “ 1, . . . , ni denotes the measurement time
for each individual i. We record treatment information as a binary covariate. Denote
xi “ 0 if patient i belongs to the P group, and xi “ 1 otherwise, for i “ 1, . . . ,m. The
binary r.v.’s Yit are modeled as

Yit “ 1 if and only if Zit ą 0, i “ 1, . . . ,m, t “ 1, . . . , ni. (14)
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We compare two different classes of models for the latent variables, one as described
in (11), and the other as in (9), using the AR(1)-DDP specification, which defines a
Markovian process on each Yi “ pYi1, . . . , Yiniq

1
. The covariate xi will be included in

the autoregression, together with the past value of the latent score, in both models. We
mention that these models can also be considered as nonparametric generalizations of
earlier parametric work in Giardina et al. (2011), where more details on data construc-
tion can be found. However, the description of the models here is self-contained.

AR(1)-latent model

We consider the following AR(1)-DDP model on the latent variables Z1, . . . ,Zm, where
Zi “ pZi1, . . . , Ziniq

1
:

Zit|Zi t´1 “ zi t´1, xi, β0, β1 „

ż

R2

Npβ0 ` β1xi ` α1zi t´1 ` α2xizi t´1, σ
2qdGpα1, α2q,

G „ DP pM,G0q, (15)

for i “ 1, . . . ,m, t “ 2, . . . , ni, where G0 is a bivariate distribution. To complete the
model definition, a prior distribution for the initial latent variables tZi1, i “ 1, . . . ,mu

must be given. We further assume that, conditionally on the latent variables Z1, . . . ,Zm,
the vectors Y1, . . . ,Ym are independent, with binary components as in (14), where
each Zit follows (15). This is not a probit-type model. Analogously to (12), the joint
distribution of all observables given parameters and covariates is

Lpy1, . . . ,ym|parq

“

ż

ź

tyit“1u

Ir0,`8qpzitq
ź

tyit“0u

Ip´8,0qpzitq
m
ź

i“1

˜

f pzi1q

ni
ź

j“2

f pzij |zit´1q dzi1 ¨ ¨ ¨ dzini

¸

.

Moreover, observe that β0 in (15) is the intercept of the regression model, and β1
represents the treatment effect on the response variable. A finite approximation of
equation (15) is

Zit | Zit´1 “ zit´1, rit “ h, par „ Npβ0 ` β1xi ` α1hzit´1 ` α2hxizit´1, σ
2q,

tritui
iid
„ according to P prit “ hq “ wh, (16)

pα1h, α2hq
iid
„ G0, h “ 1, . . . , H,

i.e. the distribution of Zit ´ pβ0 ` β1xiq, given Zi t´1 “ zi t´1, is a location-mixture
of Gaussian distributions with fixed variance, where the mixing distribution is a trun-
cated single-p (constant weights as defined in Section 2.1) DDP. Since the Zit’s are
latent variables representing the observations according to (14), Zi and CZi yield the
same distribution of Y i, whatever positive constant C we choose. Identification may
be achieved by fixing σ2; the interested reader could refer to Giardina et al. (2011),
Section 3.1, for a discussion about identifiability issues.

Finally note that model (15) is a slight generalization of (11). The dependence in
the random mixing distribution includes both the previous latent variable zit´1 and
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the covariate xi. Also, although the treatment variable x is the only covariate in this
application, the model could easily be adapted for inference with more covariates if
desired.

Regarding σ2, β, G0 andM , we assume that σ2 “ 0.25, pβ0, β1q1 „ N2ppβ00, β01q1, Vβq

with β00 “ β01 “ 0 and Vβ “ I2, the bivariate identity matrix, and G0pα1h, α2hq is de-
termined by

pα1h, α2hq1 | pα01, α02q
iid
„ N2ppα01, α02q1, Vαq, h “ 1, 2, . . .

pα01, α02q1 „ N2ppα001, α002q1, V q,
(17)

where α001 “ α002 “ 0, V “ 10I2, Vα “ I2, and pβ0, β1q1 and tpα1h, α2hq1u are indepen-
dent. The model is completed by assuming two different prior distributions for Zi1 for
T and P patients as follows:

Zi1|xi, µxi „ N
`

µxi , σ
2
1

˘

, i “ 1, . . . ,m, xi “ 0, 1,

µ1 „ logistic-betapa, bq

µ0 “ µ1 `D, where D „ log-normalpµD, σDq,

µ1, D independent.

(18)

Prior (18) was proposed for the first latent variables so as to ensure that µ0 ě µ1 almost
surely, since we assume that the patients under treatment will have a lower probability
of recurrence. The logistic-betapa, bq is assumed for µ1, i.e. p1 ` expp´µ1qq´1 is dis-
tributed according to a Betapa, bq, where the specific choices of hyperparameter values
will be discussed later. Here a more standard assumption for µ1 would be Φpµ1{

?
σ1q

distributed as a Betapa, bq. In practice, however, this requires evaluating Φ´1, which
is notorious for being a numerically unstable operation, unlike the case implied by the
logistic assumption. Here the parametrization of the log-normal distribution is such
that EpDq “ eµD`σ2

D{2 and VarpDq “ peσ
2
D ´ 1qe2µD`σ2

D . We have fixed a “ b “ 3,
µD “ ´1, σD “ 1.

A simpler alternative to (15) is to assume

Zit|Zi t´1 “ zi t´1, xi, β0, β1 „

ż

R2

Npβ0 ` β1xi ` α1zi t´1, σ
2qdGpα1q,

G „ DP pM,G0q, (19)

for i “ 1, . . . ,m, t “ 2, . . . , ni, i.e. the “slope” α1 is constant over the two groups of
patients (P and T ). Note that G0 denotes a univariate distribution for (19), fixed here as
the corresponding marginal of that in (17). We will refer to this latter model as AR(1)-
latent 3P, since the regression parameters included here are only 3, while the former
model with 4 regression parameters will be obviously referred to as AR(1)-latent 4P.
Summary posterior inferences and posterior distributions about regression parameters
for both models can be found in Table 1 and in Figure 7. Unless otherwise stated, these
estimates and those in the following tables were computed with H “ 30 and M “ 1.
Observe that the marginal posterior distributions of β0, β1 and µ1 are concentrated on
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the negative numbers. This means that the baseline probability of tumor recurrence is
less than 0.5 for both groups, and that treated patients have lower baseline probability
than the ones in the placebo group. The posterior ofD confirms that there is a difference
between the two treatments.

M “ 1 M „ Up0.5, 10q M „ trunc-IGp2, 2q

3P 4P 4P 4P

mean sd mean sd mean sd mean sd
β0 -0.2171 0.0410 -0.2221 0.0439 -0.2206 0.0433 -0.2207 0.0429
β1 -0.1348 0.0749 -0.1547 0.1299 -0.1301 0.1038 -0.1286 0.0995
α01 0.0798 3.1894 0.3576 0.9326 0.4703 0.9552 0.4128 0.9386
α02 - - -0.2642 0.9937 -0.1596 0.9635 -0.1969 0.9562
µ1 -0.4275 0.0890 -0.4240 0.0876 -0.4252 0.0883 -0.4249 0.0882
D 0.1475 0.0811 0.1483 0.0816 0.1482 0.0815 0.1465 0.0809
K 4.0524 1.5484 4.2164 1.6007 3.7666 1.6754 4.2758 1.6719
M - - - - 0.8411 0.3331 1.1115 0.2748

Table 1: Posterior means and standard deviations of the parameters of the AR(1)-latent
models 3P and 4P.

AR(1)-latent-Y model

As a second model, we assume a finite approximation of (9):

Zit | Yit´1 “ yit´1, rit “ h, par „ Npβ0 ` β1xi ` α1hyit´1 ` α2hxiyit´1, σ
2q,

tritui
iid
„ according to P prit “ hq “ wh, (20)

pα1h, α2hq1 iid
„ G0, h “ 1, . . . , H,

i.e. the distribution of Zit ´ pβ0 ` β1xiq, given Yi t´1 “ yi t´1 is a location-mixture of
Gaussian distributions with fixed variance, where the mixing distribution is a truncated
single-p (constant weights) DDP. The prior for the “regression” parameters and the
initial latent variables Zi1’s is as in (17)-(18). Of course, the meaning of β0, β1, α1h and
α2h is completely different. But we can meaningfully compare the resulting predictive
recurrence probabilities of the two classes of models. Summary posterior inferences
and posterior distributions for the regression parameters for model AR(1)-latent-Y as
specified in (20) are reported in Table 2 and Figure 8. Note that, as was the case for
the AR(1)-latent models, the marginal posterior distributions for β0, β1 and µ1 are all
concentrated on the negative numbers.

Comparison between models

For comparison purposes, we report estimates of the predictive probabilities for the
two models considered, corresponding to additional measurement for already observed
patients (Table 3), and for new patients (see Figure 9). Both are reported separately
for patients under treatment groups P and T .

Figure 9 displays predicted recurrence probabilities for a new placebo (upper set of
lines) and a new treated patient (lower set of lines). We observe no significant differences
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Figure 7: Posterior marginal distribution of AR(1)-latent models parameters when
H “ 30 and M “ 1 for models 4P (continuous) and 3P (dashed).

in these predictions between the three considered models, for both types of patients.

We have also examined robustness of these results to choices of H and M . When
increasing H to 50, we found no substantial differences on the predictives for new pa-
tients or on the posterior distributions of K, the number of components in the mixtures
(see Figure 10, first row). On the other hand, the predictive probabilities of additional
measurements for already observed patients are very robust, and for this reason we have
not reported them.

As far as the total mass parameter M is concerned, we have assumed it random,
i.e. M has a Uniform prior on the interval p0.5, 10q, or inverse-gamma with parameter
p2, 2q with support p0.5,`8q (M “ 0.5 ` X, with 1{X „ gammap2, 2q). The total
mass parameter was assumed bounded away from zero due to numerical instability of
the posterior simulation algorithms, as implemented in JAGS. In any case, these two
choices imply quite different prior assumptions for M . Table 1 reports the regression
parameter estimates for model 4P-AR(1)-latent, while Figure 11 displays some of these
posterior distributions. Even if the posteriors of M , under the two priors, are different
(see Figure 12), the posteriors of the number of clusters K in Figure 10 (c)-(d) are quite
similar.

Figures 13 and 14 display the posterior distributions of the regression parameters,
and of the number K of components in the mixture, respectively, for AR(1)-latent-Y
model when M is random (as before). We note that posterior distribution of M is
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M “ 1 M „ Up0.5, 10q M „ trunc-IGp2, 2q

mean sd mean sd mean sd

β0 -1.0797 0.0881 -1.0818 0.0891 -1.0816 0.0891
β1 -0.4039 0.1483 -0.4009 0.1532 -0.4007 0.1497
α01 0.8921 0.9371 0.8870 0.9370 0.8851 0.9219
α02 0.2114 0.9766 0.2234 0.9521 0.2136 0.9411
µ1 -0.7454 0.1656 -0.7479 0.1675 -0.7465 0.1667
D 0.2143 0.1361 0.2173 0.1376 0.2157 0.1373
K 4.3454 1.6996 3.9334 1.8607 4.8270 2.0100
M - - 0.8615 0.3582 1.1450 0.3103

Table 2: Posterior means and standard deviations of the parameters of the AR(1)-
latent-Y model, when H “ 30, M “ 1 and σ2=1.
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Figure 8: Posterior marginal distributions of AR(1)-latent-Y model parameters when
H “ 30 and M “ 1, for σ2 “ 1.

similar to Figure 12, and therefore, not shown here. This suggests that inference on M
is not affected by the specific choice of autoregressive dependence, i.e. latent variables
or responses. It is also worth mentioning that under these priors, the predictive
probabilities for “new” placebo and treated patients shown in Figure 15 are very robust
to all the model choices explored here. Finally, we incidentally remark that, for the
AR(1)-latent models only, the MCMC algorithm may fail to converge if choosing a
value of σ2 larger than 0.25, as traceplots corresponding to latent variables for some
patients with too many zero responses diverged to ´8. This suggests that, in this case,
the latent variables, due to the lack of identifiability problem mentioned earlier, need
to be tightly controlled.
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AR(1)-latent AR(1)-latent-Y
3P 4P 4P

Prob. MCse Prob. MCse Prob. MCse
Y9,9 0.5412 0.0070 0.5226 0.0071 0.4550 0.0070
Y16,10 0.0934 0.0041 0.1036 0.0043 0.1354 0.0048
Y23,11 0.5698 0.0070 0.5532 0.0070 0.4530 0.0070
Y33,13 0.1038 0.0043 0.0992 0.0042 0.1392 0.0049

Y60,10 0.0688 0.0036 0.0680 0.0036 0.0744 0.0037
Y71,9 0.0590 0.0033 0.0498 0.0031 0.0724 0.0037
Y74,12 0.0532 0.0032 0.0526 0.0032 0.0684 0.0036

Table 3: Estimates of the predictive probabilities of a new measurements for subjects
9, 16, 23, 33 (PLACEBO) and 60, 71, 74 (TREATMENT), including Monte Carlo
standard errors.

2 4 6 8 10 12

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

Occasion

AR(1)−latent 4P placebo
AR(1)−latent 4P treatment
AR(1)−latent 3P placebo
AR(1)−latent 3P treatment
AR(1)−latent−Y placebo
AR(1)−latent−Y treatment

Figure 9: Predicted recurrence probabilities for a new placebo and a new treated patient
under different models.

To summarize, though the predictions for this particular dataset are quite robust to
the proposed models, we point out that the two approaches are actually very different.
As we mentioned before, the AR(1)-latent model is not Markovian while the AR(1)-
latent-Y model is. Moreover, the former presents similarities with the nonparametric
linear dynamic model by Caron et al. (2008), where they assume that the hidden state at
time t is a known linear combination of the hidden state at time t´1 plus an error which
is distributed as a Dirichlet process mixture of Gaussian distributions. The AR(1)-
latent-Y model does not seem to fit such structure. Of course, from a computational
point of view, the latter model yields a better mixing of the MCMC algorithm. Setting
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Figure 10: Posterior distributions of the number of components K in the mixture in the
AR(1)-latent 4P model when M “ 1 and H “ 30 (a) or H “ 50 (b), and when H “ 30
and M is Up0.5, 10q- (c) or trunc´ IGp2, 2q-distributed (d).

aside the problem of inference on the random measure G, which was not of interest for
these data, this seems to be the only practical difference between the two models.

4 Discussion

We have presented a framework for nonparametric modeling of either one or multi-
ple time series of observations. The model is based on dependent Dirichlet processes
(DDPs), where the dependence is on lagged responses. The proposal can be charac-
terized as using non-parametric Bayesian density regression, i.e., fully nonparametric
regression, to define the regression on lagged data in an autoregressive model. For the
sake of clarity, we have limited the presentation to simple implementations of the non-
parametric regression. A simplification of the models to a finite number of mixture
components was also discussed. The framework can be also applied to binary or ordinal
responses, where the key is to apply the model to sequences of latent variables defining
the observations. Applications to both types of data were considered.

We characterized and introduced the model as a DDP. However, it is worth re-
iterating that the model can alternatively be written as a simple DP mixture. We
showed this representation in (5). Recognizing this representation greatly simplifies
computation. We still prefer to think of the model as a special case of the DDP be-
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Figure 11: Posterior marginal distribution of 4P-AR(1)-latent model when H “ 30 and
M is Up0.5, 10q- (continuous) or trunc´ IGp2, 2q- distributed (dashed).

cause this highlights the nature of the problem as inference about a family of random
probability measures F “ tFyu.

The class of models considered here can adopt many different forms. The linear
dependence discussed in Section 2.1 is just one example. Higher order polynomials
or other nonlinear functions of lagged terms can be accommodated under the general
framework, for instance b-splines (Eilers and Marx 1996). Another option consists of in-
cluding dependence on p ě 2 lagged terms, i.e., a nonparametric ARppq model. Although
computational convenience is achieved by linearity assumptions on the autoregression
coefficients, the model for the point masses θhpyq in the DDP can be arbitrarily speci-
fied. In practice, however, one would like to retain some interpretability of the mixture
components, which poses some practical restriction on the way lagged terms enter the
model.

In the discussion and the examples we did not focus on inference for the random
mixing measure G in (6), as this is usually not an inference target. However, if such
inference were desired it could easily be obtained as part of the MCMC. Even without
the constraint to the finite DP with finite H, one could report inference on G by means
of the slice sampler proposed in Walker (2007) and Kalli et al. (2011).

Finally, extensions to the current approach include further comparison between dif-
ferent ways of specifying the dependence on lagged terms, assessing the number of lagged
terms to include in the autoregression, and multivariate formulations of the autoregres-
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Figure 12: Posterior marginal distribution of the total mass parameterM in the AR(1)-
latent 4P model when H “ 30 and M is Up0.5, 10q- (continuous) or trunc ´ IGp2, 2q-
distributed (dashed).

sive models. These and other topics are the subject of current research.
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Figure 13: Posterior marginal distribution of the regression parameters in the AR(1)-
latent-Y model when H “ 30 and M is Up0.5, 10q- (continuous) or trunc ´ IGp2, 2q-
distributed (dashed).
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