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Abstract

We construct fractional branes in Landau-Ginzburg orbifold cate-
gories and study their behavior under marginal closed string pertur-
bations. This approach is shown to be more general than the rational
boundary state construction. In particular we find new D-branes on
the quintic – such as a single D0-brane – which are not restrictions
of bundles on the ambient projective space. We also exhibit a fam-
ily of deformations of the D0-brane in the Landau-Ginzburg category
parameterized by points on the Fermat quintic.

1 Introduction

It is by now well established that D-branes in topological string theories
form a triangulated category [22, 47] (see also [4, 15, 16, 21, 45, 46, 49, 50,
57].) This algebraic structure captures very important aspects of D-brane
dynamics such as brane/anti-brane annihilation and bound state formation.
For topological B-models on Calabi-Yau threefolds, it has been shown that
the D-brane category is the bounded derived category of the target manifold
[4, 22,47,57].
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It is also well known that Calabi-Yau compactifications are continuously
connected to Landau-Ginzburg orbifolds (also called nongeometric phases)
by marginal closed string perturbations [60]. A central problem in this con-
text is concerned with the behavior of D-branes under such perturbations.
Answering this question requires a good control over D-brane dynamics in
nongeometric phases. One possible approach to this problem relies on bound-
ary states in Gepner models [33,54] and quiver gauge theories [27]. The main
idea is that one can represent all rational boundary states as composites of a
finite collection of elementary branes, called fractional branes. Many aspects
of bound state formation are remarkably captured by quiver gauge theory
dynamics. These methods have been successfully applied to D-branes on
Calabi-Yau hypersurfaces in a series of papers [9–14, 16–32, 48, 51, 55]. One
of the main outcomes of [11,17,18,26,30,51,59] is that fractional branes are
related by analytic continuation to an exceptional collection of bundles on
the ambient weighted projective space. From a mathematical point of view,
this can be understood as a derived McKay correspondence [8, 46].

An alternative approach to D-branes in topological Landau-Ginzburg
models has been recently developed in [41–43, 52]. The main result is that
topological Landau-Ginzburg D-branes form a category which admits an
abstract algebraic description based on the Landau-Ginzburg superpotential.
This has been shown to be a very effective approach to D-branes in minimal
models [43].

In this paper we consider D-brane categories associated to Landau-Ginzburg
orbifolds defined by quasihomogeneous superpotentials. Such models are
typically encountered in the context of gauged linear sigma models. We be-
gin with a discussion of Landau-Ginzburg boundary conditions and D-brane
categories in section two. In section three we give an explicit algebraic con-
struction of fractional branes which can be easily extended to more general
Gepner model rational boundary states.

In section four we construct more general objects in Landau-Ginzburg
orbifold categories – called new fractional branes – which do not have a
rational boundary state counterpart. In order to clarify their role in the
theory, in section five we determine their geometric interpretation in the
large radius limit using topological and algebraic techniques. The most
important point is that such objects correspond to bundles (or more general
derived objects) which are not restrictions from the ambient toric variety.
In particular we find that one of these objects corresponds to a single D0-
brane on the Fermat quintic. This is an important result since the D0-
brane on the quintic cannot be given a rational boundary state construction
at the Landau-Ginzburg point. However, rational boundary states with
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the quantum numbers of one D0-brane are known to exist in other models.
A systematic treatment can be found in [56]. Also, boundary states with
the quantum numbers of five D0-branes on the quintic have been recently
constructed in [53].

The algebraic constructions developed here can also be very effectively
applied to questions regarding deformations and moduli of D-branes in non-
geometric phases. In order to illustrate some of the main ideas, we discuss
two such applications in section six. First we prove a conjecture of [23]
regarding composites of fractional branes. Then we show that the Landau-
Ginzburg D0-brane admits a family of deformations parameterized by points
on the Fermat quintic. This is a remarkable confirmation of the construc-
tions employed in this paper. It also suggests that the Landau-Ginzburg
D0-brane may be the appropriate notion of point [1] in nongeometric phases.
It would be very interesting to explore this idea in more depth in connection
with [1, 2].
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Sameer Murthy, Greg Moore, Tony Pantev and especially Mike Douglas for
very useful conversations and suggestions. The work of D.-E.D. is partially
supported by DOE grant DE-FG02-96ER40949 and an Alfred P. Sloan foun-
dation fellowship. D.-E.D. would also like to acknowledge the hospitality of
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2 D-brane categories in Landau-Ginzburg Models

The starting point of our discussion is a brief review of supersymmetric
B-type boundary states in Landau Ginzburg models following [12, 36, 41].
We then present the construction of Landau-Ginzburg D-brane categories
following [41, 52] and extend it to orbifolds. Orbifold categories have been
briefly discussed in [42], but here we need a more systematic treatment.

Consider a Landau-Ginzburg model with n + 1 chiral superfields X =
(Xa) , a = 0, . . . , n subject to a polynomial superpotential W (X). We as-
sume that W has only one isolated, possibly degenerate, critical point at
the origin. We would like to formulate this theory on the infinite strip
x0 ∈ [−∞,∞], x1 ∈ [0, π] so that the full bulk-boundary action preserves
B-type supersymmetry with supercharge Q = Q+ +Q−. In addition to the
standard bulk action



464 FRACTIONAL BRANES IN LG ORBIFOLDS

Sbulk =
∫
d2x d4θ

n∑
a=0

XaXa +
∫
d2x d2θW (Xa)

=
∫

Σ
d2x

n∑
a=0

(
−∂µXa∂µXa +

i

2
ψ̄−a(

↔
∂ 0 +

↔
∂ 1)ψ−a +

i

2
ψ̄+a(

↔
∂ 0 −

↔
∂ 1)ψ+a

)

−
n∑

a=0

1
4
|∂aW |2 −

n∑
a,b=0

(
1
2
∂a∂bW ψ+aψ−b +

1
2
∂a∂bW ψ̄+aψ̄−b

)
(2.1)

(following the conventions of [12]), supersymmetry constraints require an
extra boundary term containing some number of boundary fermionic super-
fields Πα, α = 1, . . . , s. These are nonchiral, i.e. DΠα = Gα(X) , where
G is a polynomial function of the superfields X = (Xa) restricted to the
boundary. The boundary action is of the form

Sbdry =
i

4

∫
∂Σ
dx0

n∑
a=0

[
θ̄aηa − η̄aθa

]π
0

+ SΠ , (2.2)

where ηa = ψ−a + ψ+a , θa = ψ−a − ψ+a and

SΠ = −1
2

∫
∂Σ
dx0d2θ

s∑
α=1

Πα Πα − i

2

∫
dx0dθ Πα Fα(X) + c.c. .

(2.3)

The Fα(X) are polynomial boundary interactions. It was shown in [12, 41]
that the full action S = Sbulk + Sbdry preserves B-type supersymmetry if
Fα, Gα satisfy the constraint

W =
s∑

α=1

FαGα + const . (2.4)

If W has a single isolated critical point at the origin, the constant in the right
hand side of (2.4) can be taken zero without loss of generality. Therefore
B-branes will be classified by systems of polynomials (Fα, Gα) so that W =∑s

α=1 FαGα. Physically, such a brane is realized as the end product of
open string tachyon condensation on a brane-antibrane pair of rank r = 2s.
The Fα describe the tachyonic profile on the brane world volume. The
Chan-Paton factors associated to the brane-antibrane pair are realized as
the irreducible representation of the complex Clifford algebra

{πα, πβ} = {π̄α, π̄β} = 0
{πα, π̄β} = δαβ .

(2.5)
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The boundary contribution to the supercharge is

D =
s∑

α=1

(παFα(X) + π̄αGα(X)) . (2.6)

More generally we can consider a string stretched between two branes
specified by boundary couplings (F (1)

α , G
(1)
α ), (F (2)

α , G
(2)
α ). The boundary

action for the fermionic superfields is then

SΠ = −1
2

∫
∂Σ
dx0d2θ

s∑
α=1

Πα Πα − i

2

[ ∫
x1=π

dx0dθ Πα F
(1)
α (X)

−
∫

x1=0
dx0dθ Πα F

(2)
α (X)

]
+ c.c.

(2.7)

We study the spectrum of Ramond ground states in this sector. There is a
one-to-one correspondence between these states and the physical operators
in the twisted B-model. The BRST operator is

Qtot = Q|∂Σ +D . (2.8)

where the first term is the restriction to the boundary of the bulk super-
charge Q and the second represents the contribution of the boundary fields.
The physical operators are classified by cohomology classes of Qtot acting
on off-shell open string states. Since Qtot · X = 0, any element of the
boundary chiral ring can be expanded as a linear combination of monomials
πI π̄J =

∏s
α=1 π

I(α)
α π̄

J(α)
α , where I(α), J(α) take values 0, 1, with coefficients

in C[Xa] :

Φ =
∑
I,J

fI,J(Xa)πI π̄J . (2.9)

There is a natural Z/2 grading on the space of boundary fields defined by
deg(Φ) =

∑s
α=1(I(α)− J(α)) mod 2. Homogeneous elements of degree zero

will be called bosonic, or even, while homogeneous elements of degree one
will be called fermionic, or odd. The action of D on homogeneous elements
is given by

D · Φ = D(1) · Φ − (−1)deg(Φ)Φ ·D(2) (2.10)

where D(1),D(2) are the boundary BRST operators associated to the two D-
branes. Using this formula, one can find explicit representatives for BRST
cohomology, as discussed later in several examples.
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2.1 D-Brane Categories

We have so far considered a particular class of boundary conditions associ-
ated to tachyon condensation on brane/anti-brane pairs of equal rank r = 2s.
This is a restricted set of supersymmetric boundary conditions which can
be described in terms of additional boundary fermionic superfields. One
can obtain more general D-branes as end products of tachyon condensation
on brane/anti-brane pairs of arbitrary rank. Taking into account all such
boundary conditions, we obtain a triangulated additive category CW which
admits the following presentation [41,52].

The objects of CW are given by matrix factorizations of W , that is pairs

P1

p1 ��
P0

p0
�� of free C[X0, . . . ,XN ]-modules so that p0p1 = p1p0 = W . Fol-

lowing [52] we will denote this data by P . The massless open string states
between two D-branes P ,Q, form a Z/2 graded complex

H(P ,Q) = Hom(P1 ⊕ P0, Q1 ⊕Q0) =
⊕

i,j=0,1

Hom(Pi, Qj) (2.11)

where the grading is given by (i− j) mod 2. This complex is equipped with
an odd differential D which represents the BRST operator of the boundary
topological field theory. The action of D on a homogeneous element Φ of
degree k is given by

D · Φ = q · Φ − (−1)kΦ · p (2.12)

where p = p1 ⊕ p0 : P1 ⊕ P0 → P1 ⊕ P0, q = q1 ⊕ q0 : Q1 ⊕Q0 → Q1 ⊕ Q0.
This data defines a DG-category PW [41, 52]. The D-brane category CW is
the category associated to PW by taking the space of morphisms between
two objects (P ,Q) to be the degree zero cohomology H0(H(P ,Q)) of the
complex (2.11). We will use the shorthand notation H i(P ,Q), i = 0, 1 for
the cohomology groups. One can show that CW is an additive triangulated
category [41,52]. Note that there is an obvious similarity between this formal
construction and the more physical approach explained in the previous sub-
section. In order to exhibit the matrix factorization associated to a boundary
condition of the form (2.3), let us choose the standard r = 2s dimensional
representation of the Clifford algebra (2.5). Then we can explicitly write the
boundary supercharge as a r × r matrix which squares to W . One of the
advantages of the algebraic approach is that the rank of brane/anti-brane
pairs is not restricted to powers of 2. Let us record the most important
properties of CW for applications to physics.
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i) CW is equipped with a shift functor P → P [1]

P [1] =

(
P0

−p0 ��
P1

−p1

��

)
. (2.13)

This is an autoequivalence of the category which maps branes to anti-branes.

ii) Every morphism P
φ→Q in CW can be completed to a distinguished

triangle of the form
P

φ→Q→ R→ P [1] (2.14)

where R is a isomorphic to the cone C(φ) of φ. The cone of a morphism

P
φ→Q is defined by

R =

(
Q1 ⊕ P0

r1 ��
Q0 ⊕ P1

r0

��

)
, r1 =

[
q1 φ0

0 −p0

]
r0 =

[
q0 φ1

0 −p1

]
.

(2.15)
In physical terms, distinguished triangles describe bound state formation
[22]. More precisely, the existence of a triangle (2.14) implies that any two
objects involved in the construction can form the third by tachyon conden-
sation. In particular the K-theory charges of the three objects add to zero.
In order to decide if a particular condensation process actually takes place or
not we need more data which takes the form of a stability condition [3,22,25].
We will not review this aspect in detail here.

For further reference, note that the Euler character

χ(P ,Q) = dimH0(P ,Q) − dimH1(P ,Q). (2.16)

defines an (asymmetric) intersection pairing on objects. Physically, this
is the Witten index of the open string Ramond sector defined by the two
branes.

The above construction can be reformulated in terms of Z/2 graded mod-
ules as follows. A Z/2 graded C[X]-module P = (P1, P0) can be thought
of as an ordinary module P = P1 ⊕ P0 equipped with a C-linear involution
η : P → P , η2 = 1. The homogeneous parts P1, P0 are the eigenspaces of η
corresponding to the eigenvalues +1 and −1 respectively. A pair P can be
similarly thought of as a triple (P, ηP , p) where p : P → P is a C[X]-module
homomorphism satisfying

p ηP + ηP p = 0, p2 = W (X). (2.17)

The Z/2 graded complex (2.11) can be similarly regarded as the C[X]-module
Hom(P,Q) equipped with an endomorphism D and an involution ηPQ sat-
isfying

ηPQD +DηPQ = 0, D2 = 0. (2.18)
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The involution is induced by ηP , ηQ. We will find this point of view very
useful later in the paper.

2.2 Orbifold Categories

We are interested in Landau-Ginzburg orbifolds obtained by gauging a dis-
crete symmetry group G of W . Typically, these models are realized as
infrared effective theories of gauged linear sigma models, in which case G
is a finite cyclic group G = Zd for some d > 0. The construction of the
D-brane category can be easily extended to this situation. [43]. The objects
are pairs P of G-equivariant free C[X]-modules subject to an equivariant
condition on the maps p0, p1. More concretely, regarding P0, P1 as trivial
bundles Pi = C

N+1×C
ri, i = 0, 1 of rank r0, r1, we have to specify represen-

tations Ri of G on C
ri , i = 0, 1. We can represent the object in the orbifold

category as

p1

p0
P0

R0

P1

R1

Figure 1: Orbifolded Object

If we denote by ρ : G → GL(n + 1,C) the representation of G on C
n+1,

the maps p0, p1 must satisfy the equivariance conditions

R1(g)p0(ρ(g−1)X)R0(g−1) = p0(X) ,

R0(g)p1(ρ(g−1)X)R1(g−1) = p1(X) (2.19)

for any group element g ∈ G. This condition imposes certain restrictions on
the allowed representations R0, R1, as explained later in examples. Given
two such objects P ,Q, the action of G on Pi, Qi, i = 0, 1 induces an action
on the terms in the complex (2.11) which is compatible with D. Therefore
we obtain an equivariant Z/2 graded complex. The space of morphisms in
the orbifold category CW,ρ is given by the G-fixed part of the cohomology
groups H i(P ,Q). In this way we obtain a triangulated category CW,ρ. The
shift functor and the distinguished triangles can be constructed by imposing
equivariance conditions on equations (2.13), (2.14), and (2.15).



S.K. ASHOK, E. DELL’AQUILA AND D.-E. DIACONESCU 469

3 Fractional Branes

From now on we restrict ourselves to quasihomogeneous Landau-Ginzburg
potentials W (X) of the form

W (X) = Xd0
0 +Xd1

1 + . . .+Xdn
n (3.1)

where all da ≥ 3, a = 0, . . . , n. The discrete symmetry group is G = Zd,
where d = l.c.m(d0, . . . , dn), and the action ρ is specified by

ρ(ω)(X0, . . . ,XN ) = (ωw0X0, . . . , ω
wnXn) (3.2)

with wa = d
da

, a = 0, . . . , n. This theory is equivalent to a Z/d orbifold of
a product of n + 1 (2, 2) minimal models at levels ka = da − 2, in which
D-branes can be explicitly described as rational boundary states satisfying
Cardy’s consistency condition [33,54]. In particular B-type boundary states
are classified by a vector L = (L0, . . . , Ln) with integer entries 0 ≤ L ≤ d
and an extra quantum number M which takes even integer values M ∈
{0, 2, 4, . . . , 2d − 2}. The orbifold theory has a quantum Z/d symmetry
which leaves L invariant and shifts M by two units M →M + 2. The L = 0
boundary states are known as fractional branes and play a special role in the
context of Calabi-Yau compactifications, as discussed in the next section.

The goal of the present section is to find a relation between the algebraic
approach explained above and the boundary state construction. In partic-
ular, we would like to know if there is a natural algebraic construction of
the fractional boundary states described in the last paragraph. In order to
answer this question, let us start with the algebraic realization of B-type
boundary states in the one variable case.

3.1 One variable models

Consider a LG potential W = Xd, d ≥ 3. In the absence of the orbifold
projection, the D-brane category CW has a very simple description [43, 52].
The objects are pairs M l of rank one C[X]-modules labeled by an integer
l ∈ {1, . . . , d−1} with m1 = X l, m0 = Xd−l. Factorizations that correspond
to m1 = 1 or m1 = Xd are trivial objects in the category. By construction,
Md−l is isomorphic to M l[1], therefore M l and Md−l form a brane/anti-
brane pair. Therefore we can restrict our attention to the range l ≤ [d2].

Let us study the morphisms between any pair of objects in CW . Picking
the standard two dimensional representation of (2.5), the generic morphism
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X l

X l

f1 f0

t0t1

Xd−l

Xd−l

R0

R0R1

R1

M1 M0

M1 M0

Figure 2: Endomorphisms of the object M l

Φ in (2.9) is written as

Φ =
(
f0 t1
t0 f1

)
,

where we follow the conventions of [12]. A straightforward analysis of the
Z/2 graded complex (2.11) shows that

H0(M l,Mk) =

⎧⎪⎨
⎪⎩

C[X]/(X min{k,d−l}), if k ≤ l

C[X]/(Xmin{l,d−k}), if l ≤ k.

(3.3)

Moreover in the first case we can choose cohomology representatives of
the form f0 = Xa, f1 = X l−kf0, a = 1, . . . ,min{k, d − l}, while in the
second case we can choose representatives f1 = Xa, f0(X) = Xk−lf1,
a = 1, . . . ,min{l, d − k}. For fermionic morphisms we find similarly

H1(M l,Mk) =

⎧⎪⎨
⎪⎩

C[X]/(Xmin{k,l}), if k ≤ d− l

C[X]/(Xmin{d−k,d−l}), if k ≥ d− l.

(3.4)

In the first case, we can choose representatives t1 = Xa, t0 = −Xd−l−kt1,
a = 1, . . . ,min{k, l} and in the second case t0 = Xa, t1 = −X l+k−d, a =
1, . . . ,min{d− k, d− l}.

Now we move to the orbifold category CW,ρ. As discussed above, the
objects are given by equivariant triples (P ,R0, R1). The Z/d action on C
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is given by ρ(ω)(X) = ωX, where ω = e
2πi
d . It suffices to consider the

rank one objects P l which generate the unorbifolded category. Then the
representations R1, R0 are specified by two integers α0, α1 ∈ {0, . . . , d − 1}.
The equivariance condition (2.19) yields α0 = α1 + l. Thus the rank one
objects of CW,ρ are given by a pair of integers (l, α) so that l ∈ {1 . . . d− 1}
and α ∈ {0 . . . d − 1}. We will denote such an object by M l,α. Since the
rank one objects generate CW , the same will be true for CW,ρ.

Let us determine the bosonic and fermionic morphisms between any two
objects M l,α,Mk,β. We have to take the G-fixed part of the cohomology of
(2.11). In the present case, this implies that the space of bosonic morphisms
is generated by polynomial maps f0, f1 satisfying the equivariance conditions

f0(X)ωα+l = ωβ+kf0(ω−1X)

f1(X)ωα = ωβf1(ω−1X). (3.5)

For maps of the form f0 = Xa and f1 = Xb, the equations (3.5), lead to the
following conditions

a = k − l + b = (β − α) + (k − l) for 0 ≤ a ≤ min{k − 1, d− l − 1}.
(3.6)

We can repeat the above analysis for fermionic morphisms, taking t0 = Xa′

and t1 = −Xb′ . In this case, we find the conditions

a′ = d−(l+k)+b′ = l+(β−α) for 0 ≤ a′ ≤ min{d− l−1, d−k−1}.
(3.7)

Therefore we find the following spaces of bosonic and respectively fermionic
morphisms

H0(M l,α,Mk,β) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C, if k ≤ l and l − k ≤ β − α ≤ min{l − 1, d− k − 1}

C, if k ≥ l and 0 ≤ β − α ≤ min{l − 1, d− k − 1}

0, otherwise.
(3.8)

H1(M l,α,Mk,β) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C, if k ≥ d− l and l ≤ β − α ≤ min{d+ l − k − 1, d − 1}

C, if k ≤ d− l and d− k ≤ β − α ≤ min{d+ l − k − 1, d − 1}

0, otherwise.
(3.9)
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f

f

f

M1,d−1

M1,0

M1,1

M1,2

t

t

tf

Figure 3: Quiver for the Zd orbit of l = 1 states

where l ≤ [d2]. Note that the transformation (l, α) → (d− l, α+ l) exchanges
the bosonic and fermionic spectrum. Therefore Md−l,α+l is again isomorphic
to the antibrane M l,α[1] of M l,α. For future reference, let us also note that
the intersection matrix of l = 1 states χ(M1,α,M1,α) is (1 −G−1), where G
is the shift matrix defined by the linear transformation G : M 1,α →M1,α+1.

This is summarized in the quiver diagram of Figure 3 . One can extend
the results found here to more general models of the formW = Xwd, where w
is an arbitrary integer, subject to the orbifold action X → e

2iπ
d X. Although

we will not give the full details, note that the intersection matrix of l = 1
objects becomes (1 −G−w) in this case.

3.2 Comparison with Minimal Models

Let us compare the above results to the rational boundary state construc-
tion in the Z/d orbifold of the Ad−2 minimal model. The boundary states
are labeled by three quantum numbers L ∈ {0, . . . , d − 2}, M ∈ {−(d −
1), . . . , d} mod 2d, and S ∈ {−1, 0, 1, 2} mod 4 subject to the constraint

L+M + S = 0 mod 2 . (3.10)

and the field identification

(L,M,S) ∼ (d− 2 − L,M + d, S + 2) . (3.11)
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Topologically twisted B-branes correspond to Ramond sector boundary states,
which are characterized by S ∈ {−1, 1}. Moreover, the transformation
(L,M,S) → (L,M,S + 2) maps a brane to its antibrane. Therefore, us-
ing the equivalence relations (3.11), we can label rational boundary states
by |L,M〉, adopting the convention that |L,M〉 and |d− 2 − L,M + d〉 form
a brane/anti-brane pair for any (L,M).

We have an intersection pairing on the set of boundary states defined
by the open string Witten index, which counts open string Ramond ground
states with sign [24]. This pairing can be evaluated using CFT techniques,
obtaining [38]

I( |L1,M1, S1〉 , |L2,M2, S2〉) = (−1)
(S2−S1)

2 NM2−M1
L1,L2

NM2−M1
L1,L2

=
{

1, if |L1 − L2| ≤M2 −M1 ≤ min{L1 + L2, 2d− 4 − L1 − L2}
0, otherwise .

(3.12)

Using the equivalence relation (3.11) as explained in the previous paragraph,
we can rewrite this formula as follows

I( |L1,M1〉 , |L2,M2〉) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if |L1 − L2| ≤M2 −M1 ≤
min{L1 + L2, 2d− 4 − L1 − L2}

−1, if |L1 + L2 − d+ 2| ≤M2 −M1 − d ≤
min{L1 − L2 + d− 2, L2 − L1 + d− 2}

0, otherwise .
(3.13)

In order to find a map between these boundary states and the objects
constructed earlier, recall that the Z/d orbifold has a Z/d quantum symme-
try which acts on boundary states by shifting M → M + 2, leaving (L,S)
fixed. In the D-brane category, the same quantum symmetry maps a brane
M l,α to M l,α+1. Given the range of L ∈ {0, . . . , d − 2} and respectively
l ∈ {1, . . . , d− 1}, we are lead to the following identifications

L = l − 1 and M = 2α+ l . (3.14)

As a first check, note that this identification maps brane/anti-brane pairs to
brane/anti-brane pairs. Furthermore, one can check by simple computations
that the intersection pairing (3.13) agrees with the previous results (3.8),
(3.9) under the map (3.14). In particular the intersection matrix of the L = 0
boundary states agrees with the result found before for M1,α, namely (1 −
G−1). This correspondence can be easily extended to Z/d orbifolds of Adw−2
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minimal models, where w ≥ 1. In this case, the intersection matrix is (1 −
G−w), in agreement with LG results. In order to extend this correspondence
to more general LG orbifolds, we need an algebraic construction which will
be described next.

3.3 Tensor Product

In more general situations we have to construct matrix factorizations for
LG superpotentials depending on several variables Xa, a = 1, . . . , n. This
is a more difficult task than the one variable case. In the following we will
describe a systematic approach to this problem based on a tensor product
construction. This is the algebraic counterpart of tensoring boundary states
in products of minimal models.

Let us start with a simple example, namely a superpotentialW (X1,X2) =
W1(X1) + W2(X2) depending on two variables. We first present the con-
struction in terms of boundary couplings using the formalism of section 2.
Consider two separate B-type boundary conditions for W1,W2 specified by
boundary couplings of the form Π1F1(X1) and respectively Π2F2(X2) satis-
fying

F1(X1)G1(X1) = W1(X1), F2(X2)G2(X2) = W2(X2) . (3.15)

These boundary conditions correspond to rank one factorizations P ,Q of
W1,W2. The sum

∫
dx0 dθ [Π1F1(X1) + Π2F2(X2)] determines a supersym-

metric boundary condition for W , as explained in section 2. In order to
translate this construction in algebraic language, pick the standard four di-
mensional representation of the Clifford algebra generated by π1, π2, π̄1, π̄2.
Then the boundary supercharge takes the form

D =

⎡
⎢⎢⎣

0 0 F1(X1) F2(X2)
0 0 G2(X2) −G1(X1)

G1(X1) F2(X2) 0 0
G2(X2) −F1(X1) 0 0

⎤
⎥⎥⎦ . (3.16)

The corresponding object in the category CW is of the form

C[X1,X2]⊕2
r1 ��

C[X1,X2]⊕2
r0

��

r1 =
[
F1(X1) F2(X2)
G2(X2) −G1(X1)

]
, r0 =

[
G1(X1) F2(X2)
G2(X2) −F1(X1)

]
.

(3.17)
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We will denote it by P ⊗ Q. Consider two such tensored objects P 1 ⊗ Q1

and P 2 ⊗ Q2, where P i are objects in CW1 and Qi in CW2 . The spaces of
morphisms between them can be found by analyzing the boundary chiral
ring in the associated open string sector. From the form of (2.6) we see that
any element in the cohomology of D must have the form

Φ =
∏

a=1,2

Φa (3.18)

where Φa is a physical operator in the LG theory with superpotentialWa(Xa).
It follows that

Hk(P 1 ⊗Q1, P 2 ⊗Q2) =
⊕

i,j=0,1

i−j≡k(2)

H i(P 1, P 2) ⊗Hj(Q1, Q2) . (3.19)

This is in fact a special case of a more general construction, which is best
described in the algebraic framework.

Let us now consider a superpotential W = W (Xa, Yb), a = 0, . . . , n,
b = 0, . . . ,m which can be written as a sum

W (Xa, Yb) = W1(Xa) +W2(Yb) . (3.20)

For simplicity we will use the notation X = (Xa)a=1,...,n, Y = (Yb)b=1,...,m.
Let P , Q be two arbitrary matrix factorizations of W1(X) and respectively
W2(Y ). We claim that one can form a canonical matrix factorization P ⊗
Q of W (Xa, Yb) as follows. Recall that P0, P1 are free C[X]-modules of
arbitrary rank, and, similarly,Q0, Q1 are free C[Y ]-modules. Note that we
have standard ring morphisms C[X],C[Y ] → C[X,Y ] corresponding to the
projections π1 : C

n+m = C
n × C

m → C
n and respectively π2 : C

n+m =
C

n × C
m → C

m. For any C[X]-module A, we have a pull-back C[X,Y ]-
module π∗1A = A⊗C[X] C[X,Y ]. Similarly, any C[Y ]-module B gives rise to
a C[X,Y ]-module π∗2B = B ⊗C[Y ] C[X,Y ]. We take

(P ⊗Q)1 = π∗1P1 ⊗C[X,Y ] π
∗
2Q0 ⊕ π∗1P0 ⊗C[X,Y ] π

∗
2Q1

(P ⊗Q)0 = π∗1P0 ⊗C[X,Y ] π
∗
2Q0 ⊕ π∗1P1 ⊗C[X,Y ] π

∗
2Q1.

(3.21)

The maps (P ⊗Q)1
r1 ��

(P ⊗Q)0
r0

�� are given by

r1 =
[
p1 ⊗ 1 1 ⊗ q1
1 ⊗ q0 −p0 ⊗ 1

]
r0 =

[
p0 ⊗ 1 1 ⊗ q1
1 ⊗ q0 −p1 ⊗ 1

]
. (3.22)
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It is straightforward to check that this is a matrix factorization ofW (X,Y ) =
W1(X) +W2(Y ).

Next, we would like to determine the spaces of morphisms between two
tensor product objects P 1 ⊗ Q1, P 2 ⊗ Q2. The most efficient way to pro-
ceed is by reformulating the above construction in terms of differential Z/2
graded modules, as explained below (2.16). The objects P , Q considered in
the previous paragraph can be regarded as differential Z/2 graded modules
(P, ηP , p), (Q, ηQ, q) satisfying the conditions

ηP p+ p ηP = 0, p2 = W1(X), η2
P = 1

ηQ q + q ηQ = 0, q2 = W2(Y ), η2
Q = 1.

(3.23)

The tensor product P ⊗Q corresponds to the triple

(π∗1P ⊗ π∗2Q, ηP ⊗ ηQ, p ⊗ ηQ + 1 ⊗ q) . (3.24)

Now, the spaces of morphisms H0,1(P 1, P 2) and respectively H0,1(Q1, Q2)
are determined by the differential Z/2 graded modules

(
Hom(P 1, P 2), ηP1,P2,D1

)
and respectively

(
Hom(Q1, Q2), ηQ1,Q2,D2

)
where

ηP1,P2D1 +D1ηP1,P2 = 0, D2
1 = 0, η2

P1,P2
= 1

ηQ1,Q2D2 +D2ηQ1,Q2 = 0, D2
2 = 0, η2

Q1,Q2
= 1.

(3.25)

The differential Z/2 graded C[X,Y ]-module which determines the morphism
spaces between P 1 ⊗Q1, P 2 ⊗Q2 is then given by(
Hom(P 1, P 2) ⊗C[x,y] Hom(Q1, Q2), ηP1,P2 ⊗ ηQ1,Q2,D1 ⊗ ηQ1,Q2 + 1 ⊗D2

)
.

(3.26)
It is straightforward to check that the data (3.26) forms a differential Z/2-
graded module, using (3.25). This is in fact a familiar construction in ho-
mological algebra, namely the tensor product of two Z/2 graded differential
complexes. Then we can use the algebraic Künneth formula to relate the co-
homology of (3.26) to that of the individual complexes (P, ηP , p), (Q, ηQ, q).
This yields an exact sequence of C[X,Y ]-modules

0 →
⊕

i,j=0,1

i−j≡k(2)

H i(P 1, P 2) ⊗Hj(Q1, Q2) → Hk(P 1 ⊗Q1, P 2 ⊗Q2)

→
⊕

i,j=0,1

i−j≡k−1(2)

TorC[X,Y ]
1 (H i(P 1, P 2),Hj(Q1, Q2)) → 0 . (3.27)
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In order to compute the Tor1 group in the third term of (3.27), we have to
pick a locally free resolution F · → Hj(Q1, Q2) and construct the complex

0 → π∗2F · ⊗C[x,y] π
∗
1H

i(P 1, P 2) . (3.28)

The group Tor1
C[X,Y ](H

i(P 1, P 2),Hj(Q1, Q2)) is the first cohomology group
of this complex. We claim that this is always zero because the complex (3.28)
is exact. To justify this claim, note that π∗2F is always exact since C[X,Y ]
is a flat C[Y ]-module. Moreover, the differentials of π∗2F are pulled back
from F . Then one can check by direct computations that such a complex
will remain exact after tensoring by the pull-back module π∗1H

i(P 1, P 2).
Therefore we obtain the following simple formula

Hk(P 1 ⊗Q1, P 2 ⊗Q2) =
⊕

i,j=0,1

i−j≡k(2)

H i(P 1, P 2) ⊗Hj(Q1, Q2) . (3.29)

The tensor product can be easily extended to orbifold categories. Con-
sider a finite cyclic group G and representations ρ1 : G → GL(n + 1,C),
ρ2 : G → GL(m + 1,C). There is an obvious induced representation
(ρ1, ρ2) : G → GL(n +m + 2,C). In the orbifold categories CW1,ρ1 , CW2,ρ2

we have to specify representations of G on the pairs P ,Q as described in
section 3.2. The objects are triples (P ,R1, R0), (Q,S1, S0) satisfying the
equivariance condition (2.19). In order to produce objects of CW1+W2,(ρ1,ρ2),
it suffices to specify a group action and impose equivariance conditions on
tensor products of the form P ⊗Q.

Alternatively, one can easily construct such objects by taking tensor
products of equivariant triples (P ,R1, R0), (Q,S1, S0). The representations
R1, R0, S1, S0 induce canonical representations of G on the tensor prod-
uct modules (3.21) so that the morphisms (3.22) satisfy the equivariance
condition (2.19). Therefore we obtain an object (P ,R1, R0) ⊗ (Q,S1, S0) of
CW,(ρ1,ρ2). The morphisms between two such objects can be determined by
imposing G-invariance in the formula (3.29). Note that for fixed P ,Q, the
tensor products (P ,R1, R0)⊗(Q,S1, S0) are not in 1−1 correspondence with
the quadruples (R0, R1, S1, S0). Two different quadruples (R0, R1, S1, S0)
may result in isomorphic tensor products. In order to clarify the details, we
return to the construction of fractional branes.
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3.4 Fractional Branes

We consider an orbifolded LG model with a quasihomogeneous superpoten-
tial

W (X) = Xd0
0 +Xd1

1 + . . .+Xdn
n (3.30)

with da ≥ 3, a = 0, . . . , n that corresponds to a Z/d orbifold of a product
of minimal models at levels ka = da − 2. We will focus on the Z/d orbit
of rational boundary states with L = 0. These are essentially constructed
by tensoring rational boundary states with La = 0 and arbitrary values
of Ma. One can show that two boundary states with the same L and total
quantum numberM =

∑n
a=0Ma are isomorphic. We will show here that the

algebraic counterpart of this construction is the tensor product introduced
in the previous subsection.

Let us start again with a two variable example of the form

W (X) = Xd1
1 +Xd2

2 . (3.31)

Let W1(X1) = Xd1
1 , W2(X2) = Xd2

2 . The Z/d-orbifold action is given by
X1 → ωw1X1, X2 → ωw2X2, where d = l.c.m{da} and wa = d/da, a = 1, 2.
To each pair M l1 , M l2 of rank one factorizations of W1(X1),W2(X2) we can
associate the tensor product M l1l2 = M l1 ⊗M l2, which is a rank two matrix
factorization of W (X). To define fractional branes in the orbifold theory,
we have to specify a two dimensional representation of the orbifold group
Z/d on M l1l2 . After imposing the equivariance conditions (2.19) we find
a collection of d objects labeled by an integer µ ∈ {0, . . . , d − 1} which are
cyclicly permuted by the quantum Z/d symmetry of the orbifold theory. The
corresponding representations on (M l1 ⊗M l2)0 and (M l1 ⊗M l2)1 are

R0(ω) =
(
ωµ 0
0 ωµ+l1+l2

)
R1(ω) =

(
ωµ+l1 0

0 ωµ+l2

)
. (3.32)

The same result can be obtained by directly tensoring the objects M l1,α1

M l2,α2 of the one variable orbifold theories provided that µ = α1 + α2. As
noted in the last paragraph of the previous subsection, the tensor product
depends only on the sum µ = α1 + α2, not on the individual values α1, α2.

In order to find the morphisms between M l1l2,µ, Mk1k2,µ′ we have to take
the G-invariant part of

Hk(M l1l2 ,Mk1k2) =
⊕

i,j=0,1

i−j≡k(2)

H i(M l1 ,Mk1) ⊗Hj(M l2,Mk2) (3.33)



S.K. ASHOK, E. DELL’AQUILA AND D.-E. DIACONESCU 479

under the G-action determined by (ρ1, ρ2), µ, µ′. More precisely, we have to
identify the trivialG-module in the direct sum decomposition ofHk(M l1l2 ,Mk1k2)
into irreducible G-modules. Equivalently, we can consider the G-action on
Hk(M l1l2 ,Mk1k2) induced by ρ and the trivial representations onM l1l2 ,Mk1k2 ,
and identify the µ′−µ block in its decomposition into irreducible G-modules.
Taking this point of view, consider the G-action on the right hand side of
(3.33) induced by ρ1, ρ2 and the trivial representations on M l1 , . . . ,Mk2. An
important observation is that the irreducible G-modules in the decomposi-
tion ofH i(M l1,Mk1) are isomorphic to the morphism spacesH i(M l1,0,Mk1,α)
in the orbifold category CW1,ρ1. Therefore we have

H i(M l1 ,Mk1) =
d⊕

α=0

H i(M l1,0,Mk1,α)

Hj(M l2 ,Mk2) =
d⊕

β=0

Hj(P l2,0, P k2,β).

(3.34)

The µ′ − µ block in the decomposition of the right hand side of (3.33) is
therefore

Hk(M l1l2,µ,Mk1k2,µ′) =

⊕
i,j=0,1

i−j≡0(2)

d⊕
α,β=0

[
H i(M l1,0,Mk1,α) ⊗Hj(M l2,0,Mk2,β)

] · δµ′−µ−(α+β).

(3.35)

This is a very useful formula expressing the morphism spaces in CW1+W2,(ρ1,ρ2)

in terms of morphism spaces in CW1,ρ1 , CW2,ρ2. A direct consequence of (3.35)
is a similar relation between intersection numbers

χ(M l1l2,µ,Mk1k2,µ′) =
d∑

α,β=0

χ(M l1,0,Mk1,α)χ(M l2,0,Mk2,β) · δµ′−µ−(α+β) .

(3.36)

Our goal is to show that there is a one to one correspondence between the
L = 0 boundary states in the minimal model theory and the tensor product
objects M1,1,µ. Obviously, they have the same transformation properties un-
der the orbifold quantum symmetry. Moreover, one can check as in the one
variable case that such an identification is consistent with mapping branes
to anti-branes. The main test of this proposal is the comparison of inter-
section matrices. The expected CFT answer for rational boundary states is
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∏n
a=0(II −Gwa). Equation (3.36) gives

χ(M1,1,µ,M 1,1,µ′) =
d∑

α,β=0

χ(M 1,0,M 1,α)χ(M 1,0,M 1,β) · δµ′−µ−(α+β) .

(3.37)
Note that the intersection numbers χ(M 1,α1 ,M1,α2) are invariant under a
simultaneous shift α1 → α1 + r, α2 → α2 + r. Then, using (3.35), we find
that the intersection matrix of {M1,1,µ} is simply the product of the one
variable intersection matrices

χ(M 1,1,µ,M 1,1,µ′) =
[
(II −G−w1)(II −G−w2)

]
µµ′ (3.38)

which is in exact agreement with the CFT result. This is very strong evidence
for our proposal.

Since the above discussion is somewhat abstract, let us construct the
endomorphisms of M11 explicitly. Using (3.3) and (3.4), we know that for
the W = Xd theory, the object M1 has one bosonic and one fermionic
endomorphism. It follows from (3.19) that M11 has two bosonic and two
fermionic endomorphisms, independent of the value of d. The fermionic
ones have the form

T0 = (t(0)0 π̄0 + t
(0)
1 π0) (f (1)

0 π1π̄1 + f
(1)
1 π̄1π1) =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 Xd−2

0

−Xd−2
0 0 0 0
0 −1 0 0

⎞
⎟⎟⎠

T1 = (f (0)
0 π0π̄0 + f

(0)
1 π̄0π0) (t(1)0 π̄1 + t

(1)
1 π1) =

⎛
⎜⎜⎝

0 0 0 1
0 0 −Xd−2

1 0
0 1 0 0

−Xd−2
1 0 0 0

⎞
⎟⎟⎠

(3.39)

where we have used the results of the one variable case. Similarly, the bosonic
morphisms have the form

II4 = (f (0)
0 π0π̄0 + f

(0)
1 π̄0π0) (f (1)

0 π1π̄1 + f
(1)
1 π̄1π1)

T0 · T1 = (t(0)0 π̄0 + t
(0)
1 π0) (t(1)0 π̄1 + t

(1)
1 π1) =

⎛
⎜⎜⎝

0 1 0 0
−Xd−2

0 Xd−2
1 0 0 0

0 0 0 −Xd−2
0

0 0 Xd−2
1 0

⎞
⎟⎟⎠

We know from our earlier discussion that in the orbifold theory, the inter-
section matrix for the fractional branes has the form

(II −G−1)2 = II − 2G−1 +G−2, (3.40)
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where G is the shift matrix that corresponds to moving forward in the Zd or-
bit by one unit. We can see this from the explicit form of the endomorphisms
of M1,1. After taking the orbifold these become morphisms between differ-
ent objects in the orbit M1,1,µ , according to their Zd charge. The charges
are determined by the group action on the objects, as in (3.32). For tensor
products of l = 1 objects, it is possible to see that each fermionic constituent
contributes charge -1 to the total charge of the morphism obtained by tensor
product. Thus, T0 and T1 have charges −1, while T0 · T1 has charge −2 , in
agreement with (3.40).

We can generalize this construction to arbitrary numbers of variables. By
taking successive tensor products we find objects of the formM l0,...,ln,µ where
µ = 0, . . . , d−1. The morphism spaces and intersection numbers of two such
objects can be computed by induction. For unorbifolded objects, we have
M l0,...,ln−1,ln = M l0,...,ln−1 ⊗M ln and similarly Mk0,...,kn−1,kn = Mk0,...,kn−1 ⊗
Mkn . Repeating the steps between (3.33) and (3.34) we find the following
recursion formula for morphisms

Hk(M l0,...,ln,µ,Mk0,...,kn,µ′) =

⊕
i,j=0,1

i−j≡0(2)

d⊕
α,β=0

[
H i(M l0,...,ln−1,0,Mk0,...,kn−1,α) ⊗Hj(M ln,0,Mkn,β)

]
δµ′−µ−(α+β).

(3.41)

This yields a similar recursion formula for intersection numbers

χ(M l0,...,ln,µ,Mk0,...,kn,µ′) =
d∑

α,β=0

χ(M l0,...,ln−1,0,Mk0,...,kn−1,α)χ(M ln,0,Mkn,β) · δµ′−µ−(α+β).

(3.42)

By specializing (3.42) to the fractional branes M1,...,1,µ, we find again that
the intersection matrix can be written as a product

χ
(
M1,...,1,µ,M 1,...,1,µ′

)
=

[
n∏

a=0

(II −G−wa)

]
µµ′

, (3.43)

which is the expected CFT result.
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4 New Fractional Branes and Geometric Interpre-
tation

So far we have reproduced the known boundary state results from an alge-
braic point of view. In this section we construct a new class of fractional
branes in homogeneous Landau-Ginzburg models which do not have a ratio-
nal boundary state counterpart. We also find their geometric interpretation
in some Calabi-Yau examples and show that they are not restrictions of
bundles (or sheaves) on the ambient toric variety. It is worth noting that a
special case of this construction yields a single D0-brane on the Fermat quin-
tic. Landau-Ginzburg boundary conditions corresponding to non-rational
boundary states have been previously considered in [28]. Although that con-
struction is also based on factorization of the superpotential, it is not clear
how it is related to the present approach. Let us start with the building
blocks of our construction.

4.1 Rank One Factorizations for Two Variable Models

The basic idea is quite straightforward. The fractional branes were con-
structed by taking tensor products of one variable rank one factorizations.
However, in certain cases one can use alternative building blocks consisting
of rank one factorizations of two variable models. Consider a homogeneous
superpotential of the form

W (X0,X1) = Xd
0 +Xd

1 . (4.1)

It is clear that one can construct rank one factorizations of the form

P η =

(
P1

p1 ��
P0

p0
��

)
, p1 = X0 − ηX1, p0 =

n−1∏
η′ �=η

(X0 − η′X1) ,

(4.2)
where {η} is a complete set of d-th roots of −1. Given two such factorizations
P η, P η′ , one can easily determine the morphism spaces

H0(P η, P η′) =
{

C[Y ]/(Y d−1), if η = η′

0, if η �= η′

H1(P η, P η′) =
{

0, if η = η′

C, if η �= η′. (4.3)

In the orbifold category, we obtain rank one objects of the form P η,α,
α = 0, . . . , d − 1, where α specifies the action of Z/d on (P η)1. The ac-
tion of the orbifold group on (P η)0 follows from equivariance constraints.
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The morphism spaces can be found by imposing an equivariance condition
on the morphisms (4.3). The result is

H0(P η,α, P η′,β) =
{

C, if η = η′ and β �= α− 1
0, otherwise

H1(P η,α, P η′,β) =
{

C, if η �= η′ and α = β + 1
0, otherwise .

(4.4)

We can write the intersection matrix of two objects in any given Zd orbit as

χ(P η,α , P η,β) =
[
II +G+G2 + . . . +Gd−2

]
αβ

(4.5)

We have shown in the previous section that the superpotential (4.1) ad-
mits tensor product rank two matrix factorizations M l1,l2 . For later appli-
cations, we need to determine the morphism spaces between the fractional
branes M1,1 and the rank one objects Pη. This analysis is performed in
appendix A where we find

H0(M1,1, P η) = C,

H1(M1,1, P η) = C. (4.6)

The morphisms spaces between orbifold objects are given by

H0(M 1,1, µ′ , P η,µ′) =
{

C, if µ′ = µ− 2
0, otherwise

H1(P η,µ,M1,1,µ′) =
{

C, if µ′ = µ− 1
0, otherwise .

(4.7)

The intersection matrix is thus

χ(M1,1,µ, P η,µ′) = (G−2 −G−1)µµ′ , (4.8)

where G is the shift matrix introduced in section 3.2. This result holds for
any value of η.

4.2 New Fractional Branes

Using the above rank one factorizations, we can construct new D-branes in
LG orbifold models defined by homogeneous superpotentials

W (X) = Xd
0 + . . .+Xd

n (4.9)
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as follows. Recall that the fractional branes were constructed by taking
tensor products of rank one factorizations associated to the monomials Xd

a

in (4.9). In order to obtain more general objects we can decompose W (X)
as a sum of monomials Wa = Xd

a and two variable superpotentials Wab =
Xd

a +Xd
b . To each summand of the form Wa, we associate a fractional brane

M la while to each summand Wab, we associate a rank one factorization P ηab
.

Using these building blocks, we can construct new objects by taking tensor
products. More precisely, let us decompose W (X) as

W = W01 +W23 + . . . +W2m,2m+1 +W2m+2 + . . .+Wn (4.10)

for some m < n/2 − 1. Then we obtain an object

Aη01,...,η2m,2m+1;l2m+2,...,ln = P η01 ⊗P η23 ⊗ . . .⊗P η2m,2m+1 ⊗M l2m+2 ⊗ . . .⊗M ln

(4.11)
in the category CW . Objects in the orbifold category can be obtained by
making this construction equivariant with respect to the Z/d action, as ex-
plained in the previous section. In this case it turns out that the Z/d ac-
tion on Aη01,...,η2m,2m+1;l2m+2,...,ln is completely determined by a single integer
µ ∈ {0, . . . , d− 1}.

For geometric applications, we need to determine the morphism spaces

H i(M l0,...,ln , Aη01,...,η2m,2m+1;l2m+2,...,ln)

between the fractional branes and the new objects (4.11). These spaces can
be determined inductively, as explained in section 3.5. Following the steps
detailed between (3.33) and (3.35) we first find

Hk
(
M l0,...,l3,µ, Aη01,η23,µ′

)
=

⊕
i,j=0,1

i−j≡k(2)

d⊕
α,β=0

H i
(
M l0,l1,α, P η01,0

)⊗Hj
(
M l2,l3,β, P η23,0

)
δµ′−µ−(α+β)

(4.12)

for a single tensor product. This formula must be iterated each time we
add an extra factor, which can be either P ηa,a+1 or M lb for some a, b as in
equation (3.41). Applying this algorithm, one can show that the intersection
matrix can be obtained by multiplying the individual intersection matrices
of the building blocks. From now on, we will restrict ourselves to objects
with la = 1 and denote the branes obtained by tensoring k such objects by
M

k. The fractional branes will be denoted by M
n+1
µ and the new objects
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(4.11) will be denoted by A(m)
µ =

(
P

m+1 ⊗M
n−2m−1

)
µ
. Then, using (4.8)

we find

χ
(
M

n+1
µ , A

(m)
µ′
)

= (G−2 −G−1)m+1(II −G−1)n−2m−1 . (4.13)

independently of the values of ηa,a+1 in the tensor product (4.11). We will
make use of this result in order to find the geometric interpretation of these
objects in the large radius limit of the linear sigma model associated to (4.9).

5 Geometric Interpretation in Linear Sigma Mod-

els

The Landau-Ginzburg orbifolds considered in this section are special points
in the SCFT moduli space associated to gauged linear sigma models. More
specifically, the linear sigma model in question has a single U(1) gauge field
and n + 2 chiral multiplets X0, . . . ,Xn,Φ with charges (1, . . . , 1,−d). For
d = n + 1 the U(1)R symmetry of the linear sigma model is anomaly free,
and the infrared limit of the theory consists of a moduli space of SCFT’s
parametrized by complexified FI terms. Typically, this moduli space con-
tains certain special points, where the SCFT exhibits a special behavior.
The special points of interest here are the Gepner point, where the SCFT
admits the LG orbifold description, and the large radius point, where we
have a nonlinear sigma model realization. In the last case, the target space
of the nonlinear sigma model is given by the Fermat hypersurface S

Xd
0 + . . . +Xd

n = 0 (5.1)

in P
n. For d = n + 1, this is a Calabi-Yau variety. These two limiting

points are also called the Landau-Ginzburg and geometric phase respec-
tively, although they are not separated by a sharp phase transition. In
the previous sections we have discussed the construction of D-branes in the
Landau-Ginzburg phase from an algebraic point of view. We have recovered
the expected rational boundary states and also obtained new branes which
do not seem to have a boundary state realization. On the other hand, D-
branes also have a fairly explicit description in the geometric phase, where
they should be thought of as complexes of coherent sheaves, or more pre-
cisely, objects in the bounded derived category Db(S) [4, 22, 47]. Moreover,
it is known that the Landau-Ginzburg fractional branes can be analytically
continued as BPS states to the large radius limit point, and reinterpreted as
holomorphic bundles on S. In particular, the fractional branes Mn+1

µ corre-
spond to the one term complexes Ωµ(µ)[µ] µ = 0, . . . , d− 1 [11,26]. Here Ωµ
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denotes the bundle of holomorhic µ-forms on the ambient projective space,
and Ωµ(µ) = Ωµ ⊗ O(µ). The notation Ωµ(µ) means that Ωµ(µ) should be
thought of as a one term complex concentrated in degree 0, and [µ] denotes
the shift functor of Db(S). Therefore Ωµ(µ)[µ] represents a one term com-
plex concentrated in degree −µ. Note that all these bundles are restricted
to S from the ambient projective space. For simplicity, we will denote these
objects by Ωµ.

In the following we would like to address a similar question for the new
fractional branes A(m)

µ constructed in the previous section. For concreteness,
we will consider the orbit m = 0 for n = 4, although similar methods can be
applied to any values of m,n. The large radius hypersurface S is the Fermat
quintic in P

4.

5.1 Intersection Numbers and Topological Charges

The objects A(0)
µ correspond by analytic continuation to certain objects Fµ

in the derived category Db(S). Our goal is to identify these objects using the
algebraic structure developed so far at the Landau-Ginzburg point. A first
useful observation is that marginal closed string perturbations preserve D-
brane intersection numbers. This data suffices to determine the topological
invariants of the objects Fµ. Then we will determine the actual objects (up
to isomorphism) using the Landau-Ginzburg category structure.

In the geometric phase, the intersection number between two D-branes
represented by objects F and F ′ in the derived category is given by the
alternating sum

χ(F ,F ′) =
∑
ν∈Z

(−1)νdim(HomDb(S)(F ,F ′[ν])). (5.2)

If F is a one term complex consisting of a locally free sheaf F in degree 0,
we have

χ(F [µ],F ′) = (−1)µ
∫

S
ch(F∨)ch(F ′)Td(S) , (5.3)

where F∨ is the dual of F and Td(S) denotes the Todd class of S. Equation
(4.12) predicts

χ
(
Ωµ,Fµ′

)
= − [(II −G)4

]
µ,µ′ . (5.4)

This yields a system of equations in the Chern characters of the unknown
objects Fµ, which determines them uniquely. Of course, this is not enough
data for identifying Fµ as objects in the derived category. We will later show
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how to determine the objects up to isomorphisms exploiting the algebraic
structure.

The even cohomology of the quintic hypersurface S is generated by
(1,H, l, w) where H is the class of a hyperplane section, l is the class of
a rational curve on S, and w is the class of a point. The intersection ring is
determined by the following relations

H2 = 5l, Hl = 1, H3 = 5w . (5.5)

A straightforward computation based on (5.3) and (5.4) yields the following
Chern characters

ch0 ch1 ch2 ch3

F0 1 0 0 −w
F1 −3 H 5

2 l −1
6w

F2 3 −2H 0 7
3w

F3 −1 H −5
2 l −1

6w
F4 0 0 0 −w

. (5.6)

A first check of this result is the integrality of the associated Chern classes:
an easy computation gives

c0 c1 c2 c3
F0 1 0 0 −2w
F1[1] 3 −H 5l −3w
F2 3 −2H 10l −2w
F3[1] 1 −H 0 2w
F4 0 0 0 −2w

, (5.7)

which are indeed integral.

In principle, we would like to identify the objects Fµ in Db(S). Note that
the Chern character of F4 is equal to the Chern character of a skyscraper
sheaf of length 1 supported at a point P on S and also shifted by an odd
integer. Since the shift functor is an automorphism of Db(S) we can choose
this shift to be −1 without loss of generality. This strongly suggests that F4

is a anti-D0-brane on the quintic. For the moment, we will conjecture that
to be true.

If that is the case, Fµ, µ = 0, . . . , 4 must form the orbit of the anti-
D0-brane under monodromy transformations about the Landau-Ginzburg
point. We will first test this conjecture by computing the Chern charac-
ters of the derived objects generated by OP [−1] under Z/5 monodromy
transformations. We will show below that this reproduces the table (5.6),
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which is strong evidence for our conjecture. Then in the next subsection
we will show that F4 is indeed a anti-D0-brane supported at the point
P = {X0 − ηX1 = X2 = X3 = X4 = 0} on the quintic using algebraic tech-
niques. An interesting question is if one can give a physical proof of this
conjecture based on RG flow in linear sigma models with boundary using
the results of [20,31,34,35].

5.2 Landau-Ginzburg Monodromy

The monodromy about the Landau-Ginzburg point is generated by an au-
toequivalence MLG of the derived category D(S) which can be described as
a Fourier-Mukai functor with kernel [20,39,40]

KLG = Cone
(
Lπ∗1O ⊗L Lπ∗2O(1) → O∆ ⊗L Lπ∗2O(1)

)
. (5.8)

The notation is standard. For any coherent sheaf F , we denote by F the one
term complex determined by F in degree zero. The maps π1,2 : S × S → S
are canonical projections, and O(1) is the line bundle on S obtained by
restricting the hyperplane line bundle on P

4. O∆ is the structure sheaf of
the diagonal ∆ ⊂ S × S. For any object F in D(S), the monodromy action
is given by

MLG(F) = Rπ2∗
(
Lπ∗1F ⊗L KLG

)
. (5.9)

Our goal is to compute the monodromy orbit of OP [1], where OP is the
structure sheaf of a point P on the quintic. The monodromy action (5.9)
admits an alternative description as a twist functor [5, 58]. For any object
F of D(S), consider the complex

hom(O,F(1)) ⊗O =
⊕
k∈Z

HomDb(S)(O,F(1)[k]) ⊗C O[−k] =
⊕
k∈Z

O[−k]⊕bk

(5.10)
where bk = dim

(
HomDb(S)(O,F(1)[k])

)
. Employing the techniques of [58]

(see Lemma 3.2 and also [5]), one can show that the Fourier-Mukai functor
MLG is isomorphic to the twist functor

F → Cone
(
hom(O,F(1)) ⊗O ev−→F(1)

)
(5.11)

where ev is the evaluation map. Using this result, and the Riemann-Roch
formula, we can easily compute

ch (MLG(F))) = ch(F(1)) −
∑
k∈Z

(−1)kbk

= ch(F(1)) −
∫

S
ch(F(1))Td(S) .

(5.12)
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Now we can check by straightforward computations that

ch(Mµ
LG(OP[−1])) = ch(Fµ+4) , (5.13)

as promised above. In order to complete the picture, we will show below
that F4 is in fact isomorphic to the anti-D0-brane OP [−1] using the category
structure at the LG point.

5.3 The D0-brane at The Landau-Ginzburg Point

The main idea is very simple. Let j : S → P
4 denote the embedding of S

into the projective space. Given a derived object F on S, the pushforward
Rj∗F is obtained by extending the terms and the maps of F by zero to
P

4. Therefore, in order to determine F , it suffices to determine Rj∗F in
Db(P4). This is a much simpler problem sinceDb(P4) admits a pure algebraic
description via Beilinson correspondence [6]. We will review some aspects
below following [7].

According to Beilinson’s theorem, Db(P4) is generated by the excep-
tional collection (Ωµ(µ)), µ = 0, . . . , 4. This implies that there is an equiva-
lence of categories between Db(P4) and the derived category of A-modules,
Db(mod −A), where A is the endomorphism algebra

A = End(E), E = ⊕4
µ=0Ω

µ(µ). (5.14)

It is a standard result that A is the path algebra of a finite ordered quiver
with relations. For any projective space P(V ∨), with V a complex vector
space, we have

Hom(Ωµ(µ),Ων(ν)) 

{

Λµ−ν(V ), if µ ≥ ν
0, otherwise .

(5.15)

The algebra structure of A is determined by exterior multiplication.

We can give a more geometric description of this algebra as follows.
Note that we can identify the morphism spaces Hom(Ωµ(µ),Ωµ−1(µ− 1)) to
H0(T (−1)), where T is the holomorphic tangent bundle to P

4. Any section
v ∈ H0(T (−1)) determines a global morphism Ωµ(µ) → Ωµ−1(µ − 1) using
the canonical pairing

Ωµ(µ) ⊗ T (−1) → Ωµ−1(µ− 1). (5.16)

One can check using the Euler exact sequence

0 → O(−1) → O⊕5 → T (−1) → 0 (5.17)
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Ω0(0)

Ω1(1)

Ω3(3) Ω2(2)

Ω4(4)

Λ4(V ∨)

Λ1(V ∨)
Λ2(V ∨)

Λ3(V ∨)

Figure 4: The endomorphism algebra of E as a quiver algebra.

that H0(T (−1)) 
 C
5, hence we obtain all morphisms this way. Moreover,

a basis of unit vectors in H0(O⊕5) 
 C
5 determines a basis of H0(T (−1)).

We will fix such a basis {va}, a = 0, . . . 4 from now on. This gives rise to a
basis va(µ, µ−1) in the space of morphisms Hom(Ωµ(µ),Ωµ−1(µ−1)) which
is a system of generators of A.

The equivalence of categories mentioned above associates to an object F
the complex

RHom(E,F) =
⊕
k∈Z

Hom(E,F [k])[−k] (5.18)

of right A-modules with trivial differential. In particular this means that
any object F is uniquely determined (up to isomorphism) by the complex
RHom(E,F).

Our goal is to make use of this correspondence in order to find the derived
object F4 associated to the Landau-Ginzburg D-brane A(0)

4 . We will proceed
in two steps.

i) We know that the fractional branes M5
µ correspond under closed string

marginal deformations to Ωµ(µ)[µ]. On general grounds, these deformations
should preserve the category structure, hence we expect the endomorphism
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algebra

A = End0
(
E
)
, E =

4⊕
µ=0

M
5
µ[−µ] (5.19)

to be isomorphic to A. As a first step, we will construct an explicit isomor-
phism φ : A → A.

ii) At the next stage, we will determine the A-module structure of the
morphism space

RHom(E,A(0)
4 ) =

⊕
k=0,1

Hk(E,A(0)
4 ) (5.20)

and compare it to the A-module structure of RHom(E,OP4,P [1]), where P
is the point P = {X0 − ηX1 = X2 = X3 = X4 = 0} on P

4. OP4,P is the
structure sheaf of P on P

4 which is the pushforward of the structure sheaf
OS,P of P on the quintic. More precisely, we will show that both complexes

RHom(E,A(0)
4 ) and RHom(E,OP4,P [1]) are concentrated in degree zero, and

there is a linear isomorphism

ψ : RHom(E,A(0)
4 ) → RHom(E,OP4,P [1]) (5.21)

so that ψ(at) = φ(a)ψ(t) for any a ∈ A, t ∈ RHom(E,A(0)
4 ). However,

RHom(E,A(0)
4 ) is isomorphic to the morphism complex RHom(Lj∗E,F4)

since the category structure must be preserved by closed string deformations.
Furthermore, by adjunction, we have

RHom(Lj∗E,F4) 
 RHom(E,Rj∗F4) . (5.22)

It then follows from Beilinson’s correspondence that Rj∗F4 is isomorphic to
OP4,P [1], and we can conclude that F4 is isomorphic to OS,P [1].

5.4 Endomorphism Algebra

In order to construct the isomorphism φ : A → A let us first consider
morphisms between fractional branes in some detail. These morphisms can
be writen as tensor products of one variable morphisms using the iterative
algorithm developed in section 3.5, equations (3.34)-(3.35).

First consider morphisms between adjacent pairs M5
µ ,M

5
µ−1. Applying

the rules of section 3.5 and the results of section 3.2, we find that there are
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no bosonic nor fermionic morphisms between M
5
µ−1,M

5
µ, and

H0(M5
µ,M

5
µ−1) = 0, H1(M5

µ,M
5
µ−1) 
 C

5, µ = 1, . . . , 5 .

(5.23)

An explicit basis Ta(µ, µ− 1), a = 0, . . . , 4 of fermionic morphisms between
M

5
µ and M

5
µ−1 can be obtained by tensoring a one variable fermionic mor-

phism associated to the superpotential Wa(Xa) = X5
a by four bosonic mor-

phisms associated to the remaining variables. The later are all proportional
to the identity. The result is most conveniently expressed in terms of free
fermion operators as shown in section 2, equation 2.8:

Ta(µ, µ− 1) = (−X3
a π̄a + πa), . . . , a = 0, . . . , 4 . (5.24)

Note that this expression is in fact independent of µ by Z/5 cyclic symmetry.
However we have to use the notation Ta(µ, µ− 1) because different values of
µ correspond to distinct generators of A.

The other morphism spaces H i(M 5
µ,M

5
ν) can be similarly determined by

taking tensor products of more one variable fermionic morphisms. Each such
morphism contributes −1 to the orbifold charge. Therefore, by imposing
equivariance, one finds that a morphism between objects with Zd weights
(µ, ν) must contain µ − ν factors. A straightforward analysis shows that
there are no bosonic nor fermionic morphisms between M5

µ and M5
ν if µ < ν.

If µ ≥ ν we have Hµ−ν+1(M5
µ,M

5
ν) = 0, and Hµ−ν(M5

µ,M
5
ν) is generated

by products of the form Taµ−ν (ν+1, ν) . . . Ta1(µ, µ−1) . For concreteness we
represent below the morphism spaces from M

5
4 to all other fractional branes

in the orbit.

Note that the resulting morphisms are bosonic for even number of factors
and fermionic for odd number of factors. Morphisms constructed this way
are not all independent. Using the canonical anticommutation relations (2.5)
it follows that the Ta satisfy the algebra

Ta(µ, µ− 1)Tb(µ− 1, µ− 2) + Tb(µ, µ− 1)Ta(µ− 1, µ− 2) = 0 . (5.25)

In particular, Ta(µ, µ− 1)Ta(µ− 1, µ− 2) = 0. These are of course cohomol-
ogy relations; at cochain level the right hand side is an exact cochain in the
complex (2.11). Then it follows that the number of independent morphisms
between any pair of objects equals the number of antisymmetric combina-
tions of products of Ta(µ, µ− 1). Therefore, we have

Hµ−ν(M5
µ,M

5
ν) 
 Λµ−ν(U (5)), for µ ≥ ν , (5.26)
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M
5

0

M
5

3 M
5

2

M
5

4

Ta

TaTbTcTd

TaTb

M
5

1
TaTbTc

Figure 5: Morphisms from M
5
4 to the other fractional branes in the orbit.

where U (5) is the five dimensional complex vector space spanned by {Ta},
a = 0, . . . , 4 .

It is worth noting that this construction can be applied without essential
changes to more general situations. For example, suppose we want to deter-
mine the morphism spaces between fractional branes associated to a (n+1)-
variable superpotential of degree d, where n and d are arbitrary. One finds
a very similar structure, that is Hµ−ν(Mn+1

µ ,M
n+1
ν ) 
 Λµ−ν(U (n+1)) for

µ ≥ ν, where U (n+1) is a (n+ 1)-dimensional complex vector space spanned
by {Ta}, a = 0, . . . , n + 1. If µ < ν, the morphism spaces are empty. The
generators are given again by products of fermionic operators Ta(µ, µ − 1),
a = 0, . . . , n , µ = 0, . . . , d− 1 . The formula (5.24) becomes

Ta(µ, µ− 1) = −Xd−2
a π̄a + πa , (5.27)

except that now we have to pick a different representation of the Clifford
algebra. The relations (5.25) remain unchanged. We will find this remark
very useful in the next subsection.

Let us now define the object

E =
⊕

µ

Eµ (5.28)

where Eµ = M
5
µ for µ = 0, 1, 2 and Eµ = M

5
µ[1] for µ = 1, 3. From the

definition of the shifted object (2.13), we derive the following rules: for each
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M
5

0

M
5

1[1]

M
5

3[1] M
5

2

M
5

4

Ti · Tj · Tk · Tl

J · Tj · Tk · Tl

Ti · J

Figure 6: Endomorphisms of the object E

even (odd) morphism Φ from P to Q, there is an odd (even) morphism
Φ · J from the shifted object P [1] to Q and an odd (even) morphism J · Φ
from P to Q[1]. Here, J is an odd operator such that J2 = 1. In a matrix
representation where bosonic operators are diagonal blocks and fermionic
ones are off diagonal, J has the form

J =
(

0 II
II 0

)
.

Therefore, using (5.26), we find

End0(Eµ, Eν) 

{

Λµ−ν(U (5)) µ ≥ ν
0 otherwise .

(5.29)

The algebra of bosonic endomorphisms of E is determined by the basic
relations (5.25) and the additional relation J2 = 1. One finds that A is
generated by the elements Ta(µ, µ− 1) · J and the algebra structure is given
by exterior multiplication. A concrete example is represented in Figure 6.

In conclusion, A is indeed isomorphic to the geometric quiver algebra A
and an explicit isomorphic φ : A → A is given by

φ(Ta(µ, µ− 1)J) = va(µ, µ− 1) . (5.30)
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5.5 Module Structure

The next step is to determine the A-module structure of RHom(E,A0
4) and

construct the isomorphism (5.21). We first have to determine RHom(E,A0
4)

as a vector space. The morphims from Eµ to A5
ν can be constructed again

by taking tensor products as in the previous subsection. Recall that A(0)ν
is obtained by tensoring a rank one factorization P 4 of the two variable
superpotential W02(X0,X1) = X5

0 +X5
1 coresponding to some fixed η, η5 =

−1 by l = 1 factorizations of the remaining one variable superpotentials,
i.e. A0

ν =
(
P ⊗M

3
)

ν
. The fractional branes M5

µ can be accordingly writen

as tensor products of the form
(
M

2 ⊗M
3
)

µ
corresponding to the variables

(X0,X1) and respectively (X2,X3,X4). Using the methods of section 3.5
(see the paragraph between (3.33) and (3.34)) we can easily show that the
morphism spaces between M

5
µ and A0

ν are given by

Hk(M5
µ, A

0
ν) =

⊕
i,j=0,1

i+j=k(2)

4⊕
µ′,ν′=0

H i(M2
µ′ , P 0) ⊗Hj(M3

ν′ ,M
3
0)δµ′+ν′−(µ−ν).

(5.31)
The morphism spaces between M 2

µ and P ν have been determined in section
4.1, equation (4.7). Up to multiplication by a nonzero complex number, we
have one bosonic morphism fµ,ν if ν = µ−2 (5) and one fermionic morphism
tµ,ν if ν = µ − 1 (5). The morphism spaces between the three variable
fractional branes can be determined by setting n = 2 in the discussion above
equation (5.27). We have Hµ−ν(M3

µ,M
3
ν) 
 Λµ−ν(U (3)) if µ ≥ ν and zero

otherwise. Collecting these results, and taking into account the shifts by
one, we find

H0(Eµ, A
(0)
4 ) 
 0, H1(Eµ, A

(0)
4 ) 
 Λµ(U (4)) , (5.32)

where U (4) is the four dimensional complex vector space spanned by (f01 ⊗
II)J and (t04 ⊗ T2)J , (t04 ⊗ T3)J , (t04 ⊗ T4)J .

The A-module structure is determined by composition with the mor-
phisms Ta(µ, µ− 1)J between fractional branes, which generate A. Let us
consider for example multiplication by H0(E1, E0) as represented in figure
7.

We have established that H1(E0, A
(0)
4 ) 
 C and H1(E1, A

(0)
4 ) 
 U (4).

Next, our goal is to determine the composition laws of the morphisms in the
above diagram. To this end, we have to write down the generators of all
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E0E1

Ā0
4

U (5)

U (4)
C

Figure 7: Module structure of RHom(E,A(0)
4 ): multiplication by

H0(E1, E0).

(M
2 ⊗ M

3
)0(M

2 ⊗ M
3
)1[1]

(P η ⊗ M
3
)4

Ta(1, 0)J , a = 0 . . . 4

(f01 ⊗ I)J

(t04 ⊗ T2(1, 0))J

(t04 ⊗ T3(1, 0))J

(t04 ⊗ T4(1, 0))J
t04 ⊗ I

Figure 8: Morphism generators.

morphism spaces in terms of tensor products of elementary morphisms as in
the previous subsection. Making the product structure explicit, we obtain
the diagram represented in figure 8.

To explain the notation, recall that fµ,ν and tµ,ν are bosonic and re-
spectively fermionic morphisms between two variable objects as explained
in the paragraph above equation (5.32). On the horizontal arrow, Ta(1, 0)J
are the generators constructed in the previous subsection. On the left ar-
row, T2,3,4(1, 0) denote similar fermionic morphisms between three variable
objects M 3

1,M
3
0 introduced in the paragraph above (5.31). We have used

the same notation in order to avoid unnecessary indices. The distinction
should be clear from the context. In the next paragraph we will use the
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same conventions for T1,2(1, 0) , regarded as fermionic morphisms between
two variable fractional branes.

Since the tensor product is compatible with composition of morphism,
we have the following straightforward composition laws

(t04 ⊗ I)(Ta(1, 0)J) = (t04 ⊗ Ta(1, 0))J, a = 2, 3, 4. (5.33)

In order to complete the picture, we have to determine the remaining prod-
ucts corresponding to a = 0, 1. Note that in this case, the fermionic mor-
phisms Ta(1, 0), a = 0, 1 are obtained by tensoring two variable fermionic
morphisms Ta(1, 0) by bosonic morphisms in the remaining three variables,
which are proportional with the identity. Since all morphisms involved in
this computation are proportional to the identity in the last three variables,
we are effectively left with a two variable problem. More precisely, it suffices
to determine the products t04Ta(1, 0)J , a = 0, 1 for two variable morphisms.
This can be done by the explicit computation presented in appendix B. We
find the relations

t04(T1(1, 0)J) = f01J, t04((ηT0(1, 0) + T1(1, 0))J) = 0 . (5.34)

The multiplication table by the remaining generators Ta(µ, µ − 1) of A
can be determined similarly, using the relations (5.25) among the fermionic
generators and the equations (5.34). We will not present all the details here
because they are quite tedious. It suffices to note that the linear combination
(ηT0(µ, µ− 1) + T1(µ, µ− 1))J always annihilates H1(Eµ−1, A

(0)
4 ), i.e.

(ηT0(µ, µ− 1) + T1(µ, µ− 1))J ·H1(Eµ−1, A
(0)
4 ) = 0 (5.35)

for µ = 0, . . . , 4 . Moreover, one can check that

H0(Eµ, Eµ−1)/〈(ηT0(µ, µ− 1) + T1(µ, µ− 1))J〉 
 U (4) (5.36)

acts on H1(Eµ−1, A
(0)
4 ) 
 Λµ−1(U (4)) by exterior multiplication. More pre-

cisely, the pairing

H0(Eµ, Eµ−1)/〈(ηT0(µ, µ−1)+T1(µ, µ−1))J〉⊗H1(Eµ−1, A
(0)
4 ) → H1(Eµ, A

(0)
4 )

(5.37)
is isomorphic to the pairing

U (4) ⊗ Λµ−1(U (4)) → Λµ(U (4)) . (5.38)

This completes the description of RHom(E,A(0)
4 ) as an A-module.
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In order to complete the picture, we have to construct the linear map
(5.21) and prove the compatibility with the module structures. To this end
we need a more detailed description of the A-module structure of
RHom(E,OP4,P [−1]).

According to the defining equation (5.18), the terms in this complex are
derived morphism spaces of the form Hom(E,OP4,P [k−1]) 
 Extk−1(E,OP4,P ).
Since E is locally free, the only nonzero term is

Ext0(E,OP4,P ) 
 E∨
P , (5.39)

where E∨
P is the fiber of the dual bundle at P . We have

E∨
P =

5⊕
µ=0

(ΛµT )(−µ)P =
5⊕

µ=0

Λµ(T (−1)P ), (5.40)

hence

RHom(E,OP4,P [−1]) 

5⊕

µ=0

Λµ(T (−1)P )[−1]. (5.41)

In order to determine the A-module structure of this vector space, it
suffices to determine the multiplication table by the generators va(µ, µ−1) ∈
H0(T (−1)) introduced below (5.17). These are twisted global holomorphic
vector fields on P

4 associated to the unit vectors in H0(P4,O⊕5
P4 ) 
 C

5,
as explained there. Let v =

∑4
a=0 ρava(µ, µ − 1) be an arbitrary linear

combination of the generators. Let P ∈ P
4 be a point defined by intersecting

four hyperplanes given by the homogeneous linear polynomials L1, . . . , L4,
that is P = {L1 = . . . = L4 = 0}.

Since T (−1) is a rank four bundle, a generic section v as above is expected
to vanish along a collection of points in P

4. From the Euler sequence it follows
that the section v vanishes at P if and only if the point (ρ0, . . . , ρ4) ∈ C

5

lies on the line through the origin defined by P . Therefore v has a zero at
P if and only if

L1(ρ0, . . . , ρ4) = . . . = L4(ρ0, . . . , ρ4) = 0 . (5.42)

This shows that any section v vanishes precisely at one point Pv ∈ P
4 de-

termined by the equations (5.42). Conversely, for any P there is a unique
section vP , up to multiplication by a nonzero constant, such that vP (P ) = 0 .
In our case P = {X0 − ηX1 = X2 = X3 = X4 = 0}, hence vP = η v0 + v1 .

Now we can easily determine the A-module structure of (5.41). For each
pair (µ, µ− 1) there is a unique (up to scale) morphism

vP (µ, µ− 1) ∈ Hom(Ωµ(µ),Ωµ−1(µ− 1)) 
 H0(T (−1))
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which annihilates (Λµ−1T )(−(µ− 1))P . Using the Euler sequence, it follows
that the quotient

Hom(Ωµ(µ),Ωµ−1(µ− 1))/〈vP (µ, µ− 1)〉

is isomorphic to T (−1)P . Therefore the composition of morphisms deter-
mines a well defined pairing

T (−1)P ⊗ Λµ−1(T (−1)P ) → Λµ(T (−1)P ) (5.43)

which is dual to the canonical pairing (5.16)

Ωµ(µ) ⊗ T (−1) → Ωµ−1(µ− 1)

restricted to P . Therefore the pairing (5.43) is defined by exterior multipli-
cation. This completes the description of the A-module structure of (5.41).

Now we can collect all loose ends and complete the identification between
Landau-Ginzburg and geometric data. In the Landau-Ginzburg category we
found

RHom(E,A(0)
4 ) 


4⊕
µ=0

Λµ(U (4))[−1] , (5.44)

where U (4) is a fixed four dimensional complex vector space isomorphic to

H0(Eµ, Eµ−1)/〈(ηT0(µ, µ− 1) + T1(µ, µ− 1))J〉

for any µ = 0, . . . 4. The A-module structure is determined by exterior
multiplication as shown in equations (5.37)-(5.38). This is the same structure
as in the geometric situation. More precisely, the map φ in (5.30) induces
an isomorphism of vector spaces

φ̄ : U (4) 
 H0(Eµ, Eµ−1)/ 〈(ηT0(µ, µ− 1) + T1(µ, µ− 1))J〉 −→
H0(T (−1))/〈ηv0 + v1〉 
 T (−1)P . (5.45)

This can be extended by exterior multiplication and direct sums to a linear
isomorphism

ψ :
4⊕

µ=0

Λµ(U (4))[−1] →
5⊕

µ=0

Λµ(T (−1)P )[−1] (5.46)

which is clearly compatible with the module structures.
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6 Composite Objects and Deformations

In this section we discuss several applications of our construction to defor-
mations of D-branes at the Landau-Ginzburg point. This is not meant to
be a complete and rigorous treatment of moduli problems in the Landau-
Ginzburg category. We will outline some preliminary results in two examples
in order to illustrate the main ideas. We leave a more detailed approach for
future work.

6.1 Composites of Fractional Branes

The first problem we would like to address here was formulated in [23]. As
explained in the above section, we have five bosonic morphisms between two
consecutive shifted fractional branes Eµ, Eµ−1. Then we can form composite
objects by taking cones over these morphisms in the Landau-Ginzburg cate-
gory. One of the main questions considered in [23] was counting the number
of deformations of such composite objects, and finding equivalence relations
between them. These questions may be quite difficult in the boundary state
or the quiver gauge theory approach. Here we will address this issue from
the algebraic point of view adopted in this paper.

As a concrete example, we will consider two different composite objects
which were conjectured to be isomorphic branes in [23]. Using the quiver
gauge theory approach, one can prove that these objects have the same
moduli space, but not that they are indeed isomorphic. We will apply our
formalism in order to prove this conjecture by constructing an explicit iso-
morphism between them.

The first object is the cone C10 = Cone
(
E1

Ta(1,0)J−−−−−−−→E0

)
. In order

to construct the second object, we have to take two successive cones. We

first take the cone C32 = Cone
(
E3

Ta(3,2)J−−−−−−−→E2

)
. Then we have an exact

triangle

E3

Ta(3,2)J−−−−−−−→E2 → C32 (6.1)

which yields the following long exact sequence of morphism groups

· · · → H−1(E4, E2) → H−1(E4, C32) → H0(E4, E3)
Ta(3,2)J−−−−−−−→H0(E4, E2)

→ H0(E4, C32) → H1(E4, E3) → · · ·
(6.2)
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Since there are no fermionic morphisms between any pair (Eµ, Eν), this
sequence reduces to

0 → H−1(E4, C32) → H0(E4, E3)
Ta(3,2)J−−−−−−−→H0(E4, E2) → H0(E4, C32) → 0

(6.3)
where the middle map is induced by multiplication by Ta(3, 2)J . Using
the algebra structure of A determined above, it follows that Ker(Ta(3, 2)J)
is one dimensional and is generated by Ta(4, 3)J . Therefore we conclude
that the space of fermionic morphisms H−1(E4, C32) 
 H0(E4[1], C32) is
one dimensional. Let κ denote a generator. Now consider the cone C432 =
Cone

(
E4[1]

κ→C32

)
. The conjecture of [23] is that C10 and C432[1] must be

isomorphic in the D-brane category. This is required for agreement with
geometric considerations in the large radius limit.

Here we will show that this is true by constructing a morphism γ : C10 →
C432[1] such that Cone

(
C10

γ→C432[1]
)

is the trivial object in the Landau-
Ginzburg orbifold category.

A very useful observation is that cones commute with the tensor product
defined in section 3.4. More precisely, suppose we have two pairs of objects
(P ,P ′) and (Q,Q′) corresponding to two superpotentials W1,W2 as in that
section. Suppose we are given two bosonic morphisms γ : P → P

′ and
δ : Q → Q

′. By taking the tensor product we obtain a bosonic morphism
γ ⊗ δ : P ⊗Q → P

′ ⊗Q
′. We claim that

Cone
(
P ⊗Q

γ⊗δ−−−−−→P
′ ⊗Q

′
)


 Cone
(
P

γ→Q
)
⊗ Cone

(
Q

δ→Q
′)
. (6.4)

The proof of this statement is a straightforward check using the definitions.
We will not spell out the details here.

Now recall that the fractional branes Eµ are obtained by taking tensor
products of one variable factorizations, and the morphisms Ta(µ, µ− 1) are
similarly obtained by taking tensor products by the identity. Using equa-
tion (6.4), we can reduce the conjecture formulated above to a statement
concerning one variable factorizations, which is much easier to prove. In the
following we denote by M l,µ, l = 1, . . . , 4, µ = 0, . . . , 4 the rank one fac-
torizations constructed in section 3.2 for the superpotential Wa(Xa) = X5

a .
With abuse of notation, we will use the same notation as above for cones in
the orbifold category of Wa.

The structure of exact triangles in a one variable category in the absence
of an orbifold action has been determined in [52]. In particular one can show
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that there are distinguished triangles of the form

M l
φlk−→ Mk −→Mk−l (6.5)

where φlk : M l → Mk is given by (φlk)1 = xl−k, (φlk)0 = 1. If k < l,
Mk−l is defined to be M l−k[1]. In the presence of an orbifold projection, the
equivariant version of (6.5) is

M l,µ
φlk−→ Mk,l−k+µ −→Mk−l,l−k+µ (6.6)

where the labels µ, ν, . . . ∈ {0, 1, . . . , 4} are defined mod 5. Moreover, we
have the identifications M l,µ[1] 
M−l,l+µ explained in section 3.2.

Now let us repeat the above cone construction in the one variable the-

ory. We define C10 = Cone
(
M1,1[1]

Ta(1,0)−−−−−−−→M1,0

)
. From (6.6) it follows

that C10 
 M2,0. Next we construct C32 = Cone
(
M1,3[1]

Ta(3,2)−−−−−−−→M1,2

)
which is isomorphic to M2,2 by the same argument. Finally we take a second

cone C432 = Cone
(
M1,4[1]

κ→C32

)
. Using (6.6) again, we find C432 
 M 3,2,

hence C432[1] 
M−3,0. To conclude, note that we have an exact triangle

M2,0 →M−3,0 →M−5,0 (6.7)

where M−5,0 is the trivial object. Therefore we have indeed C10 
 C432[1].
The same conclusion is valid for the five variable fractional branes by taking
tensor products and using (6.4).

6.2 D0-brane moduli

The second problem considered in this section is finding the moduli space
of the object A(0)

4 which has been identified with a (anti) D0-brane on the
quintic. Ideally one should be able to prove that this moduli space is iso-
morphic to the Fermat quintic 1 We will not give a rigorous proof here since
moduli problems in abstract categories are complicated and not very well
understood at this point. However we will take a first step in this direction
by exhibiting a family of deformations of A(0)

4 parameterized by the Fermat

1In order to give a rigorous construction of the moduli space, one has to first specify
a stability condition. In principle the moduli space may be different for different stability
conditions. Therefore a more precise statement would be that the moduli space should be
isomoprhic to the Fermat quintic in the presence of a suitable stability condition. We will
not try to make this explicit here, although it is a very interesting subject for future work.
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quintic. Although we cannot prove that this is the full moduli space in the
D-brane category, this is certainly an important step forward.

Let us consider a point P on the Fermat quintic determined by the linear
homogeneous equations L1 = L2 = L3 = L4 = 0. According to Hilbert’s
Nullstellensatz, the condition that P lie on the quintic W = 0 is that W q

belongs to the ideal I = (L1, L2, L3, L4) ⊂ C[X0, . . . ,X4] for some q > 0.
Since I is a prime ideal, it follows that W belongs to I, hence there exist
four polynomials F1, . . . , F4 so that

L1F1 + L2F2 + L3F3 + L4F4 = W. (6.8)

Given this relation, we can find a factorization of W of the form

D =
4∑

a=1

(Laπa + Faπ̄a) (6.9)

where (πa, π̄a) are free fermion operators generating a complex Clifford al-
gebra. This was explained in section 2, equations (2.4) and (2.6). A special
case of this construction is

L1 = X0 − ηX1, L2 = X2, L3 = X3, L4 = X4

F1 =
X5

0 +X5
1

X0 − ηX1
, F2 = X4

2 , F3 = X4
3 , F4 = X4

4

(6.10)

which corresponds to the object A(0)
4 studied in detail before. Choosing

Z/5 representations appropriately, (6.9) yields a family of deformations of
A

(0)
4 . We claim that the isomorphism classes of objects in this family are

parameterized by points on the Fermat quintic. This is by no means obvious
since a priori (6.9) depends on the choice of a set of generators for the ideal
I.

In order to prove this claim, we have to rely on the results of [52]. Sup-
pose we are given a Landau-Ginzburg superpotential W : C

n+1 → C with
an isolated critical point at the origin. Let S0 denote the fiber of W over
0 ∈ C. Then the main statement of [52] is that the D-brane category CW is
equivalent to the so-called category of the singularity DSg(S0). DSg(S0) is
constructed by taking the quotient of the bounded derived category Db(S0)
by the full subcategory of perfect complexes. A perfect complex is a finite
complex of locally free sheaves. If S0 were nonsingular, the quotient would be
empty, since in that case any object in Db(S0) would have a locally free res-
olution. Therefore DSg(S0) depends only on the singular points of S0. The
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equivalence functor CW → DSg(S0) associates to an object

(
P1

p1 ��
P0

p0
��

)
the one term complex defined by the cokernel of p1 regarded as a coherent
C[X0, . . . ,Xn]/W -module.

A consequence of this result is that the isomorphism class of an ob-
ject P is uniquely determined by the isomorphism class of the coherent
C[X0, . . . ,Xn]/W -module Coker(p1) modulo extensions by free C[X0, . . . ,Xn]/W -
modules. Using this result, it suffices to show that the cokernels Coker(p1)
associated to the factorizations (6.9) are parameterized by points on the
Fermat quintic.

Let Q denote the cokernel associated to an arbitrary factorization (6.9)
and let R = C[X0, . . . ,X4]. We claim that Q is isomorphic to the R/W -
module R/I in DSg(S0). Therefore the deformations (6.9) are parameterized
up to isomorphisms by points on the Fermat quintic, as claimed above. Note
that R/I has an R/W -module structure because W ∈ I, according to (6.8).

To determine Q, let us write down an explicit expression for the map p1

associated to the factorization (6.9). Choosing an appropriate representation
of the Clifford algebra, (or taking tensor products) we obtain

p1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F4 0 0 0 L3 0 L2 F1

0 F4 0 0 0 L3 L1 −F2

0 0 F4 0 F2 F1 −F3 0
0 0 0 F4 L1 −L2 0 −F3

F3 0 L2 F1 −L4 0 0 0
0 F3 L1 −F2 0 −L4 0 0
F2 F1 −L3 0 0 0 −L4 0
L1 −L2 0 −L3 0 0 0 −L4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6.11)

Let U =
[
U1 U2 . . . U8

]tr be an arbitrary element of R⊕8. We want to
determine the quotient moduleQ = R⊕8/(p1(R⊕8)). LetG =

[
G1 G2 . . . G8

]tr
denote an arbitrary element in R⊕8. We have G ∼ 0 if and only if G = p1U
for some U . In particular this yields the relation

G8 = L1U1 − L2U2 − L3U4 − L4U8 (6.12)

which shows that the projection to the eighth factor induces a surjective
R/W -module homomorphism

Q→ R/I → 0 . (6.13)

The kernel of this map is an R/W -module K isomorphic to the quotient
R⊕7/(p1(M)). Here M ⊂ R⊕8 is the submodule of R⊕8 which leaves G8
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invariant. One can easily check that U ∈M can be parameterized as follows

U1 = V12L2 + V13L3 + V14L4

U2 = V12L1 + V23L3 + V24L4

U4 = V13L1 − V23L2 + V44L4

U8 = V14L1 − V24L2 − V44L3

(6.14)

where V12, V13, . . . V44 are arbitrary polynomials and U3, U5, U6, U7 are also
arbitrary. Evaluating p1 on elements U of this form yields

p1U =[ V7L2 + V5L3 V7L1 + V6L3 F4V3 − F3V7 + F2V5 + F1V6 V5L1 − V6L2

V3L2 − V5L4 V3L1 − V6L4 −V3L3 − V7L4 0 ]tr mod W

(6.15)

where

V3 = U3 − F1V23 − F2V13 + F3V12

V5 = U5 − F1V44 − F3V14 + F4V13

V6 = U6 + F2V44 − F3V24 + F4V23

V7 = U7 − F1V24 − F2V14 + F4V12 .

(6.16)

This shows that there is an exact sequence of R/W -modules of the form

(R/W )⊕4 f→(R/W )⊕7 → K → 0 (6.17)

where f is defined by (6.15). The kernel of f consists of elements V =[
V3 V5 V6 V7

]tr of the form

V3 = L4V, V5 = L2V, V6 = L1V, V7 = −L3V, (6.18)

where V is an arbitrary polynomial. Therefore Ker(f) is isomorphic to R/W ,
and we conclude that K has a finite free resolution

0 → R/W → (R/W )⊕4 f→(R/W )⊕7 → K → 0 (6.19)

as an R/W -module. This shows that K is isomorphic to the trivial element
in DSg(S0), hence Q is indeed isomorphic to R/I as claimed above.
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A Morphism Spaces: Matrix to Polynomial Fac-
torizations

In this section, we study the space of morhisms between the fractional branes
M

2 and the rank one objects P η in CW with W = Xd
0 +Xd

1 . For the bosonic
morphisms, the conditions for Q-closedness takes the form

(f01X0 + f02X
d−1
1 ) − (X0 − ηX1)f11 = 0

(f01X1 − f02X
d−1
0 ) − (X0 − ηX1)f12 = 0 . (A.1)

The Q-exactness condition for f02

f02 ∼ 0 if f02 = (t11X1 − t12X0) + t02 (X0 − ηX1)

allows one to set f02 = 1. Substituting this into (A.1) gives

[f11, f12] =
[
ηd−1Xd−2

1 , − Xd
0 +Xd

1

X0 − ηX1

]
and [f01, f02] =

[
ηd−1Xd−2

1 , 1
]
.

A similar computation for the fermionic morphisms gives

[t01, t02] =
[
−η Xd

0 +Xd
1

X0 − ηX1
, 1
]

and [t11 , t12] = [η , 1] .

A.1 Zd Orbifold

As before, imposing the equivariance conditions allows us to infer the mor-
phisms between orbifolded objects. For instance,

f02 : (M1 ⊗M1)µ−1 −→ (P0)µ′+1

is the identity operator therefore non-zero bosonic morphisms exist only for
µ′ − µ = d− 2.

Similarly for the fermions, since

t02 : (M1 ⊗M1)µ−1 −→ (P1)µ′

is the identity operator, fermionic morphisms exist for µ′−µ = d− 1. Thus,
we infer that the intersection matrix from the matrix to the polynomial
factorizations is

χ
(
M11,µ, P η,µ′

)
=
[
G−2 −G−1

]
µµ′

where G is the shift matrix.



S.K. ASHOK, E. DELL’AQUILA AND D.-E. DIACONESCU 507

[
Xd−1

0 X1

Xd−1
1 −X0

]

[
X0 X1

Xd−1
1 −Xd−1

0

]

M0 ⊗ M0 ⊕ M1 ⊗ M1M1 ⊗ M0 ⊕ M0 ⊗ M1

f1 = [f11, f12] f0 = [f01, f02]

t1 = [t11, t12] t0 = [t01, t02]

X0 − η X1

Xd
0 + Xd

1

X0 − η X1

(Pη)0(Pη)1

Figure 9: The morphism complex for matrix to polynomial factorizations.

B Composition of morphisms for W = X5
0 + X5

1

As shown in (3.39), the fermionic morphisms from M
2
1 to M2

0 have the form

T0 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 X3

0

−X3
0 0 0 0

0 −1 0 0

⎞
⎟⎟⎠ and T1 =

⎛
⎜⎜⎝

0 0 0 1
0 0 −X3

1 0
0 1 0 0

−X3
1 0 0 0

⎞
⎟⎟⎠ .

The morphisms from M
2 to P η have been constructed in Appendix A. The

fermionic morphism from M
2
0 to (P η)4 has the form 2

t =
(

0 0 t11 t12
t01 t02 0 0

)

with

[t01 , t02] =
[−η (X3

0 + ηX2
0X1 + η2X0X

2
1 + η3X3

1 ) , 1
]

[t11 , t12] = [η , 1] .

The bosonic morphism from M
2
1 to (P η)4 has the form

f =
(
f01 f02 0 0
0 0 f11 f12

)
2For simplicity we suppress the subscripts (µ, ν) used in section five.
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with

[f11 , f12] =
[
η4X3

1 , −(X3
0 + ηX2

0X1 + η2X0X
2
1 + η3X3

1 )
]

[f01 , f02] =
[
η4X3

1 , 1
]
.

We want to show explicitly that the morphisms in the diagram of figure 8
compose as

t T1J = ηfJ, t (η T0 + T1)J = 0 ,

where J is introduced to account for the shift of the object M2
1[1] . Since here

J multiplies all expressions on the right, we can neglect it in the following
computations. Using the expressions above we find

t T1 =
( −X3

1 η 0 0
0 0 −X3

1 −η (X3
0 + ηX2

0X1 + η2X0X
2
1 + η3X3

1

) ) = η f

and

t (η T0 + T1) =

−η2

(
X3

0 − η3X3
1 0 0 0

0 0 X0 (X2
0 + ηX0X1 + η2X2

1 ) X1

(
X2

0 + ηX0X1 + η2X2
1

) )
(B.1)

We need to show that the morphism that appears on the right hand side
of this equality is zero in cohomology. A bosonic morphism g is exact if

g = D
M

2 s+ sDPη
,

with s a fermionic morphism. The differentials D
M

2 and DPη
have the form

D
M

2 =

⎛
⎜⎜⎝

0 0 X0 X1

0 0 X4
1 −X4

0

X4
0 X1 0 0

X4
1 −X0 0 0

⎞
⎟⎟⎠ and DPη

=

(
0 X0 − ηX1

X5
0+X5

1
X0−ηX1

0

)
.

If we parameterize the morphisms g and s as

g =
(
g01 g02 0 0
0 0 g11 g12

)
and s =

(
0 0 s11 s12
s01 s02 0 0

)
,

the condition for g to be exact gives the system of equations

g01 = s11X
4
0 + s12X

4
1 + s01 (X0 − ηX1)

g02 = −s12X0 + s11X1 + s02 (X0 − ηX1)

g11 = s01X0 + s02X
4
1 + s11

X5
0 +X5

1

X0 − ηX1

g12 = −s02X4
0 + s01X1 + s12

X5
0 +X5

1

X0 − ηX1
.
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If we take g to be (B.1), it is easy to see that these conditions can be satisfied
by choosing s01 = −η2 (X2

0 + ηX0X1 + η2X2
1 ) and s02 = s11 = s12 = 0 .

References

[1] P.S. Aspinwall, “A Point’s Point of View of Stringy Geometry”, JHEP
01 (2003) 002, hep-th/0203111.

[2] P.S. Aspinwall, “The Breakdown of Topology at Small Scales”, hep-
th/0312188.

[3] P. S. Aspinwall and M. R. Douglas, “D-brane stability and mon-
odromy,” JHEP 0205, 031 (2002), hep-th/0110071.

[4] P. S. Aspinwall and A. E. Lawrence, “Derived categories and zero-
brane stability,” JHEP 0108, 004 (2001), hep-th/0104147.

[5] P.S. Aspinwall, R.P. Horja and R.L. Karp, “Massless D-Branes on
Calabi-Yau Threefolds and Monodromy”, hep-th/0209161.

[6] A.A. Beilinson, “Coherent Sheaves on P
n and Problems in Linear Al-

gebra”, Funk. An. 12 (1978) 68.

[7] A. I. Bondal, “Helixes, Representations of Quivers and Koszul Alge-
bras”, Felices and Vector Bundles, A.N. Rudakov ed, London Mathe-
matical Society Lecture Series 148 1990.

[8] T. Bridgeland, A. King and M. Reid, “Mukai implies McKay: the
McKay correspondence as an equivalence of derived categories”, J.
Amer. Math. Soc. 14 (2001) 535, math.AG/9908027.

[9] I. Brunner and J. Distler, “Torsion D-Branes in Nongeometrical
Phases”, Adv. Theor. Math. Phys. 5 (2002) 265, hep-th/0102018.

[10] I. Brunner, J. Distler and R. Mahajan, “Return of the Torsion D-
Branes”, Adv. Theor. Math. Phys. 5 (2002) 311, hep-th/0106262.

[11] I. Brunner, M. R. Douglas, A. E. Lawrence and C. Romelsberger, “D-
branes on the quintic,” JHEP 0008, 015 (2000), hep-th/9906200.

[12] I. Brunner, M. Herbst, W. Lerche and B. Scheuner, “Landau-Ginzburg
Realization of Open String TFT”, hep-th/0305133.

[13] I. Brunner and V. Schomerus, “D-branes at Singular Curves of Calabi-
Yau Compactifications”, JHEP 04 (2000) 020, hep-th/0001132.



510 FRACTIONAL BRANES IN LG ORBIFOLDS

[14] I. Brunner and V. Schomerus, “On Superpotentials for D-Branes in
Gepner Models”, JHEP 10 (2000) 016,hep-th/0008194

[15] A. Caldararu, S. Katz and E. Sharpe, “D-branes, B fields, and Ext
groups”, Adv. Theor. Math. Phys. 7 (2003) 381

[16] D.-E. Diaconescu, “Enhanced D-brane Categories from String Field
Theory”, JHEP 06 (2001) 016, hep-th/0104200.

[17] D.-E. Diaconescu and M. Douglas, “D-Branes on Stringy Calabi-Yau
Manifolds”, hep-th/0006224.

[18] D.-E. Diaconescu, J. Gomis, “Fractional Branes and Boundary States
in Orbifold Theories”, hep-th/9906242.

[19] D.-E. Diaconescu, C. Romelsberger, “D-Branes and Bundles on Ellip-
tic Fibrations”, Nucl. Phys. B574 (2000) 245, hep-th/9910172.

[20] J. Distler, H. Jockers and H. Park, “D-Brane Monodromies, Derived
Categories and Boundary Linear Sigma Models”, hep-th/0206242.

[21] R. Donagi, S. Katz, E. Sharpe, “Spectra of D-branes with Higgs vevs”,
hep-th/0309270

[22] M. R. Douglas, “D-branes, categories and N = 1 supersymmetry,” J.
Math. Phys. 42, 2818 (2001), hep-th/0011017.

[23] M. R. Douglas, S. Govindarajan, T. Jayaraman and A. Tomasiello,
“D-branes on Calabi-Yau manifolds and superpotentials,”, hep-
th/0203173.

[24] M. R. Douglas and B. Fiol, “ D-branes and Discrete Torsion II”, hep-
th/9903031.

[25] M. R. Douglas, B. Fiol, C. Romelsberger, “Stability and BPS branes”,
hep-th/0002037.

[26] M. R. Douglas, B. Fiol, C. Romelsberger, “The spectrum of BPS
branes on a noncompact Calabi-Yau”, hep-th/0003263.

[27] M.R. Douglas and G. Moore, “D-branes, Quivers, and ALE Instan-
tons”, hep-th/9603167.

[28] S. Govindarajan, T. Jayaraman, Tapobrata Sarkar, “Worldsheet ap-
proaches to D-branes on supersymmetric cycles”, Nucl. Phys. B580
(2000) 519,hep-th/9907131



S.K. ASHOK, E. DELL’AQUILA AND D.-E. DIACONESCU 511

[29] S. Govindarajan and T. Jayaraman, “Boundary fermions, coherent
sheaves and D-branes on Calabi-Yau manifolds,” Nucl. Phys. B 618,
50 (2001), hep-th/0104126.

[30] S. Govindarajan, T. Jayaraman, “On the Landau-Ginzburg descrip-
tion of Boundary CFTs and special Lagrangian submanifolds”, JHEP
07 (2000) 016, hep-th/0003242; “D-branes, Exceptional Sheaves and
Quivers on Calabi-Yau manifolds: From Mukai to McKay”, hep-
th/0010196; “Boundary Fermions, Coherent Sheaves and D-branes on
Calabi-Yau manifold”, hep-th/0104126.

[31] S. Govindarajan, T. Jayaraman, and T. Sarkar, “On D-branes from
Gauged Linear Sigma Models”, Nucl. Phys. B593 (2001) 155, hep-
th/0007075.

[32] B. Greene, C. Lazaroiu, “Collapsing D-Branes in Calabi-Yau Moduli
Space: I”, hep-th/0001025.

[33] M. Gutperle, Y. Satoh, “D-branes in Gepner models and supersym-
metry”, Nucl. Phys. B543 (1999) 73 hep-th/9808080.

[34] S. Hellerman and J. McGreevy, “Linear sigma model toolshed for D-
brane physics”, JHEP 10 (2001) 002, hep-th/0104100.

[35] S. Hellerman, S. Kachru, A. Lawrence and J. McGreevy, ”Linear Sigma
Models for Open Strings”, JHEP 07 (2002) 002, hep-th/0109069.

[36] K. Hori, “Linear Models of Supersymmetric D-Branes”, hep-
th/0012179.

[37] K. Hori and C. Vafa, “Mirror Symmetry”, hep-th/0002222.

[38] K. Hori, A. Iqbal and C. Vafa, “D-branes and Mirror Symmetry”,
hep-th/0005247.

[39] R.P. Horja, “Hypergeometric functions and mirror symmetry in toric
varieties”, math.AG/9912109.

[40] R.P. Horja, “Derived Category Automorphisms from Mirror Symme-
try”, math.AG/0103231.

[41] A. Kapustin and Y. Li, “D-Branes in Landau-Ginzburg Models and
Algebraic Geometry”, hep-th/0210296.

[42] A. Kapustin and Y. Li, “Topological Correlators in Landau-Ginzburg
Models with Boundaries”, hep-th/035136.



512 FRACTIONAL BRANES IN LG ORBIFOLDS

[43] A. Kapustin and Y. Li, “D-Branes in Topological Minimal Models:
The Landau-Ginzburg Approach”, hep-th/0306001.

[44] P. Kaste, W. Lerche, C.A. Lutken, J. Walcher, “D-Branes on K3-
Fibrations”, Nucl. Phys. B582 (2000) 203, hep-th/9912147.

[45] S. Katz and E. Sharpe, “D-branes, open string vertex operators, and
Ext groups”, Adv. Theor. Math. Phys. 6 (2003) 979, hep-th/0208104

[46] S. Katz, T. Pantev and E. Sharpe, “D-branes, orbifolds, and Ext
groups”, Nucl. Phys. B673 (2003) 263, hep-th/0212218

[47] M. Kontsevich, “Homological Algebra of Mirror Symmetry”, alg-
geom/9411018.

[48] C. Lazaroiu, “Collapsing D-branes in one-parameter models and
small/large radius duality”, hep-th/0002004.

[49] C.I. Lazaroiu, “Unitarity, D-brane dynamics and D-brane categories”,
JHEP 12 (2001) 031, hep-th/0102183.

[50] C.I. Lazaroiu, “Generalized complexes and string field theory”, JHEP
06 (2001) 052, hep-th/0102122.

[51] P. Mayr, “Phases of Supersymmetric D-branes on Kaehler Mani-
folds and the McKay correspondence”, JHEP 01 (2001) 018, hep-
th/0010223.

[52] D. Orlov, “Triangulated Categories of Singularities and D-Branes in
Landau-Ginzburg Orbifolds”, math.AG/0302304.

[53] A. Recknagel, “Permutation Branes”, JHEP 04 (2003) 041, hep-
th/0208119.

[54] A. Recknagel and V. Schomerus, “D-branes in Gepner models,” Nucl.
Phys. B 531, 185 (1998), hep-th/9712186.

[55] E. Scheidegger, “D-branes on some one- and two-parameter Calabi-
Yau hypersurfaces”, JHEP 04 (2000) 003, hep-th/9912188.

[56] E. Scheidegger, “On D0-branes in Gepner models”, JHEP 08 (2002)
001, hep-th/0109013.

[57] E. Sharpe, “D-Branes, Derived Categories, and Grothendieck Groups”,
Nucl. Phys. B561 (1999) 433, hep-th/9902116

[58] P. Seidel and R. Thomas, “Braid Group Actions on Derived Categories
of Coherent Sheaves”, math.AG/0001043.



S.K. ASHOK, E. DELL’AQUILA AND D.-E. DIACONESCU 513

[59] A. Tomasiello, “D-branes on Calabi-Yau manifolds and helices”, JHEP
02 (2001) 008, hep-th/0010217.

[60] E. Witten, “Phases of N = 2 theories in two dimensions,” Nucl. Phys.
B 403, 159 (1993), hep-th/9301042.


