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Rejoinder

Kristian Lum∗ and Alan E. Gelfand†

We very much appreciate these three diverse discussions with virtually no overlap
across them. We first take up the comments of Guhaniyogi and Banerjee (henceforth
GB). With regard to the association structure under the asymmetric Laplace process
(ALP), perhaps our presentation was not as clear as it should have been. Working with
say isotropic covariance functions, we find that, regardless of the specification for the
ξ(s), the resulting correlation depends only on the distance between locations and is
symmetric in p away from .5. Explicitly,

corr(ε(s), ε(s′)) =
ρ(||s− s′||)E(

√
U(s)U(s′) + bpcorr(U(s), U(s′)))

1 + bp

where marginally, the U(s) ∼ Exp(1) and bp = (1−2p)2

2p(1−p) . Note that bp is minimized at
0 when p = .5 and tends to ∞ as p → 0, 1. With a common U(s) = U , we see that
regardless of s and s′, the correlation can not go to 0, taking its minimum at p = .5,
tending to 1 as p → 0, 1. We don’t employ this case. With a copula spatial process
model for ξ(s), equivalently, U(s), we find that, for any p, correlation will go to 0 as
||s − s′|| → ∞. Again, it will take its minimum at p = .5, tending to corr(U(s), U(s′))
as p → 0, 1, given s and s′. We don’t employ this case either. For the case of i.i.d. ξ(s),
the second term in the numerator disappears and the expectation in the first term is
constant (π/4). So now, for any p, correlation will go to 0, as determined by ρ and is
strongest at p = .5, tending to 0 regardless of s and s′ as p → 0, 1. This behavior seems
to be what would be desired for the ε(s) process.

With regard to the asymmetric Laplace predictive process (ALPP), we liked the
novel form of the “bias” adjustment that arises due to the constraint that varZ̈(s) must
be 1. The tapered adjustment form in Sang and Huang (2012) is attractive but, we
agree that its use is not likely to affect the inference in the present context. We concede
that employing the double Gaussian process, drawing from Kottas and Krnjajić (2009)
would be more flexible than the ALP and is investigated in the thesis of Lum (2010). Its
properties and implementation issues are discussed there but presentation was beyond
the scope of this paper. Finally, we do like the GB idea of joint modeling of spatial
quantiles, imagining an application for modeling quantiles of ozone and PM2.5 exposure.

We must take issue with the discussion of Lin and Chang (henceforth LC). They
present a simulation example which seemingly reveals some shortcomings of the ALP.
They claim that because our method does not perform well under the loss function
they suggest, SSE(p) = (qp − q̂p)2, it does not provide the same flexibility as its semi-
parametric frequentist cousin.

First, we disagree that we are using a mean regression model. We are certainly not
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and further note that this points to a limitation of their example. More precisely, a mean
regression model provides quantiles qp(X) in the form of qp(X) = µ(X)+F−1(p) where
F is the cdf of the mean 0 error distribution. Such models imply that qp(X)− qp′(X) is
free of X regardless of the choice of error distribution. Furthermore, in their simulation,
LC conveniently choose µ(X(s)) to be strictly monotone as s moves away from 0. In
practice, covariate surfaces are not monotone. The above assumptions are favorable to
the squared error loss comparison they offer. Our conditional quantile specification is
built from P (YX < µp(X)) = p, i.e., 0 is the pth quantile of our error distribution.
For us, µp(X) − µp′(X) is not free of X. This is apart from our further objective
of allowing our regression parameters to vary with p, in order to see how the nature
of the quantile relationship changes across p. The approach of LC is not capable of
making such assessment, so it is not a viable alternative for our purposes. Lastly, we
will certainly concede that the flexibility of a spatial mean regression model can be
sufficient to accommodate many generative models– including some with long tails.

A second point of contention is that the choice of loss function for LC, SSE(p), is not
an ideal loss function for evaluating quantiles. To really assess whether the pth quantile
model, qp, is fitting well, one must ask what the probability is that an observation
drawn from the distribution will be less than the fitted quantile, q̂p. If this quantile is
fitting well, that probability ought to be roughly p. Check loss has also been used as
a convenient metric for assessing the fit of quantiles because it has the property that
it is minimized when 100p% of the data is below the fitted value. It has the added
advantage over the sample proportion in that it has some sensitivity to how close the
prediction is to the actual value– it penalizes predictions very far away from the data
value more than those that are close but retains the property that it is small when the
sample proportion is near p.

We also provide a simulation example which shows that maximum likelihood quantile
regression estimates also perform poorly under SSE(p). In fact, we replicate datasets,
avoiding concerns regarding average performance associated with a single dataset as
in LC. For simplicity, we remove the spatial component so that the classic frequentist
version may be fit. We simulate yi ∼ N(0, 1) for i = 1 : 100. We fit an intercept-
only regression and compare the fit of the quantile estimated from frequentist quantile
regression (as implemented in the quantreg package for R) to those implied by a least
squares regression (lm in R). For the least squares regression, we estimate the pth
quantile as q̂p = µ̂+ σ̂Φ−1(p). This is to be compared to the maximum likelihood based
quantile estimates. Here, the true qp = Φ−1(p) is known. We assess the fit to the true
quantile using LC’s SSE(p), and summarize the results in Table 1, which shows the
sum of SSE(p) across simulations. We find that frequentist quantile regression also
performs poorly compared to a standard linear regression under this model and loss
function.

We re-evaluate the above simulation example using the sample proportion less than
the fitted quantile and check loss. The results are shown in Table 2. We find that,
although the normal regression still performs well, under the check loss function, it
generally does not do as well as quantreg.
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Table 1: SSE(p) for lm and quantreg
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

lm 18.79 13.87 11.56 10.39 9.98 10.23 11.22 13.34 17.98
quantreg 28.70 21.11 18.13 15.89 13.09 15.89 17.84 20.13 28.60

Table 2: Proportion less than fitted quantile and check loss for lm and quantreg
p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

lm-prop 0.09 0.23 0.29 0.39 0.46 0.60 0.72 0.85 0.92
quantreg-prop 0.10 0.20 0.30 0.40 0.49 0.59 0.69 0.79 0.89

lm-check 124 80 57 45 40 44 57 82 127
quantreg-check 110 83 57 45 40 44 56 74 105

Finally, we also simulate from the Gaussian-Log-Gaussian (GLG) model using the
same parameters as LC. We fit the spatial mean regression using the default settings
in the spBayes package in R. We run each for 10,000 iterations. Table 3 shows the
results for these models. We find that the ALP performs better than Bayesian spatial
mean regression (BSMR) from the perspective of the check loss function. Quantreg,
again, does quite well considering that it has many fewer parameters than the other
two models– it has no spatial component. In this case, it is competitive with the spatial
models primarily because LC chose a parameter for the spatial covariance that results
in weak spatial structure (LC use a range of .25 relative to a maximum distance of

√
2

over the unit square).

Table 3: Proportion less than fitted quantile and check loss for BSMR, ALP, and
quantreg

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
BSMR-prop 0.07 0.12 0.23 0.39 0.56 0.71 0.81 0.87 0.91
ALP-prop 0.12 0.22 0.28 0.38 0.47 0.54 0.63 0.73 0.90

quantreg-prop 0.09 0.20 0.31 0.39 0.49 0.59 0.69 0.79 0.89
BSMR-check 56 80 93 100 106 110 107 96 69
ALP-check 45 68 83 95 98 101 99 87 62

quantreg-check 56 78 94 105 110 112 112 103 81

Lastly, Ferreira makes it easy for us. In light of the foregoing discussion regarding
induced dependence structure, we think the i.i.d. case is preferred. Moreover, since we
have spatial dependence in the ε(s) process arising from that in the Z(s) process, it
is unclear whether the data would enable us to distinguish the case of i.i.d. ξ(s) from
the spatially structured case. Should we seek to implement the copula-based model for
ξ(s), the challenge is primarily computational, as updating each ξ(s) would require re-
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computing the likelihood of all ξ(s)’s at every iteration, i.e. n expensive computations
per iteration.

Again, we thank the reviewers for their time in preparing discussions for us. As LC
note, quantile regression is an area with a rapidly increasing literature. There is room
for contribution in both the conditional and unconditional cases, in both parametric
and nonparametric specifications, and in revealing the inferential benefits of working
within the Bayesian framework.
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