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Beta Processes, Stick-Breaking
and Power Laws

Tamara Broderick∗, Michael I. Jordan† and Jim Pitman‡

Abstract. The beta-Bernoulli process provides a Bayesian nonparametric prior
for models involving collections of binary-valued features. A draw from the beta
process yields an infinite collection of probabilities in the unit interval, and a
draw from the Bernoulli process turns these into binary-valued features. Recent
work has provided stick-breaking representations for the beta process analogous
to the well-known stick-breaking representation for the Dirichlet process. We de-
rive one such stick-breaking representation directly from the characterization of
the beta process as a completely random measure. This approach motivates a
three-parameter generalization of the beta process, and we study the power laws
that can be obtained from this generalized beta process. We present a posterior
inference algorithm for the beta-Bernoulli process that exploits the stick-breaking
representation, and we present experimental results for a discrete factor-analysis
model.
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1 Introduction

Large data sets are often heterogeneous, arising as amalgams from underlying sub-
populations. The analysis of large data sets thus often involves some form of stratifi-
cation in which groupings are identified that are more homogeneous than the original
data. While this can sometimes be done on the basis of explicit covariates, it is also
commonly the case that the groupings are captured via discrete latent variables that
are to be inferred as part of the analysis. Within a Bayesian framework, there are two
widely employed modeling motifs for problems of this kind. The first is the Dirichlet-
multinomial motif, which is based on the assumption that there are K “clusters” that
are assumed to be mutually exclusive and exhaustive, such that allocations of data to
clusters can be modeled via a multinomial random variable whose parameter vector is
drawn from a Dirichlet distribution. A second motif is the beta-Bernoulli motif, where
a collection of K binary “features” are used to describe the data, and where each fea-
ture is modeled as a Bernoulli random variable whose parameter is obtained from a
beta distibution. The latter motif can be converted to the former in principle—we can
view particular patterns of ones and zeros as defining a cluster, thus obtaining M = 2K

clusters in total. But in practice models based on the Dirichlet-multinomial motif typi-
cally require O(M) additional parameters in the likelihood, whereas those based on the
beta-Bernoulli motif typically require only O(K) additional parameters. Thus, if the
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combinatorial structure encoded by the binary features captures real structure in the
data, then the beta-Bernoulli motif can make more efficient usage of its parameters.

The Dirichlet-multinomial motif can be extended to a stochastic process known as
the Dirichlet process. A draw from a Dirichlet process is a random probability measure
that can be represented as follows (McCloskey 1965; Patil and Taillie 1977; Ferguson
1973; Sethuraman 1994):

G =
∞∑

i=1

πiδψi
, (1)

where δψi
represents an atomic measure at location ψi, where both the {πi} and the {ψi}

are random, and where the {πi} are nonnegative and sum to one (with probability one).
Conditioning on G and drawing N values independently from G yields a collection of M
distinct values, where M ≤ N is random and grows (in expectation) at rate O(log N).
Treating these distinct values as indices of clusters, we obtain a model in which the
number of clusters is random and subject to posterior inference.

A great deal is known about the Dirichlet process—there are direct connections
between properties of G as a random measure (e.g., it can be obtained from a Poisson
point process), properties of the sequence of values {πi} (they can be obtained from a
“stick-breaking process”), and properties of the collection of distinct values obtained by
sampling from G (they are characterized by a stochastic process known as the Chinese
restaurant process). These connections have helped to place the Dirichlet process at
the center of Bayesian nonparametrics, driving the development of a wide variety of
inference algorithms for models based on Dirichlet process priors and suggesting a range
of generalizations (e.g. MacEachern 1999; Ishwaran and James 2001; Walker 2007; Kalli
et al. 2009).

It is also possible to extend the beta-Bernoulli motif to a Bayesian nonparametric
framework, and there is a growing literature on this topic. The underlying stochastic
process is the beta process, which is an instance of a family of random measures known
as completely random measures (Kingman 1967). The beta process was first studied in
the context of survival analysis by Hjort (1990), where the focus is on modeling hazard
functions via the random cumulative distribution function obtained by integrating the
beta process. Thibaux and Jordan (2007) focused instead on the beta process realization
itself, which can be represented as

G =
∞∑

i=1

qiδψi ,

where both the qi and the ψi are random and where the qi are contained in the interval
(0, 1). This random measure can be viewed as furnishing an infinite collection of coins,
which, when tossed repeatedly, yield a binary featural description of a set of entities in
which the number of features with non-zero values is random. Thus, the resulting beta-
Bernoulli process can be viewed as an infinite-dimensional version of the beta-Bernoulli
motif. Indeed, Thibaux and Jordan (2007) showed that by integrating out the random
qi and ψi one obtains—by analogy to the derivation of the Chinese restaurant process



T. Broderick et al. 441

from the Dirichlet process—a combinatorial stochastic process known as the Indian
buffet process, previously studied by Griffiths and Ghahramani (2006), who derived it
via a limiting process involving random binary matrices obtained by sampling finite
collections of beta-Bernoulli variables.

Stick-breaking representations of the Dirichlet process have been particularly impor-
tant both for algorithmic development and for exploring generalizations of the Dirichlet
process. These representations yield explicit recursive formulas for obtaining the weights
{πi} in Eq. (1). In the case of the beta process, explicit non-recursive representations
can be obtained for the weights {qi}, based on size-biased sampling (Thibaux and Jor-
dan 2007) and inverse Lévy measure (Wolpert and Ickstadt 2004; Teh et al. 2007).
Recent work has also yielded recursive constructions that are more closely related to
the stick-breaking representation of the Dirichlet process (Teh et al. 2007; Paisley et al.
2010).

Stick-breaking representations of the Dirichlet process permit ready generalizations
to stochastic processes that yield power-law behavior (which the Dirichlet process does
not), notably the Pitman-Yor process (Ishwaran and James 2001; Pitman 2006). Power-
law generalizations of the beta process have also been studied (Teh and Görür 2009) and
stick-breaking-like representations derived. These latter representations are, however,
based on the non-recursive sized-biased sampling and inverse-Lévy methods rather than
the recursive representations of Teh et al. (2007) and Paisley et al. (2010).

Teh et al. (2007) and Paisley et al. (2010) derived their stick-breaking representations
of the beta process as limiting processes, making use of the derivation of the Indian buffet
process by Griffiths and Ghahramani (2006) as a limit of finite-dimensional random
matrices. In the current paper we show how to derive stick-breaking for the beta
process directly from the underlying random measure. This approach not only has
the advantage of conceptual clarity (our derivation is elementary), but it also permits
a unified perspective on various generalizations of the beta process that yield power-
law behavior.1 We show in particular that it yields a power-law generalization of the
stick-breaking representation of Paisley et al. (2010).

To illustrate our results in the context of a concrete application, we study a discrete
factor analysis model previously considered by Griffiths and Ghahramani (2006) and
Paisley et al. (2010). The model is of the form

X = ZΦ + E, (2)

where X ∈ RN×P is the data and E ∈ RN×P is an error matrix. The matrix Φ ∈ RK×P

is a matrix of factors, and Z ∈ RN×K is a binary matrix of factor loadings. The
dimension K is infinite, and thus the rows of Φ comprise an infinite collection of factors.
The matrix Z is obtained via a draw from a beta-Bernoulli process; its nth row is an
infinite binary vector of features (i.e., factor loadings) encoding which of the infinite
collection of factors are used in modeling the nth data point.

1A similar measure-theoretic derivation has been presented recently by Paisley et al. (2011), who
focus on applications to truncations of the beta process.
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The remainder of the paper is organized as follows. We introduce the beta process,
and its conjugate measure the Bernoulli process, in Section 2. In order to consider
stick-breaking and power law behavior in the beta-Bernoulli framework, we first review
stick-breaking for the Dirichlet process in Section 3 and power laws in clustering models
in Section 4.1. We consider potential power laws that might exist in featural models
in Section 4.2. Our main theoretical results come in the following two sections. First,
in Section 5, we provide a proof that the stick-breaking representation of Paisley et al.
(2010), expanded to include a third parameter, holds for a three-parameter extension
of the beta process. Our proof takes a measure-theoretic approach based on a Poisson
process. We then make use of the Poisson process framework to establish asymptotic
power laws, with exact constants, for the three-parameter beta process in Section 6.1.
We also show, in Section 6.2, that there are aspects of the beta-Bernoulli framework that
cannot exhibit a power law. We illustrate the asymptotic power laws on a simulated
data set in Section 7. We present experimental results in Section 8, and we present an
MCMC algorithm for posterior inference in Appendix Appendix A.

2 The beta process and the Bernoulli process

The beta process and the Bernoulli process are instances of the general family of ran-
dom measures known as completely random measures (Kingman 1967). A completely
random measure H on a probability space (Ψ,S) is a random measure such that, for
any disjoint measurable sets A1, . . . , An ∈ S, the random variables H(A1), . . . ,H(An)
are independent.

Completely random measures can be obtained from an underlying Poisson point
process. Let ν(dψ, du) denote a σ-finite measure2 on the product space Ψ × R. Draw
a realization from a Poisson point process with rate measure ν(dψ, du). This yields a
set of points Π = {(ψi, Ui)}i, where the index i may range over a countable infinity.
Finally, construct a random measure as follows:

B =
∞∑

i=1

Uiδψi , (3)

where δψi denotes an atom at ψi. This discrete random measure is such that for any
measurable set T ∈ S,

B(T ) =
∑

i:ψi∈T

Ui.

That B is completely random follows from the Poisson point process construction.

In addition to the representation obtained from a Poisson process, completely ran-
dom measures may include a deterministic measure and a set of atoms at fixed locations.
The component of the completely random measure generated from a Poisson point pro-
cess as described above is called the ordinary component. As shown by Kingman (1967),

2The measure ν need not necessarily be σ-finite to generate a completely random measure though
we consider only σ-finite measures in this work.
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Figure 1: The gray surface illustrates the rate density in Eq. (4) corresponding to
the beta process. The base measure B0 is taken to be uniform on Ψ. The non-zero
endpoints of the line segments plotted below the surface are a particular realization of
the Poisson process, and the line segments themselves represent a realization of the beta
process.

completely random measures are essentially characterized by this representation. An
example is shown in Figure 1.

The beta process, denoted B ∼ BP(θ, B0), is an example of a completely random
measure. As long as the base measure B0 is continuous, which is our assumption here,
B has only an ordinary component with rate measure

νBP(dψ, du) = θ(ψ)u−1(1− u)θ(ψ)−1 du B0(dψ), ψ ∈ Ψ, u ∈ [0, 1], (4)

where θ is a positive function on Ψ. The function θ is called the concentration func-
tion (Hjort 1990). In the remainder we follow Thibaux and Jordan (2007) in taking θ
to be a real-valued constant and refer to it as the concentration parameter. We assume
B0 is nonnegative and fixed. The total mass of B0, γ := B0(Ψ), is called the mass
parameter. We assume γ is strictly positive and finite. The density in Eq. (4), with the
choice of B0 uniform over [0, 1], is illustrated in Figure 1.

The beta process can be viewed as providing an infinite collection of coin-tossing
probabilities. Tossing these coins corresponds to a draw from the Bernoulli process,
yielding an infinite binary vector that we will treat as a latent feature vector.

More formally, a Bernoulli process Y ∼ BeP (B) is a completely random measure
with potentially both fixed atomic and ordinary components. In defining the Bernoulli
process we consider only the case in which B is discrete, i.e., of the form in Eq. (3),
though not necessarily a beta process draw or even random for the moment. Then Y
has only a fixed atomic component and has the form

Y =
∞∑

i=1

biδψi , (5)
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Figure 2: Upper left: A draw B from the beta process. Lower left: 50 draws from
the Bernoulli process BeP (B). The vertical axis indexes the draw number among the
50 exchangeable draws. A point indicates a one at the corresponding location on the
horizontal axis, ψ ∈ Ψ. Right: We can form a matrix from the lower left plot by
including only those ψ values with a non-zero number of Bernoulli successes among the
50 draws from the Bernoulli process. Then, the number of columns K is the number
of such ψ, and the number of rows N is the number of draws made. A black square
indicates a one at the corresponding matrix position; a white square indicates a zero.



T. Broderick et al. 445

where bi ∼ Bern(ui) for ui the corresponding atomic mass in the measure B. We can
see that E(Y |B) = B(Ψ) from the mean of the Bernoulli distribution, so the number
of non-zero points in any realization of the Bernoulli process is finite when B is a finite
measure.

We can link the beta process and N Bernoulli process draws to generate a random
feature matrix Z. To that end, first draw B ∼ BP(θ,B0) for fixed hyperparameters θ

and B0 and then draw Yn
iid∼ BeP(B) for n ∈ {1, . . . , N}. Note that since B is discrete,

each Yn will be discrete as in Eq. (5), with point masses only at the atoms {ψi} of the
beta process B. Note also that EB(Ψ) = γ < ∞, so B is a finite measure, and it follows
that the number of non-zero point masses in any draw Yn from the Bernoulli process
will be finite. Therefore, the total number of non-zero point masses K across N such
Bernoulli process draws is finite.

Now reorder the {ψi} so that the first K are exactly those locations where some
Bernoulli process in {Yn}N

n=1 has a non-zero point mass. We can form a matrix Z ∈
{0, 1}N×K as a function of the {Yn}N

n=1 by letting the (n, k) entry equal one when
Yn has a non-zero point mass at ψk and zero otherwise. If we wish to think of Z
as having an infinite number of columns, the remaining columns represent the point
masses of the {Yn}N

n=1 at {ψk}k>K , which we know to be zero by construction. We
refer to the overall procedure of drawing Z according to, first, a beta process and
then repeated Bernoulli process draws in this way as a beta-Bernoulli process, and we
write Z ∼ BP-BeP(N, γ, θ). Note that we have implicitly integrated out the {ψk},
and the distribution of the matrix Z depends on B0 only through its total mass, γ.
As shown by Thibaux and Jordan (2007), this process yields the same distribution on
row-exchangeable, infinite-column matrices as the Indian buffet process (Griffiths and
Ghahramani 2006), which describes a stochastic process directly on (equivalence classes
of) binary matrices. That is, the Indian buffet process is obtained as an exchangeable
distribution on binary matrices when the underlying beta process measure is integrated
out. This result is analogous to the derivation of the Chinese restaurant process as the
exchangeable distribution on partitions obtained when the underlying Dirichlet process
is integrated out. The beta-Bernoulli process is illustrated in Figure 2.

3 Stick-breaking for the Dirichlet process

The stick-breaking representation of the Dirichlet process (McCloskey 1965; Patil and
Taillie 1977; Sethuraman 1994) provides a simple recursive procedure for obtaining
the weights {πi} in Eq. (1). This procedure provides an explicit representation of a
draw G from the Dirichlet process, one which can be usefully instantiated and updated
in posterior inference algorithms (Ishwaran and James 2001; Blei and Jordan 2006).
We begin this section by reviewing this stick-breaking construction as well as some of
the extensions to this construction that yield power-law behavior. We then turn to a
consideration of stick-breaking and power laws in the setting of the beta process.

Stick-breaking is the process of recursively breaking off random fractions of the unit
interval. In particular, let V1, V2, . . . be some countable sequence of random variables,
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Figure 3: A stick-breaking process starts with the unit interval (far left). First, a
random fraction V1 of the unit interval is broken off; the remaining stick has length 1−V1

(middle left). Next, a random fraction V2 of the remaining stick is broken off, i.e., a
fragment of size V2(1−V1); the remaining stick has length (1−V1)(1−V2). This process
proceeds recursively and generates stick fragments V1, V2(1−V1), . . . , Vi

∏
j<i(1−Vj), . . ..

These fragments form a random partition of the unit interval (far right).

each with range [0, 1]. Each Vi represents the fraction of the remaining stick to break
off at step i. Thus, the first stick length generated by the stick-breaking process is V1.
At this point, a fragment of length 1 − V1 of the original stick remains. Breaking off
V2 fraction of the remaining stick yields a second stick fragment of V2(1 − V1). This
process iterates such that the stick length broken off at step i is Vi

∏
j<i(1 − Vj). The

stick-breaking recursion is illustrated in Figure 3.

The Dirichlet process arises from the special case in which the Vi are independent
draws from the Beta(1, θ) distribution (McCloskey 1965; Patil and Taillie 1977; Sethu-
raman 1994). Thus we have the following representation of a draw G ∼ DP(θ,G0):

G =
∞∑

i=1


Vi

i−1∏

j=1

(1− Vj)


 δψi

Vi
iid∼ Beta(1, θ)

ψi
iid∼ G0, (6)

where G0 is referred to as the base measure and θ is referred to as the concentration
parameter.
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4 Power law behavior

Consider the process of sampling a random measure G from a Dirichlet process and
subsequently drawing independently N times from G. The number of unique atoms
sampled according to this process will grow as a function of N . The growth associated
with the Dirichlet process is relatively slow, however, and when the Dirichlet process
is used as a prior in a clustering model one does not obtain the heavy-tailed behavior
commonly referred to as a “power law.” In this section we first provide a brief exposition
of the different kinds of power law that we might wish to obtain in a clustering model
and discuss how these laws can be obtained via an extension of the stick-breaking
representation. We then discuss analogous laws for featural models.

4.1 Power laws in clustering models

First, we establish some notation. Given a number N of draws from a discrete random
probability measure G (where G is not necessarily a draw from the Dirichlet process), let
(N1, N2, . . .) denote the sequence of counts associated with the unique values obtained
among the N draws, where we view these unique values as “clusters.” Let

KN,j =
∞∑

i=1

1(Ni = j), (7)

and let

KN =
∞∑

i=1

1(Ni > 0). (8)

That is, KN,j is the number of clusters that are drawn exactly j times, and KN is the
total number of clusters.

There are two types of power-law behavior that a clustering model might exhibit.
First, there is the type of power law behavior reminiscent of Heaps’ law (Heaps 1978;
Gnedin et al. 2007) and describing the asymptotic behavior of the number of clusters:

KN
a.s.∼ cNa, N →∞ (9)

for some constants c > 0, a ∈ (0, 1). Here, ∼ means that the limit of the ratio of
the left-hand and right-hand side, when they are both real-valued and non-random, is
one as the number of data points N grows large. We denote a power law in the form
of Eq. (9) as Type I. Second, there is the type of power law behavior reminiscent of
Zipf’s law (Zipf 1949; Gnedin et al. 2007) and describing the asymptotic behavior of the
number of clusters of size j:

KN,j
a.s.∼ aΓ(j − a)

j!Γ(1− a)
cNa, N →∞ (10)

again for some constants c > 0, a ∈ (0, 1). We refer to the power law in Eq. (10) as
Type II. Note that Gnedin et al. (2007) have shown, and we will see further below, that
this particular way of writing the proportionality constant is natural.
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Sometimes in the case of Eq. (10), we are interested in the behavior in j; therefore we
recall j! = Γ(j+1) and note the following fact about the Γ-function ratio in Eq. (10) (cf.
Tricomi and Erdélyi 1951):

Γ(j − a)
Γ(j + 1)

∼ j−1−a, j →∞. (11)

Again, we see behavior in the form of a power law at work.

Power-law behavior of Types I and II (and equivalent formulations; see Gnedin et al.
2007) has been observed in a variety of real-world clustering problems including, but
not limited to: the number of species per plant genus, the in-degree or out-degree of
a graph constructed from hyperlinks on the Internet, the number of people in cities,
the number of words in documents, the number of papers published by scientists, and
the amount each person earns in income (Mitzenmacher 2004; Goldwater et al. 2006).
Bayesians modeling these situations will prefer a prior that reflects this distributional
attribute.

While the Dirichlet process exhibits neither type of power-law behavior, the Pitman-
Yor process yields both kinds of power law (Pitman and Yor 1997; Goldwater et al. 2006)
though we note that in this case c is a random variable (still with no dependence on N
or j). The Pitman-Yor process, denoted G ∼ PY(θ, α, G0), is defined via the following
stick-breaking representation:

G =
∞∑

i=1


Vi

i−1∏

j=1

(1− Vj)


 δψi

Vi
indep∼ Beta(1− α, θ + iα)

ψi
iid∼ G0, (12)

where α is known as a discount parameter. The case α = 0 returns the Dirichlet process
(cf. Eq. (6)).

Note that in both the Dirichlet process and the Pitman-Yor process, the weights
{Vi

∏i−1
j=1(1−Vj)} are the weights of the process in size-biased order (Pitman 2006). In

the Pitman-Yor case, the {Vi} are no longer identically distributed.

4.2 Power laws in featural models

The beta-Bernoulli process provides a specific kind of feature-based representation of
entities. In this section we study general featural models and consider the power laws
that might arise for such models.

In the clustering framework, we considered N draws from a process that put exactly
one mass of size one on some value in Ψ and mass zero elsewhere. In the featural
framework we consider N draws from a process that places some non-negative integer
number of masses, each of size one, on an almost surely finite set of values in Ψ and
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mass zero elsewhere. As Ni was the sum of masses at a point labeled ψi ∈ Ψ in the
clustering framework, so do we now let Ni be the sum of masses at a point labeled
ψi ∈ Ψ. We use the same notation as in Section 4.1 to define the number of features
KN (Eq. (8)) and the number of features represented by j data points KN,j (Eq. (7)).
But now we note that the counts Ni no longer sum to N in general.

In the case of featural models, we can still talk about Type I and II power laws, both
of which have the same interpretation as in the case of clustering models: asymptotic
power law behavior of the number of features and asymptotic power law behavior in the
number of features of cardinality j, both as N →∞.

In the featural case, however, it is also possible to consider a third type of power
law. If we let kn denote the number of features present in the nth draw, we say that kn

shows power law behavior if

P(kn > M) ∼ cM−a

for positive constants c and a. We call this last type of power law Type III.

5 Stick-breaking for the beta process

The weights {qi} for the beta process can be derived by a variety of procedures, including
size-biased sampling (Thibaux and Jordan 2007) and inverse Lévy measure (Wolpert
and Ickstadt 2004; Teh et al. 2007). The procedures that are closest in spirit to the
stick-breaking representation for the Dirichlet process are those due to Paisley et al.
(2010) and Teh et al. (2007). Our point of departure is the former, which has the
following form:

B =
∞∑

i=1

Ci∑

j=1

V
(i)
i,j

i−1∏

l=1

(1− V
(l)
i,j )δψi,j

Ci
iid∼ Pois(γ)

V
(l)
i,j

iid∼ Beta(1, θ)

ψi,j
iid∼ 1

γ
B0. (13)

This representation is analogous to the stick-breaking representation of the Dirichlet
process in that it represents a draw from the beta process as a sum over independently
drawn atoms, with the weights obtained by a recursive procedure. However, it is worth
noting that for every (i, j) tuple subscript for V

(l)
i,j , a different stick exists and is broken

across the superscript l. Thus, there are no special additive properties across weights
in the sum in Eq. (13); by contrast, the weights in Eq. (12) sum to one almost surely.

The generalization of the one-parameter Dirichlet process to the two-parameter
Pitman-Yor process suggests that we might consider generalizing the stick-breaking
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representation of the beta process in Eq. (13) as follows:

B =
∞∑

i=1

Ci∑

j=1

V
(i)
i,j

i−1∏

l=1

(1− V
(l)
i,j )δψi,j

Ci
iid∼ Pois(γ)

V
(l)
i,j

indep∼ Beta(1− α, θ + iα)

ψi,j
iid∼ 1

γ
B0. (14)

In Section 6 we will show that introducing the additional parameter α indeed yields
Type I and II power law behavior (but not Type III).

In the remainder of this section we present a proof that these stick-breaking rep-
resentations arise from the beta process. In contradistinction to the proof of Eq. (13)
by Paisley et al. (2010), which used a limiting process defined on sequences of finite
binary matrices, our approach makes a direct connection to the Poisson process char-
acterization of the beta process. Our proof has several virtues: (1) it relies on no
asymptotic arguments and instead comes entirely from the Poisson process representa-
tion; (2) it is, as a result, simpler and shorter; and (3) it demonstrates clearly the ease
of incorporating a third parameter analogous to the discount parameter of the Pitman-
Yor process and thereby provides a strong motivation for the extended stick-breaking
representation in Eq. (14).

Aiming toward the general stick-breaking representation in Eq. (14), we begin by
defining a three-parameter generalization of the beta process.3 We say that B ∼
BP(θ, α, B0), where we call α a discount parameter, if, for ψ ∈ Ψ, u ∈ [0, 1], we have

νBP(dψ, du) =
Γ(1 + θ)

Γ(1− α)Γ(θ + α)
u−1−α(1− u)θ+α−1 du B0(dψ). (15)

It is straightforward to show that this three-parameter density has similar properties to
that of the two-parameter beta process. For instance, choosing α ∈ (0, 1) and θ > −α
is necessary for the beta process to have finite total mass almost surely; in this case,

∫

Ψ×R+

u νBP(dψ, du) = γ < ∞. (16)

We now turn to the main result of this section.

Proposition 5.1. B can be represented according to the process described in Eq. (14)
if and only if B ∼ BP(θ, α, B0).

Proof. First note that the points in the set

P1 :=
{

(ψ1,1, V
(1)
1,1 ), (ψ1,2, V

(1)
1,2 ), . . . , (ψ1,C1 , V

(1)
1,C1

)
}

3See also Teh and Görür (2009) or Kim and Lee (2001), with θ(t) ≡ 1− α, β(t) ≡ θ + α, where the
left-hand sides are in the notation of Kim and Lee (2001).
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are by construction independent and identically distributed conditioned on C1. Since
C1 is Poisson-distributed, P1 is a Poisson point process. The same logic gives that in
general, for

Pi :=

{(
ψi,1, V

(i)
i,1

i−1∏

l=1

(1− V
(l)
i,1 )

)
, . . . ,

(
ψi,Ci , V

(i)
i,Ci

i−1∏

l=1

(1− V
(l)
i,Ci

)

)}
,

Pi is a Poisson point process.

Next, define

P :=
∞⋃

i=1

Pi.

As the countable union of Poisson processes with finite rate measures, P is itself a
Poisson point process.

Notice that we can write B in Eq. (14) as the completely random measure B =∑
(ψ,U)∈P Uδψ. Also, for any B′ ∼ BP(θ, α, B0), we can write B′ =

∑
(ψ′,U ′)∈Π U ′δψ′ ,

where Π is a Poisson point process with rate measure νBP = B0 × µBP, and µBP is a
σ-finite measure with density

Γ(1 + θ)
Γ(1− α)Γ(θ + α)

u−1−α(1− u)θ+α−1 du. (17)

Therefore, to show that B has the same distribution as B′, it is enough to show that P
and Π have the same rate measures.

To that end, let ν denote the rate measure of P . Let #S indicate the number of
elements in set S, and let 1E denote the indicator of the event E; 1E is equal to one
when E is true and equal to zero when E is false. Then we have

ν(A× Ã) = E#{(ψi, Ui) ∈ A× Ã)}

=
1
γ

B0(A) · E
∞∑

i=1

Ci∑

j=1

1{V (i)
ij

i−1∏

l=1

(1− V
(l)
ij ) ∈ Ã}

=
1
γ

B0(A) ·
∞∑

i=1

E
Ci∑

j=1

1{V (i)
ij

i−1∏

l=1

(1− V
(l)
ij ) ∈ Ã}, (18)

where the last line follows by monotone convergence. Each term in the outer sum can



452 Beta Processes, Stick-Breaking and Power Laws

be further decomposed as

E
Ci∑

j=1

1{V (i)
ij

i−1∏

l=1

(1− V
(l)
ij ) ∈ Ã} = E


E




Ci∑

j=1

1{V (i)
ij

i−1∏

l=1

(1− V
(l)
ij ) ∈ Ã}

∣∣∣∣∣∣
Ci







= E [Ci]E

[
1{V (i)

i1

i−1∏

l=1

(1− V
(l)
i1 ) ∈ Ã}

]

since the V
(l)
ij are iid across j and independent of Ci

= γ E1{Vi

i−1∏

l=1

(1− Vl) ∈ Ã} (19)

for Vi
indep∼ Beta(1− α, θ + iα),

where the last equality follows since the choice of {Vi} gives

Vi

i−1∏

l=1

(1− Vl)
d= V

(i)
i1

i−1∏

l=1

(1− V
(l)
i1 ).

Substituting Eq. (19) back into Eq. (18), canceling γ factors, and applying monotone
convergence again yields

ν(A× Ã) = B0(A) · E
∞∑

i=1

1{Vi

i−1∏

l=1

(1− Vl) ∈ Ã}.

We note that both of the measures ν and νBP factorize:

ν(A× Ã) = B0(A) · E
∞∑

i=1

1{Vi

i−1∏

l=1

(1− Vl) ∈ Ã}

νBP (A× Ã) = B0(A)µBP(Ã),

so it is enough to show that µ = µBP for the measure µ defined by

µ(Ã) := E
∞∑

i=1

1{Vi

i−1∏

l=1

(1− Vl) ∈ Ã}. (20)

At this point and later in proving Proposition 6.1, we will make use of part of
Campbell’s theorem, which we copy here from Kingman (1993) for completeness.

Theorem 1 (Part of Campbell’s Theorem). Let Π be a Poisson process on S with rate
measure µ, and let f : S → R be measurable. If

∫
S

min(|f(x)|, 1) µ(dx) < ∞, then

E

[ ∑

X∈Π

f(X)

]
=

∫

S

f(x) µ(dx). (21)
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Now let Ũ be a size-biased pick from {Vi

∏i−1
l=1(1−Vl)}∞i=1. By construction, for any

bounded, measurable function g, we have

E
[
g(Ũ)|{Vi}

]
=

∞∑

i=1

Vi

i−1∏

l=1

(1− Vl) · g(Vi

i−1∏

l=1

(1− Vl)).

Taking expectations yields

Eg(Ũ) = E

[ ∞∑

i=1

Vi

i−1∏

l=1

(1− Vl)g(Vi

i−1∏

l=1

(1− Vl))

]
=

∫
ug(u)µ(du),

where the final equality follows by Campbell’s theorem with the choice f(u) = ug(u).
Since this result holds for all bounded, measurable g, we have that

P(Ũ ∈ du) = uµ(du). (22)

Finally, we note that, by Eq. (20), Ũ is a size-biased sample from probabilities
generated by stick-breaking with proportions {Beta(1−α, θ+iα)}. Such a sample is then
distributed Beta(1−α, θ+α) since, as mentioned above, the Pitman-Yor stick-breaking
construction gives the size-biased frequencies in order. So, rearranging Eq. (22), we can
write

µ(du) = u−1P(Ũ ∈ du)

= u−1 Γ(1 + θ)
Γ(1− α)Γ(θ + α)

u(1−α)−1(1− u)(θ+α)−1

using the Beta(1− α, θ + α) density
= µBP(du),

as was to be shown. ¥

6 Power law derivations

By linking the three-parameter stick-breaking representation to the power-law beta
process in Eq. (15), we can use the results of the following section to conclude that the
feature assignments in the three-parameter model follow both Type I and Type II power
laws and that they do not follow a Type III power law (Section 4.2). We note that Teh
and Görür (2009) found big-O behavior for Types I and II in the three-parameter beta
process and Poisson tail behavior in the Type III case. We can strengthen these results
to obtain exact asymptotic behavior with constants in the first two cases and also
conclude that Type III power laws can never hold in the featural framework whenever
the sum of the feature probabilities is almost surely finite, an assumption that would
appear to be a necessary component of any physically realistic model.
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6.1 Type I and II power laws

Our subsequent derivation expands upon the work of Gnedin et al. (2007). In that paper,
the main thrust of the argument applies to the case in which the feature probabilities are
fixed rather than random. In what follows, we obtain power laws of Type I and II in the
case in which the feature probabilities are random, in particular when the probabilities
are generated from a Poisson process. We will see that this last assumption becomes
convenient in the course of the proof. Finally, we apply our results to the specific
example of the beta-Bernoulli process.

Recall that we defined KN , the number of represented clusters in the first N data
points, and KN,j , the number of clusters represented j times in the first N data points,
in Eqs. (8) and (7), respectively. In Section 4.2, we noted that the same definitions in
Eqs. (8) and (7) hold for featural models if we now let Ni denote the number of data
points at time N in which feature i is represented. In terms of the Bernoulli process,
Ni would be the number of Bernoulli process draws, out of N , where the ith atom has
unit (i.e., nonzero) weight. Thus, KN is now the number of represented features in the
first N data points, and KN,j is the number of features represented j times. It need
not be the case that the Ni sum to N here.

Working directly to find power laws in KN and KN,j as N increases is challenging
in part due to N being an integer. A useful technique to surmount this difficulty is
called Poissonization. In Poissonizing KN and KN,j , we consider new functions K(t)
and Kj(t) where the argument t is continuous, in contrast to the integer argument N .
We will define K(t) and Kj(t) such that K(N) and Kj(N) have the same asymptotic
behavior as KN and KN,j , respectively.

In particular, our derivation of the asymptotic behavior of KN and KN,j will consist
of three parts and will involve working extensively with the mean feature counts

ΦN := E[KN ] and ΦN,j := E[KN,j ] (j > 1)

with N ∈ {1, 2, . . .} and the Poissonized mean feature counts

Φ(t) := E[K(t)] and Φj(t) := E[Kj(t)] (j > 1)

with t > 0. First, we will take advantage of Poissonization to find power laws in Φ(t)
and Φj(t) as t →∞ (Proposition 6.1). Then, in order to relate these results back to the
original process, we will show that ΦN and Φ(N) have the same asymptotic behavior and
also that ΦN,j and Φj(N) have the same asymptotic behavior as N →∞ (Lemma 6.3).
Finally, to obtain results for the random process values KN and KN,j , we will conclude
by showing that KN almost surely has the same asymptotic behavior as ΦN and that∑

k<j KN,k almost surely has the same asymptotic behavior as
∑

k<j ΦN,k as N →∞
(Proposition 6.4).

To obtain power laws for the Poissonized process, we must begin by defining K(t)
and Kj(t). To do so, we will construct Poisson processes on the positive half-line, one
for each feature. K(t) will be the number of such Poisson processes with points in the
interval [0, t]; similarly, Kj(t) will be the number of Poisson processes with j points in
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Figure 4: The first five sets of points, starting from the top of the figure, illustrate
Poisson processes on the positive half-line in the range t ∈ [0, 5] with respective rates
q1, . . . , q5. The bottom set of points illustrates the union of all points from the preceding
Poisson point processes and is, therefore, itself a Poisson process with rate

∑
i qi. In

this example, we have for instance that K(1) = 2, K(4) = 5, and K2(4) = 1.

the interval [0, t]. This construction is illustrated in Figure 4. It remains to specify the
rates of these Poisson processes.

Let (q1, q2, . . .) be a countably infinite vector of feature probabilities. We begin
by putting minimal restrictions on the qi. We assume that they are strictly positive,
decreasing real numbers. They need not necessarily sum to one, and they may be
random. Indeed, we will eventually consider the case where the qi are the (random)
atom weights of a beta process, and then we will have

∑
i qi 6= 1 with probability one.

Let Πi be a standard Poisson process on the positive real line generated with rate qi

(see, e.g., the top five lines in Figure 4). Then Π :=
⋃

i Πi is a standard Poisson process
on the positive real line with rate

∑
i qi (see, e.g., the lowermost line in Figure 4), where

we henceforth assume
∑

i qi < ∞ a.s.

Finally, as mentioned above, we define K(t) to be the number of Poisson processes
Πi with any points in [0, t]:

K(t) :=
∑

i

1{|Πi ∩ [0, t]| > 0}.

And we define Kj(t) to be the number of Poisson processes Πi with exactly j points in
[0, t]:

Kj(t) :=
∑

i

1{|Πi ∩ [0, t]| = j}.
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These definitions are very similar to the definitions of KN and KN,j in Eqs. (8) and (7),
respectively. The principal difference is that the KN are incremented only at integer N
whereas the K(t) can have jumps at any t ∈ R+. The same observation holds for the
KN,j and Kj(t).

In addition to Poissonizing KN and KN,j to define K(t) and Kj(t), we will also find it
convenient to assume that the {qi} themselves are derived from a Poisson process with
rate measure ν. We note that Poissonizing from a discrete index N to a continuous
time index t is an approximation and separate from our assumption that the {qi} are
generated from a Poisson process though both are fundamentally tied to the ease of
working with Poisson processes.

We are now able to write out the mean feature counts in both the Poissonized and
original cases. First, the Poissonized definitions of Φ and K allow us to write

Φ(t) := E[K(t)] = E[E[K(t)|q]] = E[E[
∑

i

1{|Πi ∩ [0, t]| > 0}|q]].

With a similar approach for Φj(t), we find

Φ(t) = E[
∑

i

(1− e−tqi)], Φj(t) = E[
∑

i

(tqi)j

j!
e−tqi ].

With the assumption that the {qi} are drawn from a Poisson process with measure ν,
we can apply Campbell’s theorem (Theorem 1) to both the original and Poissonized
versions of the process to derive the final equality in each of the following lines

Φ(t) = E[
∑

i

(1− e−tqi)] =
∫ 1

0

(1− e−tx) ν(dx) (23)

ΦN = E[
∑

i

(1− (1− qi)N )] =
∫ 1

0

(1− (1− x)N ) ν(dx) (24)

Φj(t) = E[
∑

i

(tqi)j

j!
e−tqi ] =

tj

j!

∫ 1

0

xje−tx ν(dx) (25)

ΦN,j =
(

N

j

)
E[

∑

i

qj
i (1− qi)N−j ] =

(
N

j

) ∫ 1

0

xj(1− x)N−j ν(dx). (26)

Now we establish our first result, which gives a power law in Φ(t) and Φj(t) when
the Poisson process rate measure ν has corresponding power law properties.

Proposition 6.1. Asymptotic behavior of the integral of ν of the following form

ν1[0, x] :=
∫ x

0

u ν(du) ∼ α

1− α
x1−αl(1/x), x → 0 (27)

where l is a regularly varying function and α ∈ (0, 1) implies

Φ(t) ∼ Γ(1− α)tαl(t), t →∞
Φj(t) ∼ αΓ(j − α)

j!
tαl(t), t →∞ (j > 1).
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Proof. The key to this result is in the repeated use of Abelian or Tauberian theorems.
Let A be a map A : F → G from one function space to another: e.g., an integral or a
Laplace transform. For f ∈ F , an Abelian theorem gives us the asymptotic behavior
of A(f) from the asymptotic behavior of f , and a Tauberian theorem gives us the
asymptotic behavior of f from that of A(f).

First, integrating by parts yields

ν1[0, x] = −xν̄(x) +
∫ x

0

ν̄(u) du, ν̄(x) :=
∫ ∞

x

ν(u) du,

so the stated asymptotic behavior in ν1 yields ν̄(x) ∼ l(1/x)x−α(x → 0) by a Tauberian
theorem (Feller 1966; Gnedin et al. 2007) where the map A is an integral.

Second, another integration by parts yields

Φ(t) = t

∫ ∞

0

e−txν̄(x) dx.

The desired asymptotic behavior in Φ follows from the asymptotic behavior in ν̄ and
an Abelian theorem (Feller 1966; Gnedin et al. 2007) where the map A is a Laplace
transform. The result for Φj(t) follows from a similar argument when we note that
repeated integration by parts of Eq. (25) also yields a Laplace transform. ¥

The importance of assuming that the qi are distributed according to a Poisson pro-
cess is that this assumption allowed us to write Φ as an integral and thereby make use of
classic Abelian and Tauberian theorems. The importance of Poissonizing the processes
Kj and KN,j is that we can write their means as in Eqs. (23) and (25), which are—up
to integration by parts—in the form of Laplace transforms.

Proposition 6.1 is the most significant link in the chain of results needed to show
asymptotic behavior of the feature counts KN and KN,j in that it relates power laws in
the known feature probability rate measure ν to power laws in the mean behavior of the
Poissonized version of these processes. It remains to show this mean behavior translates
back to KN and KN,j , first by relating the means of the original and Poissonized pro-
cesses and then by relating the means to the almost sure behavior of the counts. The
next two lemmas address the former concern. Together they establish that the mean
feature counts ΦN and ΦN,j have the same asymptotic behavior as the corresponding
Poissonized mean feature counts Φ(N) and Φj(N).

Lemma 6.2. Let ν be σ-finite with
∫∞
0

ν(du) = ∞ and
∫∞
0

u ν(du) < ∞. Then the
number of represented features has unbounded growth almost surely. The expected num-
ber of represented features has unbounded growth, and the expected number of features
has sublinear growth. That is,

K(t) ↑ ∞ a.s., Φ(t) ↑ ∞, Φ(t) ¿ t.



458 Beta Processes, Stick-Breaking and Power Laws

Proof. As in Gnedin et al. (2007), the first statement follows from the fact that q is
countably infinite and each qi is strictly positive. The second statement follows from
monotone convergence. The final statement is a consequence of

∑
i qi < ∞ a.s. ¥

Lemma 6.3. Suppose the {qi} are generated according to a Poisson process with rate
measure as in Lemma 6.2. Then, for N →∞,

|ΦN − Φ(N)| < 2
N

Φ2(N) → 0

|ΦN,j − Φj(N)| < cj

N
max{Φj(N), Φj+2(N)} → 0.

for some constants cj.

Proof. The proof is the same as that of Lemma 1 of Gnedin et al. (2007). Establishing
the inequalities results from algebraic manipulations. The convergence to zero is a
consequence of Lemma 6.2. ¥

Finally, before considering the specific case of the three-parameter beta process, we
wish to show that power laws in the means ΦN and ΦN,j extend to almost sure power
laws in the number of represented features.

Proposition 6.4. Suppose the {qi} are generated from a Poisson process with rate
measure as in Lemma 6.2. Suppose that Φ(t) ∼ Ctαl(t) and Φj(t) ∼ C ′tαl′(t) for
α ∈ (0, 1), C, C ′ > 0, and l and l′ slowly varying as t →∞. Then, for N →∞,

KN
a.s.∼ ΦN ,

∑

k<j

KN,k
a.s.∼

∑

k<j

ΦN,k.

Proof. We wish to show that KN/ΦN
a.s.→ 1 as N →∞. By Borel-Cantelli, it is enough

to show that, for any ε > 0,

∑

N

P
(∣∣∣∣

KN

ΦN
− 1

∣∣∣∣ > ε

)
< ∞.

To that end, note

P (|KN − ΦN | > εΦN ) ≤ P (ΦN > εΦN + KN ) + P (KN > εΦN + ΦN ) .

The note after Theorem 4 in Freedman (1973) gives that

P (ΦN > εΦN + KN ) ≤ exp
(−ε2ΦN

)

P (KN > εΦN + ΦN ) ≤ exp
(
− ε2

1 + ε
ΦN

)
.
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So

P
(∣∣∣∣

KN

ΦN
− 1

∣∣∣∣ > ε

)
≤ 2 exp

(
−1

2
ε2ΦN

)

≤ c exp
(
−1

2
ε2Nαl(N)

)

for some constant c and sufficiently large N by Lemma 6.3 and the assumption on Φ(t).
The last expression is summable in N , and Borel-Cantelli holds.

The proof that
∑

k<j KN,k
a.s.∼ ∑

k<j ΦN,j follows the same argument. ¥

It remains to show that we obtain Type I and II power laws in our special case
of the three-parameter beta process, which implies a particular rate measure ν in the
Poisson process representation of the {qi}. For the three-parameter beta process density
in Eq. (15), we have

ν1[0, x] =
∫

Ψ×(0,x]

u νBP (dψ, du)

= γ · Γ(1 + θ)
Γ(1− α)Γ(θ + α)

∫ x

0

u−α(1− u)θ+α−1 du

∼ γ · Γ(1 + θ)
Γ(1− α)Γ(θ + α)

∫ x

0

u−α du, x ↓ 0

= γ · Γ(1 + θ)
Γ(1− α)Γ(θ + α)

· 1
1− α

x1−α.

The final line is exactly the form required by Eq. (27) in Proposition 6.1, with l(y) equal
to the constant function of value

C :=
γ

α
· Γ(1 + θ)
Γ(1− α)Γ(θ + α)

. (28)

Then Proposition 6.1 implies that the following power laws hold for the mean of the
Poissonized process:

Φ(t) a.s.∼ Γ(1− α)Ctα, t →∞
Φj(t)

a.s.∼ αΓ(j − α)
j!

Ctα, t →∞ (j > 1).

Lemma 6.3 further yields

ΦN
a.s.∼ Γ(1− α)CNα, N →∞

ΦN,j
a.s.∼ αΓ(j − α)

j!
CNα, N →∞ (j > 1),
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and finally Proposition 6.4 implies

KN
a.s.∼ Γ(1− α)CNα, N →∞ (29)

KN,j
a.s.∼ αΓ(j − α)

j!
CNα, N →∞ (j > 1). (30)

These are exactly the desired Type I and II power laws (Eqs. (9) and (10)) for appro-
priate choices of the constants.

6.2 Exponential decay in the number of features

Next we consider a single data point and the number of features that are expressed for
that data point in the featural model. We prove results for the general case where the
ith feature has probability qi ≥ 0 such that

∑
i qi < ∞. Let Zi be a Bernoulli random

variable with success probability qi and such that all the Zi are independent. Then
E[

∑
i Zi] =

∑
i qi =: Q. In this case, a Chernoff bound (Chernoff 1952; Hagerup and

Rub 1990) tells us that, for any δ > 0, we have

P[
∑

i

Zi ≥ (1 + δ)Q] ≤ eδQ(1 + δ)−(1+δ)Q.

When M is large enough such that M > Q, we can choose δ such that (1 + δ)Q = M .
Then this inequality becomes

P[
∑

i

Zi ≥ M ] ≤ eM−QQMM−M for M > Q. (31)

We see from Eq. (31) that the number of features
∑

i Zi that are expressed for a
data point exhibits super-exponential tail decay and therefore cannot have a power
law probability distribution when the sum of feature probabilities

∑
i qi is finite. For

comparison, let Z ∼ Pois(Q). Then (Franceschetti et al. 2007)

P[Z ≥ M ] ≤ eM−QQMM−M for M > Q,

the same tail bound as in Eq. (31).

To apply the tail-behavior result of Eq. (31) to the beta process (with two or three
parameters), we note that the total feature probability mass is a.s. finite by Eq. (16).
Since the same set of feature probabilities is used in all subsequent Bernoulli process
draws for the beta-Bernoulli process, the result holds.

7 Simulation

To illustrate the three types of power laws discussed above, we simulated beta process
atom weights under three different choices of the discount parameter α, namely α = 0
(the classic, two-parameter beta process), α = 0.3, and α = 0.6. In all three simulations,
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Figure 5: Growth in the number of represented features KN (left) and the number of
features represented by exactly one data point KN,1 (right) as the total number of data
points N grows. The points in the scatterplot are derived by simulation; blue for α = 0,
center black for α = 0.3, and upper black for α = 0.6. The red lines in the left plot show
the theoretical mean ΦN (Eq. (24)); in the right plot, they show the theoretical mean
ΦN,1 (Eq. (26)). The green lines show the theoretical asymptotic behavior, Eq. (29) on
the left (Type I power law) and Eq. (30) on the right (Type II power law).

the remaining beta process parameters were kept constant at total mass parameter value
γ = 3 and concentration parameter value θ = 1.

The simulations were carried out using our extension of the Paisley et al. (2010) stick-
breaking construction in Eq. (14). We generated 2,000 rounds of feature probabilities;
that is, we generated 2,000 random variables Ci and

∑2,000
i=1 Ci feature probabilities.

With these probabilities, we generated N = 1,000 data points, i.e., 1,000 vectors of
(
∑2,000

i=1 Ci) independent Bernoulli random variables with these probabilities. With
these simulated data, we were able to perform an empirical evaluation of our theoretical
results.

Figure 5 illustrates power laws in the number of represented features KN on the left
(Type I power law) and the number of features represented by exactly one data point
KN,1 on the right (Type II power law). Both of these quantities are plotted as functions
of the increasing number of data points N . The blue points show the simulated values
for the classic, two-parameter beta process case with α = 0. The center set of black
points in each case corresponds to α = 0.3, and the upper set of black points in each
case corresponds to α = 0.6.

We also plot curves obtained from our theoretical results in order to compare them
to the simulation. Recall that in our theoretical development, we noted that there are
two steps to establishing the asymptotic behavior of KN and KN,j as N increases. First,
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we compare the random quantities KN and KN,j to their respective means, ΦN and
ΦN,j . These means, as computed via numerical quadrature from Eq. (24) and directly
from Eq. (26), are shown by red curves in the plots. Second, we compare the means to
their own asymptotic behavior. This asymptotic behavior, which we ultimately proved
was shared with the respective KN or KN,j in Eqs. (29) and (30), is shown by green
curves in the plots.

We can see in both plots that the α = 0 behavior is distinctly different from the
straight-line behavior of the α > 0 examples. In both cases, we can see that any growth
in α is slower than can be described by straight-line growth. In particular, when α = 0,
the expected number of features is

ΦN = E[KN ] = E

[
N∑

n=1

Pois
(

γ
θ

n + θ

)]
=

N∑
n=1

γ
θ

n + θ
∼ γθ log(N). (32)

Similarly, when α = 0, the expected number of features represented by exactly one data
point, KN,1, is (by Eq. (26))

ΦN,1 = E[KN,1] =
(

N

1

) ∫ 1

0

x1(1− x)N−1 · γθx−1(1− x)θ−1 dx

= Nγθ · Γ(1)Γ(N − 1 + θ)
Γ(N + θ)

= γθ
N

N − 1 + θ
∼ γθ,

where the second line follows from using the normalization constant of the (proper) beta
distribution. Interestingly, while KN,1 grows as a power law when α > 0, its expectation
is constant when α = 0. While many new features are instantiated as N increases in
the α = 0 case, it seems that they are quickly represented by more data points than
just the first one.

Type I and II power laws are somewhat easy to visualize since we have one point
in our plots for each data point simulated. The behaviors of KN,j as a function of j
for fixed N and Type III power laws (or lack thereof) are somewhat more difficult to
visualize. In the case of KN,j as a function of j, we might expect that a large number of
data points N is necessary to see many groups of size j for j much greater than one. In
the Type III case, we have seen that in fact power laws do not hold for any value of α in
the beta process. Rather, the number of data points exhibiting more than M features
decreases more quickly in M than a power law would predict; therefore, we cannot plot
many values of M before this number effectively goes to zero.

Nonetheless, Figure 6 compares our simulated data to the approximation of Eq. (10)
with Eq. (11) (left) and Type III power laws (right). On the left, blue points as usual
denote simulated data under α = 0; middle black points show α = 0.3, and upper black
points show α = 0.6. Here, we use connecting lines between plotted points to clarify
α values. The green lines for the α > 0 case illustrate the approximation of Eq. (11).
Around j = 10, we see that the number of feaures exhibited by j data points, KN,j ,
degenerates to mainly zero and one values. However, for smaller values of j we can still
distinguish the power law trend.
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Figure 6: Left: Change in the number of features with exactly j representatives among
N data points for fixed N as a function of j. The blue points, with connecting lines, are
for α = 0; middle black are for α = 0.3, upper black for α = 0.6. The green lines show
the theoretical asymptotic behavior in j (Eqs. (10) and (11)) for the two α > 0 cases.
Right: Change in the number of data points, indexed by n, with number of feature
assignments kn greater than some positive, real-valued M as M increases. Neither the
α = 0 case (blue) nor the α > 0 cases (black) exhibit Type III power laws.

On the right-hand side of Figure 6, we display the number of data points exhibiting
more than M features for various values of M across the three values of α. Unlike the
previous plots in Figure 5 and Figure 6, there is no power-law behavior for the cases
α > 0, as predicted in Section 6.2. We also note that here the α = 0.3 curve does not lie
between the α = 0 and α = 0.6 curves. Such an occurrence is not unusual in this case
since, as we saw in Eq. (31), the rate of decrease is modulated by the total mass of the
feature probabilities drawn from the beta process, which is random and not necessarily
smaller when α is smaller.

Finally, since our simulation involves generating the underlying feature probabilities
from the beta process as well as the actual feature assignments from repeated draws
from the Bernoulli process, we may examine the feature probabilities themselves; see
Figure 7. As usual, the blue points represent the classic, two-parameter (α = 0) beta
process. Black points represent α = 0.3 (center) and α = 0.6 (upper). Perhaps due to
the fact that there is only the beta process noise to contend with in this aspect of the
simulation (and not the combined randomness due to the beta process and Bernoulli
process), we see the most striking demonstration of both power law behavior in the
α > 0 cases and faster decay in the α = 0 case in this figure. The two α > 0 cases
clearly adhere to a power law that may be predicted from our results above and the
Gnedin et al. (2007) results with C as in Eq. (28):

#{i : qi ≥ x} a.s.∼ Cx−α x ↓ 0. (33)
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Figure 7: Feature probabilities from the beta process plotted in decreasing size order.
Blue points represent probabilities from the α = 0 case; center black points show α =
0.3, and upper black points show α = 0.6. The green lines show theoretical asymptotic
behavior of the ranked probabilities (Eq. (33)).

Note that ranking the probabilities merely inverts the plot that would be created with x
on the horizontal axis and {i : qi ≥ x} on the vertical axis. The simulation demonstrates
little noise about these power laws beyond the 100th ranked probability. The decay for
α = 0 is markedly faster than the other cases.

8 Experimental results

We have seen that the Poisson process formulation allows for an easy extension of
the beta process to a three-parameter model. In this section we study this model
empirically in the setting of the modeling of handwritten digits. Paisley et al. (2010)
present results for this problem using a two-parameter beta process coupled with a
discrete factor analysis model; we repeat those experiments with the three-parameter
beta process. The data consists of 3,000 examples of handwritten digits, in particular
1,000 handwriting samples of each of the digits 3, 5, and 8 from the MNIST Handwritten
Digits database (LeCun and Cortes 1998; Roweis 2007). Each handwritten digit is
represented by a matrix of 28×28 pixels; we project these matrices into 50 dimensions
using principal components analysis. Thus, our data takes the form X ∈ R50×3000, and
we may apply the beta process factor model from Eq. (2) with P = 50 and N = 3,000
to discover latent structure in this data.
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Figure 8: The number of latent features K as a function of the MCMC iteration.
Results for the original, two-parameter model are represented on the left, and results
for the new, three-parameter model are illustrated on the right.

The generative model for X that we use is as follows (see Paisley et al. 2010):

X = (W ◦ Z)Φ + E

Z ∼ BP-BeP(N, γ, θ, α)

Φk,p
iid∼ N(0, ρp)

Wn,k
iid∼ N(0, ζ)

En,p
iid∼ N(0, η), (34)

with familiar beta process hyperparameters θ, α, and γ = EB0 and new (positive)
variance hyperparameters {ρp}P

p=1, ζ, η. Recall from Eq. (2) that X ∈ RN×P is the
data, Φ ∈ RK×P is a matrix of factors, and E ∈ RN×P is an error matrix. Here, we
introduce the weight matrix W ∈ RN×K , which modulates the binary factor loadings
Z ∈ RN×K . In Eq. (34), ◦ denotes elementwise multiplication, and the indices have
ranges n ∈ {1, . . . , N}, k ∈ {1, . . . ,K}, p ∈ {1, . . . , P}. Since we draw Z from a beta-
Bernoulli process, the dimension K is theoretically infinite in the generative model
notation of Eq. (34). However, we have seen that the number of columns of Z with
nonzero entries is a.s. finite. We use K to denote this number.

We initialized both the two-parameter and the three-parameter models with the
same number of latent features, K = 200, and the same values for all shared parameters
(i.e., every variable except the new discount parameter α). We ran the experiment for
2,000 MCMC iterations, noting that the MCMC runs in both models seem to have
reached equilibrium by 500 iterations (see Figures 8 and 9).

Figures 8 and 9 show the sampled values of various parameters as a function of
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Figure 9: The random values drawn for the hyperparameters as a function of the
MCMC iteration. Draws for the concentration parameter θ under the two-parameter
model are shown on the left, and draws for θ under the three-parameter model are
shown in the middle. On the right are draws of the new discount parameter α under
the three-parameter model.
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Figure 10: Autocorrelation of the number of factors K, concentration parameter θ, and
discount parameter α for the MCMC samples after burn-in (where burn-in is taken to
end at 500 iterations) under the two-parameter model (left) and three-parameter model
(right).
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Figure 11: Upper: The top nine features by sampled representation across the data set
on the final MCMC iteration for the original, two-parameter model. Lower: The top
nine features determined in the same way for the new, three-parameter model.

MCMC iteration. In particular, we see how the number of features K (Figure 8), the
concentration parameter θ, and the discount parameter α (Figure 9) change over time.
All three graphs illustrate that the three-parameter model takes a longer time to reach
equilibrium than the two-parameter model (approximately 500 iterations vs. approxima-
tively 100 iterations). However, once at equilibrium, the sampling time series associated
with the three-parameter iterations exhibit lower autocorrelation than the samples as-
sociated with the two-parameter iterations (Figure 10). In the implementation of both
the original two-parameter model and the three-parameter model, the range for θ is
considered to be bounded above by approximately 100 for computational reasons (in
accordance with the original methodology of Paisley et al. (2010)). As shown in Figure 9,
this bound affects sampling in the two-parameter experiment whereas, after burn-in, the
effect is not noticeable in the three-parameter experiment. While the discount param-
eter α also comes close to the lower boundary of its discretization (Figure 9)—which
cannot be exactly zero due to computational concerns—the samples nonetheless seem
to explore the space well.

We can see from Figure 10 that the estimated value of the concentration parameter
θ is much lower when the discount parameter α is also estimated. This behavior may
be seen to result from the fact that the power law growth of the expected number of
represented features ΦN in the α > 0 case yields a generally higher expected number of
features than in the α = 0 case for a fixed concentration parameter θ. Further, we see
from Eq. (32) that the expected number of features when α = 0 is linear in θ. Therefore,
if we instead fix the number of features, the α = 0 model can compensate by increasing θ
over the α > 0 model. Indeed, we see in Figure 8 that the number of features discovered
by both models is roughly equal; in order to achieve this number of features, the α = 0
model seems to be compensating by overestimating the concentration parameter θ.

To get a sense of the actual output of the model, we can look at some of the learned
features. In particular, we collected the set of features from the last MCMC iteration
in each model. The kth feature is expressed or not for the nth data point according to
whether Znk is one or zero. Therefore, we can find the most-expressed features across
the data set using the set of features on this iteration as well as the sampled Z matrix on
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this iteration. We plot the nine most-expressed features under each model in Figure 11.
In both models, we can see how the features have captured distinguishing features of
the 3, 5, and 8 digits.

Finally, we note that the three-parameter version of the algorithm is competitive
with the two-parameter version in running time once equilibrium is reached. After the
burn-in regime of 500 iterations, the average running time per iteration under the three-
parameter model is 14.5 seconds, compared with 11.7 seconds average running time per
iteration under the two-parameter model.

9 Conclusions

We have shown that the stick-breaking representation of the beta process due to Paisley
et al. (2010) can be obtained directly from the representation of the beta process as a
completely random measure. With this result in hand the set of connections between the
beta process, stick-breaking, and the Indian buffet process are essentially as complete as
those linking the Dirichlet process, stick-breaking, and the Chinese restaurant process.

We have also shown that this approach motivates a three-parameter generalization
of the stick-breaking representation of Paisley et al. (2010), which is the analog of the
Pitman-Yor generalization of the stick-breaking representation for the Dirichlet process.
We have shown that Type I and Type II power laws follow from this three-parameter
model. We have also shown that Type III power laws cannot be obtained within this
framework. It is an open problem to discover useful classes of stochastic processes that
provide such power laws.

Appendix A A Markov chain Monte Carlo algorithm

Posterior inference under the three-parameter model can be performed with a Markov
chain Monte Carlo (MCMC) algorithm. Many conditionals have simple forms that allow
Gibbs sampling although others require further approximation. Most of our sampling
steps are as in Paisley et al. (2010) with the notable exceptions of a new sampling
step for the discount parameter α and integration of the discount parameter α into the
existing framework. We describe the full algorithm here.

Appendix A.1 Notation and auxiliary variables

Call the index i in Eq. (14) the round. Then introduce the round-indicator vari-
ables rk such that rk = i exactly when the kth atom, where k indexes the sequence
(ψ1,1, . . . , ψ1,C1 , ψ2,1, . . . , ψ2,C2 , . . .), occurs in round i. We may write

rk := 1 +
∞∑

i=1

1





i∑

j=1

Cj < k



 .
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To recover the round lengths C from r = (r1, r2, . . .), note that

Ci =
∞∑

k=1

1(rk = i). (35)

With the definition of the round indicators r in hand, we can rewrite the beta process
B as

B =
∞∑

k=1

Vk,rk

rk−1∏

j=1

(1− Vk,j)δψk
,

where Vk,j
iid∼ Beta(1 − α, θ + iα) and ψk

iid∼ γ−1B0 as usual although the indexing is
not the same as in Eq. (14). It follows that the expression of the kth feature for the nth
data point is given by

Zn,k ∼ Bern (πk) , πk := Vk,rk

rk−1∏

j=1

(1− Vk,j).

We also introduce notation for the number of data points in which the kth feature
is, respectively, expressed and not expressed:

m1,k :=
N∑

n=1

1(Zn,k = 1), m0,k :=
N∑

n=1

1(Zn,k = 0)

Finally, let K be the number of represented features; i.e., K := #{k : m1,k > 0}.
Without loss of generality, we assume the represented features are the first K features in
the index k. The new quantities {rk}, {m1,k}, {m0,k}, and K will be used in describing
the sampler steps below.

Appendix A.2 Latent indicators

First, we describe the sampling of the round indicators {rk} and the latent feature
indicators {Zn,k}. In these and other steps in the MCMC algorithm, we integrate out
the stick-breaking proportions {Vi}.

Round indicator variables

We wish to sample the round indicator rk for each feature k with 1 ≤ k ≤ K. We can
write the conditional for rk as

p(rk = i|{rl}k−1
l=1 , {Zn,k}N

n=1, θ, α, γ)

∝ p({Zn,k}N
n=1|rk = i, θ, α)p(rk = i|{rl}k−1

l=1 ). (36)

It remains to calculate the two factors in the product.
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For the first factor in Eq. (36), we write out the integration over stick-breaking
proportions and approximate with a Monte Carlo integral:

p({Zn,k}N
n=1|rk = i, θ, α) =

∫

[0,1]i
π

m1,k

k (1− πk)m0,k dV

≈ 1
S

S∑
s=1

(π(s)
k )m1,k(1− π

(s)
k )m0,k . (37)

Here, π
(s)
k := V

(s)
k,rk

∏rk−1
j=1 (1 − V

(s)
k,j ), and V

(s)
k,j

indep∼ Beta(1 − α, θ + jα). Also, S is
the number of samples in the sum approximation. Note that the computational trick
employed in Paisley et al. (2010) for sampling the {Vi} more efficiently than directly
using the approximation above relies on the first parameter of the beta distribution
being equal to one; therefore, the sampling described above, without further tricks, is
exactly the sampling that must be used in this more general parameterization.

For the second factor in Eq. (36), there is no dependence on the α parameter, so the
draws are the same as in Paisley et al. (2010). For Rk :=

∑k
j=1 1(rj = rk), we have

p(rk = r|γ, {rl}k−1
l=1 )

=





0 r < rk−1

1−∑Rk−1
i=1 Pois(i|γ)

1−∑Rk−1−1
i=1 Pois(i|γ)

r = rk−1(
1− 1−∑Rk−1

i=1 Pois(i|γ)

1−∑Rk−1−1
i=1 Pois(i|γ)

)
(1− Pois(0|γ)) Pois(0|γ)h−1 r = rk−1 + h

for each h ≥ 1. Note that these draws make the approximation that the first K features
correspond to the first K tuples (i, j) in the double sum of Eq. (14); these orderings do
not in general agree.

To complete the calculation of the posterior for rk, we need to sum over all values
of i to normalize p(rk = i|{rl}k−1

l=1 , {Zn,k}N
n=1, θ, α, γ). Since this is not computationally

feasible, an alternative method is to calculate Eq. (36) for increasing values of i until
the result falls below a pre-determined threshold.

Factor indicators

In finding the posterior for the kth feature indicator in the nth latent factor, Zn,k, we
can integrate out both {Vi} and the weight variables {Wn,k}. The conditional for Zn,k

is

p(Zn,k|Xn,·,Φ, Zn,−k, r, θ, α, η, ζ)
= p(Xn,·|Zn,·,Φ, η, ζ)p(Zn,k|r, θ, α, Zn,−k). (38)
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First, we consider the likelihood. For this factor, we integrate out W explicitly:

p(Xn,·|Zn,·,Φ, η, ζ)

=
∫

W

p(Xn,·|Zn,·,Φ,W, η)p(W |ζ)

=
∫

Wn,I

N(Xn,·|Wn,IΦI,·, ηIP )N(Wn,I |0|I|, ζI|I|)dWn,I

where I = {i : Zn,i = 1}

= N

(
Xn,·|0P ,

[
η−1IP − η−2ΦI,·

(
η−1Φ>I,·ΦI,· + ζ−1I|I|

)−1
Φ>I,·

]−1
)

= N
(
Xn,·|0P , ηIP + ζΦI,·Φ>I,·

)
,

where the final step follows from the Sherman-Morrison-Woodbury lemma.

For the second factor in Eq. (38), we can write

p(Zn,k|r, θ, α, Zn,−k) =
p(Zn|r, θ, α)

p(Zn,−k|r, θ, α)
,

and the numerator and denominator can both be estimated as integrals over V using
the same Monte Carlo integration trick as in Eq. (37).

Appendix A.3 Hyperparameters

Next, we describe sampling for the three parameters of the beta process. The mass
and concentration parameters are shared by the two-parameter process; the discount
parameter is unique to the three-parameter beta process.

Mass parameter

With the round indicators {rk} in hand as from Appendix Appendix A.2 above, we can
recover the round lengths {Ci} with Eq. (35). Assuming an improper gamma prior on
γ—with both shape and inverse scale parameters equal to zero—and recalling the iid
Poisson generation of the {Ci}, the posterior for γ is

p(γ|r, Z, θ, α) = Ga(γ|
rK∑

i=1

Ci, rK).

Note that it is necessary to sample γ since it occurs in, e.g., the conditional for the
round indicator variables (Appendix Appendix A.2).

Concentration parameter

The conditional for θ is

p(θ|Z, r, α) ∝ p(θ)
K∏

k=1

p(Z|r, θ, α).
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Again, we calculate the likelihood factors p(Z|r, θ, α) with a Monte Carlo approxi-
mation as in Eq. (37). In order to find the conditional over θ from the likelihood and
prior, we further approximate the space of θ > 0 by a discretization around the previous
value of θ in the Monte Carlo sampler: {θprev + t∆θ}t=T

t=S , where S and T are chosen
so that all potential new θ values are nonnegative and so that the tails of the distribu-
tion fall below a pre-determined threshold. To complete the description, we choose the
improper prior p(θ) ∝ 1.

Discount parameter

We sample the discount parameter α in a similar manner to θ. The conditional for α is

p(α|Z, r, θ) ∝ p(α)
K∏

k=1

p(Z|r, θ, α).

As usual, we calculate the likelihood factors p(Z|r, θ, α) with a Monte Carlo approxi-
mation as in Eq. (37). While we discretize the sampling of α as we did for θ, note that
sampling α is more straightforward since α must lie in [0, 1]. Therefore, the choice of ∆α
completely characterizes the discretization of the interval. In particular, to avoid end-
point behavior, we consider new values of α among {∆α/2 + t∆α}(∆α)−1−1

t=0 . Moreover,
the choice of p(α) ∝ 1 is, in this case, a proper prior for α.

Appendix A.4 Factor analysis components

In order to use the beta process as a prior in the factor analysis model described in
Eq. (2), we must also describe samplers for the feature matrix Φ and weight matrix W .

Feature matrix

The conditional for the feature matrix Φ is

p(Φ·,p|X,W,Z, η, ρp) ∝ p(X·,p|Φ·,p,W,Z, ηIN )p(Φ·,p|ρp)
= N(X·,p|(W ◦ Z)Φ·,p, ηIN )N(Φ·,p|0K , ρpIK)
∝ N (Φ·,p|µ, Σ) ,

where, in the final line, the variance is defined as follows:

Σ :=
(
η−1(W ◦ Z)>(W ◦ Z) + ρ−1

p IK

)−1
,

and similarly for the mean:

µ := Ση−1(W ◦ Z)>X·,p.
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Weight matrix

Let I = {i : Zn,i = 1}. Then the conditional for the weight matrix W is

p(Wn,I |X, Z, Φ, η) ∝ p(Xn,·|ΦI,·,Wn,I , η)p(Wn,I |ζ)
= N(Xn,·|Wn,IΦI,·, ηIp)N(Wn,I |0|I|, ζI|I|)

∝ N(Wn,I |µ̃, Σ̃),

where, in the final line, the variance is defined as Σ̃ :=
(
η−1ΦI,·Φ>I,· + ζ−1I|I|

)−1, and
the mean is defined as µ̃ := Σ̃η−1Xn,·Φ>I,·.
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Bayesian solution using Lévy processes.” Inverse Problems, 20: 1759–1771. 441, 449

Zipf, G. K. (1949). Human Behaviour and the Principle of Least-Effort. Addison-Wesley.
447

Acknowledgments

We wish to thank Alexander Gnedin for useful discussions and Lancelot James for helpful

suggestions. We also thank John Paisley for useful discussions and for kindly providing access

to his code, which we used in our experimental work. Tamara Broderick was funded by a

National Science Foundation Graduate Research Fellowship. Michael Jordan was supported in

part by IARPA-BAA-09-10, “Knowledge Discovery and Dissemination.” Jim Pitman was sup-

ported in part by the National Science Foundation Award 0806118 “Combinatorial Stochastic

Processes.”

http://www.cs.nyu.edu/~roweis/data.html�


476 Beta Processes, Stick-Breaking and Power Laws


