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A Bayesian Method for Estimating Evolutionary
History

Joungyoun Kim ∗, Nicola M. Anthony † and Bret R. Larget ‡

Abstract. Phylogeography is the study of evolutionary history among populations
in a species associated with geographic genetic variation. This paper examines the
phylogeography of three African gorilla subspecies based on two types of DNA
sequence data. One type is HV1, the first hyper-variable region in the control re-
gion of the mitochondrial genome. The other type is nuclear mitochondrial DNA
(Numt DNA), which results from the introgression of a copy of HV1 from the
mitochondrial genome into the nuclear genome. Numt and HV1 sequences evolve
independently when in different organelles, but they share a common evolutionary
history at the same locus in the mitochondrial genome prior to introgression. This
study estimates the evolutionary history of gorilla populations in terms of popula-
tion divergence times and effective population sizes. Also, this study estimates the
number of introgression events. The estimates are obtained in a Bayesian frame-
work using novel Markov chain Monte Carlo methods. The method is based on
a hybrid coalescent process that combines separate coalescent processes for HV1
and Numt sequences along with a transfer model for introgression events within a
single population tree. This Bayesian method for the analysis of Numt and HV1
sequences is the first approach specifically designed to model the evolutionary
history of homologous multi-locus sequences within a population tree framework.
The data analysis reveals highly discordant estimates of the divergence time be-
tween eastern and western gorilla populations for HV1 and Numt sequences. The
discordant east-west split times are evidence of male-mediated gene flow between
east and west long after female gorillas stopped this migration. In addition, the
analysis estimates multiple independent introgression events.

Keywords: divergence time, Mitochondrial sequence, HV1, Numt, Introgression,
Homologous sequences, Coalescence, Phylogeography, Population genetics, Phy-
logeny

1 Introduction

A central question of evolutionary biology since the time of Charles Darwin is the origin
of species. More generally, biologists are interested in the forces that shape evolutionary
diversity. Population genetics and phylogenetics are two major studies for a better un-
derstanding of the evolutionary history of the variety species. Population genetics is the
study of the gene frequency distribution in populations and its change under the influ-
ence of the four evolutionary forces: natural selection, genetic drift, mutation, and gene
flow (Hartl 2000). Phylogenetics is the study of evolutionary relatedness among vari-
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ous groups of organisms. The estimate of main interest in phylogenetics is a graphical
tree illustrating the ancestor-descendant relationship among groups. Phylogenetic infer-
ence methods can be applied to any polymorphic information, for example, nucleotide
DNA sequences, amino acid sequences and genetic or morphological markers. As an
integration of population genetics and phylogenetics, phylogeography aims to infer the
evolutionary past of contemporary populations, by estimating population divergence
times, population sizes, migration rates, and other aspects of historical populations on
the basis of molecular sequence data sampled from modern-day populations.

In this paper, we describe a model for the phylogeography of African gorilla popula-
tions based on the molecular evolution of mitochondrial DNA (mtDNA) sequence data.
Gorillas are restricted to tropical forest habitats and are not observed to cross open
savannah. As a consequence, historical changes in suitable habitat due to expansion
and retraction of forested areas during glacial cycles may have had a profound effect on
gorilla diversification and their current geographic distribution. The Pleistocene refuge
hypothesis (Haffer 1969; Anthony et al. 2007) states that during times of extensive
glaciation when large amounts of the planet’s water are trapped as ice, the climate in
tropical areas such as central Africa would have been much more arid than at present,
causing forests to fragment into isolated refugia. Forest dwelling species such as gorillas
would have become genetically isolated and undergone diversification over time. The
Pleistocene Epoch was a period of repeated glaciation dating from about 1.8 million
to 11,000 years before present. It is, therefore, of interest to see if the modern biogeo-
graphical distribution and genetic diversity of gorillas is consistent with the Pleistocene
refuge hypothesis. It is of particular interest to examine the question of whether or not
the time of divergence between eastern and western gorilla populations occurred during
the Pleistocene.

Jensen-Seaman and Kidd (2001) and Clifford et al. (2004) studied the phylogeogra-
phy of gorillas based on mtDNA. The latter authors estimated the east-mountain split
time as 0.316–0.443 million years ago (MYA) and even pointed out a bottleneck in east-
ern gorillas and mountain gorillas around 0.25 MYA and 0.22 MYA, respectively. Addi-
tional studies based on non-coding nuclear DNA revealed stronger geographic structure
in mtDNA than nuclear DNA, implying male-mediated gene flow after an initial split
between eastern and western gorilla populations (Jensen-Seaman et al. 2001; Thalmann
et al. 2007). Thalmann et al. (2007) estimated an initial east-west split time around
at 0.9–1.6 MYA and subsequent male-mediated gene flow until 0.08–0.2 MYA. Further-
more, they estimated that the effective population sizes for all gorillas, western gorillas,
and eastern gorillas as 26,600, 24,100, and 13,600, respectively.

All the estimates of population divergence times mentioned above are obtained from
phylogenetic inference with multiple sequences from each population, without consider-
ing population structures on sequence data. Therefore, the estimates of the east-west
split time are gene divergence times rather than population divergence times. Also,
in the studies above, population sizes are estimated by converting nucleotide diversity
(Nei and Li 1979) to population size. Nucleotide diversity, π, measures the degree of
genetic polymorphism within a population. It is defined as the proportion of nucleotide
differences per site between any two DNA sequences chosen randomly from the sam-
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ple population. The conversion from π into population size N is by the relationship
π = 4Nµ (Tajima 1983), where µ is the mutation rate per generation. The rate µ must
be assumed to have some known value. Since mutation rates are not known, phylo-
geographic inference methods can be improved by using new models which explicitly
describe population structures of sampled sequences and infer population divergence
times and population sizes jointly based on DNA sequence data.

Markov chain Monte Carlo (MCMC)-based Bayesian inference allows one to jointly
estimate population sizes and population divergence times. The Bayesian estimates
are based on samples from the posterior distribution which is the combination, using
Bayes’ Theorem, of the prior distribution for the population structure including di-
vergence times and population sizes, the gene genealogy under the coalescent model,
and the parameters from nucleotide substitution, and the likelihood of the data. The
software BEAST (Drummond et al. 2002; Drummond and Rambaut 2007) is widely
used for MCMC analysis of molecular sequences from a population. BEAST does not
consider multiple populations; however, it can provide estimates of time to the most
recent common ancestor (tMRCA) for each user defined taxa group. Also, BEAST im-
plements a variety of nucleotide substitution models, for example, combining multiple
genes, partitioning data into three codon positions, various site-heterogeneity models,
various models for the changes in the population size over time, and so on. Rannala and
Yang (2003) estimate divergence times and effective population sizes for a four-taxon
tree of great apes. Their more recent work (Yang and Rannala 2006; Rannala and Yang
2007) accommodates larger trees, soft constraints induced by fossils, and relaxations of
the molecular clock. Nielsen and Wakeley (2001) and Hey and Nielsen (2007) developed
the Isolation with Migration (IM) model which accounts for both equilibrium isolation
and migration. Their approach estimates divergence times between two populations,
effective population sizes of the two descendant populations and their ancestor popula-
tion, as well as migration rates, but their method can not easily be extended to larger
trees. All of the above models can work with multi-gene data provided that each gene is
assumed to be independent with a separate gene-genealogy in the common population
tree.

The model we develop in this paper advances related work by others for reconstruct-
ing past population dynamics by accounting for a special feature of gorilla mitochondrial
DNA (mtDNA) sequences. Efforts to sample mtDNA sequences from gorillas frequently
produce nuclear sequences that are homologous to mtDNA from past introgressions of
mitochondrial sequences into the nuclear genome. These nuclear sequences of mitochon-
drial origin are known as Numts (Nuclear mitochondrial DNA, pronounced new might).
An important contribution of this study is the development of models that describe the
homologies (relatedness by descent from a common ancestor) among Numt and mtDNA
sequences by accounting for these ancient introgressions and the use of these models
to infer the phylogeny of populations on the basis of homologous mtDNA and Numt
sequences. Furthermore, the new models described in this paper are practical for more
complex trees than those allowed by other previous methods. The computational foun-
dation necessary for the implementation of these new models is a class of new Bayesian
Markov chain Monte Carlo (MCMC) proposal algorithms designed specifically to match



920 Estimation of Evolutionary History

characteristics of samples of mtDNA and homologous Numt sequences.

In section 2, we describe the background of gorilla populations and the special char-
acter of our data set. Section 3 illustrates detailed descriptions of the models and
parameters. Also the details of simulation study is explained. The results are summa-
rized in section 4, and then discussion follows in section 5. The supplemented contents
are in appendices.

2 Data

Our inference about gorilla phylogeography is based on DNA sequence data. As men-
tioned before, we have two types of DNA sequence data available for this study; HV1,
the first hyper-variable region of the control region of the mitochondrial genome, and
Numt sequences homologous to HV1 from one or more past introgressions. More de-
tails about HV1 and Numt sequences, and the relationship between these two kinds of
sequences follow.

2.1 HV1

HV1 is a widely-used genetic marker for studies of populations of great apes because
the rate of nucleotide substitution is fairly high, providing information about relatively
recent events on an evolutionary time scale. Another advantage to using HV1 is that,
as a part of mtDNA, it is believed to represent a single non-recombining locus, so that
genealogical trees depicting relationships among variants may be constructed and traced
back to an ancestral type. In addition, HV1 is expected to evolve under neutral selection
because it is in a non-coding region and has no known regulatory function.

2.2 Numt

Numt sequences arise from the introgression of mtDNA into the separate nuclear genome
of a eukaryote organism. The few Numts that arise from HV1 will be homologous to
HV1 (Lopez et al. 1994). As whole genome sequencing projects accumulate, increasingly
many Numts have been detected in many diverse eukaryotic organisms (Bensasson et al.
2001; Ricchetti et al. 2004; Richly and Leister 2004).

Numts have the potential to improve inferences about the evolutionary history of
mtNDA because they are thought to behave as a molecular fossil. Since the substitution
rate in nuclear DNA is typically much slower than in mitochondrial sequences (Brown
et al. 1982; Zischler et al. 1995), Numt sequences today may be more similar to ancestral
HV1 sequences than the HV1 sequences we measure today (Thalmann et al. 2005).

In addition to the substitution rate, Numt sequences have different inheritance mech-
anisms than HV1 due to the different inheritance mechanisms between genomes in the
nucleus and the mitochondria. Almost always, mtDNA is maternally inherited as a
single copy allele, known as a haploid. In contrast, the nucleus is passed to the de-
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scendant with two copies, known as diploids, one from a mother and another from a
father. Therefore, the numbers of alleles participating in the inheritances are different
for each of Numt and HV1 sequences, even in the same population. For example, if
we assume an equal ratio of numbers of males and females in a population, the total
number of Numt alleles available for inheritance is four times larger than the number
of HV1 sequences.

For these reasons, special care is needed in an analysis using both Numts and HV1.
The model in this paper takes account of the separate mutation and inheritance pro-
cesses between Numt and HV1 sequences as well as their homologous evolution history.

2.3 DNA data from gorilla, human and chimpanzee

This paper analyzes the 125 gorilla DNA sequences described in Anthony et al.(2006)
who compiled the data from several previously published sources, removed putative
polymerase chain reaction (PCR) recombinants, and classified remaining sequences as
Numt or HV1. Thus, 125 gorilla DNA sequences would be provided in a supplemented
file.

Some sequences are extracted from shed hair samples collected from night nests of
gorillas, and several of the sequences are from zoo specimens. Samples through the
entire gorilla range were collected over a period of several years through collaborations
with researchers from existing study sites (Clifford et al. 2004). We follow a classifi-
cation of gorillas into three subspecies (Groves 1967, 1970), western lowland gorillas
(Gorilla gorilla gorilla), eastern lowland gorilla (G. g. graueri), and mountain goril-
las (G. g. beringei), recognizing that western lowland gorillas are comprised of many
natural populations with significant diversity among them (World Wildlife Foundation
2008).

We add to this data set six chimpanzee HV1 sequences and ten human HV1 sequences
obtained from GenBank(Benson et al. 2011) to allow us to calibrate the gorilla diver-
gence times with prior information about human and chimpanzee divergence. The chim-
panzee sequences (Hu et al. 2001; Thalmann et al. 2004) are from three subspecies: Pan
troglodytes verus or western common chimpanzee (AF315497, AF315499, AJ586557); P.
t. vellerosus Nigerian chimpanzee (AF315498); and P. t. troglodytes or central common
chimpanzee (AF315500 and AJ586556). The human sequences (AF346963, AF346972,
AF346977, AF346978, AF346981, AF346983, AF346987, AF346993, AF347009, and
AF347015) are a subset of 53 sequences sampled from humans of diverse origins (Ing-
man et al. 2000).

We aligned the sequences using Clustal W (Thompson et al. 1994) and, following
Anthony et al. (2006), removed a 26-base pair (bp) portion of the alignment containing
the poly-cytosine (poly C) motif which contains many gaps useful for distinguishing
Numt and HV1 sequences, but is difficult to align with confidence. The final alignment,
which consists of 236 sites for 141 sequences partitioned into seven species or subspecies
and two types, is summarized in Figure 1.
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Figure 1: The population tree for seven populations. The displayed tree shows
the assumed relationship among three gorilla populations, W, E and M, three chim-
panzee populations, Wc, N and C, and one human population, H. The numbers in the
parentheses are the number of HV1 sequences and the number of Numt sequences sam-
pled from each population, respectively. Ei indicates a population edge, and Tx is the
population divergence time of descendant of population x (measured in MYA).

3 Model parameters

3.1 Divergence times

The main interests in this study are the divergence times of three gorilla populations.
The estimates of divergence times can be evidence of the change of forest habitat dis-
tribution during a period of glaciation and ice ages. In addition to gorillas, human and
chimpanzee are included in this phylogeograpy model as populations for calibration,
because human and chimpanzee have abundant literature about their divergence time.

Our Bayesian approach requires specification of a prior distribution on the diver-
gence times in the population tree. The population tree and divergence times are
shown in Figure 1. We assume that the split time between human and chimpanzee,
THC, is uniformly distributed in the interval (4, 6) million years ago (MYA) (Tamura
and Nei 1993; Takahata et al. 1995), and that the divergence time of gorilla from the
human/chimpanzee ancestor, TGHC, is also uniformly distributed in the interval (THC,
9) MYA (Vigilant et al. 1991).
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Within gorilla, three gorilla populations have been recognized, western lowland go-
rilla (W), eastern lowland gorilla (E), and mountain gorilla (M). Western lowland gorillas
are separated from eastern subspecies of eastern lowland gorilla (E) and mountain go-
rilla (M) by more than 850km. Eastern lowland gorilla and mountain gorilla are so close
ecologically and genetically that they are called eastern gorilla as opposed to western
gorilla. Therefore, we assume that western lowland gorillas diverged first at time TWEM

and then eastern lowland gorillas and mountain gorillas diverged more recently at time
TEM (i.e, TEM ≤ TWEM).

We assign a scaled joint Beta prior distribution on the times TEM and TWEM given
TGHC with TEM ≤ TWEM

TEM = min(b1, b2)× TGHC,

TWEM = max(b1, b2)× TGHC,

where b1 and b2 ∼ i.i.d. Beta(0.1, 1.0). The Beta(α, β) density is

Beta(x | α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1.

Similar to the subdivisions in gorilla, we have two subdivisions within chimpanzee,
resulting in western chimpanzee (Wc), Nigerian chimpanzee (N), and central chimpanzee
(C). The structure among human and the three chimpanzee populations is assumed to
be (((Wc, N), C), H). The times TChimp1 and TChimp2 represent divergence times between
Wc and N and between (Wc, N) and C, respectively. Given the human-chimp split time
THC and TChimp1 ≤ TChimp2, the prior distributions on TChimp1 and TChimp2 are

TChimp1 = min(b3, b4)× THC,

TChimp2 = max(b3, b4)× THC,

where b3 and b4 are distributed i.i.d. from the Beta(0.1, 1.0) distribution.

Collectively, we let T ={ TEM, TWEM, TChimp1, TChimp2, THC, TGHC} represent all
six divergence times. Then the joint prior distribution of T is

f(T ) = f(THC)f(TGHC | THC)f(TEM, TWEM | TGHC)f(TChimp1, TChimp2 | THC).

3.2 Effective population size and coalescent rate

The effective population size, N , is defined as the number of breeding individuals in an
idealized population that would show the same amount of dispersion of allele frequencies
under the neutral selection model (Wright 1931, 1938), and is a basic parameter in many
models in population genetics. For example, in the standard continuous-time coalescent
theory, coalescent times are measured in units of 2N generations for diploid alleles.
That is, the standard coalescent time tk, the waiting time until the next coalescent
event when there are k current sequences, has the exponential density function

f(tk) =

(
k

2

)
e−(k2)tk ,
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where time tk is measured in units of 2N generations.

In most literature on population genetics, population sizes are estimated through
nucleotide diversity (Nei and Li 1979), based on the relationship π = 4Nµ (Tajima
1983). However, in this paper, an effective population size is estimated by converting a
coalescent rate. A coalescent rate is a scale factor to change the unit of coalescent time
from 2N generations into MYA which is easier to interpret. With a coalescent rate θ,
the time is converted into MYA and the density function of the newly scaled time, tk,
is

f(tk) =

(
k

2

)
θe−(k2)θtk .

For this conversion, a coalescent rate is defined as

θ =

{
1/(2N × g × 10−6) for Numt sequences,
1/(Nf × g × 10−6) for HV1 sequences,

whereN is the effective population size of a population andNf is the effective population
size of female individuals in the same population. A larger coalescent rate results in
a shorter coalescent time. Since our model allows a separate population size for each
population, a separate coalescent rate is used in each population. Let θi denote the HV1
coalescent rate of population edge i in Figure 1. Then the Numt coalescent rate of edge
i is θi/4 provided Nf = N/2. The effective population size Ni of edge i is estimated
through the estimate of θi and an assumed generation time.

We consider θi as random and assign a prior distribution for θi that is the distribution
function of the ratio of independent exponential random variables. The distribution of
the ratio of two independent exponentials is

P

(
X1

X2
≤ x

)
= 1− 1

1 + λx
,

where X1 ∼ exp(λ) and X2 ∼ exp(1). Then the density function of this ratio of
exponentials prior distribution with a positive hyper parameter λ is

f(x | λ) =
λ

(1 + λx)2
, x ≥ 0.

The proof is in Appendix 1.

The advantage of this ratio prior distribution is that it is weakly informative because
it is relatively flat on (0, ∞), but is proper. It does not have a mean value, but it is
easy to calculate quantiles, and in particular, the median is 1/λ. Therefore, the prior
median of θi with the hyper parameter λθ is 1/λθ, implying the prior median of Ni is
λθ× 100, 000 if the generation time g is assumed as 20 years. To loosen the dependence
of the inferences on a particular choice of λθ, we model λθ ∼ Beta(1, 2). The density
function of Beta(1, 2) is linearly decreasing from two to zero with the mean 0.33. This
corresponds to a marginal prior median for Ni of about 33,000.
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Collectively, let θ = (θ1, · · · , θ13, λθ). Then the joint distribution of θ is

f(θ) = f(λθ)f(θ1, · · · , θ13 | λθ)

= Beta(λθ | 1, 2)×

{
13∏
i=1

f(θi | λθ)

}
.

More details about the use of coalescent rates are described in the hybrid coalescent
process of section 3.5.

3.3 Transfer rate

Coalescent rates introduced in the previous section are used in the generation of an
inheritance relationship among homologous alleles in a single lineage. In addition to the
separate coalescent processes for Numt and HV1 sequences, the model needs to account
for the pre-introgression homologies. For this purpose, we develop a new model, called
a transfer model. An introgression event occurs when mtDNA is copied into a nuclear
genome in the past. However, in the transfer model, the introgression event is viewed
backward in time to be able to jointly model it with the coalescent processes. We model
the transfer waiting time with an exponential distribution with a parameter η, called
a transfer rate. The transfer event is available on the oldest ancestral lineages of each
Numt group after all the members in the group coalesce into a single Numt lineage. Let
l be the number of the oldest ancestral Numt lineages which are available for the next
transfer event. Then the density function of the waiting time until the next transfer
event is defined as

f(tl) =

(
l

1

)
ηe−(l1)ηtl ,

where a transfer rate η is interpreted as the mean number of introgressions per MY,
then 1/η means the duration time until the next introgression events measured in MY.

A common transfer rate is used for all populations. We also use a ratio of exponen-
tials prior distribution for the transfer rate η. The hyper parameter for this distribution,
λη, should reflect the range of likely values (we use λη = 10). The ratio of exponentials
prior distribution on η with the hyper parameter 10 corresponds to the ratio of exponen-
tials prior distribution on 1/η with the hyper parameter 1/10, resulting in the posterior
median 10. The right skewed distribution of the ratios of the exponentials with median
10 seems to cover quite a broad range for the duration time until an introgression. It
covers the range 0–10 MY with probability 0.5.

Section 3.5 provides details about how to develop a homologous evolutionary re-
lationship among Numt and HV1 sequences based on the coalescent theory and the
transfer model.
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Figure 2: An example of hybrid coalescent processes in a population tree
with three taxa. Solid lines represent HV1 evolution, and dashed lines are for Numt
evolution. The change from a dashed line into a solid line represents the transfer event.
Interevent time ti’s and population divergence time Tx’s are measured in units of MY.
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3.4 Numt partition

We assume a single introgression event on a lineage and do not allow the inverse of it.
Since introgression events are assumed to be independent of each other, we do not allow
for descendants of an introgression to coalesce with lineages under another introgression
event given introgression events. In other words, a Numt coalescent event can occur
only within the same Numt group. Also a Numt transfer event is available only on a
lineage which is the oldest ancestor of each Numt group. Therefore, a Numt transfer
event can happen only after all Numt lineages coalesce into a single lineage.

We model this partition of n Numt taxa given k introgression events, Pt(n | k), using
the Dirichlet process prior, Dirichlet(Pt(n | k) | α)=Dirichlet(n1, · · · , nx, · · · , nk | α)

with probability density
αk
∏k
i=1(ni−1)!

An(α) where An(α) = α(α + 1)(α + 2) · · · (α + n− 1).

Let ni denote the number of taxa belonging to i–th Numt group, and n =
∑k

1 ni. In the
example of Figure 2, there are 5 Numt taxa at 0 MYA, that is, n = 5 in total, and two
Numt groups (i.e, k = 2). One group has two Numt taxa, W3 and W4 with the group
size n1 = 2. The other group has three Numt taxa, W5, E1 and E2 with the group size
n2 = 3. Then the Numt partition in Figure 2 is denoted as Pt(5 | 2) = (2, 3).

3.5 Gene genealogy derived from the hybrid coalescent process

In this section, we describe how to build a gene genealogy, representing the inheritance
relationship among alleles, for Numt and HV1 sequences. The gene genealogy, G, is
represented by the tree topology and branch lengths. In our model, the tree topology
and branch lengths are specified by histories of HV1 coalescence, Numt coalescence, and
Numt transfer events over the population tree. Events are generated from the present
time to the ancestral state looking backward in time.

We call the combination of the HV1 coalescent process, Numt coalescent process
and Numt transfer event the “hybrid coalescent process”. A hybrid coalescent process
is a Markov process going backward in time. Suppose there are m HV1 sequences and
the partition of n total Numt taxa into k Numt groups is Pt(n | k) = (n1, · · · , nk),

where n =
∑k
i=1 ni. The population is assumed to have coalescent rates θHV1 and

θNumt for HV1 and Numt sequences, respectively, and a transfer rate η. Suppose there
are m(c) HV1 lineages, ni(c) Numt lineages for the i–th Numt group (1 ≤ i ≤ k) at
the current state in a population, we only count lineages available for the next hybrid
coalescent events in the population no matter what the histories other populations have.
For example, at the beginning of population WEM at time TWEM MYA in Figure 2,
two HV1 lineages (m(c) = 2) and two Numt lineages are entering the population. And
both of the two Numt lineages belong to the Numt group with taxa (W5, E1, E3)
(n2 = 3). According to the order in the previous section, we have n1(c) = 0 and
n2(c) = 2. Then, in Figure 2, the state of population WEM at time TWEM is denoted
as (m(c), n1(c), n2(c)) = (2, 0, 2).

Let the current state be denoted as (m(c), n1(c), · · · , nx(c), · · · , nk(c)). The allowed
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transitions from the current state are
(m(c) − 1 , n1(c), · · · , nx(c) , · · · , nk(c)) if m(c) ≥ 2 : (S1),
(m(c) , n1(c), · · · , nx(c) − 1 , · · · , nk(c)) if nx(c) ≥ 2 : (S2),
(m(c) + 1 , n1(c), · · · , nx(c) − 1 , · · · , nk(c)) if nx(c) = 1 : (S3).

We use bold to emphasize the change after each transition. (S1) corresponds to the
state that the total number of HV1 lineages are reduced into m(c)− 1 from m(c) after
an HV1 coalescence. (S2) is the result of a Numt coalescence in the Numt group with
nx(c) Numt lineages at the current time. The transition into (S3) illustrates a Numt
transfer event on the ancestral edge of the Numt group with nx taxa. We assumed a
Numt transfer event is available on the oldest ancestral lineages of each Numt group.
The condition nx(c) = 1 means all the nx Numt taxa in the group have coalesced into
a single lineage, and the oldest ancestral Numt lineage is waiting for a transfer event.

In population WEM of Figure 2, the state at time TWEM is (m(c), n1(c), n2(c)) =
(2, 0, 2). At time TWEM +x1, the state of (m(c), n1(c), n2(c)) changes into (2, 0, 1) after
a transition (S2). At time TWEM + x1 + x2, the state (m(c), n1(c), n2(c))) becomes
(3, 0, 0) after a transition (S3). And then sequential transitions of (S1) at time TWEM +
x1 + x2 + x3 and at time TWEM + x1 + x2 + x3 + x4 result in the states (2, 0, 0) and
(1, 0, 0), respectively.

We model the duration time for a transition with an exponential density. Note
min(X,Y ) ∼ exp(a+ b) when X ∼ exp(a), Y ∼ exp(b) and X and Y are independent.
We assume the three transitions (S1), (S2) and (S3) are independent given the current
state in a population edge. Then the duration time for a transition has an exponential
density with rate (

(
m(c)

2

)
θHV1 +

∑k
i=1

(
ni(c)

2

)
θNumt + {

∑k
i=1 Ini(c)=1}η) where Ini(c)=1 is

1 if ni(c) = 1 and 0 otherwise. If a transition is chosen, this change is reflected on the
construction of a gene-genealogy either by combining two randomly selected lineages
into a single coalescent lineage or by changing a Numt lineage into an HV1 lineage.

Following is the hybrid coalescent algorithm to generate a gene genealogy in a single
population edge with m(c) HV1 lineages and (n1(c), · · · , nk(c)) Numt lineages available
at the present. B denotes the edge length of the population.

1. Set the cumulative interevent time S = 0.

2. Calculate

a =

(
m(c)

2

)
θHV1, b =

k∑
i=1

(
ni(c)

2

)
θNumt and c = {

k∑
i=1

Ini(c)=1}η.

3. Generate a waiting time (i.e., interevent time) for a hybrid coalescent process from
an exponential distribution with a rate (a+ b+ c) from 2 and add it to S.

4. If the cumulative interevent time S exceeds the population edge length, B, ig-
nore the event and pass all the lineages to the ancestral population, then stop.
Otherwise, continue.
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5. Choose an event type randomly with probability ( a
a+b+c ,

b
a+b+c ,

c
a+b+c ) for HV1

coalescent, Numt coalescent, and Numt transfer, respectively. If Numt coales-
cent is selected, we need to pick up a Numt group at random with probabilities

(ni(c)2 )∑k
i=1 (ni(c)2 )

. If Numt transfer event is the next transition, we also need to pick up

a Numt group uniformly at random among the Numt groups satisfying nx(c) = 1.

6. Randomly choose gene-lineage(s) corresponding to the event. If the chosen event
is a coalescent event, then two lineages with the same sequence type are selected
uniformly at random, and the two sequences are combined to a single lineage,
representing their ancestral lineage. Now, the two lineages are not considered
in the remaining process. Instead, their ancestral lineage joins the rest of the
processes, therefore, the number of lineages is reduced by one (either m(c) →
m(c)− 1 or nx(c)→ nx(c)− 1 for some x). If the chosen event is a Numt transfer
event, the Numt lineage corresponding to the Numt group selected in 5 is treated as
an HV1 lineage (m(c)→ m(c)+1 and nx(c)→ 0 for some x satisfying nx(c) = 1).

7. Stop when m = 1, n =
∑k
i=1

(
ni(c)

2

)
= 0 and

∑k
i=1 Ini(c)=1 = 0. Otherwise, go to

2.

Now, we use H to refer to the whole hybrid coalescent process history to determine
a gene genealogy G over the population tree. Then the probability to have a gene
genealogy G is equal to the probability to have such hybrid coalescent process history
over the population tree, that is, f(G|T ,θ, η, Pt) = f(H|T ,θ, η, Pt). Then, H = ∪iHi

where Hi is the hybrid coalescent process history of population edge Ei. We also define
HD
i as the histories of all edges descendant to edge i. Given HD

i , we assume the hybrid
coalescent process history Hi in population edge i is independent of Hj if i 6= j. For
example, in Figure 2, the history in population W is independent of the history in
population EM. Then the probability density of a gene genealogy G generated by the
hybrid coalesce history H is obtained as

f(G|T ,θ, η, Pt) = f(H|T ,θ, η, Pt)
=

∏
i

f(Hi|T ,θ, η,HD
i , Pt).

For example, the probability in the population WEM, f(HWEM | T ,θ, η,HD
WEM, Pt) is
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as following,

f(HWEM|T ,θ, η,HD
WEM, Pt) =

(
2
2

)
θNumt

r1
× r1e−r1x1 × 1(

2
2

)
×

(
1
1

)
η

r2
× r2e−r2x2 × 1(

1
1

)
×

(
3
2

)
θHV1

r3
× r3e−r3x3 × 1(

3
2

)
×

(
2
2

)
θHV1

r4
× r4e−r4x4 × 1(

2
2

)
= e−(r1x1+r2x2+r3x3+r4x4) × θNumt × θHV1

2 × η,

where

r1 =

(
2

2

)
θHV1 +

(
0

2

)
θNumt +

(
2

2

)
θNumt +

(
0

1

)
η,

r2 =

(
2

2

)
θHV1 +

(
0

2

)
θNumt +

(
1

2

)
θNumt +

(
1

1

)
η,

r3 =

(
3

2

)
θHV1 +

(
0

2

)
θNumt +

(
0

2

)
θNumt +

(
0

1

)
η,

r4 =

(
2

2

)
θHV1 +

(
0

2

)
θNumt +

(
0

2

)
θNumt +

(
0

1

)
η.

Note
(

0
2

)
= 0 and

(
1
2

)
= 0. So far, we have introduced how to generate a gene-genealogy

with the hybrid coalescent process given the population structure, the number of se-
quences of each in each tip, and the coalescent and transfer rates. In section 3.6, we
describe how this evolutionary tree is used in the evaluation of the likelihood of DNA
sequence data.

3.6 Computing the Likelihood

Let D={Di} be the entire data set, where Di represents the sequence alignment at site
i, (i=1, · · · , 236 for our data). The probability of DNA sequence data (D) given gene
genealogy (G), divergence times (T ), Numt partition (Pt) and all other parameters
(Θ={θ1, · · · , θ13, λθ, η, µHV1, µNumt, κHV1, κNumt}) is the traditional likelihood in
phylogenetics,

f(D | T ,Θ, G, Pt) =

236∏
i=1

f(Di | T ,Θ, G, Pt),

where each site Di is assumed to be independent of one another, and f(Di | G,T ,Θ, Pt)
is the likelihood for i–th site based on the nucleotide substitution model (Felsenstein
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1981). Here we use the HKY model (Hasegawa et al. 1985) allowing separate transition
and transversion rates. We incorporate substitution rates and transition-transversion
rates for each of HV1 and Numt sequences, and they are µHV1, µNumt, κHV1 and κNumt.

Let’s say the transition probability Pij(t | µ, κ) is the probability that the base at
a single site changes from state i to state j after time t MY(million years) based on
the HKY model with a substitution rate µ and a transition-transversion ratio κ. If a
sequence lineage has a transfer event on it, then the lineage has two parts with different
evolutionary processes. The part of the lineage close to the present time evolves as a
part of a nucleus genome and the other part evolves in a mitochondrial genome. If the
partial branch length as an HV1 is t1 and the partial branch length as a Numt is t2,
the transition probability on this lineage is

Pij(t1 + t2 | µ,κ) =
∑

k∈{A,C,G,T}

Pik(t1|µHV1, κHV1)× Pkj(t2|µNumt, κNumt),

where µ=(µHV1, µNumt) and κ=(κHV1, κNumt). We model µHV1, µNumt, κHV1 and
κNumt with independent ratio of exponentials prior distributions using separate hyper
parameter values.

The pruning algorithm Felsenstein (1973) and Felsenstein (1981) enables rapid and
practical computation of the likelihood of a phylogeny. Even using the partial likelihood
modified by Larget and Simon (1999), we can speed up the computation.

To take account of variability in substitution rates over sites, we implemented the
discrete Gamma rate variation model (Yang 1994). Then the complete likelihood is

f(D|G,Θ,T , Pt) =

236∏
i=1

{
4∑

x=1

1

4
f(Di | G,T , qx × µ,κ, Pt)

}
,

where qx is the 2×x−1
8 quantile of a Gamma (0.2, 0.2) distribution, which has 1 as its

mean value and density function

Gamma(x | α, β) =
1

Γ(α)
βαe−βxxα−1.

In the next section, we describe how the prior distributions of parameters and the
likelihood from a sequence tree are integrated in Bayesian inference.

3.7 Bayes estimation of parameters

The state space of our model can be represented as (T , Θ, G, Pt), where T is the pop-
ulation divergence times, Θ= {θ1, · · · , θ13, λθ, η, µHV1, µNumt, κHV1, κNumt} are other
numerical parameters, G is the sequence genealogy, and Pt(· | ·) is the Numt partition.
Bayesian inference over the state space (T , Θ, G, Pt) given data is based on the pos-
terior distribution f(T ,Θ, G, Pt | D). Based on the Bayes Theorem, f(T ,Θ, G, Pt | D)
can be evaluated as

f(T ,Θ, G, Pt | D) =
f(D | T ,Θ, G, Pt)f(G | T ,Θ, Pt)f(T )f(Θ)f(Pt)∫

(T ,Θ,G,Pt) f(D | T ,Θ, G, Pt)f(G | T ,Θ, Pt)f(T )f(Θ)f(Pt)
.
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However, exact calculation of
∫

(T ,Θ,G,Pt) f(D | T ,Θ, G, Pt)f(G | T ,Θ, Pt)f(T )f(Θ)f(Pt)

is infeasible. Therefore, we use Markov chain Monte Carlo (MCMC) (Hastings 1970)
which only requires calculation of f(D | T ,Θ, G, Pt)f(G | T ,Θ, Pt)f(T )f(Θ)f(Pt), the
product of the likelihood and the prior distributions. Note

f(Θ) = {
13∏
i=1

f(θi | λθ)}f(λθ)f(η)f(µHV1)f(µNumt)f(κHV1)f(κNumt).

For the Bayesian inference, the MCMC algorithm constructs a Markov chain whose
stationary distribution is f(T ,Θ, G, Pt | D) by proposing a new state (T ∗, Θ∗, G∗, P ∗t )
with proposal density q(· | T ,Θ, G, Pt). The new state is accepted with probability

R = min

{
1,
f(T ∗,Θ∗, G∗, Pt

∗ | D)

f(T ,Θ, G, Pt | D)
× q(T ,Θ, G, Pt | T ∗,Θ∗, G∗, P ∗t )

q(T ∗,Θ∗, G∗, P ∗t | T ,Θ, G, Pt)

}
.

The proposal density q can be rather flexible as long as it specifies an aperiodic and
irreducible Markov chain. The proposal density we use for T , G and Pt is a mixture
of many small proposals, each of which proposes changes to small subsets of the full
set of parameters, like modifying population divergence times, modifying the hybrid
coalescent history in a population, changing the number of transfer events, pruning and
re-grafting of gene genealogy and re-scaling the whole trees. More details about the
complete set of MCMC proposals are in Appendix 2. For a numerical parameter in Θ,
a parameter is chosen at random with a probability 0.5/13 for Ni and a probability
0.5/6 for λθ, η, µHV1, µNUMT, κHV1 and κNUMT right after every proposal of (T, G,
Pt). Given the choice of a parameter in Θ, a new state is proposed as the product of the
current value and a random multiplier from a gamma(2, 2) distribution, independently
from the others.

3.8 Verification

We have implemented the new method in a program written in C++. Implementation
of complex MCMC methods requires careful validation to ensure both that the desired
acceptance probabilities are correct and the proposal methods are accurately coded.
To validate the MCMC algorithm, we undertook several approaches. First, we verified
that the method could sample from the prior distribution ignoring the sequence data by
evaluating its likelihood to be one across the entire state space. The sample was con-
sistent with the prior distribution. Secondly, we used Gelman and Rubin’s convergence
diagnostic (Gelman and Rubin 1992) implemented in R, which monitors convergence
of MCMC output based on a comparison of within-chain and between-chain variances.
Approximate convergence is diagnosed when the upper limit is close to one. Six MCMC
chains with different starting points are sufficiently consistent for us to be confident in
the good mixing in MCMC chains with the eight proposal methods.

The results presented in the next sections are from the combined samples from six
MCMC runs. Each MCMC run discards the initial 10,000,000 sample points as burn-in,
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Population Numt I Numt II HV1

W 1, 2, 3 4, 5, 6 7, 8, 9
E 10, 11, 12 13, 14, 15 16, 17, 18
M 19, 20, 21
H 22
Wc 23
N 24
C 25

Table 1: The sequence id’s of the simulated data by populations and by types.

and then subsamples every 1000–th state from the next 10,000,000 states in each chain.
Inferences are based on the remaining 60,000(=10, 000×6) sampled trees. See Appendix
3 for the result from each chain.

3.9 Simulation study

We performed a simulation study to check the efficacy of our method. We use the same
population structure as Figure 1. We generated 25 DNA taxa in total, and assumed that
each sequence has 100 nucleotide bases. Three HV1 sequences were assigned in each of
the gorilla population W, E and M. In the other populations, a single HV1 sequence
was assigned in each. We consider two groups of Numt sequences, defined by separate
introgression events. The Numt groups are named Numt I and Numt II, respectively.
Each of the gorilla populations W and E has six Numt sequences, in total, three from
Numt I and another three from Numt II. We mimic the real data which do not have
any Numt sequences in the populations other than the gorilla populations W and E.
Table 1 shows the distribution of simulated data over the seven populations, providing
the id of each taxon. After assigning the sequences into the populations and setting the
model parameters, we ran the hybrid coalescent process to generate the gene-genealogy
with 25 taxa.

On each site of the root node, a nucleotide base was determined at random with the
probabilities 0.3156, 0.3577, 0.1077 and 0.2190 for A, C, G and T, respectively. These
probabilities are obtained empirically from our gorilla data. Given the gene-genealogy
and the nucleotide bases of the root node, we can generate the nucleotide bases of
all the internal and terminal nodes based on the transition probabilities introduced in
section 3.6. The list of nucleotide bases of each taxon becomes the sequence data, on
which our method can be applied. This simulated data is available in a supplemented
file. For the hyperparameter α in the Dirichlet process about the Numt partition, we
used 0.5, accounting for the fewer sequences than the real data.

We ran six MCMC chains with the different starting points, selected randomly from
each prior distribution. Each chain has length 1,000,000 and the first 100,000 were
discarded as burn-in. We sampled every 1000–th state, then each chain generated 900
states as posterior samples. We checked the convergence of the six MCMC chains with
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Numt-HV1 case only-HV1 case

mean median 95% C.R. mean median 95% C.R.

Population divergence time

TEM 0.485 0.409 (0.105, 1.22) 0.673 0.634 (0.133, 1.5)
TWEM 1.14 1.08 (0.54, 2.02) 3.8 3.75 (1.33, 6.62)
Tchimp1 0.481 0.34 (5.98e-08, 1.6) 0.515 0.372 (5.9e-08, 1.7)
Tchimp2 1.45 1.45 (0.209, 2.55) 1.49 1.48 (0.00765, 2.7)
THC 4.77 4.67 (4.03, 5.88) 4.92 4.88 (4.04, 5.93)
TGHC 7.97 8.18 (5.85, 8.97) 7.61 7.79 (5.35, 8.95)

Effective population sizes

N1 (W) 128000 122000 (73100, 213000) 118000 113000 (61900, 203000)
N2 (E) 40500 36800 (15800, 87000) 22800 20100 (7400, 53100)
N3 (M) 12700 10200 (2580, 37900) 12700 10100 (2450, 38700)
N4 (H) 81400 73000 (31600, 180000) 78700 69900 (29000, 177000)
N5 (Wc) 657000 71300 (4550, 2010000) 656000 63800 (3430, 1330000)
N6 (N) 435000 49200 (1030, 2010000) 577000 40800 (831, 1630000)
N7 (C) 1530000 83600 (17400, 986000) 158000 75200 (15000, 749000)
N8 (EM) 562000 87500 (2460, 2070000) 56900 25800 (717, 295000)
N9 (WEM) 59600 56000 (29100, 111000) 129000 38100 (854, 578000)
N10 (Chimp1) 144000 69800 (2490, 611000) 217000 65600 (1640, 681000)
N11 (Chimp2) 59200 29500 (864, 296000) 54800 25500 (825, 281000)
N12 (HC) 70000 24000 (649, 366000) 111000 24900 (552, 474000)
N13 (GHC) 271000 110000 (2520, 1260000) 148000 50800 (997, 818000)

Other parameters

µHV1 0.0394 0.0386 (0.0252, 0.0586) 0.0471 0.0455 (0.0267, 0.0773)
µNumt 0.00307 0.00289 (0.00138, 0.00579) NA NA NA
κHV1 19.7 19.4 (13.9, 27.7) 21.5 21 (14.3, 31.7)
κNumt 8.99 8.36 (4.39, 17.3) NA NA NA
λθ 0.501 0.488 (0.182, 0.879) 0.423 0.4 (0.126, 0.835)
η 0.595 0.521 (0.218, 1.41) NA NA NA

Table 2: The posterior estimates of the parameters. The estimates on the left
are from the analysis with both Numt and HV1 sequences and the estimates on the
right are from the analysis with only HV1 sequences.

Gelman and Rubin’s convergence diagnostic, and they seem to converge. See Appendix
3 for more details.

4 Results

Table 2 summarizes the posterior estimates of the population divergence times, effective
population sizes, HKY parameters, the hyperparameter λθ for the coalescent rates and
transfer rate η. 95% C.R. stands for the 95% credible region from a posterior sample.
More details of results for each parameter follow.
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Figure 3: The summary result from the analysis with Numt and HV1 se-
quences. The linkage of boxes represents the population tree. The height of a box
represents the lasting period of the population and the width is proportional to the es-
timated effective population size N . The solid line represents the evolutionary sequence
tree for HV1 haplogroups and the dashed line represents the evolutionary sequence
relationship among Numt sequences.

4.1 Population divergence times

Figure 3 summarizes the joint posterior samples from the analysis with the hybrid
coalescent model. The connection of boxes represents the estimated population tree.
The heights of boxes correspond to the posterior means of population divergence times.
The widths of boxes are proportional to the posterior medians of the effective population
sizes.

The connection of lines represents a sequence tree which simplifies the consensus
sequence tree by replacing tips with haplogroups. A consensus tree summarizes the trees
from the posterior samples. In biological taxonomy, a clade is a group that includes
a common ancestor and all the descendants (internal and terminal) of that ancestor
and a haplogroup is a group of sequences at each taxon whose alignments are very
similar to one another. In this paper, only those clades present in the specified fraction
(≥50%) of the sampled trees will be present in the consensus tree. Solid lines are for
HV1 sequences and dashed lines are for Numt sequences. We observe in Figure 3 that
the relatively recent east-west split time may strongly depend on the recent coalescent
event of eastern and western sequences in haplogroup Numt III. In contrast, note that
the first estimated east-west coalescent event of HV1 sequences occurs around 4 MYA.

From the analysis with only HV1 sequences, the east-west split time TWEM is es-
timated to have posterior mean 3.8 MYA with 95% credible region (1.33, 6.62) MYA.
Thalmann et al. (2005) estimated 1.36 MYA as the divergence time of HV1 sequences



936 Estimation of Evolutionary History

from the western and eastern gorillas applying a mutation rate 0.075/site/MY (Tamura
and Nei 1993), whereas the mean substitution rate estimated from the only-HV1 case is
0.0471/site/MY. In terms of the number of substitutions, the east-west divergence time
corresponds to a mean of 0.179 with 95% credible region (0.063, 0.312) contrary to the
estimate 0.102 (= 0.075×1.36) from Thalmann et al. (2005). The posterior distribution
of TEM from the only-HV1 case has mean 0.673 MYA with 95% credible region (0.133,
1.5) MYA. This interval is much wider than the interval (0.316, 0.443) MYA estimated
in Jensen-Seaman and Kidd (2001).

When both Numt and HV1 sequences are used, the posterior distribution of TWEM

is estimated to have mean 1.14 MYA with 95% credible region (0.54, 2.02) MYA, which
is at least two times smaller than the estimates from the only-HV1 analysis. Based
on 16 noncoding nuclear loci, Thalmann et al. (2007) estimated east-west split time as
0.9–1.6 MYA followed by gene-flow until 0.08–0.2 MYA.

Other than TEM and TWEM, the rest of divergence times have similar estimates
in the two cases. Chen and Li (2001) estimated the human-chimp divergence time
as (4.6, 6.2) MYA and gorilla-human-chimp divergence time as (6.2, 8.4) MYA when
taking the orangutan speciation time as (12, 16) MYA (orangutan is known to have
split from gorilla-human-chimp first). In our analysis, the human-chimp divergence
time and the gorilla-human-chimp divergence time are estimated at mean 4.77 MYA
with 95% credibility region (4.03, 5.88) MYA and mean 7.97 MYA with 95% credible
region (5.85, 8.97) MYA, respectively.

The Pleistocene Epoch of frequent glaciation is known to have lasted from around
1.8 MYA until about 11,000 years ago. 93.58% of the posterior samples for the east-
west split time from Numt-HV1 case fall in this period. In contrast, only 6.26% of the
posterior samples of the east-west split time from the only-HV1 case fall in the Pleis-
tocene period. In the only-HV1 case, we find it to be highly likely that the divergence
of HV1 sequences from the western and eastern gorillas predates the beginning of the
Pleistocene period. More discussion will follow in section 5.

For sensitivity analysis of the prior distributions, especially that of the divergence
times, we tried some other distributions on TWEM, TEM, TChimp1 and TChimp2, then
compared the results based on the simulated data. Instead of scaled Beta distribu-
tions, we used Uniform(0, TGHC), Uniform(0, TWEM), Uniform(0, THC) and Uniform(0,
TChimp2) distributions, for TWEM, TEM, TChimp2 and TChimp1, respectively, in orders.
For each population divergence time, we compared the distributions of the independent
Monte Carlo sample and the posterior sample, using each of the old prior and new
prior distributions. With the original prior distributions, all these four divergence times
tended to zero in both the prior and posterior sample. With the new prior distribu-
tions, the posterior divergence times showed the same tendency favoring values close
to zero. Interestingly, the posterior distributions of TWEM and TChimp2 using the new
prior distributions look similar to the posterior distributions of each using the old prior
distributions, respectively, although the new prior distributions have much broader area
with even probabilities than the old ones. See Appendix 3 for more results.
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4.2 Effective population size

Note Ni denotes the effective population size of edge i in Figure 1. The posterior
distribution of N1 and N2, the effective population sizes of populations W and E, have
median 122,000 with 95% credible region (73100, 213000) and median 36800 with 95%
credible region (15800, 87000), respectively. These estimates are much larger than those
of 24,100 and 13,600 for western and eastern gorillas, respectively, from Thalmann et al.
(2007). Not only are the estimates of N1 and N2 from our model larger than those from
Thalmann et al. (2007), but also the ratio N1/N2 is 3.32 (= 122000/36800), much larger
than 1.77 (= 24100/13600) from Thalmann et al. (2007).

The effective population size of the human-chimp ancestor was median 24,000 with
95% credible region (649, 366000) which is much wider than the estimates (52000, 96000)
by Chen and Li (2001) The interesting finding in Table 2 is that the effective population
size of western lowland gorillas is larger than any other populations, even larger than
human, which agrees with the estimates in Yu et al. (2004). More discussion will follow
in section 5.

4.3 tMRCAs of sequences and sequence trees

This section provides the estimates of divergences of DNA sequences. Figure 4 is the
consensus sequence tree summarizing 60,000 tree samples from the analysis with both
Numt and HV1 sequences. Tree samples are summarized by the summarize code in
BADGER (Simon and Larget 2004). This consensus tree is comparable with the se-
quence tree in Figure 1 estimated in Clifford et al. (2004) in which those haplogroups
were defined. In Figure 4, there are five haplogroups within population W and pop-
ulations E and M have a single haplogroup each. It is notable that there are more
complex subdivisions in HV1 sequences from population W, contrary to populations
E and M. For Numt sequences, there are three Numt haplogroups, Numt I, Numt II,
and Numt III. The HV1 haplogroups agree with gorilla populations, that is, haplogroup
A for population M, haplogroup B for population E, and the rest of the haplogroups
for population W. In contrast, each Numt haplogroup consists of sequences from both
populations W and E.

Table 3 summarizes the tMRCAs. An interesting finding is that Numt I and Numt
III coalesce with the ancestral lineages of HV1 sequences before they coalesce with Numt
lineages from other Numt haplogroups. Numt I coalesces to the ancestral lineage of the
HV1 sequences from population W, and Numt III coalesces to the ancestral lineage of
the HV1 sequences from populations E and M. This implies that Numt I is close to the
ancestral state of HV1 sequences of population W, and Numt III is close to the ancestral
state of HV1 sequence of population E and M. These observations are best explained,
perhaps, if two introgression events occurred after female gorillas were isolated into the
east and west. Numt I could have arisen from an introgression event in the west with
a male gorilla carrying the Numt to the east, and Numt III may have arisen in the
east and been carried west by male migration. Numt II is estimated as an outgroup
to the rest of the gorilla sequences with a posterior probability 0.55, consistent with
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Figure 4: The Consensus sequence tree from the posterior tree samples.
60,000 sequence trees were sampled from the six MCMC runs. The numbers on the
edges are posterior probabilities of the clades.

introgression prior to east-west isolation.

Another finding is discordant tMRCA of east-west samples between Numt and HV1
sequences. That is, tMRCA of east-west Numt sequences is 1.45 MYA with 95% credible
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Numt-HV1 case only-HV1 case

mean median 95% C.R. mean median 95% C.R.

A 0.149 0.134 (0.0432, 0.341) 0.15 0.133 (0.0397, 0.361)
B 0.225 0.208 (0.0938, 0.451) 0.186 0.17 (0.0696, 0.398)
C1 0.286 0.271 (0.135, 0.517) 0.265 0.249 (0.114, 0.511)
C2 0.965 0.927 (0.539, 1.59) 1 0.955 (0.513, 1.76)
D1 0.352 0.331 (0.131, 0.692) 0.367 0.342 (0.125, 0.764)
D2 0.157 0.147 (0.0645, 0.303) 0.167 0.155 (0.0651, 0.338)
D3 0.172 0.159 (0.0714, 0.346) 0.155 0.141 (0.0613, 0.332)
Numt I 2.2 2.12 (1.3, 3.53) NA NA NA
Numt IIA 2.65 2.51 (1.12, 5) NA NA NA
Numt IIB 5.08 5 (2.73, 7.88) NA NA NA
Numt IIC 5.43 5.34 (3.55, 7.8) NA NA NA
Numt II (IIA, IIB, IIC) 5.89 5.79 (3.84, 8.33) NA NA NA
Numt III 1.45 1.38 (0.731, 2.46) NA NA NA
A, B 0.957 0.917 (0.501, 1.65) 0.936 0.884 (0.443, 1.72)
C 0.965 0.927 (0.54, 1.59) 1 0.955 (0.513, 1.76)
D1, D2 0.47 0.448 (0.25, 0.814) 0.549 0.518 (0.254, 1.03)
D 0.54 0.518 (0.296, 0.899) 0.581 0.554 (0.279, 1.05)
C, D 1.37 1.32 (0.835, 2.17) 1.66 1.6 (0.898, 2.76)
Numt I, C, D 2.21 2.13 (1.31, 3.54) NA NA NA
Numt III, A, B 1.73 1.68 (0.984, 2.74) NA NA NA
Numt IIB, IIC 5.74 5.64 (3.7, 8.19) NA NA NA
A, B, C, D, NumtI, III 3.98 3.88 (2.53, 5.99) NA NA NA
All Gorilla 5.91 5.81 (3.87, 8.34) 4.44 4.3 (2.46, 7.21)
Human 0.515 0.486 (0.258, 0.93) 0.5 0.471 (0.233, 0.944)
P.t.Verus 0.501 0.476 (0.237, 0.901) 0.494 0.466 (0.22, 0.926)
P.t.Troglodytes 0.828 0.79 (0.403, 1.47) 0.792 0.752 (0.364, 1.45)
P.t.Verus, P.t.Vellerosus 1.25 1.21 (0.701, 2.06) 1.27 1.22 (0.657, 2.18)
All Chimp 1.79 1.74 (1.08, 2.79) 1.82 1.76 (1.01, 2.93)
Human, Chimp 5.03 4.93 (4.1, 6.54) 5.26 5.19 (4.13, 6.98)
Gorila, Human, Chimp 9.89 9.32 (7.21, 14.8) 8.68 8.52 (6.07, 12.9)

Table 3: The posterior estimates of the tMRCAs. The estimates on the left are
from the analysis with both Numt and HV1 sequences and the estimates on the right
are from the analysis with only HV1 sequences.

region (0.731, 2.46), which is the tMRCA of Numt III sequences. In contrast, tMRCA
of east-west HV1 sequences is 4.4 MYA with 95% credible region (2.46, 7.21), almost
three times larger compared to the Numt sequences.

4.4 Number of transfer events

Table 4 shows how often (in %) two Numt taxa are in the same Numt group. Note a
Numt group is defined by an introgression event on the ancestral edge. We call this
matrix as pairwise membership matrix. Then, we can identify 11 Numt groups in which
taxa have the same membership for more than 70% of the 60,000 posterior samples, and
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Figure 5: The prior and posterior distributions of the number of Numt
transfer events. The histogram of the posterior samples for the number of Numt
transfer events. The curve represents the prior density function.

those 11 groups are Group 1 (sequence 1), Group 2 (sequence 84), Group 3 (sequence
85), Group 4 (Numt IIA), Group 5 (Sequences 12 and 13), Group 6 (sequences 9 and
92), Group 7 (all sequences in Numt IIB other than sequences 9, 12, 13 and 92), Group
8 (sequence 16), Group 9 (sequence 19), Group 10 (all sequences in Numt IIC but for
sequences 16 and 19), and Group 11 (Numt III). Sequences 1, 84 and 85 tend to have
separate introgression events on each lineage, about 99% out of the 60,000 posterior
samples. Sequences in Numt IIA belong to the same Numt group about 100% of the
time. Sequences 12 and 13 are under the same Numt group about 98% of the time.
Sequences 9 and 92 are in the same group almost 100% of the time. More than 86%
of the time, sequences in Numt IIB except for sequences 9, 12, 13 and 92 are in the
same Numt group. For sequences 16 and 19, they have separate introgressions on each
lineage 73% of the time, and they are under the same introgression 27% of the time.
Sequences in Numt IIC except for sequences 16 and 19 are in the same Numt group
more than 92% of the time. Among Numt III sequences, sequences 21 and 102 are in
the same group 92% of the time, and all sequences in Numt III are in the same group
about 72% of the time. This implies two separate introgression events are estimated on
each parent lineage of (sequence 21 and sequence 102) and sequence 103 for 20% in the
posterior sample.

Figure 5 provides the posterior distribution of the number of introgression events,
which is identical to the number of Numt groups. The relative frequency for the range
from 8 to 13 is 93.79% of the time. The merge and division among (12, 13) (9, 92) and
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 84

1 - ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
2 - - 100 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
3 - - - ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
4 - - - - 99 91 92 100 43 100 99 44 45 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
5 - - - - - 91 92 99 43 99 100 44 45 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
6 - - - - - - 86 91 49 91 91 43 44 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
7 - - - - - - - 92 43 92 92 44 44 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
8 - - - - - - - - 43 100 99 44 45 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
9 - - - - - - - - - 43 43 21 21 1.9 1.9 ≤ 1.9 1.9 ≤ 1.9 ≤ ≤
10 - - - - - - - - - - 99 44 45 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
11 - - - - - - - - - - - 44 45 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
12 - - - - - - - - - - - - 98 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
13 - - - - - - - - - - - - - ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
14 - - - - - - - - - - - - - - 93 17 94 93 ≤ 93 ≤ ≤
15 - - - - - - - - - - - - - - - 17 99 99 ≤ 99 ≤ ≤
16 - - - - - - - - - - - - - - - - 17 17 27 18 ≤ ≤
17 - - - - - - - - - - - - - - - - - 100 ≤ 100 ≤ ≤
18 - - - - - - - - - - - - - - - - - - ≤ 100 ≤ ≤
19 - - - - - - - - - - - - - - - - - - - ≤ ≤ ≤
20 - - - - - - - - - - - - - - - - - - - - ≤ ≤
21 - - - - - - - - - - - - - - - - - - - - - ≤
84 - - - - - - - - - - - - - - - - - - - - - -
85 - - - - - - - - - - - - - - - - - - - - - -
86 - - - - - - - - - - - - - - - - - - - - - -
87 - - - - - - - - - - - - - - - - - - - - - -
88 - - - - - - - - - - - - - - - - - - - - - -
89 - - - - - - - - - - - - - - - - - - - - - -
90 - - - - - - - - - - - - - - - - - - - - - -
91 - - - - - - - - - - - - - - - - - - - - - -
92 - - - - - - - - - - - - - - - - - - - - - -
93 - - - - - - - - - - - - - - - - - - - - - -
94 - - - - - - - - - - - - - - - - - - - - - -
95 - - - - - - - - - - - - - - - - - - - - - -
96 - - - - - - - - - - - - - - - - - - - - - -
97 - - - - - - - - - - - - - - - - - - - - - -
98 - - - - - - - - - - - - - - - - - - - - - -
99 - - - - - - - - - - - - - - - - - - - - - -
100 - - - - - - - - - - - - - - - - - - - - - -
101 - - - - - - - - - - - - - - - - - - - - - -
102 - - - - - - - - - - - - - - - - - - - - - -
103 - - - - - - - - - - - - - - - - - - - - - -

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

1 1.2 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
2 ≤ 100 100 100 99 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
3 ≤ 100 100 100 99 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
4 ≤ ≤ ≤ ≤ ≤ 98 93 43 98 94 93 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
5 ≤ ≤ ≤ ≤ ≤ 98 93 43 98 93 93 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
6 ≤ ≤ ≤ ≤ ≤ 92 87 49 92 89 87 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
7 ≤ ≤ ≤ ≤ ≤ 92 98 43 92 87 98 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
8 ≤ ≤ ≤ ≤ ≤ 99 93 43 98 94 93 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
9 ≤ ≤ ≤ ≤ ≤ 43 43 100 43 43 43 1.9 1.9 1.9 1.9 1.9 1.9 ≤ ≤
10 ≤ ≤ ≤ ≤ ≤ 99 93 43 98 94 93 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
11 ≤ ≤ ≤ ≤ ≤ 98 93 43 98 93 93 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
12 ≤ ≤ ≤ ≤ ≤ 45 44 21 45 45 44 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
13 ≤ ≤ ≤ ≤ ≤ 45 44 21 45 45 44 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
14 ≤ ≤ ≤ ≤ ≤ ≤ ≤ 1.9 ≤ ≤ ≤ 92 93 93 94 93 93 ≤ ≤
15 ≤ ≤ ≤ ≤ ≤ ≤ ≤ 1.9 ≤ ≤ ≤ 98 99 99 99 99 99 ≤ ≤
16 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ 18 17 17 17 17 17 ≤ ≤
17 ≤ ≤ ≤ ≤ ≤ ≤ ≤ 1.9 ≤ ≤ ≤ 98 100 100 100 100 100 ≤ ≤
18 ≤ ≤ ≤ ≤ ≤ ≤ ≤ 1.9 ≤ ≤ ≤ 98 100 100 100 100 100 ≤ ≤
19 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
20 ≤ ≤ ≤ ≤ ≤ ≤ ≤ 1.9 ≤ ≤ ≤ 98 100 100 100 100 100 ≤ ≤
21 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ 92 72
84 11 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
85 - ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
86 - - 100 100 99 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
87 - - - 100 99 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
88 - - - - 99 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
89 - - - - - ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
90 - - - - - - 93 43 100 94 93 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
91 - - - - - - - 43 93 88 100 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
92 - - - - - - - - 43 43 43 1.9 1.9 1.9 1.9 1.9 1.9 ≤ ≤
93 - - - - - - - - - 94 93 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
94 - - - - - - - - - - 88 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
95 - - - - - - - - - - - ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
96 - - - - - - - - - - - - 98 98 98 98 98 ≤ ≤
97 - - - - - - - - - - - - - 100 100 100 100 ≤ ≤
98 - - - - - - - - - - - - - - 100 100 100 ≤ ≤
99 - - - - - - - - - - - - - - - 100 100 ≤ ≤
100 - - - - - - - - - - - - - - - - 100 ≤ ≤
101 - - - - - - - - - - - - - - - - - ≤ ≤
102 - - - - - - - - - - - - - - - - - - 73
103 - - - - - - - - - - - - - - - - - - -

Table 4: The posterior estimates of pairwise membership. Each entry xij
represents the relative frequency (%) for Numt taxa i and j to belong to the same
Numt group out of the 60,000 posterior MCMC samples. The values which are greater
than 70 are in bold, and “≤” replaces values less than 1.
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Figure 6: Prior and posterior distributions of the HKY parameters, λθ, and η.
In each panel, the histogram shows the posterior distribution and the curve represents
the prior density function for each parameter. (a), (b), (c), (d), (e) and (f) are for µHV1,
µNumt, κHV1, κNumt, λθ and η, respectively, from the analysis with both Numt and HV1
sequences. The hyperparameter λ in the ratio of exponentials prior distributions is 200,
20,000, 0.5, 0.5 and 10 for µHV1, µNumt, κHV1, κNumt and η, in the order. The prior
distribution of λθ is the Beta(1, 2) distribution.

Numt IIB except for 9, 12, 13 and 92, the merge and division among (16), (19) and the
rest of Numt IIC, and the merge and division between (21, 102) and (103) in Numt III
can cover the high proportion over the range from 8 to 13 in Figure 5.

The α - clumpiness parameter in the Dirichlet process prior was set to 5 for the
result in this paper. We explored the robustness of the method to misspecification of α.
We did this with a prior mean of number of transfer events=4, 11 and 16 (corresponding
to α=1, 5 and 10, respectively). We obtained the best mixing of MCMC running with
α = 5. With α = 10, the mixing was not as good as the result with α = 5, but the
posterior estimates were close to the estimates with α = 5. For the case using α = 1,
the mixing of MCMC running were too poor to use for inferences.
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4.5 Other parameters

The substitution rates µHV1 and µNumt are mutation rates measured in numbers of
substitutions per site per MY for HV1 and Numt sequences, respectively. The prior
distribution of µHV1 is a ratio of exponentials prior distribution with median 0.005. The
prior distribution of µNumt is also a ratio of exponentials prior distribution with median
0.00005. The posterior distribution for µHV1 has mean 0.0394 with the 95% credible
region (0.0252, 0.0586), smaller than the estimate 0.075 from Tamura and Nei (1993).
The posterior estimate of µNumt has mean 0.00307 and 95% credible region (0.00138,
0.00579), larger than the estimate 0.00096 estimated from Thalmann et al. (2007) which
is based on 16 noncoding nuclear loci under the assumption that humans and gorillas
diverged 8 million years ago. The estimate of µHV1 is larger than the estimate of µNumt,
and this is consistent with the rate of mtDNA evolution in primates being higher than
in nuclear DNA (Brown et al. 1982). Both κHV1 and κNumt have ratio of exponentials
prior distributions with median values 2. The posterior distribution κHV1 has mean 19.7
with the 95% credible region (13.9, 27.7) and κNumt has posterior mean 8.99 with the
95% credible region (4.39, 17.3) in Numt-HV1 case. Jensen-Seaman and Kidd (2001)
estimated 19 as the transition to transversion ratio based on 15 eastern gorilla mtDNA
sequences.

The posterior distribution of µHV1 for the only-HV1 case has mean 0.0471 with the
95% credible region (0.0267, 0.0773), which is a little larger than µHV1 in the Numt-
HV1 case. The Bayes estimate of κHV1 in the only-HV1 case has mean 21.5 with the
95% credible region (14.3, 31.7), which is a little larger than the estimates from the
Numt-HV1 case.

The hyperparameter λθ has a Beta(1, 2) prior distribution, with mean 0.33. The
posterior distribution of λθ is estimated to have mean 0.501 with 95% credible region
(0.182, 0.879). The transfer rate η has a ratio of exponentials prior distribution with
median value 0.1. The posterior distribution for η has mean 0.595 with the 95% credible
region (0.218, 1.41), where η is the expected number of transfer events per million years.
Figure 6 compares the prior and posterior distributions of these six parameters.

4.6 Comparison with BEAST

BEAST (Bayesian evolutionary analysis by sampling trees, Drummond and Rambaut
(2007)) is a software package providing a general Bayesian framework for parameter es-
timation and hypothesis testing of evolutionary models from molecular sequence data.
BEAST aims to bring a large number of complementary evolutionary models (substi-
tution model, insertion-deletion models, demographic model, tree shape prior, relaxed
clock models, node calibration models) into a single coherent framework for evolutionary
inference. However, the demographic parameters estimated in BEAST are for a single
population, so it does not handle population subdivision structure. For this reason, it
is not appropriate to use BEAST for direct comparison with our methods.
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tMRCA (in MYA) Population size
Groups mean median 95% C.R. Mean median 95% C.R.
W–HV1 2.1 2.1 (1.4, 3.4) 74000 73000 (47000, 110000)
E–HV1 0.21 0.19 (0.085, 0.4) 12000 11000 (4300, 27000)
M–HV1 0.14 0.13 (0.037, 0.33) 6100 4800 (1100, 19000)
W–Numt 47 45 (30, 73) 980000 940000 (560000, 1600000)
E–Numt 52 49 (29, 92) 550000 520000 (290000, 960000)
W–Numt II 19 18 (12, 28) 620000 590000 (330000, 1100000)
E–Numt II 12 11 (6.6, 23) 230000 210000 (110000, 450000)

Table 5: The estimates of tMRCAs and effective population sizes from
BEAST.

Analysis of subsets of the data by sequence types and sampled populations

We apply BEAST to sequence data set by sequence types (Numt and HV1) and by
sampled gorilla populations (W, E and M). There are five available combinations because
Numt sequences are not available in population M. In this BEAST analysis, we use
the molecular clock rate model and the HKY model for substitution process, and also
take account of among-site rate variation with the discrete gamma prior as in our
models. To convert estimated branch length from the number of mutations into calendar
time (MYA), we use the substitution rate 0.0394 × 10−6subs/site/year and 0.00307 ×
10−6subs/site/year for HV1 and Numt, respectively, which are the posterior means from
our method (Table 2). For each data set, we ran six MCMC chains with different seed
numbers. Each MCMC chain uses 10,000,000 proposals discarding the first 1,000,000
as burn-in and subsampling every 1,000–th state afterwards for inference.

Table 5 shows the estimates of both tMRCA and population sizes for each five
subsets of data. Table 5 is compared with Table 2. tMRCA of HV1 in E and HV1 in
M are almost identical to the estimates from our method. The estimates of tMRCA for
HV1 in W by BEAST has mean 2.1 MYA and 95% credible region (1.4, 3.4), which is
larger than the estimates with mean 1.66 MYA and 95% credible region (0.898, 2.76)
from our method. The estimates of tMRCA for Numts are huge, mean 47.0 MYA and
52.0 MYA for W and E, respectively, whereas the posterior mean tMRCA for all gorillas
was estimated as 5.91 MYA in our analysis.

The estimates for the effective population sizes from our method (Table 2) are be-
tween the BEAST estimates from HV1 and from Numt. For HV1 sequences, the esti-
mates by BEAST are about the half of the corresponding estimates from our methods.
In contrast, for Numt sequences, BEAST provided about 10 times larger estimates than
our method. We can observe the very inconsistent estimates between HV1 sequences
and Numt sequences when they are analyzed separately by BEAST. In contrast, our
method can provide the estimate incorporating both Numt and HV1 sequences.
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Analysis of Numt II in western and eastern lowland gorilla populations

The analysis shows there are three main Numt groups (Numt I, Numt II and Numt III)
which are likely the result of independent transfer events, possibly into different places
in the nuclear genome. If three Numt transfers occurred independently at different
places, the population sizes must have been overestimated by ignoring the subdivision
within a Numt population.

In this section, by applying BEAST separately on each Numt group in a popula-
tion, we can see how the estimates of population sizes are changed by accounting for
the subdivision within a population. Coalescent-based estimation of population sizes
is possible when at least two sequences are available in the populations. Since few se-
quences are available for Numt I and Numt III in each W and E, the additional analysis
within a Numt group is performed on Numt II only. Then W and E have 18 and 16
Numt sequences belonging to Numt II, respectively. In this analysis, we assume the
same model setting as in the previous section.

The last two lines of Table 5 show the estimates of population sizes and tMRCA for
Numt II sequences in each population E and W. The posterior estimates of tMRCAs
for Numt II have mean 19 MYA with 95% credible region (12.0, 28) and mean 12 MYA
with 95% credible region (6.6, 23) for Numt II from population W and E, respectively.
Therefore, the huge tMRCAs of W-Numt and E-Numt in Table 5 can be thought to be
caused by long coalescent time between Numt haplogroups in a gorilla population.

Also, the estimates of population sizes are reduced up to half in the inference based
on Numt II. These reduced estimates of population sizes support the hypothesis that the
huge estimates of population sizes of Numt groups in Table 5 may be caused by ignoring
the subdivision within a population. This subdivision in a population represents Numt
introgressions in multiple loci, not variation in geography.

Analysis of simulated data

We applied BEAST to the simulated data, after dividing the data according to the
combinations of the sequence types and gorilla populations. There are nine available
combinations: W-HV1, E–HV1, M–HV1, W–Numt, W–Numt I, W–Numt II, E–Numt,
E–Numt I and E–Numt II. The analysis is not available on the subsets like W–Numt
II, E–Numt I, E–Numt II, because the sequences in each set are identical. Therefore,
we can apply BEAST only for the other six data sets.

In the BEAST analysis, we used the same model setting as in the previous sections.
To convert BEAST estimates to be commeasurable with the estimates from our method,
we used the substitution rate 0.075×10−6subs/site/year and 0.0096×10−6subs/site/year
for HV1 and Numt sequences, respectively, which were used for simulation. For each
data, we ran six MCMC chains with different seed numbers. Each MCMC chain gen-
erated 1,000,000 proposals, and we sampled every 1,000–th state after discarding the
initial 100,000 proposals as burn-in. Then each MCMC chain provides 900 states, and
our inference is based on 5,400 posterior samples from the six MCMC runs.
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Note, our method can provide estimates by integrating both Numt and HV1 se-
quences over seven populations while BEAST is applicable on the subset defined by
sequence types and populations. All the 95% credible regions of tMRCAs for W–HV1,
E–HV1 and M–HV1 contain the true tMRCAs of each haplogroup The tMRCAs for the
Numt groups are not comparable with our result. The estimates for the effective pop-
ulation sizes look very different from the true values as well as the estimates from our
method. BEAST provides consistent results about the subdivisions in Numt sequences.
The mean tMRCA of W–Numt is estimated as 5.3 MYA when the mean tMRCA of
W–Numt I is 0.33 MYA. In terms of the effective population size, the estimates from
W–Numt are at least two times larger than the estimates from W–Numt I. See Appendix
3 for more results.

5 Discussion

5.1 Eastern-western gorilla divergence time

Figure 7 provides the prior and posterior distributions of the east-west split times from
two analyses, the Numt-HV1 case and the only-HV1 case. Figure 7(a) is the prior
distribution of TWEM, which is approximated by 10,000 independent samples from the
prior distribution as described in section 3.1. Figure 7(b) and Figure 7(c) are the
posterior distributions of TWEM from the analyses of the Numt-HV1 case and the only-
HV1 case, respectively. Figure 7(b) has much lower mean value with narrower range
than those of Figure 7(c), although the same prior distribution was used on TWEM in
both cases. The 95% credible region of Figure 7(b), (0.54, 2.02) MYA, and 93.58% of
posterior sample fall in the Pleistocene period, 0.11–1.8 MYA. In contrast, only 6.26%
of samples in Figure 7(c) fall in the Pleistocene period, 0.11–1.8 MYA. This means the
east-west split of HV1 sequences occurred before Pleistocene, while Numt sequences
diverged into the eastern and western gorillas during Pleistocene.

The most important finding in this study is that the Bayesian analysis with two
different data sets, the Numt-HV1 case and the only-HV1 case, provided discordant
estimates for the east-west split time of gorilla populations. The estimated recent co-
alescent event in Numt III seems to cause the more recent east-west divergence time
estimated in the Numt-HV1 case. The discordant coalescent times between Numt and
HV1 sequences can be explained with different isolation times or last gene-flow times
between Numt and HV1 sequences.

In population genetics, gene flow (i.e., gene migration) is the transfer of an allele from
one population to another, and it is one of four evolutionary forces: natural selection,
genetic drift, mutation and gene flow (Hartl 2000). Gene flow between two populations
can lead to a combination of the two gene pools, reducing the genetic variation between
the two groups. There are two kinds of common models for gene flow between popu-
lations. First, an isolation model assumes no gene flow between populations since the
populations diverged. Therefore, each population evolves independently within each
genetic pool since after the split time. However, after the isolation of populations, there
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Figure 7: Prior and posterior distributions of TWEM. (a) is the distribution of
the Monte Carlo samples from the prior distribution. (b) and (c) are distributions of
the posterior samples from the analysis of the Numt-HV1 case and the only-HV1 case,
respectively.

are still chances to trade genes between populations by migration of individuals. A
migration model is a model that allows gene-migration between populations after two
populations are mostly isolated from each other.

In our model, we assumed an isolation model with seven populations and then esti-
mated divergence times of these populations. Therefore, the population divergence time
corresponds to the time of the last gene flow between two populations. In two analyses,
we estimate that the last east-west gene flow for mitochondrial genes was 4.44 MYA
(2.46–7.21) while nuclear genomes had some gene flow much more recently, 2.2 MYA
(1.3–3.53). This discordance requires explanation, and the most plausible explanation
is that male and female gorillas have very different migration behavior. It would be
highly informative to confirm this conclusion by, for example, obtaining Y-chromosome
sequence data from natural gorilla populations as Y-chromosomes are paternally inher-
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ited.

We consider possible reasons for more recent gene-flow in male gorillas than in female
gorillas. There are a number of factors that affect the rate of gene flow between different
populations. One of the most significant factors is mobility, as greater mobility of an
individual tends to give it greater migratory potential. Our results suggest that male
gorillas may tend to migrate further from their place of birth than female gorillas do.
Observation studies about gorillas also suggest that male gorillas migrate farther than
females (Yamagiwa 1986; Yamagiwa and Mwanza 1994). Male gorillas begin to leave
their original troop, traveling alone or with a group of other males for 2–5 years before
being able to form a new group. In contrast, female gorillas just travel around their
nests, up to a couple of hours distance.

A similar scenario was invoked in the study of different loci in gorillas (Thalmann
et al. 2007). They investigated eastern-western divergence gorilla populations with 16
non-coding autosomal sequences. The comparison with the result of Jensen-Seaman
et al. (2003) suggested the discrepancy among nuclear and mitochondrial phylogenies.
The discrepancy could be partly a result of male-mediated gene flow between western
and eastern gorillas (Jensen-Seaman and Kidd 2001), and this scenario has previously
been invoked for other species (Tosi et al. 2000; Pidanciera et al. 2006). Such a hypoth-
esis got additional support from some analysis of Y-chromosome variation, showing a
single shared haplotype in western and eastern gorillas (Burrows and Ryder 1997; Al-
theide 2002). Thalmann et al. (2007) estimated a single ancestral gorilla population
until 0.9–1.6 MYA followed by possibly male-mediated gene flow at around 0.77 MYA.

In the study of Thalmann et al. (2007), more than twice as much gene flow was
found from eastern to western gorillas than vice versa based on 16 noncoding autosomal
loci. We can infer directions of Numt migrations with the consensus tree in Figure 4
and the results in section 3.3. In Figure 4, Numt I is close to the ancestral lineage of
HV1 sequences from population W with a posterior probability 1 and Numt III is close
to the ancestral lineage of HV1 sequences from populations E and M. The introgression
times on each ancestral lineage of Numt I and Numt III are estimated after HV1 east-
west split time and before Numt east-west split time. Therefore, Numt I sequences
sampled in population E are considered as offspring of a Numt sequence carried from
population W to population E when HV1 sequences are isolated in populations W and
E. In contrast, Numt III sequences sampled in population W are thought to be the result
of gene-flow from population E to population W when HV1 sequences are isolated in
each population. The gene-flow direction in Numt II sequences can be more complex
since Numt II sequences are estimated as an outgroup to the rest of gorilla sequences.

5.2 Estimates of effective population sizes

Effective population size estimates of gorillas and chimpanzees are much larger than the
estimate of human population size. Yu et al. (2004) found that gorillas and chimpanzees
have effective population sizes at least twice as large as humans. The relatively small
effective population size in humans, considering their large census size, could have been
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contributed to a large expansion, possibly following a bottleneck (Harpending et al.
1998) in human history.

The larger effective population size of gorillas is likely due to their greater popu-
lation subdivision. Present gorillas have a more restricted geographic range than even
chimpanzees. Chimpanzees are able to live in a wider range of habitats including open
woodland and savanna (Kortland 1983) and therefore may be capable of maintaining
long distance gene flow between forests. However, gorilla populations are restricted
to forests, therefore may be unable to allow frequent migrants with other populations
across open habitats. Indeed, genetic studies have revealed that chimpanzees share
mtDNA haplotypes over 900 km (Morin et al. 1994; Goldberg and Ruvolo 1997). The
same has not been found for gorillas (Jensen-Seaman and Kidd 2001; Clifford et al.
2003). With the same analogy, we can consider why population W has much larger
population size than other gorilla populations. The 62 HV1 sequences from population
W were sampled from 17 sites over western Africa, contrary to 15 HV1 sequences from 3
sites in population E and 7 HV1 sequences from 2 sites in population M. In the model of
this article, the effective population size is effectively proportional to the expected time
of coalescence for two randomly chosen individuals in the populations, and population
subdivision requires this time to be large.

Appendix 1: Proof of the distribution of a ratio of expo-
nentials prior
Suppose X1 ∼ exp(λ), X2 ∼ exp(1) and X1 and X2 are independent. The joint pdf
of (X1, X2) is fX1,X2

(x1, x2) = fX1
(x1)fX2

(x2) = λe−λx1e−x2 = λe−(λx1+x2). Let
Z = X1

X2
, and W = X2. Then, the Jacobian is

J =

∣∣∣∣ ∂z
∂x1

∂z
∂x2

∂w
∂x1

∂w
∂x2

∣∣∣∣

=

∣∣∣∣ 1
x2
− x1

x2
2

0 1

∣∣∣∣

=
1

x2
= w;

fZ,W (x,w) = f(X1,X2)(x1, x2)× w
= fX1

(x1)fX2
(x2)× w

= λe−λ(zw)e−w × w
= λwe−(1+λz)w;
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fZ(z) =

∫ ∞
0

fZ,W (z, w)dw

=

∫ ∞
0

λwe−(1+λz)wdw

=
λ

(1 + λz)2
;

Pr(Z ≤ x) =

∫ x

0

λ

(1 + λz)2
dz

= 1− 1

1 + λx
.

Appendix 2: MCMC Algorithm
This section describes an MCMC algorithm to propose a new state of (T, G, Pt), where
T is the population divergence times, G is the gene-genealogy and Pt is the Numt
partition. The description of the MCMC algorithm is organized as follows. Section A2.1
describes two update methods to propose new population divergence times. Section A2.2
includes three ways to propose a new hybrid coalescent history in a population. Section
A2.3 illustrates how to change the number of transfer events. Last, the proposal method
in section A2.4 changes the total height of both the population tree and the sequence
tree with a common scale factor. Table 6 at the end of Appendix 2 summarizes the
acceptance rates for MCMC methods, averaging over the six MCMC runs.

To propose a new state given the current state, we pick one out of these eight
(2+3+2+1=8) update methods. An update method is selected randomly with proba-
bilities 0.06, 0.1, 0.1, 0.06, 0.16, 0.25, 0.25, 0.02, for each method, respectively, in orders.
These probabilities are tuned to obtain good mixing, by giving the higher probabilities
to update methods with the lower acceptance rate. Given an update method, the details
are described in each following section.

Each proposal method is illustrated using the example in Figure 2.

A2.1 Update population divergence times
A population divergence time in the population tree corresponds to the depth of a
population internal node. By relocating the population internal node, a new divergence
time and new population edge lengths are proposed. In proposing a new divergence
time, we use two distinct proposals that differ on how they handle the sequence tree
embedded within the affected population edges. One proposal changes the edge lengths
of affected sequence tree lineages, proportionally to the change of each population edge
length. The second proposal leaves the sequence tree unchanged.

A2.1.1 Update divergence time while changing the sequence tree
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This method proposes a new population divergence time. For example, suppose we
propose changing TEM in Figure 2. Then the new divergence time T ∗EM is

T ∗EM = u,

where u ∼Uniform(0, TWEM). Then partial lineages of the sequence tree in populations
EM, E, and M are scaled by factors u/TEM, u/TEM and (TWEM − u)/(TWEM − TEM),
respectively. The proposal ratio is 1 because

1/TWEM

1/T ∗WEM

=
T ∗WEM

TWEM
=
TWEM

TWEM
= 1.

The Jacobian (Green 1995) is

J =
∂(T ∗EM, T

∗
WEM, t

∗
E1, t

∗
E2, t

∗
M1, t

∗
EM1)

∂(TEM, TWEM, tE1, tE2, tM1, tEM1)

=

(
T ∗EM

TEM

)1(
T ∗EM

TEM

)2(
TWEM − (T ∗EM)

TWEM − TEM

)1

,

in the example since there are 1, 2 and 1 events on each population edge. The acceptance
probability is

min

{
1,
f(T ∗,Θ, G∗, Pt) | D)

f(T ,Θ, G, Pt | D)
× 1× J

}
= min

{
1,
f(D | T ∗,Θ, G∗, Pt)f(H∗W | T

∗,Θ, Pt)f(H∗M | T
∗,Θ, Pt)f(H∗EM | T

∗,Θ, Pt)f(T ∗)

f(D | T ,Θ, G, Pt)f(HW | T ,Θ, Pt)f(HM | T ,Θ, Pt)f(HEM | T ,Θ, Pt)f(T )
× J

}
.

In general, the Jacobian is(
V ∗1
V1

)k1 (V ∗2
V2

)k2 (V ∗3
V3

)k3
,

where the {ki} are the number of hybrid coalescent events on the three affected
population edges, {Vi} are current edge lengths of the populations and {Vi∗} are the
proposed edge lengths of the populations.

A2.1.2 Update divergence time without changing the sequence tree
This alternative method to propose a new population divergence time differs from the
previous update method as this method does not change the sequence tree at all. This
proposal simply restricts the upper limit of potential new divergence times to prevent
impossible coalescent events. For example, suppose we move TEM in Figure 2. Then
the upper bound for T ∗EM is TEM + s, since the coalescent event in population EM at
time TEM + s combines two lineages from different populations. We assumed sequence
lineages can coalesce only in the same or common ancestral populations. The new
divergence time T ∗EM is

T ∗EM = u,
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where u ∼Uniform(0, TEM + s). In this update, gene genealogy is not affected at all.
However, the histories of populations E, M and EM are modified relative to the new
location of TEM. The proposal ratio is

1/TEM + s

1/TEM + s
=
TEM + s

TEM + s
= 1.

The acceptance ratio is

min

{
1,
f(T ∗,Θ∗, G∗, Pt | D)

f(T ,Θ, G, Pt | D)

}
= min

{
1,
f(H∗E | T

∗,Θ, Pt)f(H∗M | T
∗,Θ, Pt)f(H∗EM | T

∗,Θ, Pt)f(T ∗)

f(HE | T ,Θ, Pt)f(HM | T ,Θ, Pt)f(HEM | T ,Θ, Pt)f(T )

}
.

Since the gene genealogy is not affected by this proposal, we do not have to consider
the likelihood ratio LR in the acceptance ratio.

A2.2 Update histories in a population edge
The gene genealogy, G, is determined by a hybrid coalescent process over the population
tree. Therefore, a new gene genealogy G∗ can be proposed by changing the hybrid
coalescent history in a single population. This section describes three ways to change
the history within a population: generating new interevent times, relocating an event,
and switching one of a coalescent event pair.

A2.2.1 Generate new event times in a population edge
This update method proposes new event times in a population edge. The way to generate
new event times is different depending on whether the population is the parent of the
root or not.

1. Root edge case
First, let’s consider the case of the parental population of the root. This pro-
posal method generates new event times as independent exponential random vari-
ables that match the prior distribution given the sequences of events. For exam-
ple, in Figure 2, population WEM corresponds to the parent of the root, and
it has four hybrid coalescent events with interevent times xi, i ∈ {1, · · · , 4}.
Let a = (

(
2
2

)
θHV1 +

(
2
2

)
θNumt +

(
1
1

)
η), b = (

(
2
2

)
θHV1 +

(
1
1

)
η), c =

(
3
2

)
θHV1 and

d =
(

2
2

)
θHV1. These rates are same as the rates for the hybrid coalescent processes

in the population. Then new interevent times are

x∗1 ∼ exp(a),

x∗2 ∼ exp(b),

x∗3 ∼ exp(c),

x∗4 ∼ exp(d).
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The proposal ratio is

ae−ax1be−bx2ce−cx3de−dx4

ae−ax
∗
1be−bx

∗
2ce−cx

∗
3de−dx

∗
4

=
f(HWEM | T ,Θ, Pt)
f(H∗WEM | T ,Θ, Pt)

.

Because this proposal ratio is the inverse of the prior ratio of the two population
histories, the acceptance ratio is simply

min

{
1,
f(D | T ,Θ, G∗, Pt)
f(D | T ,Θ, G, Pt)

}
;

R = min

{
1,
f(T ∗,Θ∗, G∗, Pt

∗ | D)

f(T ,Θ, G, Pt | D)
× q(T ,Θ, G, Pt | T ∗,Θ∗, G∗, P ∗t )

q(T ∗,Θ∗, G∗, P ∗t | T ,Θ, G, Pt)

}
= min

{
1,
f(D | T ,Θ, G∗, Pt)f(H∗WEM | T ,Θ, Pt)
f(D | T ,Θ, G, Pt)f(HWEM | T ,Θ, Pt)

× f(HWEM | T ,Θ, Pt)
f(H∗WEM | T ,Θ, Pt)

}
= min

{
1,
f(D | T ,Θ, G∗, Pt)
f(D | T ,Θ, G, Pt)

}
.

2. Non-root case
Now, consider the case of a non-root parent edge. For this proposal method, we
keep the events in the same order and use the order statistics of an independent
uniform random sample to propose new times. For example, if we generate new
event times for population W in Figure 2, we generate four random numbers from
Uniform (0, TWEM), u1, u2, u3 and u4. Order them u(1) ≤ u(2) ≤ u(3) ≤ u(4).
Then the new interevent times are

t∗1 = u(1),

t∗2 = u(2) − u(1),

t∗3 = u(3) − u(2),

t∗4 = u(4) − u(3).

The proposal ratio is

1
4( 1
TWEM

)4

1
4( 1
TWEM

)4
= 1.

The acceptance ratio is

min

{
1,
f(T ∗,Θ, G∗, Pt | D)

f(T ,Θ, G, Pt | D)

}
= min

{
1,
f(D | T ,Θ, G∗, Pt)f(H∗W | T ,Θ, Pt)
f(D | T ,Θ, G, Pt)f(HW | T ,Θ, Pt)

}
.

A2.2.2 Relocate an event in a population edge
This proposal changes a single event time by selecting a new time uniformly from its
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possible range, conditional on the times of other events on the edge. Events cannot leave
the edge or occur out of order with related events. For example, there are four events
in population W of Figure 2. The HV1 coalescent event at time t1 can occur between
times 0 and t1 + t2 + t3 + t4, but not at a later time since this coalescent event must
precede the coalescent event at time t1 + t2 + t3 + t4. Similarly, the Numt coalescent at
time t1 + t2 and the Numt transfer event at time t1 + t2 + t3 and HV1 coalescent event
at time t1 + t2 + t3 + t4 can be relocated in the intervals (0, t1 + t2 + t3) and (t1 + t2,
t1 + t2 + t3 + t4), and (t1 + t2 + t3, TWEM), respectively.

In this example, one of the four events would be selected uniformly at random.
Conditional on being selected, the proposed event would be one of following:

event at time t1 ∼ Uniform(0,

4∑
1

ti),

event at time

2∑
1

ti ∼ Uniform(0,

3∑
1

ti),

event at time

3∑
1

ti ∼ Uniform(

2∑
1

ti,

4∑
1

ti),

event at time

4∑
1

ti ∼ Uniform(

3∑
1

ti,

5∑
1

ti).

The proposal ratio is 1 for any case, therefore the acceptance probability is

min

{
1,
f(T ∗,Θ, G∗, Pt | D)

f(T ,Θ, G, Pt | D)

}
= min

{
1,
f(D | T ,Θ, G∗, Pt)f(H∗W | T ,Θ, Pt)
f(D | T ,Θ, G, Pt)f(HW | T ,Θ, Pt)

}
.

A2.2.3 Modify the sequence topology
This update prunes a subtree of gene genealogy and then regrafts it back on a feasible
branch at the same time within the same population. In population W of Figure 2, if
we want to move either W3 or W4, W5 is the only feasible branch in the population
because it is the unique Numt sequence at time (t1 + t2) other than W3 and W4. If
W4 moves, then the new state shown in Figure 8 is obtained given the old state. This
update changes the topology of the gene tree without modification of event order and
interevent times. The proposal ratio is 1 because the number of feasible branches is the
same in both directions. Note the sequence lineages affected by this proposal method
may change their Numt groups. Therefore the state for the Numt partitions is also newly
proposed. For example, given the state in Figure 2, five Numt taxa are partitioned into
two Numt groups as (W3, W4) and (W5, E1, E2) in each (i.e, Pt(5 | 2) = (2, 3)).
However, if the new state in Figure 8 is newly proposed for population W in Figure 2,
the Numt taxa are partitioned into two Numt groups as (W3), (W4, W5, E1, E2) in
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Figure 8: An example of pruning-regrafting algorithm. The internal node at time
(t1 + t2) is made by the coalescent pair (W3, W4). The Pruning-regrafting algorithm
changes the coalescent pair into (W4, W5).

each, and this corresponds to the Numt partition Pt(5 | 2)∗ = (1, 4). Sequentially, the
histories in the descendent edges of the population under consideration are affected by
this method. Therefore, in general, the acceptance ratio is

min

{
1,
f(T ∗,Θ, G∗, P ∗t | D)

f(T ,Θ, G, Pt | D)

}
= min

{
1,
f(D | T ∗,Θ, G∗, P ∗t ){

∏
i f(H∗i | T ,Θ, P ∗t )}f(P ∗t )

f(D | T ,Θ, G, Pt){
∏
i f(Hi | T ,Θ, Pt)}f(Pt)

}
.

A2.3 Update the number of transfer events
In this section, we explain two proposal methods that change the number of transfer
events by one.

A2.3.1 Increase the number of transfer events by one This proposal eliminates a
transfer event from an internal edge of the sequence tree and creates two new transfer
events, one on each child edge. For this proposal, we have to pick up a Numt edge,
among which are the oldest ancestral edges from each Numt group and also which
are non-leaves, uniformly at random from the whole sequence tree, with probability
1
x , where x denotes the number of Numt groups having at least two taxa. If there is
no candidate, the proposal is rejected. Figure 9 describes the change in population W
of Figure 2 by this proposal method which increases the number of transfer events by
one. For example, population W in Figure 2(a) has a transfer event at time (

∑3
1 ti). In

Figure 9(b), after removing this transfer event, two new events are created on each child
edge at time t1

∗ and at time t1
∗ + t2

∗, respectively. The locations of the new transfer
events are determined uniformly at random on each child edge and the event type of the
Numt coalescent event at time (

∑2
1 ti) in Figure 9(a) becomes a HV1 coalescent event.
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Figure 9: An example to change the total number of transfer events by one.
(a)→ (b): the number of transfer events is increased by one by creating two new transfer
events on each W3 and W4, at time t∗1 and t∗1+t∗2, respectively, after deleting the transfer
event at (t1 + t2) in (a). (b) → (a): the number of transfer events is decreased by one
by creating a new transfer event at time (t1 + t2 + t3) after deleting the transfer events
on each child edge, at time t∗1 and t∗1 + t∗2, respectively in (b).

The proposal probability for the transition from (a) into (b) is 1
x

1
t1+t2

1
t1+t2

, where x = 2
given the state of Figure 2.

Since this proposal method always increases the number of transfer events by one, we
need to introduce the next proposal method to decrease the number of transfer events
before discussing the acceptance probability.

A2.3.2 Decrease the number of transfer events by one
The new proposal method decreases the number of transfer events by one. Pick an
HV1 coalescent event such that both children edges of the HV1 coalescent node contain
transfer events on each, uniformly at random from the whole sequence tree. If there is
no case satisfying the condition, the proposal is rejected. This proposal method removes
these original transfer events from the children edges and puts a new transfer event on
their ancestral edge. Then the HV1 coalescent event becomes a Numt coalescent event.
Also two Numt groups are merged as a single group. The location of the new transfer
event is chosen uniformly at random on the parent edge of the selected coalescent node.
The change from (b) into (a) in Figure 9 is an example showing the application of
this proposal. Let y be the number of the HV1 coalescent nodes whose children have a
transfer event on each. Given the state in Figure 9 (b) as the current state of population
W in Figure 2, we have y = 1, and the proposal probability from (b) into (a) is 1

y
1

t3+t4
.

Note it is obvious that the transition in the number of transfer events leads to the
new Numt partition. Therefore, these two methods can affect the hybrid coalescent
process histories of other population edges as well. For example, if Figure 9 (a) is
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the current state, two Numt groups exist as (W3, W4) and (W5, E1, E2) in each (i.e,
Pt(5 | 2) = (2, 3)). In contrast, if Figure 9 (b) is newly proposed, there are three Numt
groups as (W3), (W4) and (W5, E1, E2) with Pt(5 | 3) = (1, 1, 3). Unlike the previous
two update methods for changing the event history, this proposal can affect the histories
of other population edges with the new Numt partitions.

To calculate the proposal ratio with these two proposal methods, recall the following
definition:

� x=the number of Numt lineages which are the oldest ancestors in each Numt
group and which are non-leaves at the current state.

� y= the number of HV1 coalescent events whose children have transfer events on
each edge at the current state.

In Figure 2, we obtain x = 2 and y = 0. Then the proposal ratio for the transition from
(a) to (b) in the example of Figure 9 is

PR =

1
y+1

1
t3+t4

1
x

1
t1+t2

1
t1+t2

=
(t1 + t2)2

t3 + t4

x

y + 1
. (1)

Note, if the state (b) is accepted as a new state, the number of HV1 coalescent events
whose children have a transfer event on each edge increased to y + 1 from y.

In contrast, suppose Figure 9 (b) is the current state of population W in Figure 2.
Then, we obtain x = 1 and y = 1. The proposal ratio for the transition from (b) into
(a) in Figure 9 is

PR =
1

x+1
1

t1+t2
1

t1+t2
1
y

1
t3+t4

=
t3 + t4

(t1 + t2)2

y

x+ 1
.

The acceptance ratio is

min

{
1,
f(T ,Θ, G∗, P ∗t | D)

f(T ,Θ, G, Pt | D)
× PR

}
min

{
1,
f(D | T ,Θ, G∗, P ∗t )f(G∗ | T ,Θ, P ∗t )f(T )f(Θ)f(P ∗t )

f(D | T ,Θ, G, Pt)f(G | T ,Θ, Pt)f(T )f(Θ)f(Pt)
× PR

}
= min

{
1,
f(D | T ,Θ, G∗, P ∗t ){

∏
i f(H∗i | T ,Θ, P ∗t )}f(P ∗t )

f(D | T ,Θ, G, Pt){
∏
i f(Hi | T ,Θ, Pt)}f(Pt)

× PR
}
.

A2.4 Rescale both trees
This proposal method multiplies all edges in both the population and sequence trees by
a common factor m = e−λ(U−0.5), where U ∼Uniform(0, 1) and λ is a tuning parameter.



958 Estimation of Evolutionary History

The reverse proposal requires U∗ = 1− U , so the proposal ratio is

e−λ(−(U−0.5)) =
m

(1/m)
= m2.

1/1

1/1
= 1.

The Jacobian is

J =
∂(T ∗EM, T

∗
WEM, T

∗
Chimp1, T

∗
Chimp2, T

∗
HC, T

∗
GHC, tij(i = 1, · · · , 13, j = 1, · · · , Ii), U∗)

∂(TEM, TWEM, TChimp1, TChimp2, THC, TGHC, tij(i = 1, · · · , 13, j = 1, · · · , Ii), U)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. . . 0
· 0

e−λ(U−0.5) 0
· 0

. . . 0
. . . −λT e−λ(U−0.5) . . . −λtije−λ(U−0.5) . . . −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= m# of divergence times+

∑
i Ii ,

where Ii is the number of events in population edge i. Then the acceptance ratio is

R = min

{
1,
f(T ∗,Θ, G∗, Pt | D)

f(T ,Θ, G, Pt | D)
× J

}
.

Appendix 3: Other results
This section provides supplementary information. First, Table 7, Table 8, Table 9 and
Table 10 provide the estimates from each MCMC chain. For each parameter in an
MCMC chain, there are two values: the upper one is the mean and the lower one is the
standard deviation for the posterior samples from each chain. Table 7 and Table 8 are
from the analysis of the only-HV1 case, and Table 9 and Table 10 are for the Numt-HV1
case. The estimates of each parameter from the six MCMC chains are consistent with
one another in both the only-HV1 case and the Numt-HV1 case.

Next, Table 11, Table 12, Table 13 and Figure 10 are the results obtained from
the analysis of the simulation data described in section 3.9. The data were generated
based on the values of the parameters listed in the second column of Table 11. All the
results were obtained by summarizing 54,000 posterior samples from the six MCMC
chains when our method was applied to the simulated data. We checked whether the
true value of each parameter fell into the 95% credible region of the posterior sample,
provided by our method (Table 11). Also we checked that the estimated consensus
tree is identical with the original gene-genealogy (Figure 10). The haplogroups are well
defined in the consensus tree with high posterior probabilities (Table 12). Table 13
provides the results from the analysis of the simulated data with BEAST. The table
contains the posterior mean, median and 95% credible region for the tMRCA and the
effective population size from each data set, the subset of the simulated data.
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Parameters num of accepts num of visits Accept Rate

A.2.1.1 1744246 7195799 0.242
A.2.1.2 4433969 12001947 0.369
A.2.2.1 1949604 12001416 0.162
A.2.2.2 2896288 7203681 0.402
A.2.2.3 1706571 19187309 0.0889
A.2.3.1 675822 30013374 0.0225
A.2.3.2 675771 25407628 0.0266
A.2.4 2166486 2402527 0.902

N1 94820 461924 0.205
N2 164397 461308 0.356
N3 241411 461058 0.524
N4 205822 461802 0.446
N5 318911 461584 0.691
N6 352970 461526 0.765
N7 310379 462486 0.671
N8 269163 461461 0.583
N9 132724 461501 0.288
N10 297913 461656 0.645
N11 311625 460676 0.676
N12 324386 460774 0.704
N13 308264 460850 0.669
µHV1 142118 1000468 0.142
µNumt 234959 1000901 0.235
κHV1 262177 1001442 0.262
κNumt 443582 999754 0.444
λθ 455072 999612 0.455
η 464643 999217 0.465

Table 6: The acceptance rate of each MCMC update method. The first eight
rows are from the MCMC methods described from A.2.1 to A.2.4 in order of appearance.
The remaining rows are acceptance rates for numerical parameters in Θ= {θ1, · · · , θ13,
λθ, η, µHV1, µNumt, κHV1, κNumt}.

Finally, Figure 11 and Figure 12 show the graphical results, in regard to the sensi-
tivity analysis of the prior distributions mentioned in section 4.1. Figure 11 is for the
divergence times of gorillas and Figure 12 is for the divergence times of chimpanzees.
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Figure 10: Comparison of the true topology and the consensus topology from
MCMC analysis. (a) is the true gene-genealogy generating the sequence data. (b) is
the consensus tree summarized from 5400 posterior sampled trees. Population W has
Numt I (1, 2, 3), Numt II (4, 5, 6) and HV1 (7, 8, 9) sequences. Population E has Numt
I (10, 11, 12), Numt II (13, 14, 15), HV1 (16, 17, 18) sequences. Population M has
HV1 (19, 20, 21) sequences. Human and Chimpanzee populations have a single HV1
sequence labeled as 22, 23, 24 and 25, respectively.
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Figure 11: Comparison of the distributions of prior and posterior samples for
gorilla divergence times. In each panel, (a) and (b) are for the Monte Carlo samples
and the posterior samples from the original prior distribution, and (c) and (d) are for
the Monte Carlo samples and the posterior samples from the new prior distribution.
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Figure 12: Comparison of the distributions of prior and posterior samples
for chimpanzee divergence times. In each panel, (a) and (b) are for the Monte
Carlo samples and the posterior samples from the original prior distribution, and (c)
and (d) are for the Monte Carlo samples and the posterior samples from the new prior
distribution.
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Parameters Chain 1 Chain 2 Chain 3 Chain 4 Chain 5 Chain 6
TEM 0.688 0.664 0.67 0.671 0.688 0.686

0.365 0.36 0.354 0.363 0.369 0.355
TWEM 3.88 3.77 3.79 3.77 3.77 3.85

1.36 1.34 1.32 1.3 1.33 1.32
Tchimp1 0.548 0.55 0.451 0.512 0.58 0.617

0.541 0.538 0.539 0.542 0.553 0.555
Tchimp2 1.54 1.51 1.39 1.52 1.55 1.58

0.561 0.581 0.674 0.583 0.587 0.549
THC 4.93 4.9 4.92 4.93 4.92 4.93

0.565 0.562 0.568 0.567 0.567 0.568
TGHC 7.61 7.58 7.62 7.62 7.61 7.6

1 1.01 1 0.999 1 1
N1 (W) 0.923 0.965 0.922 0.912 0.915 0.889

0.289 0.314 0.262 0.304 0.29 0.28
N2 (E) 5.71 5.79 5.6 5.63 5.63 5.5

3.09 3.37 2.92 3.14 3.09 3.12
N3 (M) 12.3 13 13.3 12.9 12.8 11.4

9.41 10.6 10.9 11.4 10.5 8.47
N4 (H) 1.53 1.6 1.58 1.6 1.55 1.51

0.728 0.759 0.732 0.828 0.762 0.712
N5 (Wc) 3.81 10.8 6.69 5.94 7.02 4.98

21.7 251 34.4 47.6 79.7 42.6
N6 (N) 444 17.4 21 24.8 15.4 21

16300 94.1 218 234 77.3 193
N7 (C) 1.82 1.91 2.2 2.03 1.73 1.72

1.98 3.02 5.74 9.5 2.65 1.57
N8 (EM) 25.3 22.1 29.2 17.8 23.5 26.6

158 191 218 89.2 285 181
N9 (WEM) 19.9 18.7 17.8 37.3 20.3 27.6

196 124 190 497 189 256
N10 (Chimp1) 21.9 13.4 36.1 9.25 8.44 8.25

206 149 633 91.7 49.6 42.4
N11 (Chimp2) 69.4 33.9 18.3 23.2 27.9 17.3

1100 307 142 169 241 59.4
N12 (HC) 23 52.3 40.6 37.3 35.2 29.2

145 483 519 291 419 219
N13 (GHC) 19.7 20.9 16.4 45.4 11 20.9

212 160 206 929 59 182
µHV1 0.0463 0.0481 0.0473 0.0467 0.0463 0.0454

0.0128 0.0135 0.0122 0.0135 0.013 0.0125
µNumt NA NA NA NA NA NA

NA NA NA NA NA NA
κHV1 21.5 21.6 21.6 21.4 21.5 21.2

4.51 4.53 4.46 4.43 4.47 4.43
κNumt NA NA NA NA NA NA

NA NA NA NA NA NA
λθ 0.429 0.411 0.43 0.42 0.424 0.431

0.189 0.188 0.185 0.191 0.187 0.189
η NA NA NA NA NA NA

NA NA NA NA NA NA

Table 7: The estimates of the parameters from each of six MCMC chains in
the analysis of the only-HV1 case.

References
Altheide, T. (2002). “Comparative population genetics of the Hominoidea: an inves-

tigation of locus-specific and genome wide influence.” Ph.D. thesis, Department of
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Parameters Chain 1 Chain 2 Chain 3 Chain 4 Chain 5 Chain 6
A 0.153 0.152 0.146 0.151 0.152 0.161

0.0834 0.0887 0.0812 0.0831 0.0843 0.0868
B 0.19 0.182 0.184 0.189 0.189 0.194

0.0901 0.0843 0.0817 0.0851 0.0867 0.0888
C1 0.272 0.25 0.27 0.268 0.266 0.279

0.104 0.0958 0.104 0.102 0.104 0.102
C2 1.03 0.976 0.997 1 1.02 1.03

0.33 0.326 0.31 0.322 0.34 0.321
D1 0.377 0.349 0.357 0.386 0.367 0.384

0.167 0.163 0.153 0.17 0.174 0.171
D2 0.174 0.175 0.161 0.158 0.179 0.165

0.0696 0.0785 0.0662 0.068 0.079 0.074
D3 0.147 0.152 0.153 0.17 0.155 0.161

0.0678 0.0645 0.0665 0.0816 0.0701 0.0698
A, B 0.955 0.924 0.927 0.938 0.951 0.959

0.333 0.338 0.316 0.337 0.341 0.323
C 1.03 0.976 0.997 1 1.02 1.03

0.33 0.326 0.31 0.322 0.34 0.321
D1, D2 0.56 0.549 0.538 0.548 0.576 0.56

0.201 0.208 0.199 0.191 0.218 0.195
D 0.586 0.583 0.571 0.585 0.601 0.589

0.2 0.204 0.195 0.195 0.215 0.191
C, D 1.69 1.64 1.65 1.65 1.69 1.68

0.479 0.489 0.467 0.48 0.512 0.465
All Gorilla 4.51 4.41 4.44 4.4 4.45 4.49

1.21 1.24 1.19 1.22 1.24 1.21
Human 0.505 0.489 0.496 0.509 0.498 0.521

0.184 0.186 0.177 0.193 0.183 0.189
P.t.Verus 0.501 0.489 0.489 0.498 0.504 0.506

0.186 0.184 0.175 0.186 0.187 0.185
P.t.Troglodytes 0.801 0.78 0.789 0.798 0.804 0.812

0.281 0.282 0.277 0.29 0.29 0.278
P.t.Verus, P.t.Vellerosus 1.29 1.25 1.26 1.27 1.29 1.31

0.395 0.392 0.381 0.395 0.403 0.386
All Chimp 1.84 1.8 1.81 1.83 1.85 1.86

0.492 0.503 0.479 0.501 0.515 0.493
Human, Chimp 5.27 5.22 5.27 5.27 5.29 5.29

0.77 0.778 0.796 0.773 0.816 0.788
Gorila, Human, Chimp 8.74 8.62 8.67 8.68 8.73 8.78

1.66 1.69 1.63 1.68 1.75 1.72

Table 8: The estimates of tMRCAs from each of six MCMC chains in the
analysis of the only-HV1 case.
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Parameters Chain 1 Chain 2 Chain 3 Chain 4 Chain 5 Chain 6
TEM 0.515 0.55 0.46 0.468 0.483 0.435

0.337 0.309 0.277 0.319 0.308 0.268
TWEM 1.31 1.01 1.15 1.29 1.06 1.01

0.393 0.349 0.372 0.391 0.363 0.398
Tchimp1 0.477 0.386 0.463 0.51 0.513 0.534

0.505 0.512 0.488 0.493 0.521 0.516
Tchimp2 1.46 1.48 1.39 1.42 1.47 1.5

0.528 0.605 0.537 0.503 0.538 0.559
THC 4.76 4.8 4.75 4.74 4.76 4.81

0.545 0.552 0.536 0.537 0.548 0.554
TGHC 8 7.94 7.95 8.03 7.95 7.94

0.825 0.867 0.862 0.812 0.86 0.871
N1 (W) 0.84 0.83 0.865 0.879 0.823 0.825

0.224 0.244 0.238 0.23 0.217 0.229
N2 (E) 2.91 2.92 2.98 3.13 3.04 2.93

1.32 1.31 1.31 1.46 1.42 1.29
N3 (M) 12.3 12 13.4 12.8 12.3 12.6

9.65 9.12 10.7 10 10.4 10.2
N4 (H) 1.48 1.46 1.54 1.57 1.47 1.47

0.671 0.676 0.695 0.707 0.654 0.664
N5 (Wc) 4.49 4.63 6.9 3.18 4.04 4.45

37.5 19 114 11.5 25.9 37
N6 (N) 18.6 320 14.7 25.9 14.2 14.6

249 14300 146 334 88.4 75.2
N7 (C) 1.74 1.81 1.93 1.71 1.6 1.59

3.91 5.81 6.08 2.32 1.62 1.5
N8 (EM) 2.12 26.9 6.12 1.97 3.14 7.09

5.08 147 15.8 3.83 5.88 42.5
N9 (WEM) 1.99 1.79 1.86 2.03 1.93 1.7

0.655 0.658 0.62 0.707 0.67 0.546
N10 (Chimp1) 9.29 4.63 6.66 7.45 10.2 20.9

118 25.5 44.9 44.3 136 442
N11 (Chimp2) 41.7 28.5 14.5 41.9 26.2 21.7

414 241 79.8 355 258 209
N12 (HC) 27.6 25.6 25.1 19.2 63.2 27.1

225 156 128 117 690 196
N13 (GHC) 5.83 7.5 5.34 41.4 7.47 4.89

36.4 58 34.8 1400 59.9 20.2
µHV1 0.0394 0.0384 0.0404 0.0406 0.0392 0.0386

0.0085 0.0089 0.0084 0.00855 0.00873 0.0081
µNumt 0.00275 0.00355 0.00297 0.00229 0.0036 0.00329

0.000879 0.00121 0.00113 0.000797 0.00122 0.00106
κHV1 19.8 19.8 19.6 19.4 20 19.8

3.57 3.63 3.49 3.4 3.6 3.52
κNumt 8.81 9.12 9 8.86 9.08 9.07

3.29 3.34 3.41 3.56 3.25 4.13
λθ 0.502 0.499 0.494 0.494 0.501 0.514

0.184 0.189 0.184 0.183 0.188 0.186
η 0.622 0.561 0.617 0.529 0.632 0.609

0.373 0.332 0.322 0.225 0.36 0.336

Table 9: The estimates of the parameters from each of six MCMC chains in
the analysis of the Numt-HV1 case.
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Parameters Chain 1 Chain 2 Chain 3 Chain 4 Chain 5 Chain 6
A 0.15 0.156 0.142 0.147 0.152 0.148

0.078 0.079 0.0741 0.0778 0.0828 0.0769
B 0.23 0.238 0.219 0.217 0.221 0.226

0.0928 0.1 0.0851 0.0871 0.0923 0.0966
C1 0.268 0.295 0.298 0.283 0.293 0.281

0.081 0.107 0.0923 0.0925 0.11 0.101
C2 0.936 1.03 0.926 0.945 0.961 0.991

0.252 0.295 0.248 0.261 0.256 0.298
D1 0.346 0.367 0.35 0.334 0.352 0.364

0.135 0.149 0.141 0.12 0.163 0.147
D2 0.152 0.154 0.143 0.152 0.151 0.187

0.0631 0.0661 0.0581 0.0535 0.0562 0.0696
D3 0.172 0.182 0.15 0.17 0.189 0.169

0.0655 0.0744 0.0621 0.0613 0.0725 0.0846
Numt I 1.99 2.66 2.02 2.05 2.21 2.26

0.459 0.608 0.486 0.456 0.562 0.598
Numt IIA 1.99 2.66 2.02 2.05 2.21 2.26

0.459 0.608 0.486 0.456 0.562 0.598
Numt IIB 1.99 2.66 2.02 2.05 2.21 2.26

0.459 0.608 0.486 0.456 0.562 0.598
Numt IIC 1.99 2.66 2.02 2.05 2.21 2.26

0.459 0.608 0.486 0.456 0.562 0.598
Numt II (IIA, IIB, IIC) 1.99 2.66 2.02 2.05 2.21 2.26

0.459 0.608 0.486 0.456 0.562 0.598
Numt III 1.99 2.66 2.02 2.05 2.21 2.26

0.459 0.608 0.486 0.456 0.562 0.598
A, B 1.04 0.949 0.935 0.97 0.924 0.924

0.309 0.265 0.271 0.287 0.313 0.289
C 0.936 1.03 0.926 0.945 0.961 0.991

0.252 0.295 0.248 0.261 0.256 0.298
D1, D2 0.466 0.479 0.458 0.436 0.477 0.504

0.137 0.152 0.139 0.133 0.156 0.168
D 0.537 0.556 0.521 0.504 0.551 0.571

0.14 0.169 0.149 0.133 0.167 0.168
C, D 1.31 1.51 1.3 1.32 1.37 1.4

0.31 0.406 0.298 0.312 0.331 0.373
Numt I, C, D 1.99 2.66 2.02 2.05 2.21 2.26

0.459 0.608 0.486 0.456 0.562 0.598
Numt III, A, B 1.99 2.66 2.02 2.05 2.21 2.26

0.459 0.608 0.486 0.456 0.562 0.598
Numt IIB, Numt IIC 1.99 2.66 2.02 2.05 2.21 2.26

0.459 0.608 0.486 0.456 0.562 0.598
A, B, C, D, NumtI, Numt III 1.99 2.66 2.02 2.05 2.21 2.26

0.459 0.608 0.486 0.456 0.562 0.598
All Gorilla 6.11 5.74 5.84 6.08 5.82 5.88

1.17 1.18 1.12 1.14 1.21 1.24
Human 0.531 0.538 0.49 0.495 0.524 0.511

0.177 0.176 0.165 0.163 0.178 0.176
P.t. verus 0.501 0.515 0.485 0.484 0.504 0.515

0.17 0.178 0.162 0.163 0.173 0.18
P.t. troglodytes 0.828 0.854 0.805 0.802 0.831 0.846

0.27 0.292 0.256 0.258 0.28 0.288
P.t. troglodytes, P.t. vellerosus 1.25 1.3 1.22 1.21 1.26 1.28

0.34 0.376 0.328 0.332 0.356 0.362
All Chimp 1.79 1.85 1.75 1.73 1.8 1.83

0.43 0.476 0.406 0.411 0.446 0.467
Human, Chimp 5.01 5.1 5 4.99 5.04 5.07

0.673 0.738 0.646 0.644 0.71 0.709
Gorila, Human, Chimp 6.1 5.69 5.83 6.08 5.8 5.82

1.17 1.18 1.12 1.14 1.21 1.23

Table 10: The estimates of tMRCAs from each of six MCMC chains in the
analysis of the Numt-HV1 case.
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Parameters true values posterior median 95% C.R.
Population divergence time

TEM 3.6e-05 0.0042 (1.1e-07, 0.12)
TWEM 0.206 0.12 (0.017, 0.35)
Tchimp1 2.5e-05 3.7e-05 (5.8e-11, 0.052)
Tchimp2 0.1554 0.048 (1e-05, 0.31)
THC 5 5.1 (4.1, 6)
TGHC 7 7.3 (5.2, 8.9)

Effective population size
N1 10 14 (1.3, 95)
N2 10 11 (0.24, 380)
N3 10 9.7 (0.35, 320)
N4 10 8.3 (0.24, 320)
N5 10 7.5 (0.084, 360)
N6 10 7.4 (0.21, 270)
N7 10 7.6 (0.097, 290)
N8 10 11 (0.76, 100)
N9 10 10 (2.5, 46)
N10 10 12 (0.22, 350)
N11 10 14 (1.5, 240)
N12 10 8.8 (0.19, 870)
N13 10 7.7 (0.25, 460)

tMRCA
West HV1 0.112 0.081 (0.018, 0.27)
East HV1 0.0895 0.067 (0.015, 0.27)
Mountain HV1 0.235 0.11 (0.027, 0.35)
East-Mountain HV1 0.235 0.12 (0.035, 0.37)
Numt I 0.601 0.74 (0.17, 3.2)
Numt II 0.654 0.48 (0.13, 2.1)
Gorilla HV1 0.235 0.18 (0.064, 0.44)
All Gorilla 2.85 2.6 (1.3, 5.6)
Chimp1-Chimp2 0.039 0.032 (0.0032, 0.15)
All Chimp 0.158 0.13 (0.037, 0.4)
Human-Chimp 5.047 5.4 (4.1, 8)

Other parameters
µHV1 0.075 0.13 (0.058, 0.28)
µNumt 0.0096 0.0042 (0.00071, 0.03)
κHV1 19 23 (11, 50)
κNumt 19 22 (2.4, 970)
η 0.5 0.63 (0.11, 6.3)

Table 11: The numerical results from the analysis of the simulation data.
The estimates are obtained by summarizing the six MCMC chains. The second column
provides the true values were used in generating the simulation data. The third and
fourth column are the median and 95% credible region from the posterior samples,
respectively.
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Count Prob. Tree topology
5400 1.000 {1-25}
5400 1.000 {1-21}
5400 1.000 {23-25}
5400 1.000 {4-6,13-15}
5400 1.000 {7-9,16-21}
5395 0.999 {1-3,10-12}
5340 0.989 {20-21}
5326 0.986 {7-8}
5194 0.962 {10-12}
5140 0.952 {22-25}
5120 0.948 {23-24}
4715 0.873 {7-9}
3921 0.726 {16-19}
3619 0.670 {16-17}
1811 0.335 {10,12}
1394 0.258 {1,10-12}
1228 0.227 {16-18}
980 0.181 {7-9,20-21}
161 0.030 {6,13}
160 0.030 {5,14}
134 0.025 {1-3,7-12,16-21}
118 0.022 {4,6,13}
99 0.018 {5,14-15}
1 0.000 {1,3,10-12}

Table 12: The posterior probabilities for the clades after summarizing the
5400 posterior sampled trees.

tMRCA (in MYA) Population size

Groups mean median 95% C.R. Mean median 95% C.R.

W-HV1 0.24 0.22 (0.07,0.42) 15000 11000 (3100,31000)
E-HV1 0.15 0.11 (0.095,0.3) 13000 5300 (4200,31000)
M-HV1 0.25 0.26 (0.071,0.45) 16000 8700 (1300,49000)
W-Numt 5.3 5.4 (2.8,7.6) 64000 45000 (17000,160000)
W-Numt I 0.33 0.25 (0.039,0.79) 24000 20000 (300,67000)
E-Numt 4 3.9 (2,6.6) 36000 21000 (12000,89000)

Table 13: The estimates of tMRCA and effective population sizes from
BEAST.
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