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Perfect Simulation for Mixtures with Known
and Unknown Number of Components

Sabyasachi Mukhopadhyay∗ and Sourabh Bhattacharya†

Abstract. We propose and develop a novel and effective perfect sampling method-
ology for simulating from posteriors corresponding to mixtures with either known
(fixed) or unknown number of components. For the latter we consider the Dirichlet
process-based mixture model developed by these authors, and show that our ideas
are applicable to conjugate, and importantly, to non-conjugate cases. As to be
expected, and as we show, perfect sampling for mixtures with known number of
components can be achieved with much less effort with a simplified version of our
general methodology, whether or not conjugate or non-conjugate priors are used.
While no special assumption is necessary in the conjugate set-up for our theory to
work, we require the assumption of compact parameter space in the non-conjugate
set-up. However, we argue, with appropriate analytical, simulation, and real data
studies as support, that such compactness assumption is not unrealistic and is
not an impediment in practice. Not only do we validate our ideas theoretically
and with simulation studies, but we also consider application of our proposal to
three real data sets used by several authors in the past in connection with mixture
models. The results we achieved in each of our experiments with either simulation
study or real data application, are quite encouraging. However, the computation
can be extremely burdensome in the case of large number of mixture components
and in massive data sets. We discuss the role of parallel processing in mitigating
the extreme computational burden.

Keywords: Bounding chains; Dirichlet process; Gibbs sampling; Mixtures; Opti-
mization; Perfect Sampling

1 Introduction

Markov chain Monte Carlo (MCMC) algorithms are developed to simulate from desired
distributions, from which generation of exact samples is difficult. The methodology
has found much use in the Bayesian statistical paradigm thanks to the natural need
to sample from intractable posterior distributions. But in whatever clever way the
MCMC algorithms are designed, the samples are generated only approximately. Due to
impossibility of running the chain for an infinite span of time, a suitable burn-in period
is chosen, usually by a combination of empirical and ad-hoc means. The realizations
retained after discarding the burn-in period are presumed to closely represent the true
distribution. The degree of closeness, however, depends upon how suitably the burn-in
is chosen, and an arbitrary choice may lead to serious bias. Even in simple problems
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non-negligible biases often result if the burn-in period is chosen inadequately (see, for
example, Roberts and Rosenthal (1998)). Such problems can only be aggravated in the
case of realistic, more complex models, such as mixture models of the form, given for
the data point y, by

[y | Θp,Πp] =
p∑
j=1

πjf(y | θj), (1)

In (1), Θp denotes the set of parameters (θ1, . . . , θp)′, Πp = (π1, . . . , πp)′ are the mixing
probabilities such that πj > 0 for j = 1, . . . , p, and

∑p
j=1 πj = 1. Here the number

of mixture components p may or may not be known. The latter case corresponds to
variable dimensional parameter space since the cardinality of the set Θp then becomes
random.

Mixture models form a very important class of models in statistics, known for their
versatility. The Bayesian paradigm even allows for random number of mixture compo-
nents (making the dimensionality of the parameter space a random variable), adding to
the flexibility of mixture models. Sophisticated MCMC algorithms are needed for poste-
rior inference in mixture models, raising the question of adequacy of the available prac-
tical convergence assessment methods, particularly in the case of variable-dimensional
mixture models. The importance of the aforementioned class of models makes it impor-
tant to solve the associated convergence assessment problem. In this paper, we develop
a rigorous solution to this problem using the principle of perfect sampling.

The perfect sampling methodology, first proposed in the seminal paper by Propp
and Wilson (1996), attempts to completely avoid the problems of MCMC convergence
assessment. In principle, starting at all possible initial values, so many parallel Markov
chains need to be run, each starting at time t = −∞. If by time t = 0, all the chains
coalesce, the coalescent point at time t = 0 is an exact realization from the stationary
distribution. Essentially, this principle works in the same way as the regular MCMC
algorithms, but by replacing its starting time t = 0 with t = −∞ and the convergence
time t = ∞ with t = 0. To achieve perfect sampling in practice, Propp and Wilson
(1996) proposed the “coupling from the past” (CFTP) algorithm, which avoids running
Markov chains from the infinite past. We briefly describe this in the next section.

2 The CFTP algorithm

For the time being, for the sake of clarity, following Propp and Wilson (1996), let us
assume that the state space X is finite, and let {Xt; t = 0, 1, . . .} denote the underlying
Markov chain. Then, for t ≥ 0 it is possible to represent the Markov chain generically
as a random mapping: Xt+1 = φt(Xt) = φ(Xt, Rt+1), for some function φ(·, ·) and an
iid sequence {Rt; t = 1, . . .}. Then the CFTP algorithm is as follows (see Propp and
Wilson (1996), Robert and Casella (2004)):

1. For t = −1,−2, . . ., generate φt(x) for x ∈ X .
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2. For t = −1,−2, . . ., for x ∈ X , define the compositions

Φt(x) = φ0 ◦ φ−1 ◦ · · ·φ−t(x). (2)

3. Determine the time T such that ΦT is constant.

4. Accept ΦT (x∗) as an exact realization from the stationary distribution for any
arbitrary x∗ ∈ X .

It is well-known (see, for example, Casella et al. (2001)) that the above algorithm
terminates almost surely in finite time under very mild conditions and indeed yields a
realization distributed exactly according to the stationary distribution of the Markov
chain. Propp and Wilson (1996) recommend taking t = −2j , for j = 1, 2, . . ., which
we shall adopt in this paper. A subtle, but important point is that, even if all the
Markov chains coalesce before time t = 0, the corresponding simulation at the time of
coalescence need not yield a perfect sample. One needs to carry the algorithm forward
till time t = 0; the sample corresponding to only t = 0 is guaranteed to be perfect. For
details, see Casella et al. (2001).

Although in the seminal paper of Propp and Wilson (1996) the CFTP algorithm,
as described above, was constructed assuming finite state space in the above algorithm,
later developments managed to circumvent this assumption of finiteness. Indeed, strate-
gies for perfect sampling in general state spaces are described in Murdoch and Green
(1998) and Green and Murdoch (1999), but quite restricted set-ups, which do not hold
generally, are needed to implement such strategies. The set up of mixture models is far
more complex, and the known strategies are difficult to apply.

The first attempt to construct perfect sampling algorithms for mixture models is by
Hobert et al. (1999). However, they assumed only 2-component and 3-component mix-
ture models, where only the mixing probabilities are assumed to be unknown. Bounding
chains (this term seems to first appear in Huber (1998); Huber (2004) also uses this
term) with monotonicity structures are used to enable the CFTP algorithm in these
cases. Using the principle of the perfect slice sampler (Mira et al. (2001)), and assum-
ing conjugate priors on the parameters, Casella et al. (2002) proposed a perfect sampling
methodology for mixtures with known number of components by marginalizing out the
parameters. It is noted in Casella et al. (2002) that in the conjugate case the marginal-
ized form of the posterior is analytically available, but the authors point out (see Section
2 of Casella et al. (2002)) that still perfect simulation from the analytically available
marginalized posterior is important. Unfortunately, apart from the somewhat restricted
assumptions of conjugate priors and known number of components, the methodology is
approximate in nature and the authors themselves demonstrated that the approximation
can be quite poor. Fearnhead (2005) proposed a direct sampling methodology based
on recursion relations associated with the forward-backward algorithm, for mixtures
of discrete distributions assuming a conjugate set-up and known number of compo-
nents, thus bringing in an extra and crucial assumption of discrete data. Most recently,
Berthelsen et al. (2010) introduced a new perfect sampling methodology in mixtures
with known number of components where only the mixture weights are unknown. The
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method is also shown to work for normal mixtures (with known number of components)
with unknown weights as well as with unknown means, but with a known, common
variance. However, even in this much restricted setup, the practicality of the algorithm
is challenged. Indeed, the authors honestly remarked in pages 255–256 the following:
“Unfortunately, in practice this extension of our algorithm seems to be feasible only for
fairly small data sets (n < 5) where the data consist of one cluster.”

However, the drawbacks of the methodologies in no way present the contributions of
the aforementioned authors in poor light, these only show how difficult the problem is.
In this paper we attempt to avoid the restrictions and difficulties by proposing a novel
approach. In the non-conjugate case (but not in the conjugate case) we are forced to
assume compactness of the parameter space, but we argue in Section 3.3, followed up
with a simulated data example in the supplement and three real data cases in Section 5,
that it is not an unrealistic assumption, particularly in the Bayesian paradigm. Noting
particularly that no methodology exists in the literature that even attempts perfect
simulation from mixtures with unknown number of components, for either compact or
non-compact parameter space, for either conjugate or non-conjugate set-up, there is no
reason to look upon our compactness assumption only in the non-conjugate case as a
serious drawback.

We first construct a perfect sampling algorithm for mixture models with fixed
(known) number of components and then generalize the ideas to mixtures with un-
known number of components. For the sake of illustration, we concentrate on mixtures
of normal densities, but our ideas are quite generally applicable. We illustrate our
methodology with simulation studies as well as with application to three real data sets.
Additional technical details and further details on experiments are provided in the sup-
plement, whose sections and figures have the prefix “S-” when referred to in this paper.

3 Perfect sampling for normal mixtures with known num-
ber of components

3.1 Normal mixture model and prior distributions

Letting f(· | θj) in (1) denote normal densities with mean µj and variance σ2
j , we obtain

the following normal mixture model

[y | Θp,Πp] =
p∑
j=1

πj

√
λj
2π

exp
{
−λj

2
(y − µj)2

}
. (3)

In (3), θj = (µj , λj), where λj = σ−2
j . For the sake of convenience of illustration only

we consider the following conjugate prior specification on the unknown variables

λj
iid∼ Gamma(η/2, ζ/2); j = 1, . . . , p; (4)

[µj | λj ] iid∼ N(ξj , τ2
j λ
−1
j ); j = 1, . . . , p; (5)
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Πp = (π1, . . . , πp) ∼ Dirichlet(γ1, . . . , γp). (6)

In (4), Gamma(η/2, ζ/2) denotes the Gamma distribution with density proportional to
λ
η/2−1
j exp {−ζλj/2}. We further assume that {η, ζ}, {ξ1, . . . , ξp}, {τ1, . . . , τp} and
{γ1, . . . , γp} are known.

With conjugate priors the marginal posteriors of the parameters (Πp,Θp) and the
allocation variables Z are available in closed forms, but still sampling from the posterior
distributions is important. Indeed, Casella et al. (2002) argue that sampling enables
inference on arbitrary functionals of the unknown variables, which are not analytically
available. These authors proposed a perfect slice sampler for sampling from the marginal
posterior of the allocation variable Z only. Given perfect samples from the posterior
of Z, drawing exact samples from the posterior distributions of (Πp,Θp) is straightfor-
ward. But importantly, the posteriors are not available in closed forms in non-conjugate
situations, and even Gibbs sampling is not straightforward in such cases. Since our goal
is to provide a general theory that works for both conjugate and non-conjugate priors,
we do not focus on the marginalized approach, although the conjugate situation is just
a special (and simpler) case of our proposed principle (see Sections 3.3 and 4.5). Due to
convenience of illustration we begin with the conjugate prior case where the full condi-
tional distributions needed for Gibbs sampling are available. It will be shown how the
same ideas are carried over to the non-conjugate cases.

3.2 Full conditional distributions

Assuming that a dataset Y = (y1, . . . , yn)′ is available, let us define the set of allocation
variables Z = (z1, . . . , zn)′, where zi = j if yi comes from the j-th component of the
mixture. Further, defining nj = #{i : zi = j} (here, for any set A, #A denotes the
cardinality of A), ȳj =

∑
i:zi=j

yi/nj , Z−i = (z1, . . . , zi−1, zi+1, . . . , zn)′ and Θ−jp =
(θ1, . . . , θj−1, θj+1, . . . , θp)′, the full conditional distributions of the unknown random
variables can be expressed as the following:

[zi = j | Θp, Z−i,Π, Y ] ∝ πj
√
λj exp

{
−λj

2
(yi − µj)2

}
; (7)

[λj | Z,Π,Θ−jp, µj , Y ] ∼ Gamma

η + nj
2

,
1
2

ζ +
nj(ȳj − ξj)2

njτ2
j + 1

+
∑
i:zi=j

(yi − ȳj)2


 ;

(8)

[µj | Θ−jp, λj , Z,Π, Y ] ∼ N
(
nj ȳjτ

2
j + ξj

njτ2
j + 1

,
τ2
j

λj
(
njτ2

j + 1
)) ; (9)

[Π | Z,Θ, Y ] ∼ Dirichlet (n1 + γ1, . . . , np + γp) . (10)
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Perfect sampling, making use of the full conditional distributions available for Gibbs
sampling, has been developed by Møller (1999). But the development is based on the as-
sumptions that the random variables are discrete and that the distribution functions are
monotonic in the conditioned variables. These are not satisfied in the case of mixtures.
Full conditional based perfect sampling has also been used by Schneider and Corco-
ran (2004) in the context of Bayesian variable selection in a linear regression model,
but their methods depend strongly on the underlying structure of their linear regres-
sion model and prior assumptions and do not apply to mixture models. Our proposed
method hinges on obtaining stochastic lower and upper bounds for the Z-part of the
Gibbs sampler, and simulating only from the two bounding chains, and noting their co-
alescence. It turns out that, in our methodology, there is no need to simulate the other
unknowns, (Πp,Θp), before coalescence, even in the non-conjugate set-up. Details are
provided in the next section.

3.3 Bounding chains for Z

For i = 1, . . . , n, let Fi(· | Y, Z−i,Πp,Θp) denote the distribution function corresponding
to the full conditional of zi. Writing X−i = (Z−i,Πp,Θp), let

FLi (· | Y ) = inf
X−i

Fi(· | Y,X−i); (11)

FUi (· | Y ) = sup
X−i

Fi(· | Y,X−i). (12)

be the lower and the upper bounds of Fi(· | Y,Z−i,Πp,Θp). Note that the full condi-
tional of zi, given by (7), is independent of Z−i; hence supremum or infimum over Z−i is
not necessary. By enforcing bounds on (Πp,Θp) the infimum and the supremum in (11)
and (12) can be made to be bounded away from 0 and 1 for points whose distribution
functional values a priori were bounded away from 0 and 1. Also, (11) and (12) will
take the values 0 or 1 for the points which had, respectively, distributional functional
values 0 or 1 a priori. In other words, there is a single set of points receiving positive
masses under the probability mass functions associated with both (11) and (12), which
we subsequently prove to be distribution functions. This set is also exactly the same set
of points receiving positive masses under the probability mass function corresponding
to the distribution function a priori.

Thus, the support of Θp would be compact, and that of Πp would be a compact
subset of its original support. This is not an unrealistic assumption since in all practical
situations, parameters are essentially bounded away from the extreme values. In fact,
the prior on the parameters is expected to contain at least the information regarding
the range of the parameters. In almost all practical applications, this range is finite,
which, in principle, is possible to elicit. We believe that non-compact parameter spaces
are assumed only due to the associated analytic advantages (for instance, generally
integrals are easier to evaluate analytically under the full support) and because of the
difficulty involved in elicitation of proper priors with truncated support. However, we
show in Section S-5.3 that truncation of the support of Πp need not always be necessary.
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In order to decide upon some adequate compact support, a pilot Gibbs sampling
run with unbounded Θp may be implemented first, and then the effective range of the
posterior of Θp can be chosen as the compact support of the prior of Θp. This range may
be further refined by subsequently running a Gibbs sampler with the chosen compact
support, comparing the resultant density with that corresponding to the unbounded
support, and, if necessary, modifying the chosen range so that the densities agree with
each other as closely as possible. It is demonstrated with simulated examples in Sections
S-5.3, 4.6, and with three real applications in Sections 5.1, 5.2, and 5.3 that often the
posterior with unbounded support is almost the same as that with compact support,
obtained from pilot Gibbs sampling. Unless otherwise mentioned, throughout we assume
compact support of Θp. We remark here that the compactness assumption is not needed
in the case of conjugate prior on Θp. In that case, Θp will be integrated out analytically,
and hence (11) and (12) will not involve Θp, thus simplifying proceedings.

Had the minimizer and the maximizer of Fi(j | Y,X−i) with respect to X−i been
constant with respect to j, then, trivially, (11) and (12) would have been distribution
functions. But this is not the case unless zi takes on only two values with positive
probability, as in the case of 2-component mixture models. However, as shown in
Section S-1, FLi (· | Y ) and FUi (· | Y ) satisfy the properties of distribution functions for
any discrete random variable. So, their inversions will sandwich all possible realizations
obtained by inverting Fi(· | Y,X−i), irrespective of any X−i.

To clarify the sandwiching argument, we first define the inverse of any distribution
function F by F−(x) = inf{y : F (y) ≥ x}. Further, let RZ,t = {Rzi,t; i = 1, . . . , n}
be a common set of iid random numbers used to simulate Z at time t for Markov
chains starting at all possible initial values. If we define zit = Fi

−(Rzi,t | Y,X−i),
zLit = FUi

−(Rzi,t | Y ) and zUit = FLi
−(Rzi,t | Y ), then, for all possible X−i, it holds

that zLit ≤ zit ≤ zUit for i = 1, . . . , n and t = 1, 2, . . .. These imply that once all zi;
i = 1, . . . , n, drawn by inverting FLi and FUi coalesce, then so will every realization of
Z drawn from Fi(· | X−i), for i = 1, . . . , n, starting at all possible initial values.

Analogous to {RZ,t; t = 1, 2, . . .}, let {RΠp,t; t = 1, 2, . . .} and {RΘp,t; t = 1, 2, . . .}
denote sets of iid random numbers needed to generate Πp and Θp, respectively, in a
hypothetical CFTP algorithm, where Markov chains from all possible starting values
are simulated, with Z updated first. Once Z coalesces, so will (Πp,Θp) since their full
conditionals (see (8), (9) and (10)) show that the corresponding deterministic random
mapping function depends only upon Z, {RΠp,t; t = 1, 2, . . .}, and {RΘp,t; t = 1, 2, . . .}.
We remark here that the random numbers can always be thought of as realizations of
Uniform(0, 1), since the deterministic random mapping function can always be repre-
sented in terms of Uniform(0, 1) random numbers.

The key idea is illustrated algorithmically below.

Algorithm 3.1. CFTP for mixtures with known number of components

(1) For i = 1, . . . , n, and for ` = 1, . . . , p, calculate FLi (` | Y ) and FUi (` | Y ), given by
(11) and (12) using some efficient optimization method. We recommend simulated
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annealing; see Section 3.7.

(2) For j = 1 . . ., until coalescence of Z, repeat steps (3) and (4) below.

(3) Define Sj = {−2j + 1, . . . ,−2j−1} for j ≥ 2, and let S1 = {−1, 0}. For each
m ∈ Sj , generate random numbers RZ,m, RΠp,m and RΘp,m from Uniform(0, 1);
once generated, treat them as fixed thereafter for all iterations. It is important to
note that at step −2j no random number generation is required since that step
can be viewed as the initializing step, where all possible chains, from all possible
initial values of Z, Πp, and Θp, are started.

(4) For t = −2j + 1, . . . ,−1, 0, determine zLit = FU−i (Rzi,t | Y ) and zUit = FL−i (Rzi,t |
Y ) ∀ i = 1, . . . , n. This step can be thought of as initializing the perfect sampler
with all possible values of Z and (Πp,Θp) at step −2j , and then moving on to the
next forward step following generation of Z independently of the previous step, us-
ing the above random numbers and optimized distribution functions. Generation
of (Πp,Θp) is not necessary because of the sandwiching relation zLit ≤ zit ≤ zUit ,
which holds for any (Πp,Θp), and because coalescence of zLit and zUit ∀ i = 1, . . . , n
for some t ≤ 0 guarantees coalescence of all chains corresponding to (Πp,Θp).

(5) If zLit∗ = zUit∗ ∀ i = 1, . . . , n and for some t∗ < 0, then run the following Gibbs
sampling steps from t = t∗ to t = 0:

(a) Let Z∗ = (z∗1 , . . . , z
∗
n)′ denote the coalesced value of Z at time t∗. Given Z∗,

draw (Π∗p,Θ
∗
p) from the full conditionals (10), (8) and (9) in order, using the

corresponding random numbers already generated. Thus, (Z∗,Π∗p,Θ
∗
p) is the

coalesced value of the unknown quantities at t = t∗. Importantly, it is not
straightforward to sample from full conditionals of non-conjugate distribu-
tions and/or in the case of compact parameter spaces. In such situations we
recommend rejection sampling/adaptive rejection sampling; see Section 3.5
for details.

(b) Carry forward the above Gibbs sampling chain started at t = t∗ till t = 0,
simulating sequentially from (7), (10), (8) and (9). Then, the output of the
Gibbs sampler obtained at t = 0, which we denote by (Z0,Πp0,Θp0), is a
perfect sample from the true target posterior distribution.

Note that here optimization is required only once, in Step (1) of Algorithm 3.1. By
reducing the gaps between the bounding chains, the algorithm can be made further
efficient. Such techniques are discussed in Section 3.4 in conjunction with Section S-5.
In fact, we present a variant of the above algorithm for two-component mixtures in
Algorithm S-5.1 where optimization with respect to the mixture component probability
is not required. That algorithm exploits a monotonicity structure which is not enjoyed
by mixtures having more than two components. Indeed, even though Algorithm 3.1
is applicable for mixtures with any known number of components, Algorithm S-5.1 is
applicable only to two-component mixtures.
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It is interesting to note that we need to run just two chains (11) and (12) and check
their coalescence; there is no need to simulate (Πp,Θp) before coalescence occurs with
respect to Z in these two bounding chains, even in non-conjugate cases. This property
of our methodology has some important advantages which are detailed in Section 3.6.

It is proved in Section S-2 that coalescence of Z occurs almost surely in finite time.
Foss and Tweedie (1998) showed that coalescence occurs in finite time if and only if the
underlying Markov chain is uniformly ergodic. In Section S-3 we show that our Gibbs
sampler, which first updates Z, is uniformly ergodic, which is expected thanks to the
compact parameter space. The proofs in Sections S-1, S-2 and S-3 go through with the
modified bounds needed for mixtures with unknown number of components.

In conjugate setups further simplification results since we only need to simulate
perfectly from the posterior of Z; once a perfect sample of Z is obtained, simulations
from (10), (8), and (9) ensure exact samples from the posteriors of (Πp,Θp) as well.
In order to simulate from the posterior of Z, we can integrate out (Πp,Θp) from the
full conditional of zi and construct the bounding chains with respect to the marginal-
ized distribution function of zi, optimizing the marginalized distribution function with
respect to Z−i.

3.4 Efficiency of the bounding chains

It is an important question to ask if the lower bound (11) can be made larger or if the
upper bound (12) can be made smaller, to accelerate coalescence. This can be achieved
if a monotonicity structure can be identified in (Πp,Θp). In Section S-5 we illustrate
this with an example. In Section 4.5 we propose a method for reducing the gaps between
the bounds in mixture models with unknown number of components. There it is also
discussed that for these models, more information in the data can further reduce the
gap between the bounding chains.

3.5 Restricted parameter space and rejection sampling after coales-
cence

If our algorithm coalesces at time t < 0, then Gibbs sampling is necessary from that point
on till time t = 0. The bounds, however, may prevent exact simulation from the full
conditionals of Θp using conventional methods, such as the Box-Muller transformation
(Box and Muller (1958)) in the case of normal full conditionals, which becomes truncated
normal under the restrictions. In these situations, rejection sampling may be used.
Briefly, let {R∗rt; r = 1, 2, . . .} denote a collection of infinite random numbers, to be
used sequentially for rejection sampling of the continuous random variables at time t
by the full conditionals of the continuous random variables. Actual simulation using
rejection sampling is not necessary until Z coalesces. In the case of non-conjugate priors
(perhaps, in addition to restricted parameter space), the full conditional densities are
often log-concave. In such situations the same principle can be used, but with rejection
sampling replaced by adaptive rejection sampling (Gilks and Wild (1992), Gilks (1992)).
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3.6 Advantages of our approach

Our bounding chain approach for only the discrete components Z has several advantages
over the previous approaches. Firstly, simulation of the continuous parameters before
coalescence of Z is unnecessary. This advantage is important because construction of
bounds for the continuous parameters, even if possible, may not be useful since the
coalescence probability of continuous parameters corresponding to the bounding chains
is zero. Moreover, bounding the distribution functions of continuous parameters in
the mixture model context does not seem to be straightforward without discretization.
Another advantage of our perfect sampling principle is that we do not need a partial
order of the multi-dimensional state space and it is unnecessary to find minimal and
maximal elements to serve as initial values of the bounding chains. Indeed, our bounding
chains begin with simulations from FL1 (· | Y ) and FU1 (· | Y ), which do not require any
initial values. Also, importantly, our approach of creating bounds for Z does not depend
upon the assumption of conjugate priors. Exactly the same approach will be used in the
case of non-conjugate priors. After coalescence, regardless of compact support or non-
conjugate priors, Gibbs sampling can be carried out in a very straightforward manner
till time t = 0.

3.7 Obtaining infimum and supremum of Fi(· | Y,X−i) in practice

For each j = 1, . . . , p, and for all i = 1, . . . , n, the bounds FLi (j | Y ) and FUi (j | Y ) are
bounded away from 0 and 1 but not always easily available in closed forms. Numerical
optimization using simulated annealing (see, for example, Robert and Casella (2004)
and the references therein) with temperature T ∝ 1

log(1+t) , where t is the iteration
number, turned out to be very effective in our case. This is because the method,
when properly tuned, can be quite accurate, and it is entirely straightforward to handle
constraints (introduced through the restricted parameter space in our methodology)
with simulated annealing through the acceptance-rejection steps as in the Metropolis-
Hastings algorithm. At each time t a set of fixed random numbers will be used for
implementation of simulated annealing within our perfect sampling methodology.

Interestingly, for our perfect sampling algorithm we do not need simulated annealing
to be arbitrarily accurate; given random numbers {RZ,t; t = 1, 2, . . .} we only need it to
be accurate enough to generate the same realization from the approximated distribution
functions as obtained had we used the exact solution. For instance, assume that FLi (j−
1 | Y ) < Rzi,t ≤ FLi (j | Y ), implying that zLit = j. Letting F̂Li denote the approximated
distribution function, we only need the approximation to satisfy F̂Li (j − 1 | Y ) <

Rzi,t < F̂Li (j | Y ) so that zLit = j even under the approximation. This is achievable
even if arbitrarily accurate approximation is not obtained. Since in general there seems
to be no way to check the error of approximation by simulated annealing, we propose
the following method. Instead of a single run of simulated annealing with a fixed run
length, one may give a few more runs, in each case increasing the length of the run
by a moderately large integer, and obtain zLit and zUit in each case. Since the random
numbers RZ,t are fixed (in fact, we recommend fixing the random numbers used for
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simulated annealing as well), the values of zLit and zUit will become constants as the run
length increases for simulated annealing. These constants must be the same as would
have been obtained had the optimization been exact. This strategy is not excessively
burdensome computationally, since there is no need to carry out each run afresh; the
output of the last iteration of the current run of simulated annealing will be taken as
the initial value for the next run.

Our perfect sampling methodology is illustrated in a 2-component normal mixture
example in Section S-5; here we simply note that our method worked excellently. A
further experiment associated with the same example, and reported in Section S-5.4,
showed that perfect sampling based on simulated annealing yielded results exactly the
same as those obtained by perfect sampling based on exact optimization, in 100% of
100,000 cases. The outcome of the latter experiment clearly encourages the use of
simulated annealing for optimization in perfect sampling.

We now extend our perfect sampling methodology to mixtures with unknown num-
ber of components, which is a variable-dimensional problem. In this context, the non-
parametric approach of Escobar and West (1995) and the reversible jump MCMC (RJM-
CMC) approach of Richardson and Green (1997) are pioneering. The former uses a
Dirichlet process (see, for example, Ferguson (1974)) to implicitly induce variability in
the number of components, while maintaining a fixed-dimensional framework, while the
latter directly treats the number of components as unknown, dealing directly, in the pro-
cess, with a variable dimensional framework. The complexities involved with the latter
framework makes it difficult to extend our perfect sampling methodology to the case
of RJMCMC. A new, flexible mixture model based on the Dirichlet process has been
introduced by Bhattacharya (2008) (henceforth, SB), which is shown by Mukhopadhyay
et al. (2011) (see also Mukhopadhyay et al. (2012)) to include Escobar and West (1995)
as a special case, and is much more efficient and computationally cheap compared to the
latter. Hence, we develop a perfect sampling methodology for the model of SB, which
automatically applies to Escobar and West (1995).

4 Perfect sampling for normal mixtures with unknown
number of components

As before, let Y = (y1, . . . , yn)′ denote the available data set. SB considers the model

[yi | ΘM ] ∼ 1
M

M∑
j=1

√
λj
2π

exp
{
−λj

2
(yi − µj)2

}
. (13)

In the above, M is the maximum number of components the mixture can possibly have,
and is known; ΘM = {θ1, θ2, . . . , θM} with θj = (µj , λj), where λj = σ−2

j . We further
assume that ΘM are samples drawn from a Dirichlet process:

θj
iid∼ G;

G ∼ DP (αG0). (14)
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Usually a Gamma prior is assigned to the scale parameter α.

Under the mean distribution G0 in (14),

λj
iid∼ Gamma

(
η

2
,
ζ

2

)
; (15)

[µj | λj ] ∼ N(µ0, ψλ
−1
j ). (16)

Under the Dirichlet process assumption the parameters θj are coincident with posi-
tive probability; because of this (13) reduces to the form

[yi | ΘM ] =
p∑
j=1

πj

√
λ∗j
2π

exp
{
−
λ∗j
2

(yi − µ∗j )2

}
, (17)

where
{
θ∗1 , . . . , θ

∗
p

}
are p distinct components in ΘM with θ∗j occurring Mj times, and

πj = Mj/M .

Using allocation variables Z = (z1, . . . , zn)′, SB’s model can be represented as fol-
lows: For i = 1, . . . , n and j = 1, . . . ,M ,

[yi | zi = j,ΘM ] =

√
λj
2π

exp
{
−λj

2
(yi − µj)2

}
; (18)

[zi = j] =
1
M
. (19)

As is easily seen and is argued in Mukhopadhyay et al. (2012), setting M = n and
zi = i for i = 1, . . . ,M(= n), that is, treating Z = (1, 2, . . . , n)′ as non-random, yields
the Dirichlet process mixture model of Escobar and West (1995).

However, unlike the case of mixtures with fixed number of components, the full
conditionals of only Z and ΘM can not be used to construct an efficient perfect sampling
algorithm in the case of unknown number of components. This is because the full
conditional of θj given the rest depends upon Z as well as Θ−jM , which implies that
even if Z coalesces, θj can not coalesce unless Θ−jM also coalesces. But this has very
little probability of happening in one step. Of more concern is the fact that Z may again
become non-coalescent if ΘM does not coalesce immediately after Z coalesces. Hence,
although the algorithm will ultimately converge, it may take too many iterations. This
problem can be bypassed by considering the reparameterized version of the model, based
on the distinct elements of ΘM and the configuration indicators.

4.1 Reparameterization using configuration indicators and associated
full conditionals

As before we define the set of allocation variables Z = (z1, . . . , zn)′, where zi = j if yi is
from the j-th component. Letting Θ∗M = {θ∗1 , . . . , θ∗k} denote the distinct components
in ΘM , the element cj of the configuration vector C = (c1, . . . , cM )′ is defined as cj = `
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if and only if θj = θ∗` ; j = 1, . . . ,M , ` = 1, . . . , k. Thus, (Z,ΘM ) is reparameterized to
(Z,C, k,Θ∗M ), k denoting the number of distinct components in ΘM .

The full conditional distribution of zi is given by

[zi = j | Y,C, k,Θ∗M ] ∝
√
λj
2π

exp
{
−λj

2
(yi − µj)2

}
. (20)

Since ΘM can be obtained from C and Θ∗M , we represented the right hand side of (20)
in terms of ΘM .

To obtain the full conditional of cj , first let kj denote the number of distinct values
in Θ−jM , and let θj

∗

` ; ` = 1, . . . , kj denote the distinct values. Also suppose that θj
∗

`

occurs M`j times.

Then the conditional distribution of cj is given by

[cj = ` | Y,Z,C−j , kj ,Θ∗M ] =
{
κq∗`j if ` = 1, . . . , kj
κq0j if ` = kj + 1

(21)

where

q0j = α
( ζ2 )

η
2

Γ(η2 )
×
(

1
njψ + 1

) 1
2

×
(

1
2π

)nj
2

× 2
η+nj

2 Γ(η+nj
2 ){

ζ + nj(ȳj−µ0)2

njψ+1 +
∑
i:zi=j

(yi − ȳj)2
} η+nj

2

; (22)

q∗`j = M`j
(λj

∗

` )
nj
2

(2π)
nj
2

exp

−λj∗`
2

nj(µj∗` − ȳj)2 +
∑
i:zi=j

(yi − ȳj)2


 . (23)

In (21), (22), and (23), κ is the normalizing constant, nj = #{i : zi = j} and ȳj =∑
i:zi=j

yi/nj . Note that q0j is the normalizing constant of the distribution Gj defined
by the following:

[λj ] ∼ Gamma

η + nj
2

,
1
2

ζ +
nj(ȳj − µ0)2

njψ + 1
+
∑
i:zi=j

(yi − ȳj)2


 ;

(24)

[µj | λj ] ∼ N

(
nj ȳjψ + µ0

njψ + 1
,

ψ

λj(njψ + 1)

)
. (25)

The conditional posterior distribution of θ∗` is given by

[θ∗` | Y, Z,C] ∼ Gamma (λ∗` : η∗` , ζ
∗
` )×N

(
µ∗` : µ∗0`, ψ

∗
`λ
∗
`
−1
)
, (26)
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where
n∗` =

∑
j:cj=`

nj ; ȳ∗` =
∑
j:cj=`

nj ȳj

/ ∑
j:cj=`

nj ; η∗` =
n∗` + η

2
; (27)

µ∗0` = (ψn∗` ȳ
∗
` + µ0) / (ψn∗` + 1) ; (28)

ψ∗` = ψ
/

(ψn∗` + 1) ; (29)

and

ζ∗` =
1
2

ζ +
n∗` (µ0 − ȳ∗` )2

ψn∗` + 1
+
∑
j:cj=`

nj(ȳj − ȳ∗` )2 +
∑
j:cj=`

∑
i:zi=j

(yi − ȳj)2

 . (30)

It is to be noted that the θ∗` are conditionally independent.

For Gibbs sampling, we first update Z, followed by updating C and the number of
distinct components k, and finally {θ∗` ; ` = 1, . . . , k}.

4.2 Non-conjugate G0

In the case of non-conjugate G0 (which may have the same density form as a conjugate
prior but with compact support), q0j is not available in closed form. We then modify
our Gibbs sampling strategy by bringing in auxiliary variables in a way similar to that
of Algorithm 8 in Neal (2000). To clarify, let θa = (µa, λa) denote an auxiliary variable
(the superscript “a” stands for auxiliary). Then, before updating cj we first simulate
from the full conditional distribution of θa given the current cj and the rest of the
variables as follows: if cj = c` for some ` 6= j, then θa ∼ G0. If, on the other hand,
cj 6= c` ∀` 6= j, then we set θa = θ∗cj . Once θa is obtained we then replace the intractable
q0j with the tractable expression

qaj = α
(λaj )

nj
2

(2π)
nj
2

exp

−λaj
2

nj(µaj − ȳj)2 +
∑
i:zi=j

(yi − ȳj)2


 . (31)

Once cj is simulated, if it is observed that θj 6= θa ∀j, then θa is discarded.

4.3 Relabeling C

Simulation of C by successively simulating from the full conditional distributions (21)
incurs a labeling problem. For instance, it is possible that all cj are equal even though
each of them corresponds to a distinct θj . For an example, suppose that Θ∗M consists
of M distinct elements, and cj = M ∀j. Then although there are actually M distinct
components, one ends up obtaining just one distinct component. For perfect sampling
we create a labeling method which relabels C such that the relabeled version, which we
denote by S = (s1, . . . , sM )′, coalesces if C coalesces. To construct S we first simulate
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cj from (21); if cj ∈ {1, . . . , kj}, then we set θj = θ∗cj and if cj = kj + 1, we draw
θj = θ∗cj ∼ Gj . The elements of S are obtained from the following definition of sj :
sj = ` if and only if θj = θ∗` . Note that s1 = 1 and 1 ≤ sj ≤ sj−1 + 1. In Section S-4
it is proved that coalescence of C implies the coalescence of S, irrespective of the value
of Θ∗M associated with C.

4.4 Full conditionals using S

With the introduction of S it is now required to modify some of the full conditionals
of the unknown random variables, in addition to introduction of the full conditional
distribution of S. The form of the full conditional [zi | Y, S, k,Θ∗M ] remains the same as
(20), but ΘM involved in the right hand side of (20) is now obtained from S and Θ∗M .
The modified full conditional of cj , which we denote by [cj | Y,Z, S−j , kj ,Θ∗M ], now
depends upon S−j , rather than C−j , the notation being clear from the context. The
form of this full conditional remains the same as (21) but now the distinct components
θj

∗

` ; ` = 1, . . . , kj are associated with the corresponding components of S rather than
C. The form of the modified full conditional distribution of θ∗` , which we now denote
by [θ∗` | Y,Z, S, k], remains the same as (26), but in equations (27) to (30), C must be
replaced by S. In the above full conditionals, k and kj are now assumed to be associated
with S.

The conditional posterior [S | Y,C,ΘM ] gives point mass to S∗, where S∗ =
(s∗1, . . . , s

∗
M )′ is the relabeling obtained from C and ΘM following the method de-

scribed in Section 4.3. For the construction of bounds, the individual full conditionals
[sj | Y, S−j , C,ΘM ], giving full mass to s∗j , will be considered due to the convenience
of dealing with distribution functions of one variable. It follows that once Z and C
coalesce, S and Θ∗M must also coalesce. In the next section we describe how to con-
struct efficient bounding chains for Z, C and S. Bounding chains for S are not strictly
necessary as it is possible to optimize the bounds for Z and C with respect to S, but
the efficiency of the other bounding chains is improved, leading to an improved perfect
sampling algorithm, if we also construct bounding chains for S.

4.5 Bounding chains

As in the case of mixtures with known number of components, here also the idea of
constructing bounding chains is associated with distribution functions of the discrete
random variates, but here the bounding chains can be made efficient by fixing the al-
ready coalesced individual discrete variates while taking the supremum and the infimum
of the distribution functions. Moreover, for informative data, the full conditional distri-
butions of cj (hence, of sj) will be similar given any values of the conditioned variables;
thus the difference between the supremum and the infimum of their distribution func-
tions are expected to be small. This particular heuristic is reflected in the results of the
application of our methodology to three real data sets in Section 5. Also, as noted in
Section 3.3, even in the case of unknown number of components, Θ∗M can be analytically
marginalized out in conjugate cases, simplifying optimization procedures. The full con-
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ditional distributions associated with our model, marginalized over Θ∗M in a conjugate
case are provided in Mukhopadhyay et al. (2011).

Bounds for Z

Let Fzi(· | Y, S, k,Θ∗M ) denote the distribution function of the full conditional of zi,
and let Fcj (· | Y, S−j , kj ,Θ∗M ), Fsj (· | Y, S−j , C,ΘM ) stand for those of cj and sj ,
respectively. Also assume that −∞ < M1 ≤ µj ≤ M2 < ∞ and 0 ≤ M3 ≤ λj ≤ M4 <
∞, for all j.

Let S+ denote the set consisting of only those sj that have coalesced, and let S− =
S\S+ consist of the remaining sj . Then

FLzi
(
· | Y, S+

)
= inf

S−,k,Θ∗
M

Fzi(· | Y, S+, S−, k,Θ∗M ); (32)

FUzi
(
· | Y, S+

)
= sup

S−,k,Θ∗
M

Fzi(· | Y, S+, S−, k,Θ∗M ). (33)

Clearly, fixing S+ helps reduce the gap between (32) and (33). The infimum and the
supremum above can be calculated by simulated annealing. For the proposal mechanism
needed for simulated annealing with S+ held fixed, we selected sj ∈ S− uniformly from
{1, . . . , sj−1 + 1}, where sj−1 either belongs to S+ or has been selected uniformly from
{1, . . . , sj−2 + 1}. Once S is proposed in this way, this determines k automatically.
We then propose θ∗1 , . . . , θ

∗
k using normal random walk proposals with approximately

optimized variance.

Bounds for C

Let Z+ denote the set of coalesced zi, and let Z− = Z\Z+ consist of those zj that did
not yet coalesce. Then

FLcj
(
· | Y, S+, Z+

)
= inf

S−,kj ,Z−,Θ∗
M

Fcj (· | Y, S+, S−, kj , Z
+, Z−,Θ∗M ); (34)

FUcj
(
· | Y, S+, Z+

)
= sup

S−,kj ,Z−,Θ∗
M

Fcj (· | Y, S+, S−, kj , Z
+, Z−,Θ∗M ). (35)

Note that for S+ = ∅, the supremum corresponds to kj = 1 and the infimum corresponds
to kj = M−1. If S+ 6= ∅, the supremum is associated with kj = #S+\{sj}, the number
of distinct components of S+\{sj}, and the infimum corresponds to the case where
kj = #S\{sj}, when all elements of S− are distinct. Thus, the proposal mechanism
of S− for simulated annealing is not necessary; manually setting all elements of S− to
be equal for obtaining the supremum and manually setting all elements of S− to be
distinct for obtaining the infimum is sufficient, since the actual values of the elements
of S are unimportant. This strategy dictates the number of distinct elements of ΘM ,
and their positions. The proposal mechanism for Θ∗M may be chosen to be the same as
that used for obtaining the bounds for zi, while the elements of Z− may be proposed
by drawing uniformly from {1, . . . ,M}.
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Bounds for S

Letting C+ and C− = C\C+ denote the sets of coalesced and the non-coalesced cj , the
lower and the upper bounds for the distribution function of sj are

FLsj
(
· | Y,C+

)
= inf

C−,Θ∗
M

Fsj (· | Y,C+, C−,Θ∗M ); (36)

FUsj
(
· | Y,C+

)
= sup

C−,Θ∗
M

Fsj (· | Y,C+, C−,Θ∗M ). (37)

For simplicity let us denote Fsj (· | Y,C+, C−,Θ∗M ) by Fsj (·) suppressing the condi-
tioned variables. Since, given C and Θ∗M , S is uniquely determined, Fsj (k) = 0 or 1, for
k = 1, . . . ,M . Thus, optimization of Fsj (k) needs to be carried out extremely carefully
because either the correct optimum or the incorrect optimum will be obtained, leaving
no scope for approximation. However, simulated annealing is unlikely to perform ade-
quately in this situation. For instance, while maximizing, a long sequence of iterations
yielding Fsj (k) = 0 does not imply that 1 is not the maximum. Similarly, a long se-
quence of 1’s while minimizing may mislead one to believe that 1 is the minimum. In
other words, the algorithm does not exhibit gradual movement towards the optimum,
making convergence assessment very difficult. So, we propose to construct functions
hj(·) of Fsj (·)’s and appropriate auxiliary variables such that the optimization of Fsj (·)
is embedded in the optimization of hj(·), while avoiding the aforementioned problems
by allowing gradual movement towards the optimum. Details are provided below.

A more convenient optimizing function

We construct hj(·) as follows:

hj(W,F ) =
M∑
i=1

wi

{
Fsj (i) + wi

1 + wi

} 1
2

, (38)

where W = (w1, . . . , wM ) denotes the vector of weights, F = (Fsj (1), . . . , Fsj (M)) and∑M
j=1 wj = 1 with wj > 0,∀j. Clearly, 0 < hj(·) < 1. We represent wj as wj = nj∑M

i=1 ni
,

where ni > 0. We use simulated annealing to optimize (38) with respect to (W,C−,Θ∗M )
but let nk → ∞ with the iteration number while simulating other ni; i 6= k randomly
from some bounded interval. This leads to optimization of Fsj (k), while avoiding the
problems of naive simulated annealing. In our examples we took nk ∝ log(1 + t), where
t is the iteration number.

Optimizing strategy

Since S is just a relabeled version of C, the distribution functions of the full conditionals
of cj and sj are optimized by the same ΘM , provided that none of the sj coalesced
during optimization in the case of C. All that the proposal mechanism requires then
is to simulate cj ∈ C− uniformly from {1, . . . ,M}. If C (= C+ ∪ C−) and ΘM do
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not lead to a valid S, then the proposal is to be rejected, remaining at the current
C−, else the acceptance-rejection step of simulated annealing is to be implemented. If,
on the other hand, some sj had coalesced during optimization in cj , the optimizer in
the case of sj is expected to be a slight modification of that in the case of cj . We
construct the modification as follows. If C, simulated from the bounding chains (34)
and (35) in the previous step, is not compatible with ΘM , then we augment Θ∗M with
new components drawn uniformly: µ ∼ U(M1,M2) and λ ∼ U(M3,M4), in such a
manner that compatibility is ensured. We then use the adjusted set of ΘM for the
rest of the annealing steps. This scheme worked adequately in all our experiments.
Note that if entire C coalesces, then for all j and for any ΘM associated with C,
FLsj (· | Y,C+) = FUsj (· | Y,C+) = Fsj (· | Y,C,ΘM ), which implies coalescence of S
(recall the discussion in Section 4.4).

The proof presented in Section S-1 goes through to show that the bounds of the
distribution functions of (Z,C, S), which are obtained by optimizing the original func-
tions treating the coalesced random variates as fixed, are also distribution functions.
The proof remains valid even if the original distribution functions of the discrete vari-
ates are optimized with respect to the scale parameter α and other hyper-parameters.
Optimization with respect to the latter is necessary if α and the hyper-parameters are
treated as unknowns and must be simulated perfectly, likewise as ΘM . Assuming that
the original Gibbs sampling algorithm is updated by first updating Z, then C, followed
by S, and finally Θ∗M , the proof of coalescence of the random variables in finite time
is exactly as that provided in Section S-2. The proof of uniform ergodicity presented
in Section S-3 applies with minor modifications in the current mixture problem with
unknown number of components.

Below we provide an algorithmic representation of perfect sampling in mixtures with
unknown number of components.

Algorithm 4.1. CFTP for mixtures with unknown number of components

(1) For j = 1 . . ., until coalescence of (Z,C), repeat steps (2) and (3) below.

(2) Define Sj = {−2j + 1, . . . ,−2j−1} for j ≥ 2, and let S1 = {−1, 0}. For each
m ∈ Sj , generate random numbers RZ,m, RC,m, RS,m and RΘM ,m (again, we
shall let these random numbers stand for realizations from the uniform distribu-
tion on (0, 1)), meant for simulating Z, C, S, and ΘM respectively. Although
random numbers are not necessary for simulating S from its optimized full condi-
tionals because of degeneracy, RS,m will still be used for optimizing its distribution
function using simulated annealing. The random numbers RΘM ,m will correspond
to M distinct components, so that the same set will suffice for smaller numbers
of distinct components in the set ΘM where all components need not be distinct.
The distinct components of ΘM are meant to be simulated (but recall that actual
simulation is not necessary until the coalescence of (Z,C, S)) using those random
numbers in the set RΘM ,m, which correspond to their positions in ΘM .
Once generated, treat the random numbers as fixed thereafter for all iterations.
As in Algorithm 3.1, at step −2j no random number generation is required.
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(3) For t = −2j + 1, . . . ,−1, 0, implement steps (3) (i), (3) (ii) and (3) (iii):

(i) For i = 1, . . . , n,

(a) For ` = 1, . . . ,M , calculate FLzi(` | Y, S+) and FUzi (` | Y, S+), using the
simulated annealing method described in Section 4.5.

(b) Determine zLit = FU−zi (Rzi,t | Y, S+) and zUit = FL−zi (Rzi,t | Y, S+). As
in Algorithm 3.1, this step can be thought of as initializing the perfect
sampler with all possible values of (Z,C, S, k,Θ∗M ) at step −2j ; at step
−2j + 1, S+ = ∅ (omitting the always coalescent s1 = 1), signifying
that simulations at this forward step are independent of the previous
step −2j . From step −2j + 2 onwards, there is positive probability that
S+ 6= ∅. Thus, with positive probability, the bounding chains for zi will
be more efficient from this point on.

(ii) For i = 1, . . . ,M ,

(a) For ` = 1, . . . , ki + 1, calculate FLci(` | Y, S+, Z+) and FUci (` | Y, S+, Z+),
using the simulated annealing technique described in Section 4.5. Recall
that the supremum corresponds to ki = #S+\{si}, when S− contains a
single distinct element, and the infimum corresponds to the case where
ki = #S\{si}, when all elements of S− are distinct, and so the set
S− will be set manually to have a single distinct element or all distinct
elements.

(b) Set cLit = FU−ci (Rci,t | Y, S+, Z+) and cLit = FU−ci (Rci,t | Y, S+, Z+).

(iii) For i = 1, . . . ,M ,

(a) For ` = 1, . . . ,M , calculate FLsi(` | Y,C+) and FUsi (` | Y,C+), using the
methods described in Section 4.5.

(b) Since, for some `∗ ∈ {1, . . . ,M}, FLsi(` | Y,C+) = 0 for ` < `∗ and 1 for
` ≥ `∗, it follows that sLit = `∗. Similarly, sUit can be determined.

(4) If, for some t∗ < 0, zLit∗ = zUit∗ ∀i = 1, . . . , n, and cLit∗ = cUit∗ ∀i = 1, . . . ,M , then
run the following Gibbs sampling steps from t = t∗ to t = 0:

(a) Let Z∗ = (z∗1 , . . . , z
∗
n)′ and C∗ = (c∗1, . . . , c

∗
M )′ denote the coalesced values

of Z and C respectively, at time t∗. Given (Z∗, C∗), arbitrarily choose any
value of ΘM which is compatible with C∗ (one way to ensure compatibil-
ity is to choose any ΘM having M distinct elements); then obtain S∗ from
[S | Y, C,ΘM ] using the algorithm given in Section 4.3. Finally, obtain Θ∗M
from its full conditional distribution, using the random numbers already gen-
erated. As in Algorithm 3.1, here also rejection sampling/adaptive rejection
sampling may be necessary for obtaining Θ∗M . This yields the coalesced value
(Z∗, C∗, S∗,Θ∗M ) at time t = t∗.

(b) Using the random numbers already generated, carry forward the above Gibbs
sampling chain started at t = t∗ till t = 0, simulating, in order, from the full
conditionals of (Z,C, S,Θ∗M ), provided in Sections 4.1, 4.2, 4.3, and 4.4.
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Then, the output of the Gibbs sampler obtained at t = 0, which we de-
note by (Z0, C0, S0,Θ∗M0), is a perfect sample from the true target posterior
distribution.

4.6 Illustration of perfect simulation in a mixture with maximum two
components

We illustrate our new methodologies in the framework of the mixture model of SB
assuming M = 2. In other words, we consider the model

[yi | Θ2] ∼ 1
2

2∑
j=1

N(yi;µj , λ−1
j ). (39)

We further assume that λ1 = λ2 = λ, where λ is assumed to be known. Hence,
Θ2 = (θ1, θ2), where θj = µj , j = 1, 2. As in the case of the two-component mixture
example detailed in Section S-5, here also we consider a simplified model for convenience
of illustration and to validate the reliability of simulated annealing as the optimizing
method in our case.

We specify the prior of µj as follows:

µj
iid∼ G, j = 1, 2

G ∼ D(αG0),
(40)

and µj
iid∼ N(µ0, ψλ

−1) under G0.

We draw 3 observations y1, y2, y3, from (39) after fixing µ1 = 2.19, µ2 = 2.73 and
λ = 20. We chose α = 1, µ0 = 1.98, and ψ = 2.33 (the latter two are drawn from
normal and inverse gamma distributions). Using a pilot Gibbs sampling run we set
0.45 = M1 ≤ µ1, µ2 ≤M2 = 3.7.

Optimizer for bounding the distribution function of zi

The exact minimizer and the maximizer of the distribution function of zi with respect
to Θ2 or the reparameterized variables (S,Θ∗2) are of the form (a, b) where each of a
and b can take the values yi, M1 or M2. Evaluation of the distribution function at these
points yields the desired minimum and the maximum at different time points t.

Optimizer for bounding the distribution function of cj

For cj , the optimizer with respect to Θ2 is given by (a, b) where a and b can take the
values ȳj , M1 and M2. Of course, this is the same as what would be obtained by
optimizing with respect to the reparameterized version (S,Θ∗2). As before, evaluation of
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the distribution function at these points is necessary for obtaining the desired optimizer.
In this case, the optimizer with respect to Z is obtained by considering all possible values
of Z = (z1, z2, z3)′.

Optimizer for bounding the distribution function of sj

No explicit optimization is necessary to obtain the bounds for sj , as S = (s1, s2) is com-
pletely determined by C obtained from its corresponding bounding chains. Note that
for the four possible values of C = (c1, c2): (1, 1), (1, 2), (2, 1), (2, 2), the corresponding
values of S = (s1, s2) are (1, 1), (1, 2), (1, 1) and (1, 2), respectively.

Results of perfect sampling

Results of 100, 000 iid perfect samples are displayed in Figure 1; the results are com-
pared with 100, 000 independent Gibbs sampling runs, each time discarding the samples
obtained in the first 10, 000 Gibbs sampling iterations and retaining only the sample in
the 10, 001-th iteration. The figure shows that the posterior distributions correspond-
ing to perfect sampling (red curve), Gibbs sampling (grey curve) in the case of compact
supports, as well as the posterior corresponding to unbounded support (again, based on
100,000 Gibbs samples, each with a burn-in of length 10,000), displayed by the broken
green curve, agree with each other very closely. This is very encouraging, and validates
our perfect sampling methodology.

It is important to remark in this context of validation that a reviewer expressed
concern that the period between the time of coalescence till the time t = 0 in our
perfect sampling algorithm may be long enough to be regarded as a burn-in period,
thus rendering our iid perfect samples anyway similar to the iid Gibbs samples, thus
decreasing the strength of the validation exercise. We assure the reader, however, that
this is not the case. Indeed, the effective maximum time period between the coalsescence
time and the time t = 0 in the probability distribution of the period between the
coalescence time and the time t = 0, displayed in Figure 2, in all 100,000 cases is
254, which also has very small probability of occurrence (only 35 out of 100,000). The
number of occurrences of the values between 255 and 506 (the latter being the actual
maximum time period between the coalsescence time and the time t = 0) is either 0
or 1 (mostly zero), in all 100,000 cases. In fact, the modal time period between the
coalescence time and the time t = 0 is just 2, occurring 3582 times. In other words,
in most cases it took just two steps to reach time t = 0 after coalescence. As a result,
the period between the coalescence time and the time t = 0 is just too small to be any
reasonable burn-in period, and is not comparable to the burn-in period of length 10,000
of our Gibbs sampler.

The above arguments show that the agreement between perfect sampling and Gibbs
sampling in Figure 1 is due to the fact that both the algorithms are correct, the former
being exact, and the latter being approximate, but very accurate thanks to the long
burn-in of length 10,000.
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Figure 1: Posterior densities of µ1 and µ2 using samples obtained from perfect simulation
(red curve) and independent runs of Gibbs sampling (grey curve). The broken green
curve stands for the posteriors corresponding to the unbounded support.
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Figure 2: Probability distribution of the number of steps taken from the time of coales-
cence till the time t = 0 corresponding to Figure 1, associated with 100,000 iid perfect
samples.
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Validation of simulated annealing in this example

As in the example with known number of components here also we validate simulated
annealing by separately obtaining 100, 000 iid samples using our perfect sampling algo-
rithm but using simulated annealing (with 7,000 iterations) to optimize the bounds for
the distribution functions of (Z,C, S). We have used the same random numbers as used
in the perfect sampling experiment for obtaining 100, 000 iid samples using the exact
bounds. All the corresponding samples at time t = 0 turned out to be the same, just as
in the example of the mixture with exactly two components. This obviously encourages
the use of simulated annealing in perfect sampling from mixtures with unknown number
of components.

5 Application of perfect simulation to real data

We now consider application of our perfect sampling methodology to three real data
sets—Galaxy, Acidity, and Enzyme data. Both Richardson and Green (1997) and SB
used all three data sets to illustrate their methodologies. The Galaxy data set consists of
82 univariate observations on velocities of galaxies, diverging from our own galaxy. The
second data set concerns an acidity index measured in a sample of 155 lakes in north-
central Wisconsin. The third data set concerns the distribution of enzymic activity in
the blood, for an enzyme involved in the metabolism of carcinogenic substances, among
a group of 245 unrelated individuals.

5.1 Perfect sampling for Galaxy data

Determination of appropriate ranges of the parameters

We implemented a Gibbs sampler with M = 10, η = 4; ζ = 1; µ0 = 20; aα = 10;
bα = 0.5; ψ = 33.3; and obtained results quite similar to that reported in SB, who used
M = 30. Using the results obtained in our experiments, we set the following bounds
on the parameters: for j = 1, . . . ,M(= 10), 9.5 ≤ µj ≤ 34.5, 0.01 ≤ λj ≤ 5 and
0.08 ≤ α ≤ 35.5. The fit to the data obtained with this set up turned out to be similar
to that obtained by SB.

Computational issues

We implemented our perfect sampling algorithm with the above-mentioned hyperpa-
rameter values and parameter ranges. Our experiments suggested that 500 simulated
annealing iterations for each optimization step are adequate, since further increasing
the number of iterations did not significantly improve the optima. The terminal chains
coalesced after 32,768 steps. The reason for the coalescence of the bounding chains af-
ter a relatively large number of iterations may perhaps be attributed to the inadequate
amount of information contained in the relatively sparse 82-point data set required to
reduce the gap between the bounding chains (recall the discussion in Section 4.5). In
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fact, as it will be seen, perfect sampling with the other two data sets containing many
more data points and showing comparatively much clear evidence of bimodality (par-
ticularly the Acidity data set) coalesced in a much smaller number of steps. However,
compared to the number of steps needed to achieve coalescence, the computation time
needed to implement the steps turned out to be more serious. In this Galaxy data, with
M = 10, the computation time taken by a workstation to implement 32,768 backward
iterations turned out to be about 11 days! We discuss in Section 6 that parallel com-
puting is an effective way to drastically reduce computation time. However, we consider
another experiment with M = 5 that took just 13 hours for implementation, yielding
results very similar to those with M = 10.

Results of implementation

After coalescence, we ran the chain forward to time t = 0, thus obtaining a perfect
sample. We then further generated 15,000 samples using the forward Gibbs sampler.
The red curve in Figure 3 stands for the posterior predictive density, and the grey curve
is the Gibbs sampling based posterior predictive density corresponding to the unbounded
parameter space. The figure shows that the difference between the posterior predictive
distributions with respect to bounded and unbounded parameter spaces is negligible,
and can perhaps be attributed to Monte Carlo error only. The posterior probabilities of
the number of distinct components being {1, . . . , 10} turned out to be {0, 0, 0.000067,
0.0014, 0.0098, 0.044133, 0.1358, 0.265133, 0.3436, 0.200067}, respectively.

Experiment to reduce computation time by setting M = 5

As a possible alternative to reduce computation time, we decided to further reduce the
value of M to 5. The ranges of the parameters when M = 5 turned out to be somewhat
larger compared to the case of M = 10: for j = 1, . . . , 5, 9.5 ≤ µj ≤ 34.5, 0.01 ≤ λj ≤ 20
and 0.08 ≤ α ≤ 100. Now the two terminal chains coalesced in 2048 steps taking about
13 hours. As before, once the terminal chains coalesced, we ran the chain forward to
time t = 0, and then further generated 15,000 samples using the forward Gibbs sampler.
The posterior predictive density is shown in Figure 4. As before, the figure shows that
the differences between the posterior predictive densities with respect to bounded and
unbounded parameter spaces are negligible enough to be attributed to Monte Carlo
error. Moreover, when compared to Figure 3, Figure 4 indicates that the fitted DP-
based mixture model with M = 5 is not much worse than that with M = 10. Here
the posterior probabilities of the number of distinct components being {1, 2, 3, 4, 5},
respectively, are {0.000067, 0.001467, 0.026667,0.229733, 0.742067}.

5.2 Perfect sampling for Acidity data

Following the procedure detailed in Section 5.1 we set the following bounds: for j =
1, . . . ,M(= 10), 4 ≤ µj ≤ 6.9, 0.08 ≤ λj ≤ 25, and 0.08 ≤ α ≤ 50. We implemented our
perfect sampler with these ranges, and with hyperparameters η = 4, ζ = 0.7, µ0 = 5.02,
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Figure 3: Histogram of the Galaxy data and the posterior predictive density correspond-
ing to perfect simulation with M = 10 (red curve). The grey curve stands for the Gibbs
sampling based posterior predictive density assuming unbounded parameter space.
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Figure 4: Histogram of the Galaxy data and the posterior predictive density correspond-
ing to perfect simulation with M = 5 (red curve). The grey curve stands for the Gibbs
sampling based posterior predictive density assuming unbounded parameter space.
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aα = 15, bα = 0.5, and ψ = 33.3. As in the Galaxy data, here also 500 iterations of
simulated annealing for each optimization step turned out to be sufficient. The terminal
chains took about 4 hours to coalesce in 128 steps.

The posterior predictive distribution is shown in Figure 5. Again, as before, the
figure demonstrates that the posterior predictive density remains virtually unchanged
whether or not the parameter space is truncated. Figure 5 also indicates that the poste-
rior predictive distribution matches closely with that of the histogram of the data. The
posterior probabilities of the number of distinct components being {1, . . . , 10} are {0, 0,
0.000067, 0.0024, 0.012, 0.0556, 0.159867, 0.303133, 0.323067, 0.143867}, respectively.

5.3 Perfect sampling for Enzyme data

Following the procedures detailed in Sections 5.1 and 5.2 we fix M = 10; the bounds
on the parameters are: for j = 1, . . . ,M(= 10), 0.15 ≤ µj ≤ 3, 0.08 ≤ λj ≤ 150.5 and
0.08 ≤ α ≤ 50. The hyperparameters in this example are given by η = 4; ζ = 0.33;
µ0 = 1.45; aα = 20; bα = 0.5 and ψ = 33.3.

We implemented our perfect sampler with these specifications, along with 500 itera-
tions of simulated annealing for each optimization step. The terminal chains coalesced
in 2048 steps taking about 4 days. As to be expected from the previous applications,
here also, as shown in Figure 6, truncation of the parameter space virtually makes
no difference to the resulting posterior predictive density associated with unbounded
parameter space. Good fit of the model to the data is also indicated. The posterior
probabilities of the number of distinct components being {1, . . . , 10}, respectively, are
{0, 0.000933, 0.012067, 0.0634, 0.179, 0.2782, 0.219867, 0.1454, 0.075333, 0.0258}.

6 Summary, discussion and future work

We have proposed a novel perfect sampling methodology that works for mixtures where
the number of components are either known or unknown, and the set-up is either con-
jugate or non-conjugate. We have first developed the method for mixtures with known
number of components, then extended it to the more important case of mixtures with
unknown number of components. Our methodology hinges upon exploiting the full con-
ditional distributions of the discrete random variables of the problem, optimizing the
corresponding distribution functions with respect to the conditioned random variables,
obtaining upper and lower bounds of the corresponding Gibbs samplers. One partic-
ularly intriguing aspect of this strategy is perhaps the fact that even though perfect
samples of continuous random variables will also be generated, simulation of the latter
is not at all required before coalescence of the discrete bounding chains. We have shown
that the gaps between the upper and the lower bounds of the Gibbs sampler can be
narrowed, making way for fast coalescence. Further advantages over the existing perfect
sampling procedures are also discussed in detail. It is also easy to see that our current
methodology need not be confined to univariate data, and the same methodology goes
through for handling multivariate instances.
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Figure 5: Histogram of the Acidity data and the posterior predictive density corre-
sponding to perfect simulation with M = 10 (red curve). The grey curve stands for
the Gibbs sampling based posterior predictive density assuming unbounded parameter
space.
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Figure 6: Histogram of the Enzyme data and the posterior predictive density corre-
sponding to perfect simulation with M = 10 (red curve). The grey curve stands for
the Gibbs sampling based posterior predictive density assuming unbounded parameter
space.
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With simulation studies we have validated our methodology for mixtures with known,
as well as with unknown, number of components. However, application to real data sets
revealed substantial computational burden, and obtaining a single perfect sample took
several hours with our limited computational resources. Thus, even though the con-
vergence (burn-in) issue is completely eliminated, obtaining iid realizations from the
posteriors turned out to be infeasible. As discussed in Section 5.1, the difficulties are
likely to persist in problems where large values of the maximum number of compo-
nents are plausible, and in sparse data sets. Computational challenges are also likely to
appear in massive data sets, since then the number of allocation variables for perfect
sampling will increase manyfold. In multivariate data sets too, the computation can
be excessively burdensome—here the number of discrete simulations necessary remains
the same as in the corresponding univariate problem, but optimization with respect
to the continuous variables may be computationally expensive because of increased di-
mensionality. In such situations, parallel computing can be of great help. Indeed, in
a parallel computing environment the upper and lower bounding chains can be simu-
lated in different parallel processors, which would greatly reduce the computation time.
Moreover, quite importantly, iid simulations from the posteriors can also be carried out
easily by simulating perfect samples independently in separate parallel processors. This
can be done most efficiently by utilizing two processors for each perfect realization,
so that, say, with 16 parallel processors 8 perfect iid realizations can be obtained in
about half the time a single perfect realization is generated in a stand-alone machine.
The parallel computing procedure can be repeated to obtain as many iid realizations
as desired within a reasonable time. Increasing the number of parallel processors can
obviously speed up this procedure many times, which would make implementation of
our algorithm routine. Although we, the authors, have the expertise in parallel com-
puting, we are yet to have access to parallel computing facilities, which is the reason
why we could not obtain perfect iid realizations in our real data experiments and could
not experiment with large M or massive data. In the near future, however, such access
is expected, and then it will be easier for us to elaborate on these computational issues.
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Supplementary Material

Throughout, we refer to our main manuscript as MB.

S-1 Proof that FL
i and FU

i are distribution functions

Letting X−i denote all unknown variables other than zi we need to show that for almost
all X−i the following hold:

(i) limh→−∞ FLi (h) = limh→−∞ FUi (h) = 0.

(ii) limh→∞ FLi (h) = limh→∞ FUi (h) = 1.

(iii) For any x1 ≥ x2, FLi (x1) ≥ FLi (x2) and FUi (x1) ≥ FUi (x2).
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(iv) limh→x+ F
L
i (h) = FLi (x) and limh→x+ F

U
i (h) = FUi (x).

Proof: Let X−i denote all unknown variables other than zi. To prove (i), note
that for all h < 1, Fi(h | X−i) = 0 for almost all X−i. Hence, by (7) of MB and by
definition, both FLi (h) and FUi (h) are 0 with probability 1. Hence, limh→−∞ FLi (h) =
limh→−∞ FUi (h) = 0 almost surely.

To prove (ii) note that for all h > p, Fi(h | X−i) = 1 for almost all X−i. Hence, for
h > p, FLi (h) = FUi (h) = 1, that is, limh→∞ FLi (h) = limh→∞ FUi (h) = 1 for almost all
X−i.

To show (iii), let h1 > h2. Then, since Fi(· | X−i) is a distribution function satisfying
monotonicity, it holds that FLi (h2) = infX−i Fi(h2 | X−i) ≤ Fi(h2 | X−i) ≤ Fi(h1 |
X−i) for almost all X−i. Hence, FLi (h2) ≤ infX−i Fi(h1 | X−i) = FLi (h1). Similarly,
FUi (h1) = supX−i Fi(h1 | X−i) ≥ Fi(h1 | X−i) ≥ Fi(h2 | X−i) for almost all X−i.
Hence, FUi (h1) ≥ supX−i Fi(h2 | X−i) = FUi (h2).

To prove (iv), first observe that due to the monotonicity property (iii), the following
hold for any x:

lim
h→x+

FLi (h) ≥ FLi (x); (1)

lim
h→x+

FUi (h) ≥ FUi (x). (2)

Then observe that, due to discreteness, Fi(· | X−i) is constant in the interval [x, x+ δ)
for some δ > 0. Since the supports of FLi , FUi and Fi(· | X−i) for almost all X−i are
the same, FLi and FUi must also be constants in [x, x + δ). This implies that equality
holds in (1) and (2).

Hence, both FLi and FUi satisfy all the properties of distribution functions.

Remark: The right continuity property formalized by (iv) may not be true for con-
tinuous variables. Suppose X ∼ U(0, θ), θ > 0. Here the distribution function is
F (x | θ) = x

θ , 0 < x < θ <∞. But

lim
x→0+

sup
θ

x

θ
= lim
x→0+

1 = 1

and,

sup
θ

lim
x→0+

x

θ
= sup

θ
0 = 0

As a consequence of the above problem, attempts to construct suitable stochastic bounds
for the continuous parameters (Πp,Θp) may not be fruitful. In our case such a problem
does not arise since we only need to construct bounds for the discrete random variables
to achieve our goal.
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S-2 Proof of validity of our CFTP algorithm

Theorem: The terminal chains coalesce almost surely in finite time and the value
obtained at time t = 0 is a realization from the target distribution.

Proof:

Let zLit denote the realization obtained at time t by inverting FUi , that is, zLit =
FUi
−(Rzi,t), where {Rzi,t; i = 1, . . . , n; t = 1, 2, . . .} is a common set of Uniform(0, 1)

random numbers which are iid with respect to both i and t, used to simulate Z =
(z1, . . . , zn)′ at time t for Markov chains starting at all possible initial values. Similarly,
let zUit = FLi

−(Rzi,t). Clearly, for any zit = F−i (Rzi,t | X−i) started with any initial
value and for any X−i, zLit ≤ zit ≤ zUit for all i and t.

For i = 1, . . . , n and for j = 1, 2, . . ., we denote by Eji the event

zLi,−2j (−2j−1) = zUi,−2j (−2j−1),

which signifies that the terminal chains and hence the individual chains started at
t = −2j will coalesce at t = −2j−1. It is important to note that both FLi and FUi are
irreducible which has the consequence that the probability of Eji , P (Eji ) > εi > 0, for
some positive εi. Since, for fixed i, {Eji ; j = 1, 2, . . .} depends only upon the random
numbers {Rzi,t; t = −2j , . . . ,−2j−1}, {Eji ; j = 1, 2, . . .} are independent with respect to
j. Moreover, for fixed j, Eji depends only upon the iid random numbers {Rzi,−2j ; i =
1, . . . , n}. Hence, {Eji ; i = 1, . . . , n; j = 1, 2, . . .} are independent with respect to both i
and j.

Let ε = min{ε1, . . . , εn}. Then due to independence of {Eji ; i = 1, . . . , n}, it follows
that for j = 1, 2, . . ., Ej = ∩ni=1E

j
i are independent, and

P (Ej) ≥ εn. (3)

The rest of the proof resembles the proof of Theorem 2 of Casella et al. (2001). In other
words,

P (No coalescence after T iterations) ≤
T∏
j=1

{1− P (Ej)} (4)

= {(1− εn)}T → 0 as T →∞. (5)

Thus, the probability of coalescence is 1. That the time to coalesce is almost surely
finite follows from the Borel-Cantelli lemma, exactly as in Casella et al. (2001).

The realization obtained at time t = 0 after occurrence of the coalescence event Ej
for some j yields Z = Z0 exactly from its marginal posterior distribution. Given this
Z0, drawing Πp0 from the full conditional distribution (10) of MB and then drawing Θp0

sequentially from (8) and (9) of MB given Z0 and Πp0, yields a realization (Z0,Πp0,Θp0)
exactly from the target posterior. The proof of this exactness follows readily from the
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general proof (see, for example, Propp and Wilson (1996), Casella et al. (2001)) that if
convergent Markov chains coalesce in a CFTP algorithm during time t ≤ 0, then the
realization obtained at time t = 0 is exactly from the stationary distribution.

S-3 Uniform ergodicity

Let P (·, ·) denote a Markov transition kernel where P (x,A) denotes transition from the
state x to the set A ∈ B, B being the associated Borel σ-algebra. If we can show that
for all x in the state space the following minorization holds:

P (x,A) ≥ εQ(A), A ∈ B,

for some 0 < ε ≤ 1 and for some probability measure Q(·), then P (·, ·) is uniformly
ergodic.

In our mixture model situation the Gibbs sampling transition kernel is[
Z(t),Π(t)

p ,Θ(t)
p | Z(t−1),Π(t−1)

p ,Θ(t−1)
p

]
=
[
Z(t) | Π(t−1)

p ,Θ(t−1)
p , Y

] [
Π(t)
p | Z(t), Y

] [
Θ(t)
p | Z(t),Π(t)

p , Y
]

≥
{

inf
Π

(t−1)
p ,Θ

(t−1)
p

[
Z(t) | Π(t−1)

p ,Θ(t−1)
p , Y

]}
×
[
Π(t)
p | Z(t), Y

] [
Θ(t)
p | Z(t),Π(t)

p , Y
]
. (6)

The infimum in inequality (6) is finite since both Π(t−1)
p and Θ(t−1)

p are bounded.

Denoting the right hand side of inequality (6) by g(Z(t),Π(t)
p ,Θ(t)

p ), we put

ε =
∑
Z

∫
Πp

∫
Θp

g(Z,Πp,Θp)dΠpdΘp > 0. (7)

Since g(·) is bounded above by the Gibbs transition kernel which integrates to 1, it
follows from (7) that 0 < ε ≤ 1. Hence, identifying the density of the Q-measure as
g(·)/ε, the minorization condition required for establishment of uniform ergodicity of
our Gibbs sampling chain is seen to hold.

S-4 Proof that coalescence of C implies the coalescence
of S

Let C = (c1, . . . , cM )′ be coalescent. For convenience of illustration assume that af-
ter simulating each cj , followed by drawing θj depending upon the simulated value
of cj , the entire set S is obtained from the updated set of parameters ΘM . Note
that in practice, only sj will be obtained immediately after updating cj and θj . Let
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S−j = {s1, . . . , sj−1, sj+1, . . . , sM}. Then cj+1 = ` denotes the `-th distinct element of
S−j . If {1, . . . , dj} are the distinct components in S−j , dj being the number of distinct
components, and ` ≤ sj , then sj+1 = `. On the other hand, if ` < cj+1 ≤ dj + 1, then
sj+1 = sj + 1.

Now note that s1 = 1, which is always coalescent. If c2 > 1, then s2 = 2, else s2 = 1,
for all Markov chains. Hence, s2 is coalescent. If c3 > s2, then s3 = s2 + 1, else s3 = c3.
Since s2 is coalescent, then so is s3. In general, if cj+1 > sj , then sj+1 = sj + 1, else
sj+1 = cj+1. Since s1, . . . , sj are coalescent, hence so is sj+1, for j = 1, . . . ,M − 1. In
other words, S must coalesce if C coalesces.

S-5 Illustration of our perfect simulation method with a
two-component normal mixture example

For i = 1, . . . , n, data point yi has the following distribution:

[yi | π,Θ2] ∼ πN(yi;µ1, λ
−1
1 ) + (1− π)N(yi;µ2, λ

−1
2 ), (8)

where, for the sake of simplicity in illustration, λ1 and λ2 are assumed known. The
reason for considering this simplified model is two-fold. Firstly, it is easy to explain
complicated methodological issues with a simple example. Secondly, the bounds of Z
are available exactly in this two-component example; the results can then be compared
in the same example with approximate bounds obtained by simulated annealing. This
will validate the use of simulated annealing in our methodology.

The prior of µj ; j = 1, 2, is assumed to be of the form (5) of MB. Fixing the true
values at π = 0.8, µ1 = 2.19 and µ2 = 2.73, we draw a sample of size n = 3 from a
normal mixture where σ2

1 = λ−1
1 = 0.9, σ2

2 = λ−1
2 = 0.5 are considered known. The

hyperparameters are set to the following values: τ1 = 0.9, τ2 = 0.8, ξ1 = 2.5 and
ξ2 = 3.5. We illustrate our methodology in drawing samples exactly from the posterior
[π, µ1, µ2 | y1, y2, y3].

S-5.1 Construction of bounding chains

To obtain FLi and FUi ; i = 1, 2, 3, note that here we only need to minimize and maximize

Fi(1 | X−i) =
π
√
λ1 exp

{
−λ1

2 (yi − µ1)2
}

π
√
λ1 exp

{
−λ1

2 (yi − µ1)2
}

+ (1− π)λ2 exp
{
−λ2

2 (yi − µ2)2
} (9)

with respect to µ1, µ2 and π. Based on a pilot Gibbs sampling run we obtain the
following bounds for µ1 and µ2: M1 = 0.2 ≤ µ1 ≤ 4.12 = M2 and M3 = 1.0 ≤
µ2 ≤ 5.2 = M4. The minimizer and the maximizer of (9) occur at coordinates of the
form (a, b), where a can take the values yi, M1 or M2, and b can take the values yi,
M3 or M4. Evaluating (9) at these coordinates yields the desired minimum and the
maximum. At time t, let θmin,t and θmax,t denote the minimizer and the maximizer,
respectively. Minimization and maximization of (9) with respect to π (assuming that
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0 < a ≤ π ≤ b < 1 for some a, b obtained using Gibbs sampling) would have led to
the independent distribution functions FLi and FUi , but there exists a monotonicity
structure in the the conditional distribution of π (see also Robert and Casella (2004))
which can be exploited to reduce the gaps between FLi and FUi , by keeping π fixed in
the lower and the upper bounds. Moreover, since optimization with respect to π is no
longer needed, truncation of the parameter space of π is not required. Details follow.

S-5.2 Monotonicity structure in the simulation of π

It follows from (10) of MB that π ∼ Beta(n1 + 1, n − n1 + 1). Then, at time t, π can
be represented as

πt =
n1+1∑
k=1

Rπ,t,k
/ n+2∑
k=1

Rπ,t,k, (10)

where {Rπ,t,k; k = 1, . . . , n+2} is a random sample from Exp(1), that is, the exponential
distribution with mean 1. Thus, πt is increasing with respect to n1, since the set
of random numbers is fixed for all the Markov chains at time t. The form of (9)
suggests that the distribution function is increasing with π and hence with n1. Let
n1t = #{i : zit = 1}, nL1t = #{i : zLit = 1} and nU1t = #{i : zUit = 1}, and note that
nL1t ≤ n1t ≤ nU1t for any t. Define

πLt =
∑nL1t+1
k=1 Rπ,t,k∑n+2
k=1 Rπ,t,k

; (11)

πUt =
∑nU1t+1
k=1 Rπ,t,k∑n+2
k=1 Rπ,t,k

. (12)

With these, the lower and upper bounds of the distribution function of zi at time t are
given by

FLi (· | πLt , Y ) = Fi(· | θmin,t, π
L
t , Y ); (13)

FUi (· | πUt , Y ) = Fi(· | θmax,t, π
U
t , Y ). (14)

Combining the above developments, we propose the following algorithm for per-
fect simulation in 2-component mixture models, which is a slightly modified version of
Algorithm 3.1. For our specific example, we must set n = 3 in the algorithm below.

Algorithm S-5.1. CFTP for two-component mixtures

(1) For j = 1 . . ., until coalescence of Z, repeat steps (2) and (3) below.

(2) Define Sj = {−2j + 1, . . . ,−2j−1} for j ≥ 2, and let S1 = {−1, 0}. For each
m ∈ Sj , generate random numbers RZ,m, Rπ,m and RΘ2,m; once generated, treat
them as fixed thereafter for all iterations.
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(3) For t = −2j + 1, . . . ,−1, 0,

(a) Calculate πLt and πUt given by (11) and (12). For t = −2j + 1, set nL1t = 0
and nU1t = n.

(b) For i = 1, . . . , n,

1. For ` = 1, 2, calculate FLi (` | πLt , Y ) and FUi (` | πUt , Y ), given by (13) and
(14). In this two-component example, these can be calculated exactly
following the details presented in Sections S-5.1 and S-5.2.

2. Determine zLit = FU−i (Rzi,t | πLt , Y ) and zUit = FL−i (Rzi,t | πUt , Y ).

(4) If zLit∗ = zUit∗ ∀ i and for some t∗ < 0, then run the following Gibbs sampling steps
from t = t∗ to t = 0:

(a) Let Z∗ = (z∗1 , . . . , z
∗
n)′ denote the coalesced value of Z at time t∗. Given

Z∗, draw (π∗,Θ∗2) from the full conditionals (10), (8) and (9) in order, using
the corresponding random numbers already generated; in fact, π∗ will be
computed using the representation (10). Thus, (Z∗, π∗,Θ∗2) is the coalesced
value of the unknown quantities at t = t∗.

(b) Carry forward the above Gibbs sampling chain started at t = t∗ till t = 0,
simulating sequentially from (7), (10), (8) and (9). Again, π will be simulated
using (10). Then, the output of the Gibbs sampler obtained at t = 0, which
we denote by (Z0, π0,Θ2,0), is a perfect sample from the true target posterior
distribution.

S-5.3 Results of perfect simulation in the two-component mixture
example

We first investigated the consequences of truncating the parameter space. Figure S-1
illustrates that in this example, the exact posterior densities of (π, µ1, µ2) corresponding
to bounded and full (unbounded) supports are almost indistinguishable from each other.

We then implemented our perfect sampling algorithm by simulating Z from the
bounds (13) and (14) and simulating the upper and lower chains for π using the formulae
(11) and (12). The histograms in Figure S-2, corresponding to 100, 000 iid perfect
samples match the exact posteriors almost perfectly, indicating that our algorithm has
worked really well.

S-5.4 Comparison with perfect sampling involving simulated anneal-
ing

In the same two-component normal mixture example, we considered two versions of
our perfect sampling algorithm: in the first version we considered exact optimization of
the distribution function of zi, and in the second version we used simulated annealing
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Figure S-1: Investigation of consequences of truncating the parameter space: the grey
solid line and the red broken line (almost indistinguishable from the grey solid line)
correspond to the exact posterior densities with respect to unbounded and bounded
parameter spaces, respectively.



712 Perfect Simulation for Mixtures

ππ

d
e

n
s
it
y

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

ππ

d
e

n
s
it
y

µµ1

d
e

n
s
it
y

0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

µµ1

d
e

n
s
it
y

µµ2

d
e

n
s
it
y

1 2 3 4 5

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

1 2 3 4 5

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

µµ2

d
e

n
s
it
y

Figure S-2: The histograms correspond to perfect samples drawn using our algorithm.
The density lines correspond to the exact posterior density.
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for optimization. In both cases, we obtained 100, 000 iid samples of (π, µ1, µ2) at time
t = 0, using the same set of random numbers. All 100, 000 samples of the second version
turned out to be equal to the corresponding samples of the first version, suggesting great
reliability of simulated annealing.
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