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Comment on Article by Lum and Gelfand

Rajarshi Guhaniyogi∗ and Sudipto Banerjee†

We congratulate the authors for a well-written article on a problem of clear and
increasing scientific relevance. Quantile regression is being widely deployed in a num-
ber of disciplines to harness additional information about the relationship between the
outcome and covariates at the extremes of the outcome’s distribution. Modeling this
in the context of spatially referenced data is challenging. We have a few comments on
some aspects of the model.

The authors have argued the importance of conditional spatial quantile models to
account for varying effects of covariates across quantiles. To model these conditional
spatial quantiles of the response, they deploy the asymmetric Laplace process (ALP). An
elegant characterization of this distribution in terms of Gaussian and Gamma random
variables constitutes the premise of constructing spatial ALP’s. A particularly attractive
feature of this approach is the ease with which the Markov chain Monte Carlo (MCMC)
samplers can be designed, not only to update model parameters but also to carry out
spatial interpolation at arbitrary locations.

A point worth noting is that the ALP process can induce high correlations between
two outcomes at extreme quantiles (p → 0 and p → 1), even if the corresponding
locations are distant. In other words, outcomes arising from the tails of the distribution
are assumed to be highly correlated, irrespective of how far away in space they have
been collected. This is perhaps why the authors restricted their inference to quantiles
between 0.2 and 0.8 in the Baton Rouge real estate data example. We wonder how
serious this issue is in practice and whether their methodology is rendered invalid for
applications desiring more accurate inference on higher quantiles (see Reich et al. 2011).

We, however, recognize the flexibility of the ALP process to adapt to a more general-
ized set up. In particular, the Gaussian-Gamma representation can be easily extended
to arrive at multivariate asymmetric Laplace processes (see Kotz et al. 2001, refer-
ences therein). The multivariate ALP is characterized by a multivariate normal random
variable and a gamma random variable. Analogous to the univariate setting, the multi-
variate normal random variable can be replaced by a multivariate Gaussian process. It
is not hard to envision rich multivariate spatial quantile regression models for settings
where interest lies in jointly modeling a quantile for multiple spatially referenced out-
comes. A natural choice for the error process is the multivariate ALP. Inference will then
boil down to modeling the matrix-valued cross-covariance function of the multivariate
Gaussian process.

We also appreciate the attention to large spatial datasets for which the authors have
devised the asymmetric Laplace predictive process (ALPP). The Gaussian predictive
process, w̃m(s) in Section 7.1, emerges as a conditional expectation of the full-rank
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parent spatial process (denoted wm(s) in Section 7.1). This renders an analytically
tractable “residual” process (wm(s) − w̃m(s)) that is independent of the predictive
process. We do not know of any other low-rank process that offers this luxury. This
allows the authors to replace the residual process with an independent process, η̃m(s)
in Section 7.1 or η(s) in Section 7.2, whose variance structure agrees with that of the
residual process. The structured variance adjustment to the predictive process is now a
well-established method to adjust for excessive smoothness and results in more accurate
estimates for the spatial (and “nugget”, when it is present) variance as well as improved
predictive performance.

It is, however, possible to go further and rather than simply adjust for the variances
in the residual process, Sang and Huang (2012) propose using a “tapered” adjustment
to the residual process. More precisely, suppose η(s) ∼ GP (0, Cν(·, ·)), where Cν(·, ·) is
a compactly supported correlation function. Using the notation used in the paper let,

ε̈p(s) =

√
2ξ(s)

τp(1− p)
Z̈(s) +

1− 2p
p(1− p)

ξ(s), (1)

where Z̈(s) = (1− α) [w̃(s) + (w(s)− w̃(s))η(s)] + δ(s). This is likely to approximate
the residual process better, especially on a local scale, although the inferential improve-
ments in practice, at least in our experience with mean regression, are often not that
substantial. It will be interesting to see its effects on quantile regression.

From a more theoretical standpoint, tapering does have some advantages in retain-
ing the smoothness of the parent process. For example, even if the parent process is not
mean square differentiable (say with an exponential covariance function), the predictive
process is still mean square infinitely differentiable (see Guhaniyogi 2012). Thus, the
predictive process suffers from excessive smoothness. The structured variance adjust-
ment over-compensates for this by making the resulting process not even mean square
continuous. Using an appropriately chosen tapering function, one can ensure that the
resulting modified predictive process retains the same degree of smoothness as the parent
process. While the structured variance adjustments yield a diagonal matrix, tapering
will yield a sparse matrix corresponding to the disperison of (w(s) − w̃(s))η̃(s). This
makes the tapered models computationally accessible using sparse matrix computations.

Flexible nonparametric modeling of the error distribution, for example, the depen-
dent Dirichlet process outlined in Kottas and Krnjajic (2009) can also constitute an-
other route of exploration. Note that the shape of the asymmetric Laplace distribution
is perhaps restrictive with p determining skewness of the density, hence limiting its flex-
ibility in modeling skewness and tail behavior. In fact, the AL distribution is skewed
for p 6= 0.5 and is symmetric for the median regression case. This may be deemed
undesirable because median regression seeks to account for the skewness of the error
distribution. It will be interesting to explore formulations of spatial quantile regression
using the spatially dependent Dirchlet process mixture (Gelfand et al. 2005), perhaps
embedded within the AL distribution. Exploration along this line might result in more
flexible classes of models suitable for handling complex spatial dependencies at the tails
of the response distribution.
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