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Invariant Conjugate Analysis for Exponential
Families

Pierre Druilhet∗ and Denys Pommeret†

Abstract. There are several ways to parameterize a distribution belonging to an
exponential family, each one leading to a different Bayesian analysis of the data
under standard conjugate priors. To overcome this problem, we propose a new class
of conjugate priors which is invariant with respect to smooth reparameterization.
This class of priors contains the Jeffreys prior as a special case, according to the
value of the hyperparameters. Moreover, these conjugate distributions coincide
with the posterior distributions resulting from a Jeffreys prior. Then these priors
appear naturally when several datasets are analyzed sequentially and when the
Jeffreys prior is chosen for the first dataset. We apply our approach to inverse
Gaussian models and propose full invariant analyses of three datasets.

Keywords: Bayesian inference, conjugate prior, exponential family, inverse Gaussian distribu-

tion, Jeffreys prior, sequential analysis.

1 Introduction

A Bayesian statistical model is made of a parametric statistical model with density
f(x|θ), and a prior on the parameters with density π(θ). In this context, as pointed out
by Gelman (2004), a transformation of parameters typically suggests a new family of
prior distributions. Other authors emphasized the importance of the parameterization
in a Bayesian framework, as for instance Slate (1994) for quadratic natural exponen-
tial families, or Palmer (1973) for the inverse Gaussian distribution. More technical
reparameterizations occur in Mengersen and Robert (1996) changing mean and vari-
ance parameters for estimation purposes (see also Robert and Titterington, 1998, for
an application with Markov chains). Several illustrations are proposed in the literature,
as in phylogenetics in Zwickl and Holder (2004) where two possible parameterizations
are considered for transitions of nucleotides: a transition-transversion rate ratio τ , or a
proportion of substitutions that are transitions φ = τ/(2 + τ).

A solution to this problem was proposed by Jeffreys (1946). He introduced a prior
distribution, whose density is the square root of the determinant of the Fisher infor-
mation matrix, that is invariant with respect to reparameterization. However, despite
this invariance property, the Jeffreys prior is not always recommended: the distribution
may be improper and it yields a non-informative distribution.

In this paper we consider the problem of constructing a prior family that is invariant
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with respect to reparameterization. We restrict our attention to the case where the
density f(x|θ) belongs to an exponential family. In that case the prior distribution π(θ)
is often chosen among the family of natural conjugate prior distributions in order to
derive a simple expression of the posterior distribution.

We propose a new class of conjugate priors for exponential families based on the
Jeffreys measure and named Jeffreys Conjugate Priors (JCPs). This class has the ad-
vantage of being invariant with respect to smooth reparameterization. When the ex-
ponential family is natural quadratic (see Morris, 1983), we show that this approach
is equivalent to classical conjugate prior families. From a sequential point of view, if
several datasets are successively explored and the Jeffreys prior is chosen for the first
dataset, the successive posterior distributions belong to the class of JCPs. It is then
a natural class of priors for adaptive procedures, leading to an automatic method of
calibration for the hyperparameters. This point is illustrated in our study data.

We study the JCPs associated with the well known inverse Gaussian distributions
with one or two unknown parameters. This class of distributions belongs to the expo-
nential family and the problem of reparameteriztion has been emphasized by several
authors (see for instance Whitmore, 1979, Palmer, 1973, Chhikara and Folks, 1989,
Banerjee and Bhattacharyya, 1979). We will look more closely at this class of distri-
butions, obtaining explicit expressions of JCPs. Two cases will be then considered:
the first one is the standard inverse Gaussian distribution with one parameter, which
belongs to the cubic natural exponential families. The second one is the general inverse
Gaussian distribution with two parameters.

The paper is organized as follows: In Section 2, we introduce the notion of invariant
Jeffreys conjugate priors. In Section 3, we focus on inverse Gaussian models. In Section
4, we analyse several datasets, one of them by a sequential procedure.

2 Invariant conjugate priors for exponential families

Consider n i.i.d. random variables X = (X1, ..., Xn), where the distribution Pθ of Xi

belongs to an exponential family (see Barndorff-Nielsen, 1978, for more details). The
probability density function of Pθ is given by

f(x | θ) = exp{θ · t(x)− ϕ(θ)} k(x), (1)

where k is some non-negative function and θ stands for the natural parameter assumed
to belong to an open set Θ ⊂ Rd. Here, θ·t(x) denotes the scalar product. The density is
considered with respect to some Radon measure (in most cases, the Lebesgue measure for
continuous distributions and the counting measure for discrete distributions). Standard
conjugate prior distributions {πα,β}α,β for θ are defined by their density with respect
to the Lebesgue measure by

πα,β(θ) ∝ exp{θ · α− β ϕ(θ)}. (2)

Diaconis and Ylvisaker (1979) obtained necessary and sufficient conditions on α and β
under which πα,β is a proper distribution. The main interest of conjugate priors is the
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following updating formula given the observations x = (x1, · · · , xn):

πα,β(θ |x) = πα+
∑
i t(xi),n+ β(θ). (3)

In the same way, many other families of conjugate priors may be constructed by setting

πα,β(θ) ∝ exp{θ · α− β ϕ(θ)} π0(θ), (4)

where π0 is some non-negative function. More generally, families of conjugate priors may
be constructed by considering (2) as the density with respect to some σ-finite measure
on Θ instead of the Lebesgue measure. The advantage of such families of priors is that
formula (3) initially stated for the standard conjugate priors still holds.

Most often, the usual parameterization of an exponential family is not given by the
natural parameter θ, but by η = h(θ) where h is a one-to-one transformation twice
continuously differentiable (henceforth abbreviated as smooth reparameterization). In
the literature, two main families of conjugate prior distributions on η are used: the first
one is derived from the family of conjugate priors for θ given by (2) and is defined by

πα,β(η) ∝
∣∣∣∣dθ(η)

d η

∣∣∣∣ exp{θ(η) · α+ β ϕ(θ(η))}. (5)

The second one, known as the standard conjugate prior family, is given by

πα,β(η) ∝ exp{θ(η) · α+ β ϕ(θ(η))}. (6)

Note that Formulas (5) and (6) differ by the Jacobian |dθ(η)/d η|. In the general case,
these two families of conjugate priors are not identical. However, there are some cases
where the two families coincide. For example, in the case of natural exponential families,
i.e. t(xi) = xi with both xi and θ belonging to R, which are parameterized by the
means of the distributions, m(θ) = E(Xi|θ), Consonni and Veronese (1992) showed
that the two families of prior distributions defined by (5) and (6) are identical (up to a
reparameterization) if and only if (iff) the exponential family is quadratic, which means
that the variance of the distribution is a quadratic polynomial in the mean. Quadratic
natural exponential families include the binomial, Poisson, negative-binomial, Gaussian,
gamma and hyperbolic distributions (see Morris, 1983). Thus, for these families, we do
not take into account the Jacobian for reparameterization. Some extensions to the
multivariate case have been established by Gutiérrez-Peña and Smith (1995) (see also
Consonni et al. 2004, Gutiérrez-Peña and Rueda, 2003).

We propose a new family of conjugate priors for exponential families that is invariant
with respect to reparameterization and that may approach the Jeffreys prior. For any
smooth parameterization η(θ), we define the corresponding Jeffreys Conjugate Prior
(JCP) by

πJα,β(η) ∝ exp{α · θ(η)− β ϕ(θ(η))} |Iη(η)|1/2, (7)

where Iη(η) is the Fisher information matrix for η. The special case η = θ leads to

πJα,β(θ) ∝ exp{θ · α− β ϕ(θ)} |Iθ(θ)|
1
2 , (8)
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which corresponds to (4) with πo(θ) = |Iθ(θ)|
1
2 , the Jeffreys prior.

It is worth pointing out that, from (3), when the prior distribution is the Jeffreys
one, the posterior distribution belongs to the family of JCPs with α =

∑
t(xi) and

β = n. This implies that the JCPs appear naturally in sequential estimation procedures,
starting with the Jeffreys prior.

The following proposition establishes the invariance property of JCPs under smooth
reparameterization.

Proposition 1. Consider the JCPs class {πJα,β(θ)}α,β for the parameter θ and let
η = h(θ) be a smooth reparameterization. The prior distribution πJα,β(η) defined by (7)
is the same as the distribution derived from πJα,β(θ); that is,

πJα,β(η) =
∣∣∣∣dθ(η)

d η

∣∣∣∣ πJα,β(θ(η)).

Proof. The proof follows immediately from the invariance property of the Jeffreys
measure:

|Iη(η)|1/2 = |Iθ(θ(η))|1/2
∣∣∣∣dθ(η)

d η

∣∣∣∣ .
�

For a univariate quadratic natural exponential family, the proposition below shows
that the JCPs are equivalent to the standard conjugate priors when the parameter is
m(θ) = E(Xi|θ) .

Proposition 2. The JCPs associated with the mean parameter are equivalent (up to
a reparameterization) to the standard conjugate priors given by (5) iff the univariate
natural exponential family is quadratic.

Proof. Let V (m) = Varm(Xi) be the variance function associated with the expo-
nential family. It is well known that V (m) = |Im(m)|−1. Therefore we have to charac-
terize the fact that there exists αo and βo such that V (m) ∝ exp{θ(m)·αo+βo ϕ(θ(m))}.
Deriving with respect tom this proportionality we get: V ′(m) ∝ θ′(m)

(
αo+βo ϕ′(θ(m))

)
V (m).

Since θ′(m) =
(
V (m)

)−1 and ϕ′(θ(m)) = m, we obtain V ′(m) ∝ αo+βo m; that is, the
exponential family is quadratic.

�

As a consequence of Proposition 2, when the model corresponds to a quadratic
exponential family, it is not necessary to distinguish between standard conjugate priors
and JCPs for the mean parameter. Another advantage of the invariance property stated
in Proposition 1 is that conditions on α and β leading to proper prior distributions for
πJα,β(η) do not depend on the choice of the smooth parameterization η. In the next
section, we shall examine these conditions in the case of inverse Gaussian distributions.
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Remark 2.1. The construction of JCPs can be related to the work of Druilhet and
Marin (2007). They proposed to use Jeffreys MAP (JMAP) estimators defined by

JMAP(η) = Argmax
η

π(η|x) |Iη(η)|− 1
2 .

Unlike MAP estimators, JMAP estimators are invariant with respect to smooth repa-
rameterization. In the case of JCPs, we have:

JMAP(η) = Argmax
η>0

πJα,β(η|x) |Iη(η)|− 1
2 = Argmax

η>0
πα,β(η|x),

where the prior πα,β(η) is defined by (6). We may note that JMAP estimators with prior
πJα,β(η) are equivalent to standard MAP estimators with prior πα,β(η), even though both
prior distributions are different.

Similarly to the JMAP estimator, Druilhet and Marin (2007) obtained invariant
highest posterior density (HPD) based on the Jeffreys measure and called JHPD:

JHPDγ(η) = {η > 0 : πJα,β(η|x) |Iη(η)|− 1
2 ≥ kγ} = {η > 0 : πα,β(η) ≥ kγ},

for some constant kγ .

3 Invariant conjugate analysis for inverse Gaussian distri-
butions

The inverse Gaussian distribution appears in many probabilistic models and has a wide
range of applications (see Seshadri, 1993, for more details). Depending on the context,
several parameterizations have been proposed. For instance Tweedie (1956) proposed
the following parameterization for the density function:

f(x;µ, λ) =
(

λ

2πx3

)1/2

exp
{
−λ(x− µ)2

2µ2x

}
, x > 0,

where µ > 0 denotes the mean parameter and λ > 0 stands for the shape parameter. The
variance µ3/λ is sometimes called the Jorgensen parameter in the literature of dispersion
models (see Jorgensen, 1986). If X1, · · · , Xn are i.i.d. random variables with density
f(x;µ, λ), then

∑
Xi has density f(x;nµ, n2λ). The first time level 1 is attained for a

real Brownian motion process with drift ψ = 1/µ and diffusion constant 1/λ has inverse
Gaussian distribution (see for instance Cox and Miller, 1965). The parameter φ = λ/µ
determines the shape of the distribution, and, for λ fixed, as φ increases the inverse
Gaussian tends to the normal distribution (see Seshadri, 1993, for some illustrations).
The parameter δ = (φµ)−1/2 is the coefficient of variation. In the particular case where
λ = 1 = φ, we obtain the so called standard inverse Gaussian distribution.

In this context, several problems of parameterization appeared in the literature.
For example, with the parameterization (ψ = 1/µ, λ), Whitmore (1979) obtained a
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normal-gamma family of conjugate priors. Palmer (1973) showed that the natural con-
jugate prior does not exist for the parameterization (µ, λ), but it exists for λ when µ
is known. Chhikara and Folks (1989) showed that the natural conjugate prior exists
for the parameter ψ = 1/µ. With the parameterization (ψ = 1/µ, λ) Barnejee and
Bhattacharyya (1979) proved that the Jeffreys prior (Jeffreys, 1961) yields an improper
posterior distribution for ψ.

We proceed with the study of the JCPs associated with the inverse Gaussian distri-
bution with one or two parameters. We consider an i.i.d. sample x = (x1, ..., xn) from
an inverse Gaussian distribution and we denote S =

∑n
i=1 xi and T =

∑n
i=1 1/xi.

3.1 Standard inverse Gaussian distribution

We set λ = 1 and consider the mean parameter µ > 0. The density of the standard
inverse Gaussian distribution is given by

f(x;µ) =
(

1
2πx3

)1/2

exp
{
−(x− µ)2

2µ2xi

}
, x > 0,

with respect to Lebesgue measure on R+. The Fisher information for µ is Iµ(µ) = µ−3

and the JCP is given by

πJα,β(µ) ∝ µ−3/2 exp
{
−α
2µ2

+ β/µ

}
I(0,∞)(µ),

where I(0,∞) denotes the indicator function on (0,∞). For α = 0, πJα,β is an inverse
gamma distribution with parameters (1/2,−β). It is proper iff β < 0. Its mode is
−2β/3. For α > 0, πJα,β is proper with mode

M =
1
3

{√
β2 + 6α− β

}
.

In both cases, the means of the prior and posterior distributions are +∞. Note that
πJα,β corresponds to a left-truncated generalized inverse normal distribution (see Robert,
1991) defined by

fσ2,ξ(m) = |m|−c exp
{
−1

2σ2m2
+

ξ

σ2m

}
,

with c = 3/2, σ2 = 1/α and ξ/σ2 = β.

Using the updating formula (3), the posterior distribution is given by

πJα,β(µ |x) = πJα+S,n+β(µ).

Since the posterior mean does not exist, we use the MAP estimator for µ:

MAP(µ) =
1
3

{√
(β + n)2 + 6(α+ S)− (β + n)

}
,
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which is not invariant with respect to reparameterization. If β + n > 0, an invariant
estimator is

JMAP(µ) =
α+ S

β + n
.

If β + n ≤ 0, then JMAP(µ) = +∞.

3.2 Inverse Gaussian model with two parameters

We consider the parameterization (ψ = 1/µ, λ), ψ > 0 and λ > 0. The determinant of
the Fisher information matrix is given by

|I(ψ, λ)| = (2ψλ)−1,

and the density functions of the JCPs with respect to the Lebesgue measure on R+×R+

are given by

πJα,β(ψ, λ) ∝ exp
{
−λ

2
(
α1ψ

2 − 2βψ + α2

)}
ψ−1/2λ(β−1)/2. (9)

Note that, conditioning on λ, we get

πJα,β(ψ|λ) ∝ exp{α1ψ
2 + α2ψ} ψ−1/2,

and conditioning on ψ, πJα,β(λ|ψ) is a gamma distribution.

For natural exponential families, when the density function of the conjugate prior is
given by exp{α.θ−β ϕ(θ)} with respect to the Lebesgue measure, Diaconis and Ylvisaker
(1979) proved that the prior is proper for β > 0 and α/β in the interior of the convex
hull of the support of a reference measure γ satisfying exp{ϕ(θ)} =

∫
exp{θx}γ(dx). In

the case of inverse Gaussian models, the following result provides a criterion for JCPs
to be proper.

Proposition 3. i) The JCP distribution (9) is proper iff α1 > 0, α2 > 0 and
−1/2 ≤ β < √α1α2.

ii) E(λ) <∞ iff α1 > 0, α2 > 0 and −5/2 ≤ β < √α1α2.

iii) E(ψ) <∞ iff α1 > 0, α2 > 0 and 1/2 ≤ β < √α1α2.

Proof. For any given ψ > 0, πJα,β(λ|ψ) is a gamma distribution. It is integrable
with respect to 0 < λ < +∞ iff β > −1 and α1 ψ

2 − 2βψ + α2 > 0. In these cases, the
marginal distribution is

πJα,β(ψ) ∝ ψ−1/2(α1ψ
2 − 2βψ + α2)−

β+1
2 .

Then, it is straightforward to check that the conditions for integrability with respect to
λ and ψ are equivalent to those stated in i). We can prove ii) and iii) with the same
argument.
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�

MAP estimators for (ψ, λ) cannot be used here. Indeed, the posterior distribution
is equal to +∞ for ψ = 0 whatever the data are; consequently, the MAP estimator of
λ is undefined. This is one more reason to use JMAP estimators. For πJα,β(ψ, λ) as the
prior, we have

JMAP(ψ) =
β + n

(α1 + S)
, (10)

JMAP(λ) =
(α1 + S)(β + n)

(α1 + S) (α2 + T )− (β + n)2
. (11)

For new parameters, the posterior analysis using JCP and JMAP is invariant provided
the Fisher information is well defined. Therefore, all the results concerning the new
parameters can be easily obtained from the previous ones. Consider, for example, the
parameters (µ = 1

ψ , λ). The Jeffreys prior is µ−
3
2 λ−

1
2 and the JCP is

πJα,β(µ, λ) ∝ exp
{
−λ

2

(
α1

µ2
− 2β

µ
+ α2

)}
µ−3/2λ(β−1)/2.

Since JCPs are invariant, the conditions on α, β for πJα,β(µ, λ) to be proper are identical
to those stated in Proposition 3. It is worth noting that, by invariance, the JMAP
estimator of λ is not affected by the change of ψ into µ and the JMAP estimator of µ
satisfies JMAP(µ) = (JMAP(ψ))−1.

The improper non-informative Jeffreys prior, denoted by πJ , corresponds to α1 = α2 =
β = 0 whatever the parameterization is. Therefore the JCPs family appears to be a
convenient way to approximate πJ by an invariant class of priors. We just have to
choose α1, α2 and β close to 0 with β2 < α1α2. The posterior distribution is given by

πJα,β((ψ, λ)|x) = πJα1+S,α2+T,β+n(ψ, λ). (12)

By invariance, we have a similar formula for the parameter (µ, λ):

πJα,β((µ, λ)|x) = πJα1+S,α2+T,β+n(µ, λ).

Corollary 4. i) The Jeffreys prior yields an improper posterior distribution for n =
1 and a proper posterior distribution for n > 1.

ii) For n large enough, any JCP leads to a proper posterior distribution.

Proof. i) It is sufficient to show that the conditions stated in Proposition 3 are satis-
fied with α1 = S, α2 = T and β = n. By Jensen’s inequality, S T =

∑n
i=1 xi

∑n
i=1

1
xi
≥

n2. Equality holds iff all the xi are equal which occurs with probability 0 for n > 1 and
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probability 1 for n = 1. The result follows.
ii) It is sufficient to prove that for large values of n, (α1 + S)/n > 0, (α2 + T )/n > 0
and (α1/n + S/n)(α2/n + T/n) > (β/n + 1)2. By the law of large numbers, for any
given λ > 0 and µ > 0, the almost sure limits of (α1 + S)/n and (α2 + T )/n when n
tends to +∞ are respectively µ and 1/λ+ 1/µ. The result follows for n large enough.

�

For the Jeffreys prior, the JMAP estimator is equivalent to the Maximum Likelihood
estimator (see Druilhet and Marin, 2007). Fixing β = α1 = α2 = 0 in (10) and (11), we
obtain

ψ̂ML =
n

S
, and λ̂ML =

n S

S T − n2
. (13)

The JHPD for the parameter ψ is the set {ψ > 0 : α1ψ
2 − 2βψ + α2 − k(β+1)/2

γ ≤ 0}.

4 Illustrations

In this Section we consider three datasets. The first two are used to assess the sensitivity
of the JCP with respect to the choice of the hyperparameters. The third one is used to
illustrate the JCPs in a sequential procedure.

4.1 Bayesian estimation with JCPs

We assume that the observations in each dataset are i.i.d. inverse Gaussian with pa-
rameters (ψ, λ). The posterior density is given by (12). The case α1 = α2 = β = 0
coincides with the Jeffreys prior. Moreover, by Proposition 3, E(λ) (resp. E(ψ)) exists
iff α1 > 0, α2 > 0, α1α2 > β2 and β > −5/2 (resp. β > 1/2). In our numerical studies
we choose α1 = α2 = β(1+ε), with ε > 0 and we let β vary from 0 (the Jeffreys prior) to
1000. This set of values allows us to compare the JCP (β > 0) to the classical Jeffreys
prior (β = 0).

Example 1 The inverse Gaussian distribution was used in Folks and Chhikara (1978)
to model a set of data giving runoff amounts at Jug Bridge, Maryland. The data are
presented in Table 1.

0.17 0.19 0.23 0.33 0.39 0.39 0.40 0.45 0.52 0.56 0.59 0.64
0.66 0.70 0.76 0.78 0.95 0.97 1.02 1.12 1.24 1.59 1.74 2.92

Table 1: Runoff amounts at Jug Bridge

Let us assume a two parameters inverse Gaussian distribution with a Jeffreys con-
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jugate prior given by (9). According to the previous conditions, we fix ε = 0.1 and
α1 = α2 = β(1 + ε). We let β = 0, 0.01, 0.1, 1, 10, 100, 1000. Small values of β cor-
respond to the proximity of the Jeffreys prior. For the limit case β = 0, the JMAP
coincides with the maximum likelihood estimator and the JCP is equivalent to the
Jeffreys prior. The maximum likelihood estimates of λ and ψ are

λ̂ = 0.0433, ψ̂ = 1.3278.

JMAPs and posterior expectations, obtained from (10) and (11), are summarized in
Table 2. It can be observed that JMAPs and posterior expectations are not too sensitive
to the values of the hyperparameters when β is close to zero. For large values of β, it
can be seen that these estimates deviate from the values of λ̂ and ψ̂. The prior means
E(λ) and E(ψ) are more sensitive to the choice of β and turn out to be unstable when
β is close to zero. As noticed by a referee, the prior means seem to be stabilized when
β increases.

E(λ|X) E(λ) JMAP(λ) E(ψ|X) E(ψ) JMAP(ψ)
β = 0 0.044 +∞ 0.0433 1.154 +∞ 1.328
β = 0.01 0.044 197.77 0.0434 1.154 +∞ 1.327
β = 0.1 0.044 23.16 0.0435 1.151 +∞ 1.325
β = 1 0.046 5.909 0.0452 1.124 1 1.303
β = 10 0.062 5.226 0.0618 0.974 0.896 1.165
β = 100 0.223 5.238 0.2228 0.946 0.908 0.966
β = 1000 1.413 2.080 1.413 0.915 0.499 0.916

Table 2: JMAP, prior and posterior expectations for Jug Bridge data

Example 2 Chhikara and Folks (1977) used the inverse Gaussian distribution to model
active repair times (in hours) of an airbone communication transceiver. Table 3 presents
these data.

0.2 0.3 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.8 0.8 1.0 1.0 1.0
1.0 1.1 1.1 1.3 1.5 1.5 1.5 1.5 2.0 2.0 2.2 2.5 2.7 3.0 3. 0 3.3
3.3 4.0 4.0 4.5 4.7 5.0 5.4 5.4 7.0 7.5 8.8 9.0 10.3 22.0 24.5

Table 3: Active repair times (in hours) of an airbone communication

Hyperparameters α1, α2 and β are chosen as in the previous example. Table 4
contains JMAP and posterior estimates for λ and ψ. The maximum likelihood estimates
of ψ and λ are

λ̂ = 1.6588 , ψ̂ = 0.2772.
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As previously, it can be seen that for large values of β, posterior and JMAP estimates
are different from those obtained by maximum likelihood. Consequently we may suggest
small values for β yielding a proper posterior which is close to the vague prior and such
that prior means for ψ and λ may coincide with expert judgments.

E(λ|X) E(λ) JMAP(λ) E(ψ|X) E(ψ) JMAP(ψ)
β = 0 1.657 +∞ 1.659 0.270 +∞ 0.277
β = 0.01 1.657 197.77 1.659 0.270 +∞ 0.277
β = 0.1 1.657 23.16 1.659 0.270 +∞ 0.278
β = 1 1.656 5.909 1.657 0.274 1 0.281
β = 10 1.658 5.226 1.659 0.311 0.896 0.316
β = 100 1.993 5.238 1.994 0.527 0.908 0.529
β = 1000 3.787 5.238 3.787 0.826 0.909 0.826

Table 4: JMAP, prior and posterior expectations for repair data

Remark 4.1 (Influence of the parameter ε.). The previous estimates were obtained for
ε = 0.1. To evaluate the influence of this parameter on the relation α1 = α2 = (1 + ε)β,
we propose two other values for ε, 0.01 and 1, and compare the results obtained for
β = 0.01, β = 1 and β = 10 on the repair dataset. They are reported in Table 5. JMAP
and posterior estimators appear to be robust with respect to ε. For small values of β,
both posterior means and JMAP are stable, while prior means may diverge. Here again
we may recommend small values of ε, combined with small values of β, to get a proper
prior which is close to the vague prior of Jeffreys.

ε β E(λ|X) E(λ) JMAP(λ) E(ψ|X) E(ψ) JMAP(ψ)
0.01 0.01 1.657 1295.33 1.658 0.270 +∞ 0.277

1 1.661 50.99 1.663 0.274 1 0.281
10 1.708 0.180 1.709 0.312 102.33 0.318

0.1 0.01 1.657 197.77 1.658 0.270 +∞ 0.277
1 1.656 5.909 1.657 0.274 1 0.281
10 1.658 5.226 1.659 0.311 0.896 0.316

1 0.01 1.656 36.057 1.658 0.270 +∞ 0.277
1 1.601 1 1.602 0.272 1 0.279
10 1.283 0.668 1.284 0.293 0.425 0.301

Table 5: Influence of the parameter ε for repair data

4.2 Sequential procedure

If several samples are observed successively, one can start with the Jeffreys prior for
the first dataset. The posterior distribution, which is also the prior distribution for the
second data set, is a JCP. Therefore, by (3), the posterior/prior distributions for the
next datasets are also JCPs. To illustrate this approach, we consider two datasets from
Jorgensen (1980) which consist of the number of operating hours between successive
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failures of airconditioning equipment in aircrafts. The sample sizes are respectively
n1 = 23 and n2 = 6. Table 6 describes these data.

Aircraft 1 413 14 58 37 100 65 9 169 447 184 36
201 118 34 31 18 18 67 57 62 7 22 34

Aircraft 2 194 15 41 29 33 181

Table 6: Number of operating hours between successive failures of airconditioning equip-
ment in 2 aircrafts

We first used the Jeffreys prior on the first failures data. The posterior distribution,
say JCP1, is the JCP with parameters β = n1, α1 = S1 and α2 = T1, where S1 =∑n1
i=1 xi and T1 =

∑n1
i=1 1/xi, and the xi, i = 1, ..., n1, stand for the first dataset. We

obtained

JCP1 ∝ exp
{
−λ

2
(
2201ψ2 − 46ψ + 0.7485

)}
ψ−1/2λ11.

For the second dataset, we use JCP1 as the prior distribution. The estimates of ψ
and λ based on the Jeffreys posterior are displayed in Table 7. It can be seen that
the estimates obtained with JCP1 are different from those obtained with the Jeffreys
prior. Their values heavily rely on the information contained in the first aircraft data.
For comparison, the estimates obtained for the first dataset with Jeffreys prior were
E(λ| Aircraft 1) = 45.02 and E(ψ| Aircraft 1) = 0.010.

JCP1 (from Aircraft 1) Jeffreys
E(λ| Aircraft 2) 63.838 47.963
JMAP(λ) 64.171 48.102
E(ψ| Aircraft 2) 0.0106 0.0103
JMAP(ψ) 0.0121 0.0107

Table 7: Influence of the prior for the second aircraft data. JCP1 denotes the prior
obtained using the posterior from the first dataset.

This procedure is particularly suitable here because the second aircraft dataset is
small. But it would be interesting to take into account the sizes of the successive datasets
in the prior. Then, an adaptive prior depending on the sample sizes n1 and n2 should
be a mixture of the prior JCP1 and the Jeffreys prior πJ , as follows:

Jmix = p1 JCP1 + p2 π
J ,

where p1 = n1/(n1+n2) and p2 = 1−p1. Using the Jmix prior and applying this mixture
of priors to the aircraft dataset leads to E(λ| Aircraft 2) = 60.504 and E(ψ| Aircraft 2) =
0.0105. Here the results obtained for JCP1 and Jmix are very close since p1 = 0.79.
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