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Log-Linear Pool to Combine Prior Distributions:
A Suggestion for a Calibration-Based Approach

M. J. Rufo∗, J. Mart́ın† and C. J. Pérez‡

Abstract. An important issue involved in group decision making is the suitable
aggregation of experts’ beliefs about a parameter of interest. Two widely used
combination methods are linear and log-linear pools. Yet, a problem arises when
the weights have to be selected. This paper provides a general decision-based
procedure to obtain the weights in a log-linear pooled prior distribution. The
process is based on Kullback-Leibler divergence, which is used as a calibration tool.
No information about the parameter of interest is considered before dealing with
the experts’ beliefs. Then, a pooled prior distribution is achieved, for which the
expected calibration is the best one in the Kullback-Leibler sense. In the absence
of other information available to the decision-maker prior to getting experimental
data, the methodology generally leads to selection of the most diffuse pooled prior.
In most cases, a problem arises from the marginal distribution related to the
noninformative prior distribution since it is improper. In these cases, an alternative
procedure is proposed. Finally, two applications show how the proposed techniques
can be easily applied in practice.
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1 Introduction

The problem of aggregating experts’ information is an important issue when dealing
with decision making. For many years, this topic has received considerable attention
in specialized literature. Abbas (2009) summarized the problem in a succinct manner
as follows: A decision maker is interested in a certain quantity, X, described as a
random variable. He/She consulted several experts who provided their information
about a parameter, θ, as probability distributions. It is necessary to observe that
the previous parameter, θ, is related to the random variable, X, through a statistical
model. Furthermore, the decision maker needs to combine the experts’ distributions to
obtain an aggregated probability distribution. Notable reviews regarding this subject
are provided by Genest and Zidek (1986), Ouchi (2004), and Clemen and Winkler (2007)
and references therein. Clemen and Winkler (2007) classified the methods to get the
aggregated opinion of a group of experts in two types: mathematical and behavioral
methods. The classification of the mathematical methods were further divided as either
axiomatic or Bayesian approaches. Two useful axiomatic approaches that combine
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individual experts’ probability distributions to produce a joint probability distribution
are the linear opinion pool (see Stone (1961) and Diaconis and Ylvisaker (1985)) and the
logarithmic opinion pool (see Bacharach (1975), Genest (1984), Genest and Zidek (1984)
and references therein). Opinion pooling can suffer from paradoxes (see O’ Hagan et al.
(2006) and references therein). Hence, for instance, an opinion pool might be expected
to have the externally Bayesian property (see Garthwaite et al. (2004)). Except in trivial
cases, the linear opinion pool fails to have this property. On the contrary, the logarithmic
opinion pool is externally Bayesian when the weights sum up to a unity (see Kadane
et al. (1999) and Genest (1984)). However, it does not have a second desirable property,
which is invariance to event combination (see Garthwaite et al. (2005)). McConway
(1981) shows that the linear opinion pool is the only combination which satisfies this
marginalization criterion. Hence, it is not possible to find a formula for mathematical
aggregation which satisfies both requirements. More recent papers dealing with both
opinion pools in different areas are, among others, Poole and Raftery (2000), Abbas
(2009) and Kascha and Ravazzolo (2010).

The determination of the weights is a problem which arises when using both lin-
ear pool and logarithmic-linear pool (see Genest and Zidek (1986)). In the literature,
different methods have been proposed on how to choose them. Thereby, a frequently
used strategy consists of assigning equal weights to each expert when there is nothing
which suggests that an expert’s opinion is better than any other one. Another classic
way to obtain the weights is using Cooke’s method. This method was designed to avoid
uncertainty when the weights must be assigned. Following Cooke (1991), an expert is
precise if he/she is well calibrated and his/her opinions are informative. At the same
time, an expert is well calibrated when his/her assessed probabilities agree with ac-
tual observed frequencies. Cooke’s method calculates an expert’s weight using a score
that is a combination of separate calibration and information scores. The design of the
right set of parameters (seed variables) used to assign the weights is the main problem
found in this method. See Cooke (1991) for additional information together with some
examples and also see Clemen (2008). A method based on the Kullback-Leibler diver-
gences to obtain the weights was proposed by Heskes (1998). Specifically, he classified
the method behind his analysis as a supra-Bayesian method (see for instance Jacobs
(1995) and Roback and Givens (2001)) and a simple heuristic method (see for instance
Tversky and Kahneman (1974)). Finally, Kascha and Ravazzolo (2010) compared some
common approaches for combining density forecasts. The two possible ways of aggrega-
tion are considered together with three different methods to obtain the weights. They
are equal weights, recursive log score weights and (inverse) mean squared error weights.
A full description and examples of these methods can be found in Kascha and Ravazzolo
(2010).

Bousquet (2008) proposed a criterion based on Kullback-Leibler divergence to assess
a possible conflict between the prior and the data. His work is focused on an industrial
context where experts’ opinions are frequently used. By using this divergence measure
as a calibration tool, this work provides a general approach to assess the weights in a
log-linear pooled prior distribution.

Throughout this paper, it is assumed that several experts supply prior information
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about a parameter, θ, as proper prior distributions. Then, the decision maker combines
them through a log-linear pool. Merging these distributions, in this way, is proposed
because it maintains unimodality and it is externally Bayesian. Such as is pointed out
in Faria and Mubwandarikwa (2008), external Bayesianity preserves immunity of influ-
ence on decision making. This means that, when there is an agreed likelihood function,
the opinion pool of the posterior distributions should coincide with the posterior distri-
bution obtained from the opinion pool of the prior distributions (see Garthwaite et al.
(2004)). Therefore, a decision maker would not have to deal with two different posterior
distributions and a way of choosing between the two optimal decisions.

Next, the weights have to be assessed to obtain the full aggregated prior distribution.
In order to do it, the problem is formulated as a decision problem. Therefore, a suitable
loss function based on Kullback-Leibler divergence is defined. The proposal consists
of finding an aggregated prior distribution which considers all experts’ opinions. This
prior distribution belongs to the set of alternatives in the decision-making process. The
states of nature are the possible values, x, that the considered random variable X can
take on. Besides, the decision maker assumes prior ignorance about the states of nature
through a non informative prior distribution over θ. Thus, by considering the likelihood
function, the distribution for each x is given by the marginal prior distribution m(x).
Then, the weights are obtained by minimizing the expected loss. A problem arises
when the considered distribution m(x) is not proper. Consequently, the optimization
problem cannot be carried out. In this case, an alternative procedure is proposed, which
adequately replaces the initial marginal distribution by a proper one.

The outline of the paper is as follows. In Section 2, the calibration measure is
presented. Section 3 proposes the method to obtain the weights in the combined prior
distribution. A modified technique based on the previous one is presented in Section 4.
In Section 5, the developed methodology is applied to several distributions. For all of
them, conjugate prior distributions are considered. A discussion is presented in Section
9. Finally, the appendices contain the theoretical results.

2 Background

The use of experts’ opinions is usually found in industrial issues where data are col-
lected with difficulty. Subjective perceptions are usually needed, and can sometimes
be far from the objective information yielded by the data, for instance, when technical
issues arise. Thus, the analyst can check the discrepancy or the agreement and use
this information in an appropriate way. In this context, Bousquet (2008) provided a
statistical criterion which indicates conflict or agreement between the prior distribution
and the data. Specifically, he proposed to compute the ratio:

DACJ (π|x) =
KL

(
πJ(.|x)||π)

KL (πJ (.|x)||πJ)
,

where πJ and π denote a noninformative prior distribution and the proposed prior
distribution, respectively. πJ(.|x) is the posterior distribution and KL (f ||g) denotes
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the Kullback-Leibler divergence between the distributions f and g, i.e.:

KL (f ||g) =
∫

Θ

f (θ) log
(

f (θ)
g (θ)

)
dθ.

Thus, if DACJ (π|x) ≤ 1, then prior and data are close enough and the proposed prior
π is in agreement with the data x. In other cases, a conflict is detected. In addition, the
Data Agreement Criterion (DAC) can be used as a tool for the calibration of subjective
prior distributions. See Bousquet (2008) for additional information.

3 The method.

Let X be a random variable distributed according to a density f(x|θ), and suppose that
k experts provide prior information about the parameter θ. The opinion of each expert
is elicited as a proper prior distribution πj (θ). In this context, there are different
methods available to achieve the aggregated opinion of a group of experts (see for
instance Garthwaite et al. (2004, 2005)). One of them consists of using a logarithmic
opinion pool:

πω(θ) = t(ω)
k∏

j=1

(πj (θ))ωj , (1)

where t(ω) is a normalizing constant i.e.:

t−1(ω) =
∫

Θ

k∏

j=1

(πj (θ))ωj dθ,

and the weights, ωj , are nonnegative and sum up to one.

Combining prior distributions, in this way, is used because the resulting combined
prior distribution is frequently unimodal and less dispersed than the one obtained
through a linear combination (see Rufo et al. (2009) for a Bayesian analysis by using
a linear combination). In consequence, it is more likely to indicate consensual values
when decisions must be made (see Genest and Zidek (1986)). Note that, in linear opin-
ion pooling the decision maker takes into account the full range of parameter values,
whereas in logarithm opinion pooling he/she focuses on the common range of param-
eter values (see Kascha and Ravazzolo (2010) for an illustrative example showing the
main differences between the two aggregation schemes). Moreover, for the logarithmic
opinion pool, it is satisfied that if an expert gives zero probability to a certain set, then
the pooled distribution must also assign zero probability to that set.

Weighting factors ωj , j = 1, 2, . . . , k are introduced to indicate the reliability of each
expert. Chen and Pennock (2005), among others, observed that an important question
when opinion pool methods are used is how to choose the weights. A very frequent
strategy consists of considering the same weights for all experts.

Here, no fixed values for the weights are initially considered and a general procedure
to obtain them is proposed. This proposal uses the Kullback-Leibler divergence as a
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measure to calibrate the discrepancy from the pooled prior distribution to the posterior
distribution for any random variable value x ∈ X. The purpose is to minimize this
discrepancy.

Following Bousquet (2006, 2008), Jeffreys’ priors for one-parameter distributions
are used. They are denoted by πJ (θ), whereas the posterior distributions are πJ(θ|x).
Furthermore, proper posterior distributions will be taken. Note that, for the considered
parameters (θ ⊆ R), Jeffreys’ priors and refererence priors are equivalent (see Liseo
(1993)). The idea behind using this kind of prior distribution is that the posterior
distribution, πJ(θ|x), is not greatly affected by this initial information, i.e., the influence
of the prior distribution is minimized. Thus, by considering the set of all possible prior
distributions supporting the experts’ opinions, the obtained prior distribution, πω(θ),
is the one in more accordance with the information provided by the value x through
πJ(θ|x).

Then, for all possible weight vectors ω ∈ χ = {(ω1, ω2, . . . , ωk) :
k∑

j=1

ωj = 1, ωj ≥ 0}
and each value x ∈ X, the loss function is defined by:

L(ω, x) = KL(πJ(·|x)||πω(·)), (2)

where KL(πJ(·|x)||πω(·)) denotes the Kullback-Leibler divergence between the com-
bined prior distribution πω (see expression (1)) and the posterior distribution πJ(θ|x),
i.e.:

KL(πJ(·|x)||πω(·)) =
∫

Θ

πJ (θ|x) log
(

πJ (θ|x)
πω (θ)

)
dθ. (3)

Observe that other divergence measures in the Ali-Silvey class of information-theoretic
measures (Ali and Silvey (1966)) can be used. Nevertheless, it will be observed through-
out this paper that the use of Kullback-Leibler divergence provides analytical advantages
as well as computational simplicity.

Now, a probability distribution for the states of nature is needed. The idea is to
obtain this distribution through the likelihood function l(θ|x) = f(x|θ). The previous
prior distribution πJ(θ) is considered, since prior ignorance of x ∈ X (states of nature)
is assumed by the decision maker. Therefore, the probability distribution for each x is
given by the predictive prior distribution:

m (x) =
∫

Θ

f(x|θ)πJ(θ)dθ.

The objective is to find the weight vector (decision), ω ∈ χ, that minimizes the expected
loss, i.e.:

arg min
ω∈χ

L(ω), (4)

where L(ω) = Em(L(ω, x)) = Em(KL(πJ(·|x)||πω(·))).
Note that, through this procedure, only the information provided by each expert

is combined. Therefore, the combined prior distribution is not constructed based on
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a specific data set but under the assumption that this set is unknown. Relaxations of
this assumption are considered in the Discussion Section. In addition, other methods
to obtain the distribution m(x), for x ∈ X, could be used.

By taking into account the expression of the Kullback-Leibler divergence (3), the
function L(ω) can be written as:

L(ω) = Em

(
EπJ

(
log πJ (·|x)

))− Em (EπJ (log π (·))) . (5)

The first summand on the right-hand side of the previous expression does not depend
on ω ∈ χ. Thus, the initial optimization problem is equivalent to the following one:

max
ω∈χ

Em (EπJ (log π (·))) .

By considering the expression for the pooled prior distribution, πω(θ), it is satisfied:

EπJ (log πω(θ)) = log t(ω) +
k∑

j=1

ωjEπJ (log πj (θ)) ,

where the normalizing constant, t(ω), depends on the weights ωj , j = 1, 2, . . . , k. There-
fore, the optimization problem becomes:

max
ω∈χ



log t(ω) +

k∑

j=1

ωj Em(EπJ (log πj (θ)))



 . (6)

The following result holds:

Proposition 3.1. There is only one aggregated prior distribution, πω(θ), which mini-
mizes the expected loss L(ω).

The proof is presented in Appendix A. Note that, it is shown that there exists only
one aggregated distribution, but not only one weight vector ω, which minimizes the
expected loss L(ω).

In summary, a statistical decision problem has been considered in which the decision
space is the set of all possible weight vectors i.e.:

χ = {(ω1, ω2, . . . , ωk) :
k∑

j=1

ωj = 1, ωj ≥ 0}.

The states of nature, S, is the set of all possible values, x, that the considered random
variable X can take on. Hence, the loss function is given by (2). Thus, each possible
decision ω ∈ χ leads to a certain loss L(ω, x) ∈ R, depending on the state of nature
x ∈ S.

Next, a probability distribution for x (states of nature) is needed, and then it is
obtained through the likelihood function. Because the decision maker assumes prior
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ignorance hence, the Jeffreys’ prior distribution πJ(θ) is taken and the probability dis-
tribution for each x is given by the predictive prior distribution m(x). The minimum
expected loss criterion is used in order to obtain the optimal decision ω.

Finally, some remarkable properties for the aggregated prior distribution, πω, are
shown. They have been derived through the previous decision problem. It is satisfied
that the Kullback-Leibler divergence between the posterior distribution and the com-
bined prior distribution is never larger than the average Kullback-Leibler divergences
between the posterior distribution and each expert’s prior distribution (see Bousquet
(2008)), that is:

KL(πJ(·|x)||πω(·)) ≤
k∑

j=1

ωjKL(πJ(·|x)||πj(·)),

where πj(θ) is the proper prior distribution provided by each expert. Hence, the aggre-
gated prior distribution stays in agreement with πJ (θ|x), although some prior distribu-
tions could present higher discrepancies. An analogous result is satisfied for the linear
opinion pool by taking into account Jensen’s inequality (see Heskes (1998)).

By taking expectations in both sides of the previous inequality, it is satisfied:

Em

(
πJ(·|x)||πω(·)) ≤

k∑

j=1

ωjEm

(
KL(πJ(·|x)||πj(·))

)
,

thus, by using the previously described decision-making framework a pooled prior dis-
tribution is obtained for which the expected calibration is the best one in the Kullback-
Leibler sense. Namely, the expected loss for this prior distribution is lower than for any
other.

Note that, in expression (6), it is not always possible to calculate the expectation with
respect to the predictive prior distribution because the considered prior distributions
πJ(θ) could be improper. In the next Section, a solution to this problem is presented.

4 A modified method for improper distributions.

A problem arises when the predictive prior distribution is not proper since the optimiza-
tion problem could not be carried out in a suitable way. It is usual that the considered
Jeffreys’ prior distributions, πJ (θ), are not proper and, therefore, improper predictive
prior distributions are usually obtained.

Lancaster (2004) argued that a possible way to solve this problem, apart from using
initial proper prior distributions, is to set aside a subset of the data (training sample)
and to use it to build a proper predictive distribution for the rest. This is connected
with the intrinsic prior as well as the expected posterior prior methodology (see among
others Berger and Pericchi (1996), Moreno et al. (1996), and Pérez and Berger (2002)
and references therein). Both methodologies are closely related and they were motivated
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by the need for using improper prior distributions in a model selection context. The key
idea in both methodologies is to convert improper noninformative prior distributions into
proper distributions. A relevant tool in this context is the training sample (see Berger
and Pericchi (2004) for a recent publication on this topic). Suppose that πJ(θ) denotes
a noninformative, possibly improper prior distribution for θ, x represents imaginary
observations and m∗(x) is a suitable marginal distribution for x. The smallest data set
x making the posterior distribution πJ(θ|x) proper is calling a minimal training sample.
So, the expected posterior prior distribution for θ is then defined as:

π∗(θ) =
∫

πJ(θ|x)m∗(x)dx. (7)

Thus, it is the mean with respect to the selected marginal of the proper posterior
distribution πJ(θ|x). Keeping in mind that the aim is to calculate the expectation
Em(EπJ (log πj (θ)), i.e.:

Em(EπJ (log πj (θ)) =
∫

(EπJ (log πj (θ)) m(x)dx, (8)

then, as in expression (7), the proposal is to find an appropriate marginal distribution
to determine the expectation (8).

Two proposals are considered to choose m∗ (see Pérez and Berger (2002) for other
alternatives). The first one consists of taking the base-model noninformative predictive,
i.e.:

m∗(x) =
∫

Θ

f(x|θ)πJ(θ)dθ.

Note that, it is just the predictive prior distribution for the considered model. Therefore,
it can be used when the prior distribution πJ(θ) is initially proper. If it is not proper,
then another alternative is to use the empirical distribution given in Pérez and Berger
(2002). Observe that, for the considered model in this paper (i.e. θ is one-dimensional),
the minimal training sample is typically a replication of the random variable X (see for
instance Moreno et al. (2003)). Therefore, given the data x1, x2, . . . , xn, the empirical
marginal distribution is defined as:

m (x) =
1
n

∑

i

I{xi} (x) ,

where IA denotes the indicator function for the set A.

Notice that, when empirical marginal distribution is used, then the considered data
set is involved in the decision process (6). Thus, in this instance, not only the initial
information provided by each expert is involved in the making-decision procedure, but
also the data are taking part through the empirical predictive distribution. As it will
be observed in the next Section, this scheme will favor the expert whose distribution
better matches the data.
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5 Applications.

In this Section, two applications are considered in order to illustrate the Bayesian ap-
proaches presented in the previous sections. Firstly, a general study is carried out for a
class of natural exponential families. Next, a practical application for a distribution of
this family is performed, specifically, for the binomial distribution. Finally, an example
for the Weibull distribution is considered.

5.1 Natural exponential families.

Let η be a σ-finite positive measure on the Borel set of R not concentrated at a single
point. A random variable X is distributed according to a natural exponential family if
its density with respect to η is:

fθ (x) = b (x) exp {xθ −M (θ)} , θ ∈ Θ, (9)

for some function b(·), where M (θ) = log
∫

b (x) exp (xθ) dη (x) and Θ = {θ ∈ R:
M (θ) < ∞} is nonempty. θ is called the natural parameter. In addition, if the para-
metric space Θ is an open set, the exponential family is said to be regular. It is satisfied
E (X|θ) = M

′
(θ) = µ and Var(X|θ) = M

′′
(θ). See Brown (1986) for a review on these

families.

The mapping µ = µ (θ) = M
′
(θ) is differentiable, with inverse θ = θ (µ). It provides

an alternative parameterization for fθ (x) called mean parameterization. The function
V (µ) = M

′′
(θ) = M

′′
(θ (µ)) , µ ∈ Ω, is the variance function of (9) and Ω is the mean

space. For natural exponential families with quadratic variance function (NEF-QVF),
this function has the expression: V (µ) = v0 + v1µ + v2µ

2, where µ ∈ Ω and v0, v1

and v2 are real constants. These families are all regulars. See Morris (1982, 1983) for a
review about the properties of these families. A more recent study for these families is
given in Morris and Lock (2009).

Conjugate prior distributions as in Morris (1983) and Gutiérrez-Peña and Smith
(1997) are considered for each expert, in order to obtain analytical results. Let µ0j ∈ Ω
and mj > 0, the conjugate prior distributions on θ are:

πj (θ) = K (mjµ0j ,mj) exp {mjµ0jθ −mjM (θ)} , j = 1, 2, . . . , k, (10)

where K (mjµ0j , mj) are chosen to make
∫
Θ

πj (θ) dθ = 1 and µ0j are the prior means.
These prior distributions are called DY-conjugate in Consonni and Veronese (1992) and
Gutiérrez-Peña and Smith (1997).

Therefore the pooled prior distribution (1) is given by:

π (θ) = t(ω)
k∏

j=1

(πj (θ))ωj = t(ω)
k∏

j=1

(K (mjµ0j ,mj) exp {mjµ0jθ −mjM (θ)})ωj ,
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where the normalizing constant t(ω) satisfies:

t−1(ω) =
k∏

j=1

K (mjµ0j ,mj)
ωj K−1(

k∑

j=1

ωjmjµ0j ,

k∑

j=1

ωjmj),

with K
(∑k

j=1 ωjmjµ0j ,
∑k

j=1 ωjmj

)
the normalizing constant for the distribution:

exp





k∑

j=1

ωj (mjµ0jθ −mjM (θ))



 .

Therefore, the pooled prior distribution becomes:

π (θ) =
K(

k∑
j=1

ωjmjµ0j ,
∑k

j=1 ωjmj)

k∏
j=1

K (mjµ0j , µ0j)
ωj

k∏

j=1

(πj (θ))ωj .

Sometimes, it is preferred or desirable to use noninformative prior distributions reflecting
prior ignorance in some sense. One of the most widely used prior distributions is the
Jeffreys’ prior.

Gutiérrez-Peña and Smith (1995, 1997) show that Jeffreys’ prior is a conjugate prior
as those described in (10) for NEF with quadratic variance function. In addition,
Jeffreys’ prior distribution can be expressed as:

πJ (θ) ∝ exp
{

1
2
C1θ − C2

2
M(θ)

}
,

where C1 and C2 are real constants. Hence, the posterior distribution of θ under the
previous prior distribution is given by:

πJ (θ|x) = K (C1, C2) exp
{(

x +
C1

2

)
θ −

(
1 +

C2

2

)
M(θ)

}
. (11)

Before dealing with the constrained maximization problem given in (6), the expectation
with respect to the posterior distribution, EπJ (log π (θ)) is calculated.

By taking into account the previous expression for π (θ) and πj (θ), it is easily ob-
tained:

log (π (θ)) = log K




k∑

j=1

ωjmjµ0j ,

k∑

j=1

ωjmj


 +

k∑

j=1

ωjmjµ0jθ −
k∑

j=1

ωjmjM(θ).

Hence, if expectations with respect to the posterior distribution are taken in both sides
of the previous equality, then the problem reduces to calculate the expectations EπJ (θ)
and EπJ (M(θ)).
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From now on, the attention is focused on the posterior distribution (11). Next, the
expectations EπJ (θ) and EπJ (M(θ)) are analytically obtained. In order to do it, the
following function is considered:

log
∫

Θ

exp
{(

1 +
C1

2

)
θ −

(
1 +

C2

2

)
M(θ)

}
dθ = − log (K (C1, C2)) .

By deriving with respect to C1 and C2, it is obtained:

∂C1 (− log (K (C1, C2))) =
1
2
EπJ (θ), ∂C2 (− log (K (C1, C2))) = −1

2
EπJ (M(θ)),

and, as a consequence:

EπJ (θ) = 2∂C1 (− log (K (C1, C2))) , EπJ (M(θ)) = −2∂C2 (− log (K (C1, C2))) . (12)

Finally, the optimization problem (6) becomes:

max
ω∈χ



log K




k∑

j=1

ωjmjµ0j ,

k∑

j=1

ωjmj


 +

k∑

j=1

ωjmjµ0j

× Em (2∂C1 (− log (K(C1, C2))))−
k∑

j=1

ωjmj Em (−2∂C2 (− log(K(C1, C2))))



 ,

Next, a numerical application for the binomial distribution is shown. This distribu-
tion is considered because it belongs to the previous class. In addition, the first approach
is implemented since it has a proper marginal prior distribution. A brief study of the
main distributions included in this class is shown in Appendix B.

5.2 Direct application for the binomial distribution.

Savchuk and Martz (1994) considered practical situations in which multiple sources
of prior information are available to be used in a Bayesian reliability framework for
binomial sampling. The objective is to estimate the survival probability of a certain
unit for which there have been x = 9 successes in r = 10 tests. Four experts supply
partial initial information as Beta prior distributions, and this individual information is
now combined by using a logarithmic opinion pooling. If the canonical parameterization
is used (see Appendix B), then the aggregated prior distribution becomes:

π (θ) = Γ(r
4∑

j=1

mjωj)


Γ(r

4∑

j=1

mjωj −
4∑

j=1

mjµ0j ωj)



−1

×

Γ(

4∑

j=1

mjµ0j ωj)



−1

4∏

j=1

(
exp

{
mjµ0j θ −mjr log

(
1 + eθ

)})ωj
,
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where Γ (.) denotes the gamma function. The parameters chosen by Savchuk and Martz
(1994) for the component prior distributions are considered here, these are: m1 =
1.9055, µ01 = 9.4988, m2 = 0.4300, µ02 = 8, m3 = 0.9244, µ03 = 9.0004, m4 = 0.2828
and µ04 = 7.0014. The weights are obtained following the proposal in this paper. Figure
1 shows the prior distributions by using the usual parameterization.
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Figure 1: Prior distributions.

Notice that the second and fourth experts provide more diffuse prior distributions
than the first and third experts, respectively. By considering the full development of the
binomial distribution presented in Appendix B, the constrained optimization problem
can be formulated in the following way:

max
ω∈χ

φ (ω) , (13)

where:

φ (ω) = log Γ(r
4∑

j=1

mjωj)− log Γ(
4∑

j=1

mjωjµ0j )− log Γ(
4∑

j=1

mjωj(r − µ0j ))

+
(

Em(Ψ(x +
1
2
))− Em(Ψ(r − x +

1
2
))

) 4∑

j=1

mjωjµ0j

+
(

Em(Ψ(r − x +
1
2
))− rΨ(r + 1)

) 4∑

j=1

mjωj .
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By taking into account the previous parameter values, the function to maximize is given
by:

φ (ω) = log Γ (19.055w1 + 4.300w2 + 9.244w3 + 2.828w4)− log Γ(18.100w1

+3.440w2 + 8.320w3 + 1.980w4)− log Γ(0.955w1 + 0.860w2

+0.924w3 + 0.848w4)− 26.418w1 − 5.961w2 − 12.816w3 − 3.921w4.

The following solution is found (ω1, ω2, ω3, ω4) = (0, 0, 0, 1). It has been obtained by
using a pure random search algorithm, followed by a steepest descent method.

Thus, according to the proposal made in (6), an aggregated prior distribution that
only considers the information provided by the fourth expert is enough to represent the
group opinion of the four experts.

In order to explain this result, the Kullback-Leibler divergences between the posterior
distribution (πJ(θ|x)) and the prior distributions for each expert (πj(θ)) are examined
for all possible number of successes in r = 10 tests, i.e.: x = 0, 1, 2, . . . , 10. Figure 2
shows these results.
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Figure 2: Values for the Kullback-Leibler divergences.

Note that, in this case, the lowest values for the Kullback-Leibler divergences are
provided by the aggregated prior distribution when the data values are low (see Table 1).
For high values in the data set, the lowest values for the Kullback-Leibler divergences
are provided by the prior distributions π1(θ) and π3(θ), respectively. Therefore, the
pooled prior distribution is overall the closest prior distribution, in the Kullback-Leibler
sense, to the posterior distribution for any x (see Figure 2).



424 Log-Linear Pool to Combine Prior Distributions

Consequently, based on the proposal in this paper, an expert who expresses a more
diffuse prior distribution will be generally given a higher weight than one who expresses
a less diffuse distribution.

Values x = 2 x = 3 x = 9 x = 10
KL(πJ ||π1) 26.2021 19.2111 0.8618 0.1886
KL(πJ ||π2) 3.7971 2.6575 0.1733 0.8532
KL(πJ ||π3) 10.9025 7.8194 0.1158 0.4101
KL(πJ ||π4) 1.8940 1.3367 0.4277 1.2373

Table 1: Values for the Kullback-Leibler divergences.

Next, the empirical marginal distribution is considered in order to compare the
previous result with those that are obtained when data sets are used. A more detailed
study of this kind of distribution can be found in the next subsection.

Thus, random samples of size n = 8 from binomial distributions with parameters
r1 = r2 = r3 = 10, p1 = 0.9, p2 = 0.8 and p3 = 0.2 respectively, are taken. Now, if the
theoretical development made in Section 4 is taken into account, then the expectations
involved in the problem are given by the expressions:

Em

(
Ψ

(
x +

1
2

))
=

1
n

n∑

i=1

Ψ
(

xi +
1
2

)
;

Em

(
Ψ

(
r − x +

1
2

))
=

1
n

n∑

i=1

Ψ
(

r − xi +
1
2

)
.

The constrained optimization problem given in (13) is solved. Table 2 presents the
obtained results. It can be observed how different they are to the previous result since
the data sets are also involved in the decision-making process. Hence, the weighting
scheme favors the experts whose distributions better match the data set.

Distributions ω1 ω2 ω3 ω4

B(10, 0.9) 0.2440 0.0358 0.0012 0.7190
B(10, 0.8) 0.0008 0.0267 0.1647 0.8078
B(10, 0.2) 0.0010 0.0158 0.0068 0.9764

Table 2: Values for the weights.

Figure 3 shows the prior distributions and the values for the Kullback-Leibler diver-
gences by taking the data set from the binomial distribution B(10, 0.8). Notice that,
the aggregated prior distribution gives the lowest values for the Kullback-Leibler diver-
gences, on a whole. Thus, it is overall the closest to the posterior distribution for any
x in the data set.
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Figure 3: Prior distributions (left) and Kullback-Leibler divergences (right) when a
data set from a binomial distribution B(10, 0.8) is taken.

Therefore, in this case, working with observed data has given a less harsh result
in calibration than the one obtained by using a proper predictive prior distribution.
Nevertheless, in general, the obtained results will depend on both the prior distributions
provided by the experts and the observed data.

5.3 Application for the Weibull distribution.

The approach presented in Section 4 is illustrated by considering a data set from a
Weibull distribution, when the shape parameter is given. Thus, conjugate prior distri-
butions can be selected for the scale parameter. Observe that, although Fink (1997)
showed a prior distribution for Weibull shape and scale parameters, such that the pos-
terior distribution has the same functional form as the prior, he argued that this prior
distribution is not a true conjugate prior. Therefore, it is not considered here.

The Weibull distribution is often used in the reliability field (see Lawless (2003)).

It is assumed that data are coming from the density:

f (x|λ) = αλ exp (−λxα) xα−1I(0,∞) (x) ,

where α, λ > 0 are the shape and scale parameters, respectively, and I is the indicator
function. Note that, the same parameterization as in Kundu (2008) and Soland (1969)
is considered here with the objective of simplifying the expressions in the subsequent
analysis. In addition, this one-parameter distribution belongs to the subclass of the
exponential family considered in Jozani et al. (2002). This subclass contains very use-
ful distributions in reliability contexts and the prior distribution is usually a gamma
distribution.

By assuming that k experts provide prior information over the scale parameter λ,
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as k conjugate prior distributions, the pooled prior distribution is given by:

π (λ) = t(ω)
k∏

j=1

(π (λj))
ωj , (14)

where π (λj) denotes a gamma density with parameters aj and bj , i.e:

πj (λ) =
b
aj

j

Γ (aj)
λaj−1 exp {−bjλ} I(0,∞) (λ) ,

and the normalizing constant is given by:

t(ω) =

(
k∑

j=1

bjωj

) k∑
j=1

ωjaj

Γ

(
k∑

j=1

ωjaj

)
k∏

j=1

(
Γ (aj)
b
aj

j

)ωj

.

Those prior distributions are considered in order to obtain analytical results. The
Jeffreys’ prior distribution is:

πJ (λ) ∝ 1
λ

,

thus, the posterior distribution under the previous prior distribution is given by:

πJ (λ|x) = xα exp (−λxα) , (15)

which is a gamma distribution with shape parameter 1 and rate parameter xα.

In order to obtain the function to maximize, firstly the expectation EπJ (log πj (λ))
is calculated. By taking into account the following expression:

EπJ (log πj (λ)) = aj log bj − log Γ (aj) + (aj − 1) EπJ (log λ)− bjEπJ (λ)

and that the next two equalities are satisfied:

EπJ (log λ) = Ψ (1)− α log x ; EπJ (λ) =
1
xα

,

then, the constrained optimization problem is formulated as:

max
ω∈χ

φ (ω) ,

where:

φ (ω) =
k∑

j=1

ωjaj log(
k∑

j=1

ωjbj)− log Γ(
k∑

j=1

ωjaj) +
k∑

j=1

ωj (aj − 1)

× [Ψ (1)− αEm (log x)]−
k∑

j=1

ωjbjEm

(
x−α

)
.
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Note that, the prior distribution πJ (λ) is improper and the predictive prior distribution
also. Therefore, the empirical marginal prior distribution has to be used. By considering
the form of the posterior distribution, the minimal training samples are of size one and
the empirical distribution is:

m (x) =
1
n

∑

i

I{xi} (x) ,

where x = (x1, x2, . . . , xn) . Therefore, the expectations have the expressions:

Em (log x) =
1
n

n∑

i=1

log xi ; Em

(
x−α

)
=

1
n

n∑

i=1

x−α
i .

In order to apply this proposal, the data in Linhart and Zucchini (1986) are considered.
They represent failure times of the air conditioning system of an airplane. It is assumed
that these data are coming from a Weibull distribution with shape parameter α =
0.8544. It corresponds to the maximum likelihood estimate obtained in Gupta and
Kundu (2001). Suppose that two experts supplied prior information over λ and that it
is combined through expression (14). Thus, the function to maximize is:

φ (ω) =
2∑

j=1

ωjaj log(
2∑

j=1

ωjbj)− log Γ(
2∑

j=1

ωjaj)− 3.449
2∑

j=1

ωj (aj − 1)

−0.113
2∑

j=1

ωjbj ,

subject to ω ∈ χ. In addition, suppose that both experts provide two Gamma prior
distributions with parameters a1 = 0.1, a2 = 0.5 and b1 = b2 = 2. Then, the previous
function is maximized by considering these parameter values. By using a pure random
search algorithm, followed by a steepest descent method, the solution obtained is: ω1 =
0.3133 and ω2 = 0.6867.

Figure 4 shows the pooled and the prior distributions provided by each expert. In
addition, Table 3 shows the estimated weights for some parameter sets.

As similarly done in the binomial application, the Kullback-Leibler divergences be-
tween the posterior distribution (πJ (θ|x)) and the prior distributions for each expert
(πj(θ)) are examined for the failure times of the air conditioning system of the airplane.
Figure 5 shows these results.

Note that, in this case, the values of the Kullback-Leibler divergences for the aggre-
gated prior distribution are always closer to the lowest value between those obtained by
using the prior distribution of each expert. Also, for large values of x, this divergence
value is lower than the minimum of the other two values. Thus, as in the previous appli-
cation, the aggregated prior distribution gives the lowest values for the Kullback-Leibler
divergences, on a whole.

Other prior distributions have been considered in order to know in which way the
data set is affecting the prior distributions provided by the experts and consequently,
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Figure 4: Prior distributions.

a2 = 0.5, b2 = 2 a1 = 0.05, b1 = 0.15
a1 = 0.09 a1 = 0.11

b1 = 2 b1 = 2
ω1 0.3056 0.3213
ω2 0.6944 0.6787

a1 = 0.05 a1 = 0.05
b1 = 1.8 b1 = 2.2

ω1 0.3105 0.3144
ω2 0.6895 0.6856

a2 = 0.45 a2 = 0.55
b2 = 2 b2 = 2

ω1 0.2152 0.3896
ω2 0.7848 0.6104

a2 = 0.5 a2 = 0.5
b2 = 1.8 b2 = 2.2

ω1 0.3454 0.2806
ω2 0.6546 0.7194

Table 3: Estimated weights.

the aggregated prior distribution. The obtained results show that the influence on these
prior distributions is given by the data set (considering each value one by one) and not
by a summary statistic, such as the sample mean or any other statistics.

6 Discussion.

The aim of this paper is to develop a general decision making-based approach to as-
sess the weights in an opinion pooling. Several experts’ opinions about a parameter
of interest are collected, and then, they are combined through a logarithmic opinion
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Figure 5: Values for the Kullback-Leibler divergences.

pool. Consequently, a prior distribution is considered, which mixes the experts’ beliefs
according to the features of this opinion pooling. Since the aggregated prior distribu-
tion depends on some parameters (i.e. weights), then they are calculated by taking into
account both a calibration measure based on Kullback-Leibler divergence and the fact
that there is no information from the decision maker. Thus, by considering the previous
calibration measure, a probability distribution is proposed for which the pooled prior
distribution has the least expected loss.

When no information from the decision maker about the states of nature is con-
sidered, then a general method is provided, which tends to result in the selection of
the most diffuse pooled prior distribution. Observe that this prior distribution repre-
sents the information given by all experts. On the contrary, the belief of a diffuse expert
might not be represented through a more informative combined prior distribution. Con-
sequently, it would be very interesting to try to find a way of establishing some tests to
analyze the local sensitivity of the method (see Pérez et al. (2006)).

A difficulty that arises from the assumption of prior ignorance for x ∈ X (states of
nature) by the decision maker is that the distribution, m(x), could be improper. The
proposal, in this case, is to use the empirical predictive distribution. Hence, the data
set has to be included in the process. Perhaps, another way to obtain m(x) is to assume
prior ignorance on the weight vector. Therefore, a uniform Dirichlet prior distribution
on these weights would be taken. However, the process would be non analytical.

Finally, an extension of this study could be performed, by considering that the deci-
sion maker has prior information about the states of nature independent of the experts.
Some tests have been carried out, under the assumption that the information comes
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from historical data (or historical information). Observations have been made regard-
ing matters related to the prior distributions elicited by the experts, the information
provided by the decision maker through the predictive distribution and the obtained
weights. Specifically, the obtained pooled distribution depends on the prior distribu-
tions given by both the experts and the decision maker. Thus, the proposed method
does not always choose the less informative prior distribution. An issue open for fur-
ther investigation can consider a sample, x, of size n in order to obtain the posterior
distribution πJ(θ|x). Under this assumption, some important questions to be analyzed
are, among others, the choice of an appropriate sample size or the suitability of taking
n tending to infinity. In addition, the computational difficulties that arise from the last
assumption would have to be studied.

Appendix A. Proof of Proposition 1.

In order to deal with the existence of only one combined distribution, first, the convexity
of the function to optimize is shown.

The optimization problem (4) is equivalent to the problem:

min
ω∈χ



− log t(ω)−

k∑

j=1

ωj Em(EπJ (log πj (θ)))



 .

Observe that the second term in the previous function is a linear combination over ωj ,
thus the attention is focused on the first term:

log t(ω) = log




∫

Θ

k∏

j=1

(πj (θ))ωj dθ


 .

Therefore, given ω1, ω2 ∈ χ the following inequality must be proved:

log t(λω1 + (1− λ)ω2) ≤ λ log t(ω1) + (1− λ) log t(ω2), for all λ ∈ [0, 1] . (16)

Since:

log t(λω1 + (1− λ)ω2) = log




∫

Θ

k∏

j=1

(πj (θ))λω1
j +(1−λ)ω2

j dθ


 (17)

= log




∫

Θ




k∏

j=1

(πj (θ))ω1
j




λ 


k∏

j=1

(πj (θ))ω2
j




(1−λ)

dθ


 ,

the Hölder’s inequality (see Cheung (2001)) is applied to the last integral in expression
(17).
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It is obtained the following inequality:

log




∫

Θ

k∏

j=1

(πj (θ))λω1
j +(1−λ)ω2

j dθ




≤ λ log




∫

Θ

k∏

j=1

(πj (θ))ω1
j dθ


 + (1− λ) log




∫

Θ

k∏

j=1

(πj (θ))ω2
j dθ


 .

Therefore, the function to optimize: log t(ω) − ∑k
j=1 ωj Em(EπJ (log πj (θ))) =

log t(ω) − H(ω) is convex because it is the sum of two convex functions and it has
a minimum.

Nevertheless, as the previous function is a convex one on a compact set χ , if it has
several minimum values then all of them take the same value. Let ω1 and ω2 be two
weight vectors such that:

log t(ω1)−H(ω1) = log t(ω2)−H(ω2) = min
ω∈χ

(log t(ω)−H(ω)).

Since λω1 + (1− λ)ω2 ∈ χ and χ is a compact set, then:

log t(λω1 + (1− λ)ω2)−H(λω1 + (1− λ)ω2) = min
ω∈χ

(log t(ω)−H(ω)). (18)

It is satisfied:

log t(λω1 + (1− λ)ω2)−H(λω1 + (1− λ)ω2)

= log t(λω1 + (1− λ)ω2)− (
λH(ω1)− (1− λ)H(ω2)

)

≤ (
λ log t(ω1) + (1− λ) log t(ω2)

)− (
λH(ω1)− (1− λ)H(ω2)

)

= λ
(
log t(ω1)−H(ω1)

)
+ (1− λ)

(
log t(ω2)−H(ω2)

)

= min
ω∈χ

(log t(ω)−H(ω)),

thus, by considering the expression (18), the equality in the previous expression is
satisfied and, in consequence:

log t(λω1 + (1− λ)ω2) = λ log t(ω1) + (1− λ) log t(ω2).

However, the previous equality holds, when the equality in Hölder’s inequality holds.
Following Ash (1972) (from Lemma 2.4.3 to Lemma 2.4.5), it occurs when the following
equality is satisfied, up to a null measure set :

k∏
j=1

(πj (θ))ω1
j

∫
Θ

k∏
j=1

(πj (θ))ω1
j dθ

=

k∏
j=1

(πj (θ))ω2
j

∫
Θ

k∏
j=1

(πj (θ))ω2
j dθ

for all θ ∈ Θ.
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Hence,
log t(ω1) = log t(ω2),

and it follows that there exists a unique aggregated prior which minimizes the expected
loss.

Appendix B. Predictive prior distributions.

Poisson distribution. Consider the exponential family with densities of the form:

f (x|λ) = e−λ λx

x!
(λ > 0, x = 0, 1 . . .) .

The canonical representation is given by (9), where θ = log (λ) , Θ = (−∞,∞) , M (θ) =
eθ and b (x) = 1/x!. The Jeffreys’ prior on θ is:

πJ (θ) ∝ exp
{

θ

2

}
,

thus, C1 = 1 and C2 = 0. In order to obtain EπJ (θ) and EπJ (M(θ)), the partial deriva-
tives ∂C1 (− log(K(C1, C2))) and ∂C2 (− log(K(C1, C2))) are calculated by considering
the general case:

K(C1, C2) =

(
1 + C2

2

)x+
C1
2

Γ
(
x + C1

2

) .

By substituting the values of C1 and C2, it is finally obtained:

EπJ (θ) = Ψ
(

x +
1
2

)
; EπJ (M(θ)) = x +

1
2
.

The Jeffreys’ prior distribution is improper and the predictive prior too. Therefore, the
empirical marginal prior has to be used. For this case, the minimal training samples
are of size one and the empirical distribution is:

m (x) =
1
n

∑

i

I{xi} (x) , (19)

where x = (x1, x2, . . . , xn) . Hence,

Em

(
Ψ

(
x +

1
2

))
=

1
n

n∑

i=1

Ψ
(

xi +
1
2

)
; Em

(
xi +

1
2

)
=

1
n

n∑

i=1

(
xi +

1
2

)
.

Binomial distribution. Consider the exponential family with densities of the form:

f (x|p) =
(

r

x

)
px (1− p)r−x (r = 1, 2, . . . , 0 < p < 1, x = 0, 1, . . . , r) .
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The canonical representation is given by (9), where θ = log
(

p
1−p

)
, Θ = (−∞,∞) ,

M (θ) = r log
(
1 + eθ

)
and b (x) =

(
r
x

)
. The Jeffreys’ prior on θ is:

πJ (θ) ∝ exp
{

θ

2
− log

(
1 + eθ

)}
,

thus, C1 = 1 and C2 = 2
r . The partial derivatives ∂C1 (− log(K(C1, C2))) and ∂C2(− log

(K(C1, C2))) are calculated by considering the general case:

K(C1, C2) =
Γ

(
r + r C2

2

)

Γ
(
x + C1

2

)
Γ

(
r + r C2

2 − x− C1
2

) .

By substituting the values of C1 and C2, it is finally obtained:

EπJ (θ) = Ψ
(

x +
1
2

)
−Ψ

(
r − x +

1
2

)
;

EπJ (M(θ)) = rΨ(r + 1)− rΨ
(

r − x +
1
2

)
.

The predictive prior distribution is given by:

m (x) =
(

r

x

)
Γ (1)(

Γ
(

1
2

))2 Γ (r + 1)
Γ

(
x +

1
2

)
Γ

(
r − x +

1
2

)
,

that is a Binomial-Beta ∼ (
1
2 , 1

2 , r
)

(see Bernardo and Smith (1994)). Therefore,

Em

(
Ψ

(
x +

1
2

))
=

Γ (1)(
Γ

(
1
2

))2)

r∑
x=0

Γ
(
x + 1

2

)
Γ

(
r − x + 1

2

)

Γ (x + 1)Γ (r − x + 1)
Ψ

(
x +

1
2

)
.

The expectation Em

(
Ψ

(
r − x + 1

2

))
is obtained in a similar way as the previous one.

Negative-Binomial distribution. Consider the exponential family with densities of
the form:

f (x|p) =
(

x + r − 1
r − 1

)
px (1− p)r (r = 1, 2, . . . , 0 < p < 1, x = 0, 1, . . .) .

The canonical representation is given by (9), where θ = log (p) , Θ = (−∞, 0) , M (θ) =
−r log

(
1− eθ

)
and b (x) =

(
x+r−1

r−1

)
. The Jeffreys’ prior on θ is:

πJ (θ) ∝ exp
{

θ

2
− log

(
1− eθ

)}
,

thus C1 = 1 and C2 = − 2
r . The partial derivatives ∂C1 (− log(K(C1, C2))) and ∂C2(− log

(K(C1, C2))) are calculated by considering the general case:

K(C1, C2) =
Γ

(
x + C1

2 + r + C2r
2 + 1

)

Γ
(
x + C1

2

)
Γ

(
r + r C2

2 + 1
) .
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By substituting the values of C1 and C2, it is finally obtained:

EπJ (θ) = Ψ
(

x +
1
2

)
−Ψ

(
x + r +

1
2

)
;

EπJ (M(θ)) = −rΨ(r) + rΨ
(

x + r +
1
2

)
.

The expectations with respect to the empirical prior distributions (19) are:

Em

(
Ψ

(
x +

1
2

))
=

1
n

n∑

i=1

Ψ
(

xi +
1
2

)
;

Em

(
Ψ

(
x + r +

1
2

))
=

1
n

n∑

i=1

Ψ
(

xi + r +
1
2

)
.

Gamma distribution. Consider the exponential family with densities of the form:

f (x|λ) =
λr

Γ (r)
xr−1 e−λx (r, λ and x > 0) .

The canonical representation is given by (9), where θ = −λ,Θ = (−∞, 0) , M (θ) = −r

log (−θ) and b (x) = xr−1

Γ(r) . The Jeffreys’ prior on θ is:

πJ (θ) ∝ exp {− log (−θ)} ,

thus, C1 = 0 and C2 = − 2
r . The partial derivatives ∂C1(− log(K(C1, C2))) and

∂C2(− log(K(C1, C2))) are calculated by considering the general case:

K(C1, C2) =
Γ

(
x + C1

2

)r+
rC2
2 +1

Γ
(
r + rC2

2 + 1
) .

By substituting the values of C1 and C2, it is finally obtained:

EπJ (θ) = − r

x
; EπJ (M(θ)) = r (log (x)−Ψ(r)) .

The expectations with respect to the empirical prior distributions (19) are:

Em

(
− r

x

)
= − r

n

n∑

i=1

1
xi

; Em (r log x− rΨ(r)) =
r

n

n∑

i=1

log(xi)− rΨ (r) .

Normal distribution. Consider the exponential family with densities of the form:

f (x|λ) =
1√

2πσ2
exp

{
− 1

2σ2
(x− λ)2

} (−∞ < x, λ < ∞ and σ2 > 0
)
.

The canonical representation is given by (1), where θ = λ/σ2, Θ = (−∞,∞) , M (θ) =
σ2θ2/2 and b (x) = exp

{−(1/2σ2)x2
}

/
√

2πσ2. The Jeffreys’ prior on θ is:

πJ (θ) ∝ 1,
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thus, C1 = C2 = 0. The partial derivatives ∂C1(− log(K(C1, C2)))and ∂C1(− log(K(C1,
C2))) are calculated by considering the general case:

KB
pos =

√
(C2 + 2) σ2

4π
exp

{
− (2x + C1)

2

4σ2 (C2 + 2)

}
.

By substituting the values of C1 and C2, it is finally obtained:

EπJ (θ) =
x

σ2
; EπJ (M(θ)) =

σ2 + x2

2σ2
.

The expectations with respect to the empirical prior distributions (19) are:

Em

( x

σ2

)
=

1
nσ2

n∑

i=1

xi ; Em

(
σ2 + x2

2σ2

)
=

1
2

+
1

2σ2n

n∑

i=1

x2
i .
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— (1986). “Combining Probability distributions: A Critique and an Annotated Bibli-
ography.” Statistical Science, 1(1): 114–148. 411, 412, 414

Gupta, R. D. and Kundu, D. (2001). “Exponentiated Exponential Family: An Alter-
native to Gamma and Weibull distributions.” Biometrical Journal, 43(1): 117–130.
427

Gutiérrez-Peña, E. and Smith, A. F. M. (1995). “Conjugate parameterisations for
natural exponential families.” Journal of the American Statistical Association, 90:
1347–1356. 420

— (1997). “Exponential and Bayesian conjugate families: Review and extensions (with
discussion).” Test, 6: 1–90. 419, 420

Heskes, T. (1998). “Selecting weighting factors in logarithmic opinion pools.” In Pro-
ceedings of the 1997 conference on Advances in Neural Information Processing Sys-
tems 10, 266–272. The MIT Press. 412, 417

Jacobs, R. A. (1995). “Methods for combining expert’s probability assessments.” Neu-
ronal Computation, 7: 867–888. 412

Jozani, M. J., Nematollahi, N., and Shafie, K. (2002). “An admissible minimax estimator
of a bounded scale-parameter in a subclass of the exponential family under scale-
invariant squared-error loss.” Statistics and Probability Letters, 60: 437–444. 425

Kadane, J. B., Schervish, M. J., and Seidenfeld, T. (1999). Rethinking the foundations
of Statistics. Cambridge University Press. 412

Kascha, C. and Ravazzolo, F. (2010). “Combining inflation density forecasts.” Journal
of Forecasting , 29: 231–250. 412, 414

Kundu, D. (2008). “Bayesian Inference and Life Testing Plan for the Weibull distribu-
tion in presence of Progressive Censoring.” Technometrics, 50(2): 144–154. 425

Lancaster, T. (2004). An Introduction to modern Bayesian Econometrics. Blackwell
Publishing. 417

Lawless, J. F. (2003). Statistical Models and Methods for Lifetime Data, Second Edition.
Wiley Series in Probability and Statistics. 425

Linhart, H. and Zucchini, W. (1986). Model Selection. Wiley, New York. 427

Liseo, B. (1993). “Elimination of nuisance parameters with reference priors.”
Biometrika, 80: 295–304. 415

McConway, K. J. (1981). “Marginalization and linear opinion pools.” Journal of the
American Statistical Association, 76: 410–414. 412

Moreno, E., Bertolino, F., and Racugno, W. (1996). “The intrinsic priors in model
selection and hypotesis testing.” Technical report, University of Granada. 417



438 Log-Linear Pool to Combine Prior Distributions

— (2003). “Bayesian Inference under partial prior information.” Scandinavian Journal
of Statistics, 30: 565–580. 418

Morris, C. N. (1982). “Natural exponential families with quadratic variance functions.”
The Annals of Statistics, 10: 65–80. 419

— (1983). “Natural exponential families with quadratic variance functions: Statistical
theory.” Annals of Statistics, 11: 515–529. 419

Morris, C. N. and Lock, K. F. (2009). “Unifying the named natural exponential families
and their relatives.” The American Statistician, 63(3): 247–253. 419

O’ Hagan, A., Buck, C., Daneshkhah, A., Eiser, J., Garthwaite, P., Jenkinson, D., Oak-
ley, J., and Rakow, T. (2006). Uncertain Judgements: Eliciting Experts’ Probabilities.
Wiley. 412

Ouchi, F. (2004). “A literature review on the use of expert opinion in probabilistic risk
analysis.” Technical Report 3201, World Bank, Washington, D.C. 411
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