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Comment on Article by Lum and Gelfand

Nan Lin∗ and Chao Chang†

We congratulate Lum and Gelfand on their interesting and important contribution to
Bayesian spatial quantile regression (BSQR). The article proposed a conditional quantile
process model that incorporates spatial dependence through the asymmetric Laplace
process (ALP). Based on a decomposition of the asymmetric Laplace distribution, a
Bayesian hierarchical model is fitted with Markov Chain Monte Carlo (MCMC). In the
sequel, we will call the method of Lum and Gelfand ALP-BSQR.

In the past decade, quantile regression literature has grown very rapidly, and more
recently, it has started to attract a lot of attentions among Bayesians. One major mo-
tivation for using quantile regression by frequentists is its semi-parametric nature, i.e.,
there is no need to fully specify a parametric form for the error distribution. And as
a special case, median regression has long been used as a robust alternative to mean
regression. Among the recent development for Bayesian quantile regression, some semi-
and non-parametric approaches have been proposed, such as the Bayesian empirical
likelihood method in Yang and He (2012) and the Dirichlet process mixture model in
Kottas and Krnjajic (2009). However, the computational complexity of these meth-
ods is usually very high. And most Bayesian quantile regression methods, including
the ALP-BSQR proposed by Lum and Gelfand (2012), rely on the asymmetric Laplace
distribution and are fully parametric. These methods actually utilize mean regression
models and assume an asymmetric Laplace distribution on the error term. Then max-
imizing the posterior density becomes equivalent to optimizing the check loss function
under the frequentist context. Hence the problem essentially becomes finding the pos-
terior mode for a mean regression model with asymmetric Laplace errors. As a result,
this type of Bayesian quantile regression loses the ‘semi-parametric’ feature and it raises
the concern of whether the Bayesian method still works for a large class of distributions
as in the frequentist case. In some discussions for linear quantile regression and related
models, the fully parametric Bayesian approach has shown good performance on data
generated from other error distributions (Ji et al. 2012; Li et al. 2010).

An interesting question is then: Is the ALP-BSQR method flexible enough to main-
tain some ‘semi-parametric’ flavor as in the frequentist quantile regression? We will
investigate the performance of ALP-BSQR on data simulated from different spatial
models. And as a benchmark for comparison, we can also fit spatial mean regression to
these data and obtain quantiles from the predictive distribution. In the following, we
will conduct simulation studies to compare the performance of the Bayesian quantile re-
gression model and the standard Bayesian inference for the mean regression model. The
criterion of our comparison is the accuracy of quantile prediction of the two methods.
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1 Simulation Setup

We will use three different spatial models for data simulation, including two Gaussian
process models and a Gaussian-log-Gaussian (GLG) model (Palacios and Steel 2006).
The covariates are coordinates of points si, i = 1, 2, . . . , n = 100 uniformly sampled on
the unit square [0, 1]× [0, 1].

The Gaussian process model is given by

Y (s) = X(s)T
β + σw(s) + τε(s), (1)

where w(s) is a Gaussian process with mean 0 and unitary variance and the correlation
function being exponential, i.e. C(si, sj) = exp(−θ‖si − sj‖), and ε(s) is an uncorrelated
Gaussian process with mean 0 and unitary variance. Note that X(s) is a 3× n matrix
with the first row being all 1’s, and the next two rows containing the coordinates of
{si}. In Model (I), we set σ2 = 0.8, τ2 = 0.2 and θ = 12. In Model (II), we increase
the variation and set σ2 = 4, τ2 = 2 and θ = 12. The Gaussian process component
specified in Models (I) and (II) is consistent with that in the ALP-BSQR.

Model (III) is the following GLG model,

Y (s) = X(s)T
β + σ

w(s)√
λ(s)

+ τε(s) (2)

with w(s), ε(s), σ2 and τ2 the same as in Model (I). The extra mixing process λ(s) is
independent of w(s) and has the distribution

(ln(λ(s1)), . . . , ln(λ(sn)))T ∼ Nn(−ν

2
1, νC), (3)

where 1 is a column vector of 1’s, C is set as the same correlation matrix of the Gaussian
process w(s), i.e. exponential, and the hyperparameter ν controls the variance of λ(si).
From the above lognormal distribution in (3), it is easy to see that E[λ(si)] = 1 and
var[λ(si)] = exp(ν)− 1 for all i. Thus when ν is close to 0, λ(si)’s have mean close to
1 with very small variance. When ν increases, the λ(si)’s become more spread out with
mode shifting toward 0. This GLG model provides non-Gaussian tail behaviors with
heavy tail for large ν. We set ν = 3.

We simulate one data set from each of the three models. In all three models, we set
β = (1, 1, 1)T and use the same set of locations {si}. Our goal is to examine the impact
of the variation in the data and violation of the Gaussian assumption.

2 Results

For each of the three simulated data sets, we fit the standard Bayesian spatial mean
regression model (BSMR) and the ALP-BSQR model at five different quantiles p =
0.1, 0.3, 0.5, 0.7, 0.9. The BSMR assumes a model as specified in (1) and can be estimated
using Gibbs sampling. We follow the prior specification in Palacios and Steel (2006) for
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the unknown parameters β, σ2, ρ2 = τ2/σ2 and θ. The prior of β is N(0,104I), the
prior of σ2 is the inverse-Gamma distribution with both parameters being 10−6, the
prior of ρ2 is a generalized inverse-Gaussian with parameters 0.87 and 3, and the prior
of θ is exponential with mean 0.3/m, where m is the median pairwise distance among
all {si}. The Gibbs sampler iteratively samples from the full conditional distributions
of β, σ2, ρ2 and θ. Sampling from the full conditional distributions of β and σ2 is
straightforward, while sampling ρ and θ is done using the Metroplis-Hastings algorithm
with a log-normal proposal distribution. For both BSMR and ALP-BSQR, we ran
100,000 MCMC iterations with 90,000 burn-in steps.

For all three data simulation models, we can obtain the theoretical values of the
quantiles by simulation. Therefore, we can evaluate the prediction accuracy of the two
methods using the sum of squared errors SSE(p) =

∑100
i=1 [q(p, si)− q̂(p, si)]

2, where
q(p, si) and q̂(p, si) denote the theoretical pth quantile and the estimated pth quantile
of the response Y (si), i = 1, . . . , 100, respectively. The result is summarized in the
following table.

Table 1: SSE of BSMR and ALP-BSQR for three simulated data sets
Data
model

Fitting
method p=0.1 p=0.3 p=0.5 p=0.7 p=0.9

I BSMR 0.8991 0.8858 1.0923 1.3857 2.0548
I ALP-BSQR 4.2863 4.2724 7.4521 6.1980 7.5519
II BSMR 8.5793 7.9370 8.3825 9.9511 11.5816
II ALP-BSQR 24.9052 14.9796 45.3208 37.0971 39.6005
III BSMR 1944.836 347.3453 28.0514 350.9360 1945.138
III ALP-BSQR 2378.378 497.9515 5.2371 340.1085 1972.378

In Table 1, firstly, we notice that the BSMR outperforms the Bayesian quantile
regression in most cases. For data generated from Models (I) and (II), this result
is largely as expected as the BSMR method fits the correct model. But the large
discrepancy in the SSEs for the two methods raises some concerns on the accuracy of
the ALP-BSQR approach. While the error variance increases from Model (I) to Model
(II), the SSE of both methods get larger as well, but the ALP-BSQR is shown to have
a bigger increase in the prediction error. Figures 1 and 2 plot the quantile surfaces
for p = 0.5 and 0.1 for dataset (II). They show that the restrictive linear quantile
relationship in ALP-BSQR is not as flexible as the BSMR in fitting the quantile surface.

Secondly, when the data are from a non-Gaussian process, Model (III), both methods
produce inaccurate predictions of the quantiles. For illustration, we plotted the quantile
surfaces for p = 0.5 and 0.1 in Figures 3 and 4. While the large SSE of the BSMR method
is as expected due to violation of the normality assumption, we would have hoped the
ALP-BSQR, as a quantile regression method, would display some robustness to the
non-normality. However the result shows that the ALP-BSQR is also very sensitive to
non-normality, and actually more affected than BSMR at the extreme quantiles. But it
is also worth noting that the ALP-BSQR method performed better at the median. This
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phenomenon deserves further investigation on the property of the ALP-BSQR model.

(a) The theoretical quantile surface (b) The estimated quantile surface given
by ALP-BSQR

(c) The estimated quantile surface given
by the BSMR

Figure 1: The quantile surface for data set (II) at p = 0.5

3 Concluding Remarks

Through some simulation studies, we found that the restrictive linear quantile surface
assumption in the ALP-BSQR model can be easily violated, and hence lead to inaccurate
prediction of the quantiles, especially in the heavy tail situation. Results suggest that
the ALP-BSQR model may not serve as a flexible model as expected for frequentist
quantile regression. In addition, the introduction of the asymmetric Laplace process,
though it allows one to carry out quantile regression in the Bayesian way, might be too
restrictive and can not adequately capture the shape of the quantile surface of many
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spatial models.

A more fundamental issue is to think about whether it is worth using Bayesian
quantile regression given the fact that the Bayesian inference for a mean regression
model is able to provide inferences for quantiles using the predictive distribution. In
general, the mean regression models require less complicated fitting algorithms than the
quantile regression models. Unlike frequentist inference, Bayesian analysis can provide
the predictive distribution. So, if one has a mean regression model with a very flexible
error structure, do we really need quantile regression for Bayesian inference?

References
Ji, Y., Lin, N., and Zhang, B. (2012). “Model selection in binary and tobit quantile

regression using the Gibbs sampler.” Computational Statistics and Data Analysis,
56: 827–839. 263

Kottas, A. and Krnjajic, M. (2009). “Bayesian Semiparametric Modelling in Quantile
Regression.” Scandinavian Journal of Statistics, 36: 297–319. 263

Li, Q., Xi, R., and Lin, N. (2010). “Bayesian regularized quantile regression.” Bayesian
Analysis, 5: 533–556. 263

Palacios, M. B. and Steel, M. F. J. (2006). “Non-Gaussian Bayesian Geostatistical
Modeling.” Journal of the American Statistical Association, 101: 604–618. 264

Yang, Y. and He, X. (2012). “Bayesian Empirical Likelihood for Quantile Regression.”
under minor revisions for Annals of Statistics. 263



268 Comment on Article by Lum and Gelfand

(a) The theoretical quantile surface (b) The estimated quantile surface given
by ALP-BSQR

(c) The estimated quantile surface given
by the BSMR

Figure 2: The quantile surface for data set (II) at p = 0.1
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(a) The theoretical quantile surface (b) The estimated quantile surface given
by ALP-BSQR

(c) The estimated quantile surface given
by the BSMR

Figure 3: The quantile surface for data set (III) at p = 0.5
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(a) The theoretical quantile surface (b) The estimated quantile surface given
by ALP-BSQR

(c) The estimated quantile surface given
by the BSMR

Figure 4: The quantile surface for data set (III) at p = 0.1


