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Bayesian Matching of Unlabeled Point Sets
Using Procrustes and Configuration Models

Kim Kenobi∗ and Ian L. Dryden†

Abstract. The problem of matching unlabeled point sets using Bayesian inference
is considered. Two recently proposed models for the likelihood are compared, based
on the Procrustes size-and-shape and the full configuration. Bayesian inference is
carried out for matching point sets using Markov chain Monte Carlo simulation.
An improvement to the existing Procrustes algorithm is proposed which improves
convergence rates, using occasional large jumps in the burn-in period. The Pro-
crustes and configuration methods are compared in a simulation study and using
real data, where it is of interest to estimate the strengths of matches between
protein binding sites. The performance of both methods is generally quite similar,
and a connection between the two models is made using a Laplace approximation.

Keywords: Gibbs, Markov chain Monte Carlo, Metropolis-Hastings, molecule, pro-
tein, Procrustes, size, shape

1 Introduction

Matching configurations of points is an important but challenging problem in many
application areas, including in bioinformatics and computer vision. In this paper we
compare two Bayesian approaches that have been developed for matching unlabeled
point sets. The matching problem, where the sets of points may be of different sizes, is
relevant for the comparison of molecules and the comparison of objects from different
views in computer vision. For example, if we have two protein surfaces, a question of
interest is whether the two surfaces have a region of the same shape. This region may
correspond to a binding site that the proteins have in common; for example they may
both bind to the same protein molecule.

In this paper we compare and build on the Markov chain Monte Carlo (MCMC)
methods recently independently developed by Green and Mardia (2006), Dryden et al.
(2007) and Schmidler (2007), which themselves have connections with work stemming
from Moss and Hancock (1996) and Rangarajan et al. (1997), among others.

Green and Mardia (2006) include details of a small dataset where the problem is
one of matching unlabeled point sets, and we use this dataset as a testbed for our
comparisons. The dataset consists of the coordinates of the centers of gravity of the
amino acids that make up the nicotinamide adenine dinucleotide phosphate (NADP)
binding sites of two proteins. Protein 1 is the human protein 17-beta hydroxysteroid
dehydrogenase. Protein 2 is the mouse protein carbonyl reductase. The active site of
protein 1 contains 40 amino acids and the active site of protein 2 contains 63 amino acids.
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Green and Mardia (2006) implemented their MCMC algorithm on the protein data. In
Table 4 of Green and Mardia (2004) (which is not in Green and Mardia (2006)) each of
the suggested pairings between amino acids in protein 1 and in protein 2 is assigned a
probability. These probabilities were estimated by observing how often those matches
were represented in long runs of the MCMC algorithm after convergence, and we use
these findings as a basis for comparing the algorithms.

This paper consists of two main contributions. First we describe an improvement
to the algorithm of Dryden et al. (2007) to prevent it from getting trapped in local
modes in the burn-in period. This method involves introducing some irreversible big
jumps to find a good starting point for the MCMC algorithm. Secondly we compare the
performance of MCMC algorithms for simulating from two different Bayesian models:
involving Procrustes matching (as in Dryden et al. (2007) and Schmidler (2007)) and
involving the full configuration (as in Green and Mardia (2006)).

2 Procrustes model

2.1 Match matrix

Consider two configurations of M and N points in m dimensions, and we write X as
an M ×m matrix and µ as an N ×m matrix of co-ordinates. In our application the
configurations are molecules, the points are amino acid functional site centroids, and the
configurations are in m = 3 dimensions. A key part of protein molecule matching is to
identify which functional sites correspond between two molecules. In chemoinformatics
when comparing smaller drug molecules the points are atoms and it is of interest to find
correspondences between pairs of atoms in molecules.

In order to specify the labeling or correspondence between the points we use a match
matrix Λ, which is an M × (N +1) matrix of 1s and 0s, in which every row sums to 1 to
represent a particular matching of the points in X to the points in µ. For 1 ≤ j ≤ N ,
if λij = 1 then the ith point of X matches to the jth point in µ. If λi,N+1 = 1 then the
ith point of X does not match to any point in µ. Note that there is no requirement for
the columns to sum to 1, and so many-to-one matches are allowed. Also, the matching
is not symmetric - in general the match from point set A to B will differ from the match
from point set B to A.

We shall consider two approaches to molecule matching using different Bayesian
models: a Procrustes size-and-shape model (Dryden et al. 2007; Schmidler 2007) and a
configuration model (Green and Mardia 2006). The methods use Markov Chain Monte
Carlo (MCMC) simulation to draw inferences about the match matrix and a concen-
tration parameter, although the treatment of the rotation and translation nuisance
parameters differs.
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2.2 Likelihood

We first consider the Procrustes-based model and construct the likelihood which is
a function of the size-and-shape distance, and requires registering configurations over
translation and rotation. Consider a match matrix, Λ, with p matching points, and
configuration matrices X and µ, where X as a random configuration and µ as fixed.
Let XΛ be a p × m matrix of the rows of X for which λi,N+1 = 0 (i.e. the matched
points in X), and let µΛ be a p ×m matrix of the rows of µ which correspond to the
points in µ to which the points of XΛ are matched. We assume that XΛ and µΛ are
both centered configurations, i.e. 1T

p XΛ = 0T
m = 1T

p µΛ.

A rotation of X is given by post-multiplication by a rotation matrix Γ ∈ SO(m),
where SO(m) is the special orthogonal group of m×m matrices such that ΓT Γ = ΓΓT =
Im and |Γ| = 1. A translation of X is given by addition of each row by γT ∈ Rm.
The size-and-shape of the configuration consists of all geometrical properties that are
invariant under rotation and translation of XΛ, i.e. the size-and-shape of XΛΓ+1pγ

T is
the same as that of XΛ (see Dryden and Mardia (1992) and Dryden and Mardia (1998,
Chapter 8)). Here 1p is the p-vector of ones, 0m is the m-vector of zeroes, and Im is the
m×m identity matrix.

We use partial Procrustes registration to register XΛ to µΛ, in order to define a
distance between the size-and-shapes. This aspect of the matching is present in both
the Dryden et al. (2007) and Schmidler (2007) approaches. The Procrustes matching
involves finding Γ̂ ∈ SO(m) and γ̂ ∈ Rm such that

‖ µΛ −XΛΓ̂− 1pγ̂
T ‖= inf

Γ∈SO(m)

γ∈Rp

‖ µΛ −XΛΓ− 1pγ
T ‖= dS(XΛ, µΛ),

where dS(XΛ, µΛ) is the Riemannian metric in size-and-shape space, SΣp
m (see Kendall

(1989); Dryden and Mardia (1992, 1998)). The Procrustes estimators of rotation and
translation, Γ̂ and γ̂ are

γ̂ = 0p, Γ̂ = R1R
T
2 , R1, R2 ∈ SO(m),

where (µΛ)T XΛ = ‖XΛ‖‖µΛ‖R2DRT
1 and D = diag(l1, l2, . . . , lm) is an m×m diagonal

matrix where the eigenvalues, lj , are optimally signed (l1 ≥ l2 ≥ . . . ≥ |lm| ≥ 0) and
non-degenerate (lm−1 + lm > 0), see Kent and Mardia (2001). Note that γ̂ = 0p because
XΛ and µΛ have both been centered.

Let X̂Λ = XΛΓ̂ + 1pγ̂
T . Then X̂Λ is the partial Procrustes fit of XΛ onto µΛ.

(It is ‘partial’ because no scaling has been used, just rotation and translation.) The
registration is computed efficiently using the shapes package in R (Dryden 2011).

The partial Procrustes tangent coordinates of XΛ at µΛ are given by the p × m
matrix

V Λ = X̂Λ − µΛ = XΛΓ̂ + 1pγ̂
T − µΛ

which is in a pm−m(m− 1)/2−m dimensional linear subspace of Rmp.
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We denote the unmatched points in X by X−Λ. We transform these points using
the same transformation parameters as for XΛ. Let X̂−Λ = X−ΛΓ̂ + 1M−pγ̂

T . We
consider X−Λ to lie in R(M−p)m.

Given the match matrix, Λ, the size-and-shape of XΛ lies in SΣp
m and X−Λ lies in

R(M−p)m.

We assume a zero mean isotropic Gaussian model for V Λ in Q = pm−m(m−1)/2−m
dimensions. (There are m(m− 1)/2+m linear constraints on V Λ due to the Procrustes
registration.) We assume that X−Λ, the non-matching part, is uniformly distributed in
a bounded region, A, with volume |A| of Rm.

The likelihood of X given Λ and τ = 1/σ2, a precision parameter where σ2 is a
measure of the variability at each point, is

L(X|Λ, τ, µ) = fV Λ(V Λ|τ, Λ, µ)fX−Λ(X−Λ|Λ)

= (2π)−Q/2τQ/2 exp
(
−τ

2
trace{(V Λ)T V Λ}

)
× 1
|A|M−p

= (2π)−Q/2τQ/2 exp
(
−τ

2
dS(XΛ, µΛ)2

)
× 1
|A|M−p

.

This likelihood is given by Dryden et al. (2007) and is essentially that of Schmidler
(2007) (with Q = mp in the latter).

2.3 Prior and posterior distributions

We write π(τ) and π(Λ) for the prior distributions of τ and Λ and assume τ and Λ are
independent a priori. We use the prior distribution τ ∼ Γ(α0, β0).

For the prior distribution of Λ, we assume the rows are independently distributed
with the ith row having distribution

π(λi,N+1 = 1) = ψ, π(λij = 1) =
1− ψ

N
, 1 ≤ j ≤ N,

for 1 ≤ i ≤ M and 0 ≤ ψ ≤ 1. If ψ = 1
N+1 then Λ is uniformly distributed in MM,N+1,

the space of possible M × N + 1 match matrices. The posterior density of τ and Λ
conditional on X is

π(τ, Λ|X, µ) =
π(τ)π(Λ)L(X|Λ, τ, µ)∑

Λ

∫∞
0

π(τ)π(Λ)L(X|Λ, τ, µ)dτ
.

2.4 MCMC Inference

The full conditional distribution of τ is available from the conjugacy of the Gamma
distribution,

(τ |X, Λ, µ) ∼ Γ
(

α0 +
Q

2
, β0 +

dS(XΛ, µΛ)2

2

)
,



K. Kenobi and I. L. Dryden 551

so we update τ with a Gibbs step.

We make updates to the match matrix using a Metropolis-Hastings step. We select
a row at random and move the 1 to a new position in [1, . . . , N +1]. In particular, if the
selected point is already matched then it becomes unmatched with probability preject,
or it is matched to another point i with probability (1−preject)/(N −1). If the selected
point is unmatched then it becomes matched to point i with probability 1/N .

We accept the new proposal, Λ∗, with probability

αΛ = min
{

1,
π(Λ∗|X,µ, τ)q
π(Λ|X, µ, τ)q∗

}
,

where

q/q∗ =





preject/(1/N) if making an unmatched point matched,
(1/N)/preject if making a matched point unmatched,

1 if making a matched point match to a different point.

If preject = 1/N then q/q∗ = 1, which was the value used by Dryden et al. (2007).

Dryden et al. (2007) also describe a computationally faster approximate Metropolis-
Hastings update to the match matrix which does not require the use of the whole
configuration in the calculation of the density. If we propose the change (i → l1) to
(i → l2) then the alternative Hastings ratio, α∗Λ is given by

α∗λ = min{g(xi, µl2)q/(g(xi, µl1)q
∗), 1}, (1)

where

g(xi, µj) =

{
1−ψ
N

(
τ
2π

)m/2 exp
(− τ

2 |xi − µj |2
)
, if j < N + 1

ψ 1
|A| if j = N + 1.

When a new match is accepted the ordinary partial Procrustes registration is carried
out on the new matching points to ensure the configuration of matching points has
rotation removed.

For brevity we shall refer to the size-and-shape model as the “Procrustes model”,
and matching using MCMC simulation with this model as the “Procrustes method”.

2.5 Improving the Procrustes algorithm

One of the problems with the MCMC scheme is that because of the multimodality of
the likelihood function for the match matrix Λ, the molecules often get stuck in a local
mode. In order to circumvent this problem Dryden et al. (2007) ran the algorithm from
a number of different start points until the algorithm had reached a position which
satisfied certain convergence criteria.

We propose a new initialization algorithm which involves proposing much more rad-
ical changes to the match matrix than changing just one row. The four types of bigger
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moves are called ‘nearness’,‘rotation’,‘translation’ and ‘flip’. All four types of proposal
are non reversible, and therefore we only allow these big jumps at the start of the
MCMC algorithm. Effectively the use of these proposals helps to find a good starting
point for the subsequent MCMC inference. The new moves are:

1. Nearness. Each of the matched points in X (i.e. those rows of Λ that have a 0
in the last column) is matched to the point in µ that is nearest to it. Let IΛ be
the index of matched points, so IΛ = {i ∈ {1, 2, . . . , M} : λi,N+1 = 0}. We define
Λ∗ = (λ∗ij) by

λ∗ij =





1 i /∈ IΛ, j = N + 1
1 i ∈ Iλ, ‖ (X)i − (µ)j ‖= minl∈{1,...,N} ‖ (X)i − (µ)l ‖
0 otherwise.

Let N(X, µ, Λ) = Λ∗ as defined above. Note that Λ∗ has the same number of
matched points as Λ. The other three methods (rotation, translation and flip) use
this nearness step at the end.

2. Rotation. Randomly choose an angle θ ∼ U [−π, π]. Randomly choose an axis
(x, y or z) about which to rotate, and set R = Rx(θ), Ry(θ) or Rz(θ) as appropri-
ate, where Rx, Ry, Rz are defined in (2) and (3) below. Let X∗ = XR then map
each point in X∗ to the nearest point in µ, i.e. Λ∗ ≡ RΛ(X, µ, Λ) = N(X∗, µ, Λ).

3. Translation. Choose γ ∼ N3(0, σ2). Define X∗ = X +1MγT and then map each
point in X∗ to its nearest point in µ. Thus Λ∗ ≡ TΛ(X, µ, Λ) = N(X∗, µ, Λ).

4. Flip. This move has the same form as the rotation step, but instead of selecting
θ from a U [−π, π] distribution we set θ = π.

We define an initialization phase by setting a maximum number of initial jumps,
Ninitialization. We also define a settling time, Nsettle. During the initialization phase
(i.e. ≤ Ninitialization interactions) at least Nsettle default updates are proposed between
any two big jump proposals. The rationale behind this is to explore the region of
the parameter space we ‘land in’ after making a big jump before immediately jumping
somewhere else. The hope is that the settling time allows the algorithm to home in on
a solution if a big jump takes us somewhere close to the optimal solution. Provided at
least Nsettle default updates have been proposed we randomly choose an update type
from {nearness, rotation, translation, flip, default}, with probabilities pn, pr, pt, pf , 1−
(pn + pr + pt + pf ), say. Whichever update method is chosen, a new match matrix, Λ∗

is generated. We then accept the new match matrix with probability

αΛ = min{1, π(Λ∗|X, µ, τ)/π(Λ|X, µ, τ)}.

After Ninitialization iterations the algorithm proceeds exactly as described in Dryden
et al. (2007).
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Other work where large jumps have been used to help address multimodality includes
Tjelmeland and Hegstad (2001) and Tjelmeland and Eidsvik (2004). Their scenarios
are simpler where they can make use of local optimization to construct reversible jumps
between modes. In our case we are not carrying out local optimization involving gra-
dients, but rather we use the nearness of points in physical space for constructing a
large jump into a different mode in this large discrete combinatorial search space of
matchings. It is not clear how to make such moves reversible, and so we just carry them
out during the initialization phase.

3 Configuration model

3.1 Likelihood

We now consider an alternative model for the configuration of points which is very
similar to that of Green and Mardia (2006). We again assume that µ is a fixed N ×m
configuration and X is an M×m configuration that we apply rigid-body transformations
to.

This model for the co-ordinates of the points does not involve removing rotation and
translation by Procrustes matching. Rather, the rotation matrix Γ ∈ SO(m) and the
translation parameter γ will be parameters in the model. The matched points in XΛ

are taken as Gaussian perturbations of the matching points in µ, and we assume that
the rows of X−Λ are distributed uniformly over a bounded region A ⊂ Rm of volume
|A|. We concentrate on the m = 3 dimensional case here.

Given an M × (N + 1) match matrix, Λ (with p matching points), rotation matrix
Γ and translation vector γ the likelihood is therefore defined as:

L∗(X|Λ, µ, τ, Γ, γ) =
(

1
2π

)3p/2
τ3p/2

|A|M−p
exp

(
−τ

2
trace{(X̃Λ − µΛ)T (X̃Λ − µΛ)}

)
,

where X̃Λ = XΛΓ+1pγ
T , Γ = Rz(θ12)Ry(θ13)Rx(θ23), and the rotation matrices about

the x, y, z axes are:

Rx(θ23) =




1 0 0
0 cos θ23 sin θ23

0 − sin θ23 cos θ23


 , Ry(θ13) =




cos θ13 0 sin θ13

0 1 0
− sin θ13 0 cos θ13


 , (2)

Rz(θ12) =




cos θ12 sin θ12 0
− sin θ12 cos θ12 0

0 0 1


 , (3)

with Euler angles θ12 ∈ [−π, π), θ13 ∈ [−π/2, π/2], θ23 ∈ [−π, π). There are many
choices of Euler angle representations and all have singularities (Stuelpnagel, 1964),
although the singularities have measure zero with respect to Haar measure which is
given by

1
8π2

cos(θ13)dθ12dθ13dθ23
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in this case (e.g. see Khatri and Mardia, 1977).

Note that Green and Mardia (2006)’s model is constructed with X and µ as Gaussian
perturbations from an underlying Poisson process. However, the likelihood is actually
of the same form as the one sided version, where X is perturbed from µ, although the
variance parameter is doubled.

3.2 Prior and posterior distributions

We take τ, Λ,Γ, γ to be mutually independent a priori, and the priors of τ and Λ are
taken as in Section 2.3. We also take the prior for γ as:

γ ∼ N3(µγ , σ2
γI3),

and we take Γ to be uniform with respect to Haar measure on SO(m). The posterior
density of (Λ, τ, Γ, γ) conditioned on X is

π(τ, Λ,Γ, γ|X,µ) =
π(τ)π(Λ)π(Γ)π(γ)L(X|Λ, τ, µ, Γ, γ)∑

Λ

∫∞
0

π(τ)π(Λ)π(Γ)π(γ)L(X|Λ, τ, µ, Γ, γ)dτ
.

3.3 MCMC simulation

The full conditional distribution of τ is given by

(τ |X, Λ, Γ, γ, µ) ∼ Γ

(
α0 +

3p

2
, β0 +

‖X̃Λ − µΛ‖2
2

)
,

and so a Gibbs update can be used for τ .

We update the rotation angles using a Metropolis-Hastings step, drawing the pro-
posal perturbations from a uniform distribution on [−0.2, 0.2] for θ12, θ23, and uniform
on [−0.1, 0.1] for θ13, to give proposed angles θ∗12, θ

∗
13, θ

∗
23. The Hastings ratio is:

min
(

1,
π(τ, Λ, Γ(θ∗12, θ

∗
13, θ

∗
23), γ|X, µ) cos θ∗13

π(τ, Λ, Γ(θ12, θ13, θ23), γ|X, µ) cos θ13

)
,

and the extra cosine terms are due to the Haar measure on the special orthogonal
rotation group.

The full conditional distribution of γ is given by

γ|X, µ, τ, Λ, Γ ∼ N

(
µγ/σ2

γ + τ
∑

j≤M,k≤N,λjk=1(µk − xjΓ)

pτ + 1/σ2
γ

,
1

pτ + 1/σ2
γ

I3

)
, (4)

and so we use a Gibbs update for γ.

We update the match matrix Λ in the same way as in the Procrustes model using
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the acceptance probability

αΛ = min
(

1,
π(Λ∗|X,µ, τ, Γ, γ)q
π(Λ|X,µ, τ, Γ, γ)q∗

)

= min
(

1,
L(X|Λ∗, µ, τ, Γ, γ)π(Λ∗)q
L(X|Λ, µ, τ, Γ, γ)π(Λ)q∗

)
.

Suppose Λ∗ contains the match (i → l1) and Λ contains the match (i → l2), where l1 6= l2
and the match matrices Λ∗ and Λ are otherwise identical. The acceptance probability
αΛ is exactly the same as that given in Equation (1), i.e. the fast method of Dryden
et al. (2007). Hence the MCMC updates of Λ for the Procrustes and Configuration
models are more similar than they first appear.

Note that our implementation of the MCMC simulation differs slightly from Green
and Mardia (2006) who use a matrix Fisher conjugate prior for the rotation, and update
two of the rotation angles with a Gibbs step. In addition, Green and Mardia (2006)
ensure that the matching is 1-1 between the points, whereas we do allow the possibility
of many-to-one matches.

For brevity we shall refer to this model as the “Configuration model”, and matching
using this model as the “Configuration method”. The Configuration model has been
demonstrated to work well in a variety of situations (Mardia et al. 2007).

4 Applications and simulations

4.1 Assessment of initialization procedure

Here, we use the NADP-binding site protein data to assess the efficiency of the Pro-
crustes algorithm, both with and without the large jump proposals. There are 40 centers
of gravity of amino acids for protein 1 and 63 for protein 2. Following Green and Mar-
dia (2006) we take the prior hyperparameters to be α0 = 1, β0 = 36, µγ = 0, σγ = 50,
and we take ψ = 0.2. The proposal parameters pn = 0.001, pr = 0.02, pf = 0.01, pt =
0.09, Nsettle = 850 for this application. For the volume parameter we use |A| ≈ 23000
which is the volume of a bounding box obtained by multiplying the maximum lengths
in the x, y, z directions for each protein.

We used the a priori ‘correct’ matches, as identified in Green and Mardia (2004)
to define a convergence criterion. Although we use the word ‘correct’ match, note that
these are not ground truth matches but rather these top 36 matches are very reliably
obtained by the matching algorithms, and so it is in this sense that we use the word
‘correct’.

To assess the efficacy of the criterion for determining convergence, we started 50
MCMC runs from distinct initial configurations in each of which 10 correct matches
were selected at random. Each run was allowed to run for 10000 iterations, and we
measured the number of correct matches after each 100 iterations. The results are shown
in Figure 1 and we define convergence to have been reached when 30 ‘correct’ matches
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have been obtained and σ < 1. The plot also shows a mean number of ‘correct’ matches,
where after convergence the value of 30 ‘correct’ matches is used in the calculation. It is
interesting to note that the Procrustes and Configuration methods converge at a similar
rate here.
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Figure 1: A comparison of the numbers of ‘correct’ matches against iteration number
(using the 36 ‘correct matches from Green and Mardia (2004)) for the Procrustes (left)
and Configuration (right) models, initializing by choosing 10 correct matches at random.
We define convergence as 30 ‘correct matches and σ < 1, and each trace is plotted until
convergence has been reached. The red lines show the mean number of correct matches
at each iteration number, using 30 ‘correct’ matches after convergence has been reached.

Also, rather than starting with 10 ‘known’ matches we have rerun the algorithms
starting from just two matches selected from the ‘correct’ matches or from two randomly
selected matches, which is comparable to assuming no matches. With Procrustes regis-
tration, the algorithm converged 12/100 times from two randomly selected points, and
54/100 times from two ‘correct’ matches. For the Configuration method, the algorithm
converged 12/100 times from two randomly selected points, and 36/100 times from two
‘correct’ matches. Hence, it can be seen in this application that it is helpful to initialize
by assuming some of the ‘correct’ matches.

To compare further the convergence performance of the Procrustes and Configura-
tion methods, we initiated 25 runs from random starting points. We allowed each run
to continue for a maximum of a million iterations, monitoring the number of correct
matches after every thousand iterations. On the basis of the results described above, we
stipulated that if within these million iterations the number of correct matches reached
10 then that counted as convergence. Such runs were allowed to continue for a fur-
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ther 50000 iterations. The Procrustes method was used both with and without the big
jumps described above; these were only used during the initial Ninitialization = 1000000
iterations.
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Figure 2: Histograms of the number of iterations to convergence (defined as 10 ‘correct’
matches and σ < 1 from random starting points, i.e. two matches selected at random)
for the size-and-shape model, with and without large jumps, and the configuration
model. The parameters are: α0 = 1, β0 = 36, ψ = 0.5, σT = 2.2, pn = 0.001, pr =
0.02, pf = 0.01, pt = 0.09, Nsettle = 850.

Figure 2 shows histograms of the number of iterations before the algorithms con-
verged to 10 correct matches for the successful runs. The success rates of 7/25 for the
Procrustes method without big jumps and 3/25 for the Configuration method were not
too encouraging. However, when big jumps were included for the Procrustes method,
the success rate increased to 22/25, a very impressive result.

Green and Mardia (2006) report convergence within a million iterations on 83 out
of 100 tests run from random starting points. They define convergence differently to us,
looking for runs in which the log-posterior goes higher than some threshold. It is impor-
tant to note three things when looking at this result and comparing it with the results
of Figure 2. Firstly, in the Green and Mardia paper, they update the match matrix
10 times per sweep, so they are effectively looking at the convergence within 10 million
iterations. Secondly, their proposal methods for the angles in particular are different;
they use Gibbs steps instead of Metropolis-Hastings updates, making use of conjugacy of
the matrix Fisher distribution. This may also improve their convergence performance,
with the form of the proposals being closer to the true distribution. Finally, the way the
model is formulated is different, with 1-1 matches and a hidden Poisson process being
used.

Although the algorithm was much more likely to converge within a million iterations
if the big jumps were included, it did mean that from certain starting points the algo-
rithm took a lot longer to converge if the big jumps were included than if they were not.
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This is a consequence of the choice of the settling time parameter between large jump
proposals. One way to avoid this might be to let the algorithms run for an initial period
of 100000, say, before introducing any big jumps. This way, if the algorithm converged
within that period then it would not be necessary to use the big jumps at all. Also, the
settling time between large jump proposals could be increased. Despite the fact that it
often took longer for the algorithm to converge with the large jumps, the evidence is
compelling that the big jumps vastly improve convergence.

We experimented with the probabilities of acceptance for the four types of large
jumps. At the levels we settled on (given in the caption of Figure 2) the nearness
proposal was always accepted (which is always the case since the likelihood always
increases for the nearness proposal), and the other three types were accepted roughly
a quarter (flip), a third (rotation) and half (translation) of the times when they were
proposed.

4.2 Long run comparisons

In order to compare further the Procrustes and Configuration algorithms we apply the
MCMC scheme from a number of long runs of the method. In order to ensure that we
started the algorithms close to convergence, we initialized the proteins by aligning the
first 10 pairs of amino acids as given in Table 4 of Green and Mardia (2004).

We ran the two algorithms and looked at the proportion of the accepted match
matrices after convergence in which particular matches were represented. Although in
principle many to one matches were possible, they did not tend to occur in the long runs
after convergence. We ran the experiment for five values of ψ, the prior probability of
a particular point being unmatched, and five values of the proposal probability preject,
the probability of moving a matched point to an unmatched status in the proposal
for the change to the match matrix. For each parameter the five values we used were
0.001, 1/63, 0.1, 0.2 and 0.4. (The 1/63 is there because N = 63 and in the case of ψ,
this corresponds to a uniform prior for Λ.)

Altering preject had little effect on the results. We fix preject = 0.2 and consider the
effects of varying ψ, the prior probability of each point in protein 1 being unmatched (in-
dependently of the other points). We ran each MCMC algorithm for 1000000 iterations
after convergence, adding the match matrices together.

In Figure 3, we show how often the 36 most likely matches from Table 4 of Green
and Mardia (2004) appear in our match matrices after convergence. These percentages
are calculated as the number of times each match occurred divided by the total number
of match matrices.

We have calculated a ‘threshold match matrix’ by putting a 1 in each position that
corresponds to the maximum entry in a row of the summed match matrices and a 0
everywhere else. This gives us a method for comparing how many points are matched for
each value of ψ. For values of ψ ∈ {0.001, 1/63, 0.1, 0.2, 0.4} the number of unmatched
points are {0, 0, 1, 4, 4} respectively, for both the Procrustes and Configuration methods.
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Figure 3: The proportions of match matrices containing particular pairings, based on
1000000 iterations after convergence for the Procrustes and Configuration models for
five values of ψ - a comparison with the percentages quoted in Green and Mardia (2006).

Clearly changing the prior distribution of Λ by altering ψ has an effect on the number
of points that are matched.

Figure 3 shows that using the Configuration model, we obtain probabilities for the
top 36 matches reported in Green and Mardia (2006) that are similar to the figures
quoted in that paper. However, using the Procrustes model, the probabilities are all
significantly closer to 1 than using the Configuration model. This suggests that the
Procrustes model is ‘stickier’ than the Configuration model, in the sense that matches
are released less readily after convergence. The simulation study below investigates
the relationship of long run convergence probabilities with different variances, and the
results suggest that there is a possibility that the results observed in Figure 3 may be a
contingent property of the variability of the points. We return to this in the discussion
of the simulation study.

Note that the posterior standard deviation σ = 1/
√

τ was smaller for the Procrustes
model. In particular, the means of the 10000 values well after burn-in were 0.869 for
the Procrustes model and 1.355 for the Configuration model.

We have used R (R Development Core Team 2011) for coding, and so this could be
speeded up considerably using C or C++ for example. With the Procrustes method,
a million iterations take approximately 27 minutes on a standard desktop PC. For the
Configuration method, a million iterations take approximately 1 hour 30 minutes. Thus
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the method with Procrustes registration is approximately three times faster than the
Configuration method in our implementation.

4.3 A simulation study

We consider now a simulation study where we know what the true probabilities of
matching are and compare the MCMC algorithms both with and without Procrustes
registration to see how they perform. The details of this simulation are as follows:

Step 1 Define a length, L > 0 and a minimum distance 0 < dmin < L. Fix M, N ∈ N,
nones < M . As before, M is the number of points in the point set X and
N is the number of points in the point set µ. Define a vector of probabilities,
p = (p1, p2, . . . , pM ), where p1 = p2 = . . . = pnones

= 1 and pi = 0 for i = nones+
1, . . . ,M . Fix s < dmin; this is the standard deviation of the perturbations of
the random points.

Step 2 Sample the N points of µ from a uniform distribution on the cube with corners

{(−L,−L,−L), (−L,−L,L), . . . , (L,L,L)}

subject to the constraint that each new point is at least a distance dmin from
every other point. For the ith point in X, denoted (X)i, if pi = 1 then we sample
from a Normal distribution centered on the ith point in µ,

(X)i ∼ N3((µ)i, s
2I3),

else we sample uniformly from the cube with corners as above,

(X)i ∼ U [cube as above].

Step 3 Run the two MCMC algorithms for Niter iterations starting from the match
matrix which matches (X)j to (µ)j for j = 1, 2, . . . , nones. (In other words
we start the algorithms from convergence.) For i = 1, . . . , , nones, record the
proportion of the Niter match matrices that match (X)i to (µ)i. For i = nones +
1, . . . ,M , record the proportion of the Niter match matrices for which (X)i is
unmatched.

Step 4 Hold µ constant and sample a new X as described in step 2. Repeat step 3.
Continue this process until the proportions of successful matches and successfully
unmatched points have been recorded for K runs of the MCMC algorithm.

Step 5 Repeat experiment for various values of s < dmin.

Figure 4 shows the results of running this experiment with M = 20, N = 24 and
nones = 12. The values chosen for L and dmin were 10 and 2 respectively. The ex-
periment was run for four values of s, the standard deviation parameter. These were
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Figure 4: The means (circles and squares, left hand scale) and variances (stars, right
hand scale) of the proportions of successful matches (black circles and black small stars)
and successfully unmatched points (red squares and red large stars) for the Procrustes
model (top row) and Configuration model (bottom row) on long runs (100000 itera-
tions) after convergence. Here, there are 20 points in configuration X and 24 points in
configuration µ. The points in µ are sampled uniformly from a cube of side length 20
subject to the constraint that they are a minimum distance dmin = 2 from the nearest
neighbor. The first 12 points in X are sampled from Normal distributions centered at
the corresponding points in µ and the last 8 points in X are sampled uniformly on the
cube of radius 2L. The means and variances are calculated over 100 runs, with µ held
constant and X resampled each time.

dmin/20, dmin/10, dmin/5, dmin/2, or 0.1, 0.2, 0.4 and 1. The value of Niter, the number
of iterations after convergence, was 100000.

Figure 4 has a curious feature. When the value of the standard deviation is less
than or equal to dmin/5, the Configuration model seems to estimate the probabilities for
both matched and unmatched points more reliably than the Procrustes model. For both
models the matched points are rarely released when the matching is very precise, but
the Configuration model gives probabilities closer to 1 than the Procrustes model. (This
is not clear from just looking at the graphs). When the standard deviation is increased
to dmin/2, the Configuration model still performs better than the Procrustes model on
the unmatched points. Interestingly, now the Procrustes model gives significantly better
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(i.e. higher) estimates for the probabilities for the matched points.

With reference to the results illustrated in Figure 3, this simulation study poses
an interesting question. In Figure 3, we found that the Procrustes method appeared
‘stickier’ than the Configuration method. In the light of the findings of this simulation
study, it is possible that this result is a feature of the particular relationship between
the variance parameter and the minimum distance between points in this particular
dataset. From the simulation, it appears there may be a critical value of the standard
deviation parameter, somewhere between dmin/5 and dmin/2, for which the two MCMC
methods swap over in terms of which one gives the higher probabilities for particular
matches.

4.4 Laplace approximation

We have observed in all our simulation studies and practical applications that neither
the Procrustes nor the Configuration models are uniformly superior. In fact, closer
inspection indicates that the two models are more similar than they first appear.

Let us consider the posterior density π(Λ, τ, Γ, γ|X). Note that the rotation and
translation Γ, γ are nuisance parameters, and one has a choice about how to deal with
them. In the Configuration approach one samples from the full joint distribution of
(Λ, τ, Γ, γ|X) and so joint inference of all the parameters can be carried out. However,
if Γ, γ are considered nuisance parameters then we can integrate them out to give the
marginal density of (Λ, τ)

πC(Λ, τ |X) =
∫

Γ,γ

π(Λ, τ, Γ, γ|X)dΓdγ. (5)

In the Procrustes approach the match is obtained by optimizing over the nuisance
parameters, and so we consider the different posterior density based on

πP (Λ, τ |X) ∝ sup
Γ,γ

π(Λ, τ, Γ, γ|X). (6)

We can consider (6) to be an approximation to the marginal density (5) where the
integral is approximated using Laplace’s method (Tierney and Kadane 1986).

From a Bayesian analysis perspective it is natural to work with the marginal posterior
distribution (5). From a shape theory perspective the analysis should be invariant
under rotations or translations of the data, and so a uniform prior for Γ, γ in (5) or a
distribution of the form (6) are both natural.

Regardless of which model is used we have seen generally similar performance in a
wide range of scenarios. In situations where the posterior distribution of Γ, γ is close to
multivariate normal then we expect the Laplace approximation in (6) to be accurate,
and hence this provides an explanation for the similarity of the two models in many
practical situations.
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5 Discussion

In conclusion, it is clear that the Procrustes method is significantly improved by con-
sidering the initial large jumps. However, despite quite extensive comparisons there is
not an overall preference between the Procrustes or Configuration methods for all situa-
tions. The Procrustes and Configuration methods appear to converge similarly reliably
to the true solution when the proteins are initialized by selecting 10 correct matches at
random. For simulated datasets where the variance is small, the Configuration method
more reliably predicts the probabilities of matches, and the Procrustes method was
more likely to suffer from false matches. For larger variances the Procrustes method
was more effective at estimating correct matches, without more false matches. However,
in essence both models are fairly similar, and inference using marginal posteriors (5)
or (6) is similar in practice due to the Laplace approximation. These observations are
relevant to a wider discussion of whether to specify distributions directly in a quotient
space (as for the Procrustes model) or in a configuration space, and the appropriate
choice will depend on the application and the objectives of the analysis.

The way we have set up the MCMC procedures, we do not exclude the possibility
of many-to-one matches. We have followed the methodology of Dryden et al. (2007)
and found that in general many-to-one matches are not selected in long runs after
convergence. However, it would be easy to constrain the choice of match matrices such
that only one-to-one matches were proposed. This is the method adopted by Green and
Mardia (2006).

MCMC tools are an effective way of finding the optimal correspondence and regis-
tration between two point sets where we wish to match a subset of points from one set
to a subset of points from the other set. However, because of the combinatoric nature
of looking for possible correspondences, the algorithms are currently prohibitively time
consuming for large data sets (e.g. more than a few hundred points). Suppose we were
interested in comparing two large protein surfaces to look for regions of a similar shape
(such as binding sites that are common to both proteins). It may be possible to use
an efficient search algorithm to scan the surface of the two proteins for small regions
that are potential candidates for binding sites and then apply the MCMC methods to
those small sites individually to confirm whether or not there are subsets of the two re-
gions that match well. Schmidler (2007) notes the difficulties of using MCMC methods
for large problems and suggests the use of geometric hashing to compute approximate
posterior quantities efficiently.

Although we have just considered pairwise matching of two configurations here, the
methods extend to matching multiple molecules. Extensions of the Procrustes and
Configuration models for multiple alignments have been given by Dryden et al. (2007),
Ruffieux and Green (2009) and Mardia et al. (2011)
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