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Block maxima methods constitute a fundamental part of the statistical
toolbox in extreme value analysis. However, most of the corresponding the-
ory is derived under the simplifying assumption that block maxima are inde-
pendent observations from a genuine extreme value distribution. In practice,
however, block sizes are finite and observations from different blocks are de-
pendent. Theory respecting the latter complications is not well developed,
and, in the multivariate case, has only recently been established for disjoint
blocks of a single block size. We show that using overlapping blocks instead
of disjoint blocks leads to a uniform improvement in the asymptotic variance
of the multivariate empirical distribution function of rescaled block maxima
and any smooth functionals thereof (such as the empirical copula), without
any sacrifice in the asymptotic bias. We further derive functional central limit
theorems for multivariate empirical distribution functions and empirical cop-
ulas that are uniform in the block size parameter, which seems to be the first
result of this kind for estimators based on block maxima in general. The the-
ory allows for various aggregation schemes over multiple block sizes, leading
to substantial improvements over the single block length case and opens the
door to further methodology developments. In particular, we consider bias
correction procedures that can improve the convergence rates of extreme-
value estimators and shed some new light on estimation of the second-order
parameter when the main purpose is bias correction.

1. Introduction. Extreme-value theory provides a central statistical ingredient in var-
ious fields like hydrology, meteorology and financial risk management, which all have to
deal with highly unlikely but important events; see, for example, Beirlant et al. (2004) for
an overview. Mathematically, the properties of such events can be understood by studying
the (multivariate) tail of probability distributions and the potential temporal dependence of
tail events. Respective statistical methodology typically relies on some version of one of two
fundamental approaches: the peaks-over-threshold (POT) method which considers only ob-
servations that exceed a certain high threshold, or the block maxima (BM) method which
is based on taking maxima of observed values over consecutive blocks of observations and
treating those maxima as (approximate) data from an extreme value distribution.

While historically the BM approach was the first to be invented (Gumbel (1958)), the
mathematical interest soon shifted toward the POT approach. POT methods are by now well
understood, and there is a rich and mature literature on various theoretical and practical as-
pects of such methods; see de Haan and Ferreira (2006) for a review of many classical results
and Drees and Rootzén (2010), Can et al. (2015), Fougères, de Haan and Mercadier (2015),
Einmahl, de Haan and Zhou (2016) for recent developments. In the last couple of years, there
has been an increased interest in the theoretical aspects of the BM approach for univariate
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observations, and recent work in this direction includes Dombry (2015), Dombry and Fer-
reira (2019), Ferreira and de Haan (2015), Bücher and Segers (2018b, 2018a). The case of
multivariate observations has received much less attention, and the only theoretical analysis
of (componentwise) block maxima in the multivariate setting that we are aware of is due
to Bücher and Segers (2014). The present paper is motivated by this apparent imbalance of
theoretical developments for BM methods as compared to POT methods in the multivariate
case.

It is well known that the analysis of multivariate distributions can be decomposed into
two distinct parts: the analysis of marginal distributions and the analysis of the dependence
structure as described by the associated copula. Classical results from extreme-value theory
further show that the possible dependence structures of extremes have to satisfy certain con-
straints, but do not constitute a parametric family. In fact, the possible dependence structures
may be described in various equivalent ways (see, e.g., Resnick (1987), Beirlant et al. (2004),
de Haan and Ferreira (2006)): by the exponent measure μ (Balkema and Resnick (1977)), by
the spectral measure � (de Haan and Resnick (1977)), by the Pickands dependence function
A (Pickands (1981)), by the stable tail dependence function L (Huang (1992)), by the tail
copula � (Schmidt and Stadtmüller (2006)), by the madogram ν (Naveau et al. (2009)), by
the extreme-value copula C∞ (see Gudendorf and Segers (2010) for an overview), or by other
less popular objects.

Since statistical theory for estimators of, for example, the Pickands dependence function,
the stable tail dependence function, or the madogram may be derived from corresponding
results for the empirical copula process (see, e.g., Genest and Segers (2009)), we focus on
constructing estimators for the extreme-value copula C∞, which can in turn serve as a fun-
damental building block for subsequent developments. This approach was also taken in the
above-mentioned reference Bücher and Segers (2014), who analyze the empirical copula pro-
cess based on (disjoint) block maxima, and then apply the results to obtain the asymptotic
behavior of estimators for the Pickands dependence function.

The basic observational setting that we consider is the same as in Bücher and Segers
(2014): data are assumed to come from a strictly stationary multivariate time series, and
we assume that the copula of the random vector of componentwise block-maxima converges,
as the block length tends to infinity, to a copula C∞ which is our main object of interest.
However, in contrast to Bücher and Segers (2014), we base our estimators on overlapping
instead of disjoint blocks. While the corresponding theoretical analysis is more involved due
to the additional dependence introduced by overlaps in the blocks, we show that this always
leads to a reduction in the asymptotic variance of the resulting empirical copula process and
smooth functionals thereof. Another major difference with Bücher and Segers (2014) is that
we consider functional central limit theorems which explicitly involve the block size as a pa-
rameter. This generalization is crucial for various applications, some of which are considered
in Section 3.

As a first simple but useful application, we consider estimators for C∞ which are based
on aggregating over various block length parameters, thereby providing estimators which are
less sensitive to the choice of a single block length parameter. The corresponding asymptotic
theory is a straightforward consequence of the asymptotic theory mentioned before. A Monte
Carlo simulation study reveals the superiority of the aggregated estimators over their nonag-
gregated versions in typical finite-sample situations.

A second more involved application concerns the construction of bias-reduced estimators
for C∞ (see Fougères, de Haan and Mercadier (2015), Beirlant et al. (2016) for recent pro-
posals in the multivariate POT approach for i.i.d. observations). As is typically done when
tackling the problem of bias reduction in extreme value statistics, the estimators are obtained
by explicitly taking into account the second-order structure of the extreme value model in the
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FIG. 1. 104×average MSE, squared bias and variance of the disjoint blocks estimator from Bücher and Segers
(2014) and the aggregated bias corrected estimator proposed in this paper. Data generating process and estima-
tors are as described in Section 4, Model (MM-OPC).

estimation step. We are not aware of any results on bias-reduced estimators within the block
maxima framework in general. In fact, even for POT methods such results do not seem to
exist in the multivariate time series setting (some results on the univariate time series case
can be found in de Haan, Mercadier and Zhou (2016)). As a necessary intermediate step for
bias correction, we need to consider estimation of a second-order parameter which naturally
shows up in the second-order condition. We show that special care needs to be taken when
estimating this parameter for its use in bias correction, and propose a penalized estimator
which explicitly takes this specific aim into account.

The improvement in both variance and bias of one of the estimators for C∞ proposed in
this paper over the disjoint blocks estimator from Bücher and Segers (2014) is illustrated in
Figure 1.

The idea of using sliding/overlapping block maxima for statistical inference appears to be
quite new to the extreme value community, whence similar results in the literature actually are
rare, even in univariate situations. To the best of our knowledge, the idea first appeared in the
context of estimating the extremal index of a univariate stationary time series; see Berghaus
and Bücher (2018), Northrop (2015), Robert, Segers and Ferro (2009). The only paper we are
aware of in the classical univariate case is Bücher and Segers (2018a), which is restricted to
the heavy tailed case. The idea of basing inference on multiple block sizes seems to be new,
and is possibly transferable to the univariate case as well.

We further remark that there is a rich and mature literature that deals with estimation of
extreme-value copulas and related objects when observations from an extreme-value cop-
ula are available (see, among many others, Pickands (1981), Capéraà, Fougères and Genest
(1997) for early contributions and Genest and Segers (2009), Gudendorf and Segers (2010)
for rank-based methods). However, the setting in that literature is different from ours since
we do not assume that data from the extreme value copula are available directly.

Finally, we would like to stress that this paper’s main contribution consists of providing
a sound theoretical and methodological foundation for further developments in the field, for
example, for constructing and validating new application-oriented methods. In fact, many
practically relevant statistics such as the madogram (Naveau et al. (2009)) can be written as
functionals of the empirical copula, whence a rather straightforward application of our results
might concern a sliding blocks version of the madogram.

The remaining parts of this paper are organized as follows: the sliding block maxima
(empirical) copula process, including the block length as an argument of the process, is con-
sidered in Section 2. The applications on aggregated estimators, bias-reduced estimators and
estimators of second-order parameters are worked out in Section 3. Some theoretical exam-
ples, as well as a detailed Monte Carlo simulation study are presented in Section 4. All proofs
are deferred to a Supplementary Material (Zou, Volgushev and Bücher (2020)).
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Throughout, for ξ ∈ R, let �ξ� be the smallest integer greater or equal to ξ . Let 〈ξ〉 be
the largest integer smaller or equal to ξ if ξ ≥ 0 and the smallest integer greater or equal
to ξ if ξ < 0. For u,v ∈ Rd , write u ≤ v if uj ≤ vj for all j , and u � v if there exists j

such that uj > vj . Let u ∧ v = (min(u1, v1), . . . ,min(ud, vd)). All convergences will be for
n → ∞, if not mentioned otherwise. The arrow ⇒ denotes weak convergence in the sense of
Hoffman–Jørgensen; see van der Vaart and Wellner (1996).

2. Functional weak convergence of empirical copula processes based on sliding block
maxima. Suppose (Xt )t∈Z = (Xt,1, . . . ,Xt,d)t∈Z is a multivariate strictly stationary pro-
cess, and that (Xt )

n
t=1 is observable data. Let m ∈ {1, . . . , n} be a block size parameter

and, for i = 1, . . . , n − m + 1 and j = 1, . . . , d , let Mm,i,j = max{Xt,j : t ∈ [i, i + m) ∩ Z}
be the maximum of the ith sliding block of observations in the j th coordinate. For x =
(x1, . . . , xd) ∈Rd , let Mm,i = (Mm,i,1, . . . ,Mm,i,d) and

Fm,j (x) = P(Mm,1,j ≤ x), Fm(x) = P(Mm,1 ≤ x),

Um,i,j = Fm,j (Mm,i,j ), Fm(x) = (
Fm,1(x1), . . . ,Fm,d(xd)

)
,

Um,i = (Um,i,1, . . . ,Um,i,d), F←
m (x) = (

F←
m,1(x1), . . . ,F

←
m,d(xd)

)
,

where G← denotes the left-continuous generalized inverse of a c.d.f. G. Subsequently, we
assume that the marginal c.d.f.’s of X1,1, . . . ,X1,d are continuous. In that case, the marginal
c.d.f.’s of Mm,1 are continuous as well and

Cm(u) = P(Um,1 ≤ u), u ∈ [0,1]d,

is the unique copula associated with Mm,1. Throughout, we shall work under the following
fundamental domain-of-attraction condition.

ASSUMPTION 2.1. There exists a copula C∞ such that

lim
m→∞Cm(u) = C∞(u), u ∈ [0,1]d .

Note that the convergence is necessarily uniform, by Lipschitz continuity of Cm and C∞.
Typically, the limit C∞ will be an extreme value copula (Hsing (1989), Hüsler (1990)), that
is, C∞(u1/s)s = C∞(u) for all s > 0 and u ∈ [0,1]d and

C∞(u) = exp
{−L(− logu1, . . . ,− logud)

}
, u ∈ [0,1]d,

for some stable tail dependence function L : [0,∞]d → [0,∞] satisfying:

(i) L is homogeneous: L(s·) = sL(·) for all s > 0;
(ii) L(ej ) = 1 for j = 1, . . . , d , where ej denotes the j th unit vector;

(iii) max(x1, . . . , xd) ≤ L(x) ≤ x1 + · · · + xd for all x ∈ [0,∞)d ;
(iv) L is convex;

see, for example, Beirlant et al. (2004). By Theorem 4.2 in Hsing (1989), this is for in-
stance the case if the time series (Xt )t is beta-mixing. However, C∞ is in general different
from the extreme value attractor, say Ci.i.d.∞ , in case the observations are i.i.d. from the sta-
tionary distribution of the time series; see, for instance, Section 4.1 in Bücher and Segers
(2014). In fact, (block) maxima calculated from time series naturally incorporate informa-
tion about the serial dependence (as, e.g., measured by the multivariate extremal index, see
Section 10.5.2. in Beirlant et al. (2004)), whence the BM approach is typically more suit-
able when it comes to, for example, assessing return levels or periods. In the i.i.d. case,
Assumption 2.1 is equivalent to the existence of a stable tail dependence function L such that
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limt→∞ t{1 − C1(1 − x/t)} = L(x) for x ∈ [0,∞)d , where the copula C1 is extended to a
c.d.f. on Rd .

Assumption 2.1 does not contain any information about the rate of convergence of Cm

to C∞. In many cases, more precise statements about this rate can be made, and it is even
possible to write down higher order expansions for the difference Cm − C∞. For some of the
material in the paper, we will assume the validity of such expansions. Recall that a function
ϕ defined on the integers is regularly varying if t �→ ϕ(〈t〉) is regularly varying as a function
(0,∞) →R.

ASSUMPTION 2.2 (Second-order condition). There exists a regularly varying function
ϕ :N→ (0,∞) with coefficient of regular variation ρϕ < 0 and a (necessarily continuous)
nonnull function S on [0,1]d such that

Cm(u) − C∞(u) = ϕ(m)S(u) + o
(
ϕ(m)

)
(m → ∞),

uniformly in u ∈ [0,1]d .

We refer to the accompanying paper Bücher, Volgushev and Zou (2019) for a detailed
account on second-order conditions in the i.i.d. case. In particular, the latter paper shows that
the block maxima second-order condition above follows from the more common second-
order condition imposed on a POT-type convergence to L under fairly general assumptions;
see also equation (6) in Fougères, de Haan and Mercadier (2015). It was further shown in
Bücher, Volgushev and Zou (2019) that, in the i.i.d. case, the function ϕ in the condition
above must be regularly varying (the part can hence be removed from the assumption), that
the function S has certain homogeneity properties and that local uniform convergence on
[δ,1]d is sufficient for uniform convergence on [0,1]d . Specific examples in the i.i.d. and
time series case are discussed in more detail in Section 4.1.

2.1. Estimation in the case of known marginal distributions. We begin by estimating
C∞ in the case of known marginal c.d.f.’s F1,1, . . . ,F1,d , which, on the level of proofs, is a
necessary intermediate step when considering the realistic case of unknown marginal c.d.f.’s
in the subsequent section. For block size m′ ∈ {1, . . . , n}, let

Ĉ◦
n,m′(u) = 1

n − m′ + 1

n−m′+1∑
i=1

1(Um′,i ≤ u), u ∈ [0,1]d,(2.1)

denote the empirical c.d.f. of the sample of standardized sliding block maxima Um′,1, . . . ,
Um′,n−m′+1. Subsequently, we will consider block sizes of the form m′ = 〈ma〉 with scaling
parameter a > 0. The respective centred empirical process we are interested in is

C♦
n,m(u, a) = √

n/m
{
Ĉ◦

n,〈ma〉(u) − C〈ma〉(u)
}

= √
n/m

1

ba

ba∑
i=1

{
1(U 〈ma〉,i ≤ u) − P(U 〈ma〉,i ≤ u)

}
,

where ba = n−〈ma〉+1. For the functional weak convergence results to follow, we consider
C♦

n,m as an element of (	∞([0,1]d ×A),‖·‖∞), the space of bounded function on [0,1]d ×A

equipped with the supremum norm, where A = [a∧, a∨] ⊂ (0,∞) is a fixed interval, the case
a∧ = a∨ being explicitly allowed. We impose the following assumptions on the block length
parameter m = mn and the serial dependence of the time series.

ASSUMPTION 2.3. Denote by α(·) and β(·) the α and β mixing coefficients of the pro-
cess (Xt )t∈Z, respectively. Assume:
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(i) m = mn → ∞, n/m → ∞,
(ii) α(h) = o(h−(1+�)) as h → ∞, for some � > 0,

(iii) β(m)(n/m)1/2 → 0,
(iv) α(m)(n/m)1/2+ζ → 0, for someζ ∈ (0,1/2).

Condition (i) is a typical condition in extreme value statistics, and in fact a necessary
condition to allow for consistent estimation of C∞. Condition (ii) is a short-range dependence
condition that we introduce merely for technical reasons associated with our method of proof.
At the cost of more sophisticated proofs, the condition may possibly be relaxed. However,
since the condition is known to be satisfied for many common time series model, we feel that
such a relaxation is not necessarily needed. Assumptions (iii) and (iv) relate the block length
parameter to the serial dependence and allow for obtaining central limit theorems (alpha-
mixing) and proofs of tightness based on coupling arguments (beta-mixing).

THEOREM 2.4. Under Assumptions 2.1 and 2.3,

C♦
n,m ⇒C♦ in 	∞([0,1]d × A

)
,

where C♦ denotes a tight centred Gaussian process on [0,1]d × A with continuous sample
paths and covariance function

γ (v,u, c, a) := Cov
(
C♦(u, a),C♦(v, c)

)
=

∫ 0

−a

(
C∞

(
u1/a))−ξ (

C∞
(
v1/c ∧ u1/a))ξ+a(

C∞
(
v1/c))c−ξ−a dξ

+
∫ c−a

0

(
C∞

(
v1/c))c−a(

C∞
(
v1/c ∧ u1/a))a dξ

+
∫ c

c−a

(
C∞

(
v1/c))ξ (C∞

(
v1/c ∧ u1/a))c−ξ (

C∞
(
u1/a))ξ+a−c dξ

− (c + a)C∞(v)C∞(u)
(
a∧ ≤ a ≤ c ≤ a∨,u,v ∈ [0,1]d).

Perhaps surprisingly, the limiting covariance does not depend on the serial dependence
of the original time series, except through C∞ itself. In the univariate case, this was also
observed in Bücher and Segers (2018a).

REMARK 2.5. Under a slightly weaker version of Assumption 2.3, Bücher and Segers
(2014), Theorem 3.1, investigated the corresponding empirical process based on disjoint
block maxima with a = c = 1, that is, the process in 	∞([0,1]d) defined by

u �→ √
n/m

{
1

〈m/n〉
〈m/n〉∑
i=1

1(Um,1+m(i−1) ≤ u) − Cm(u)

}
,

and with tight centred Gaussian limit denoted by CD(u). The covariance function of the
limiting process is given by

γ D(u,v) = Cov
(
CD(u),CD(v)

) = C∞(u ∧ v) − C∞(u)C∞(v).

A comparison between the covariance functionals γ and γ D is worked out in Section 2.3
below; cf. Section A.4 in the Supplementary Material (Zou, Volgushev and Bücher (2020))
for an alternative expression for γ .
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PROOF OF THEOREM 2.4. Recall ba = n−〈ma〉+ 1, let b = b1 = n−m+ 1 and define

C♦,b
n,m(u, a) = √

n/m
1

b

b∑
i=1

(
1(U 〈ma〉,i ≤ u) − P(U 〈ma〉,i ≤ u)

)
.

The proof consists of several steps, which are explicitly taken care of in the Supplementary
Material (Zou, Volgushev and Bücher (2020)):

(i) In Lemma A.1, we prove that ‖C♦
n,m −C♦,b

n,m‖∞
p−→ 0. Hence it suffices to prove weak

convergence of C♦,b
n,m.

(ii) In Lemma A.2, we show that C♦,b
n,m is asymptotically uniformly equicontinuous in

probability with respect to the ‖ · ‖∞-norm on [0,1]d × A.
(iii) In Lemma A.5, we prove that the finite-dimensional distributions of C♦,b

n,m converge
weakly to those of C♦.

Weak convergence of C♦
n,m then follows by combining (i)–(iii). �

The proofs of Step (ii) and Step (iii) are quite lengthy and technical, but it is instructive to
present the main ideas within the next two remarks.

REMARK 2.6 (Proving fidi-convergence). The main steps for proving weak convergence
of the finite-dimensional distributions are as follows:

(i) Calculation of the limiting covariance functional γ . This is treated in Lemma A.4,
and bears similarities with common long run variance calculations in classical time series
analysis. The integrals in γ are due to the fact that some of the sliding blocks are overlapping,
with the integration variable ξ controlling the relative position of two overlapping blocks, and
with each of the three integrals corresponding to one of three possibilities for two blocks to
overlap: (1) a block of length a starts before a block of length c and ends inside, (2) a block
of length a lies completely within a block of length c, or (3) a block of length a starts inside
a block of length c and ends outside. Consider for instance the latter case, which would
correspond to 0 < c − a < ξ < c and amounts to consideration of the event {M1:〈mc〉 ≤
x,M〈mξ 〉+1:〈mξ 〉+〈ma〉 ≤ y}. The main idea consist of rewriting this event as

{M1:〈mξ 〉 ≤ x} ∩ {M〈mξ 〉+1:〈mc〉 ≤ x ∧ y} ∩ {M〈mc〉+1:〈mξ 〉+〈ma〉 ≤ y}.
We then use alpha mixing to show that the three events are asymptotically independent; this
eventually gives rise to the three-fold product in the third integral in the definition of γ with
each of the factors corresponding to the probability of one of the events above.

(ii) Big-blocks-small-blocks technique. The summands of the estimator of interest are col-
lected in successive blocks of (block maxima) observations, with a “big block” followed by
a “small block” followed by a “big block,” etc. The small blocks are then shown to be neg-
ligible, while the big blocks are shown to be asymptotically independent (via alpha mixing).
Weak convergence of the sum corresponding to big blocks can finally be shown by an appli-
cation of the Lyapunov central limit theorem.

REMARK 2.7 (Proving asymptotic tightness). The main steps for proving the tightness
part (see Lemma A.2) are as follows:

(i) Getting rid of serial dependence. Based on a coupling lemma for beta mixing se-
quences by Berbee (1979) and a blocking argument, proving tightness of C♦,b

n,m may be re-
duced to proving tightness of two empirical processes based on row-wise i.i.d. observations.
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In contrast to classical time series settings where blocks are based on the original observa-
tions, we consider blocks of collections of block maxima corresponding to all block sizes
considered. Blocking vectors of block maxima is needed to deal with the additional block
length parameter in our setting.

(ii) Proving tightness via a moment bound. After the reduction in step (i), we now deal
with row-wise i.i.d. observations and the results in van der Vaart and Wellner (1996) can
be applied. Here, each “observation” corresponds to a block of collections of block maxima
mentioned in the previous step. The moment bound in Theorem 2.14.2 in the latter book
allows to deduce tightness of the corresponding processes from controlling the bracketing
numbers of certain function classes which map collections of block maxima to pieces in the
sum defining C♦

n,m(u, a).
(iii) Bounding a certain bracketing number. The last step is based on some explicit lengthy

calculations, which take the precise definition of the triangular arrays into account, and in
particular the fact that the “observations” are block maxima (with arguments similar to the
one given in Remark 2.6 for the calculation of the limiting covariance).

2.2. Estimation in the case of unknown marginal c.d.f.’s. The results in Section 2.1
are based on the assumption that the marginal c.d.f.’s are known. In practice, this is
not realistic and marginals are typically standardized by taking componentwise ranks of
observed block maxima. For x ∈ R, j = 1, . . . , d and block size m′, let F̂n,m′,j (x) =

1
n−m′+1

∑n−m′+1
i=1 1(Mm′,i,j ≤ x) and consider observable pseudo-observations from Cm′ de-

fined as

Ûn,m′,i = (Ûn,m′,i,1, . . . , Ûn,m′,i,d), Ûn,m′,i,j = F̂n,m′,j (Mm′,i,j )

The observable analog of the estimator Ĉ◦
n,m′ in (2.1) is then given by

Ĉn,m′(u) = 1

n − m′ + 1

n−m′+1∑
i=1

1(Ûn,m′,i ≤ u),

and we are interested in the asymptotic behavior of the associated empirical copula process,
indexed by u ∈ [0,1]d and block length scaling parameter a ∈ A, defined as

Ĉ♦
n,m(u, a) = √

n/m
{
Ĉn,〈ma〉(u) − C〈ma〉(u)

}
.

Subsequently, the process will be called extended empirical copula process based on sliding
block maxima. Additional assumptions are needed for a corresponding weak convergence
result.

ASSUMPTION 2.8. For any j = 1, . . . , d , the first-order partial derivative Ċ∞,j (u) =
∂

∂uj
C∞(u) exists and is continuous on {u ∈ [0,1]d : uj ∈ (0,1)}.

Recall that such an assumption is even needed for weak convergence of the classical empir-
ical copula process based on i.i.d. observations from C∞ (Segers (2012)). For completeness,
define Ċ∞,j (u) = 0 if uj ∈ {0,1}. Following Bücher and Segers (2014), we do not need
differentiability of Cm for finite m. Instead, we will work with the functions

Ċm,j (v) := lim sup
h↓0

h−1{Cm(v + hej ) − Cm(v)
}
,

where j = 1, . . . , d,m ∈N,v ∈ [0,1]d and ej denotes the j th canonical unit vector in Rd .
Note that Ċm,j is always defined and satisfies 0 ≤ Ċm,j ≤ 1.
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For the upcoming main theorem of this paper, we will need an additional assumption on
the quality of convergence of Cm to C∞, which will eventually allow us to move from the
known margins to the unknown margins case. Any of the following three conditions will be
sufficient; the first two assumptions have also been considered in Bücher and Segers (2014)
(with kn = mn in Part (a)), while the third part (a more refined version of (a)) is included
specifically for the bias corrections worked out in Section 3.2, where (a) is typically not met.

ASSUMPTION 2.9 (Quality of convergence of Cm to C∞).

(a) A sequence (kn)n∈N of natural numbers with kn → ∞ is said to satisfy SC1(kn) if√
n/kn(Ckn − C∞) is relatively compact in C([0,1]d) (the space of continuous, real-valued

functions on [0,1]d ).
(b) For every δ ∈ (0,1/2), letting Sj,δ := [0,1]j−1 × [δ,1 − δ] × [0,1]d−j ,

lim
m→∞ max

j=1,...,d
sup

u∈Sj,δ

∣∣Ċm,j (u) − Ċ∞,j (u)
∣∣ = 0.

(c) A sequence (kn)n∈N of natural numbers with kn → ∞ is said to satisfy SC2(kn) if
Assumption 2.2 holds, S is uniformly Hölder-continuous of order δ ∈ (0,1], (n/kn)

(1−δ)/2 ×
ϕ(kn) = o(1) as n → ∞ and n �→ √

n/kn{Ckn − C∞ − ϕ(kn)S] is relatively compact in
C([0,1]d).

THEOREM 2.10 (Functional weak convergence of the extended empirical copula pro-
cess based on sliding block maxima). Let Assumptions 2.1, 2.3 and 2.8 hold. If either
SC1(〈mnan〉) from Assumption 2.9(a) holds for every converging sequence (an)n∈N in A,
or if Assumption 2.9(b) holds, or if SC2(〈mnan〉) from Assumption 2.9(c) holds for every
converging sequence (an)n∈N in A, then

Ĉ♦
n,m ⇒ Ĉ♦ in 	∞([0,1]d × A

)
,

where, letting u(j) = (1, . . . ,1, uj ,1, . . . ,1) with uj at the j th coordinate,

Ĉ♦(u, a) =C♦(u, a) −
d∑

j=1

Ċ∞,j (u)C♦(
u(j), a

)
.(2.2)

If additionally Assumption 2.2 is met, then Theorem 2.10 shows that the uniform con-
vergence rate of Ĉn,m to C∞ is given by OP(

√
m/n + ϕ(m)), where

√
m/n corresponds to

the stochastic part, while ϕ(m) is due to the deterministic difference between Cm and C∞.
Assuming for simplicity that Assumption 2.2 holds with ϕ(m) = mρϕ , we find that the best
possible convergence rate of Ĉn,m is obtained by setting m � n1/(1−2ρϕ). In Section 3, we
will show that this rate can in fact be improved by combining estimators Ĉn,〈ma〉 for several
values of a. Establishing the asymptotic properties of those estimators will require the full
power of Theorem 2.10, including the process convergence uniformly over the block length
parameter a.

REMARK 2.11. If Assumption 2.2 is met and if
√

n/mϕ(m) = O(1), then it is easy
to show (using regular variation of ϕ) that SC1(〈mnan〉) from Assumption 2.9(a) holds for
every converging sequence (an)n∈N in A. Similarly, under Assumption 3.1 below and if√

n/mϕ(m)ψ(m) = O(1), then SC2(〈mnan〉) holds for every converging sequence (an)n∈N
in A.
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2.3. A comparison of the asymptotic variances based on disjoint and sliding block max-
ima. The asymptotic variance of the sliding blocks version of the empirical copula with
known and estimated margins will be shown to be less than or equal to the asymptotic vari-
ance of the corresponding disjoint blocks versions. Since the asymptotic bias of both ap-
proaches is the same, this suggests that the sliding blocks estimator, when available, should
always be used instead of the disjoint blocks estimator.

THEOREM 2.12. Suppose C∞ is an extreme value copula satisfying Assumption 2.8.
Let Ĉ♦(u,1) denote the weak limit of the empirical copula process based on sliding block
maxima defined in (2.2). Similarly, recall CD(u) as defined in Remark 2.5 and let

ĈD(u) =CD(u) −
d∑

j=1

Ċ∞,j (u)CD(
u(j))

denote the weak limit of the corresponding disjoint blocks version (Theorem 3.1 in Bücher
and Segers (2014)). Then, for any u1, . . . ,uk ∈ [0,1]d, k ∈N,

Cov
(
Ĉ♦(u1,1), . . . , Ĉ♦(uk,1)

) ≤L Cov
(
ĈD(u1), . . . , Ĉ

D(uk)
)

and

(2.3) Cov
(
C♦(u1,1), . . . ,C♦(uk,1)

) ≤L Cov
(
CD(u1), . . . ,C

D(uk)
)
,

where ≤L denotes the Loewner-ordering between symmetric matrices.

The proof is given in Section A.3. In Figure 2, we depict Var(Ĉ♦(u,1)) and Var(ĈD(u)),
for u = (u,u) with u ∈ [0,1], for the Gumbel–Hougaard copula in (4.1) with shape param-
eter β = 1 and β = ln 2/ ln(3/2) (see Section A.4 in the Supplementary Material (Zou, Vol-
gushev and Bücher (2020)) for analytical expressions). Note that when β = 1, the Gumbel–
Hougaard copula degenerates to the independence copula, that is, C∞(u1, u2) = u1u2 while
β = ln 2/ ln(3/2) results in a tail dependence coefficient of 1/2. The difference between
Var(Ĉ♦(u,1)) and Var(ĈD(u)) is seen to be substantial, in particular for small values of u.

As a consequence of the previous result, whenever T is a continuous and linear (real-
valued) functional on the space of continuous functions on [0,1]d (e.g., the Hadamard deriva-
tive of a functional � : 	∞(T ) →R at C∞, tangentially to the subspace of continuous func-
tions), then

Var
(
T

(
Ĉ♦(·,1)

)) ≤ Var
(
T

(
ĈD))

.

FIG. 2. Left plot: Var(Ĉ♦(u,u,1)) (dashed line) and Var(ĈD(u,u)) (solid line) as a function of u ∈ [0,1] for
C∞(u, v) = uv. Middle plot: same with Gumbel–Hougaard copula with tail dependence coefficient 1/2. Right
plot: u �→ Var(ĈD(u,u))/Var(Ĉ♦(u,u,1)).
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Indeed, by the Riesz representation theorem (Dudley (2002), Theorem 7.4.1), T (C) =∫
[0,1]d Cdμ for some finite signed Borel measure μ on [0,1]d , whence Var(T (C)) =∫
[0,1]d

∫
[0,1]d Cov(C(u),C(v))dμ(u)dμ(v). The claim then follows by measure-theoretic in-

duction. Examples of interesting functionals T can for instance be found in Genest and Segers
(2010), Section 3, which comprise Blomqvist’s beta, Spearman’s footrule, Spearman’s rho
and Gini’s gamma.

3. Applications of the functional weak convergence. The functional weak conver-
gence result in Theorem 2.10 can be applied to large variety of statistical problems. Classical
applications include the derivation of the asymptotic behavior of estimators for the Pickands
dependence function; see, for example, Section 3.3 in Bücher and Segers (2014). Throughout
this section, we discuss applications that explicitly make use of the fact that we allow for
various block sizes, allowing one to aggregate over those block sizes, to derive bias reduced
estimators or to even estimate second-order characteristics.

Despite not being necessary for the bias correction to work, many of the results in this
section can be formulated in a convenient explicit way under the assumption of a third-order
condition.

ASSUMPTION 3.1 (Third-order condition). Assumption 2.2 holds and there exists a reg-
ularly varying function ψ :N→ (0,∞) with coefficient of regular variation ρψ < 0 and a
(necessarily continuous) nonnull function T on [0,1]d , not a multiple of S, such that, uni-
formly in u ∈ [0,1]d ,

lim
k→∞

1

ψ(k)

{
Ck(u) − C∞(u)

ϕ(k)
− S(u)

}
= T (u).(3.1)

Under the additional assumption that (Xt )t∈Z is an i.i.d. sequence, it can be proved that ψ

in the above condition must be regularly varying under mild additional assumptions (it can
hence be removed from the assumption).

LEMMA 3.2. Assume that the time series (Xt )t∈Z is an i.i.d. sequence. If Assumption 2.2
holds and additionally there exists a function ψ : N→ (0,∞) with ψ(k) = o(1)(k → ∞)

and a nonnull function T such that (3.1) holds uniformly in u ∈ [0,1]d , and if the functions
S,S2/C∞ and T are linearly independent, then ψ is regularly varying of order ρψ ≤ 0.

Next, we discuss an additional property of the function ϕ from Assumption 2.2 which
allows to quantify the speed of convergence of

rx(k) =
( 〈xk〉

k

)ρϕ − ϕ(〈xk〉)
ϕ(k)

(3.2)

(note that convergence to zero of this difference follows from regular variation of ϕ). This
difference will be important in later parts of the manuscript as it will appear in several bounds
that are related to bias correction.

LEMMA 3.3. Assume that X ⊂ (0,∞) is compact and that there exists a nonnegative
function δ :N→ [0,∞) with limk→∞ δ(k) = 0 such that, uniformly in x ∈X ,

(3.3) C〈xk〉(u) = Ck

(
u1/xk

)xk + O
(
δ(k)

)
(k → ∞)

for any u ∈ (0,1)d , where xk := 〈xk〉/k. Under Assumption 3.1 we have, uniformly in x ∈ X ,

rx(k) =
(〈xk〉

k

)ρϕ − ϕ(〈xk〉)
ϕ(k)

= O
(
ϕ(k) + ψ(k) + δ(k)/ϕ(k)

)
(k → ∞).
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In the i.i.d. case, equation (3.3) obviously holds with δ ≡ 0. The next result provides a
bound on the difference in (3.3) under mixing conditions.

LEMMA 3.4. Let Assumption 2.1 hold with an extreme-value copula C∞. Further, let
(Xt )t∈Z be α-mixing with mixing coefficients α(k) = O(k−(1+�)) for some � > 0. Then (3.3)
holds with δ(k) = O(k−(1+�)/(2+�) log k).

3.1. Improved estimation by aggregation over block lengths. Since the functional weak
convergence result in Theorem 2.10 involves a scaling parameter for the block length, we may
easily analyse estimators for C∞ which are based on aggregating over several blocks. More
formally, we consider the following general construction: for a set M = Mn ⊂ {1, . . . , n} of
block length parameters and a set w = {wn,k : k ∈ Mn} of weights satisfying

∑
k∈M wn,k = 1

for all n ∈N, let

Ĉ
agg
n,(M,w)(u) = ∑

k∈Mn

wn,kĈn,k(u), u ∈ [0,1]d .

To derive the asymptotic distribution of this weighted aggregated estimator, we make the
following assumption on the tuple (M,w).

ASSUMPTION 3.5. Let m = mn denote the sequence from Assumption 2.3. For some
closed interval A = [a∧, a∨] ⊂ (0,∞) of positive length, we have

M = Mn = {k ∈N : k/m ∈ A}
and the weights wn,k satisfy limn→∞ mwn,〈ma〉 = f (a) uniformly over A for some continu-
ous f on A with

∫
A f (a)da = 1.

For instance, given a continuous function f on A that integrates to unity, we may choose
the weights wn,k = f (k/m)/{∑	∈Mn

f (	/m)}.

PROPOSITION 3.6. Let any of the sufficient conditions in Theorem 2.10 be met and as-
sume that additionally Assumption 3.5 is true. Then, in 	∞([0,1]d),√

n

m

(
Ĉ

agg
n,(M,w)(·) − C∞(·) − ∑

k∈Mn

wn,k

{
Ck(·) − C∞(·)}) ⇒

∫
A

f (a)Ĉ♦(·, a)da.

Note that the asymptotic results in Theorem 2.10 imply that the asymptotic variance of
Ĉn,〈ma〉(u) is proportional to ma/n. For simplicity ignoring the dependence between Ĉn,k(u)

for different k, this motivates the choice wn,k = k−1/(
∑

	∈Mn
	−1), which is in fact the solu-

tion to the minimization problem “minimize
∑

k(k/n)w2
n,k over wn,k with

∑
k wn,k = 1.” The

corresponding function f is f (a) = c/a, with c a normalizing constant such that the integral
over f is one. Despite this being a crude approximation since Ĉn,k(u) will be strongly depen-
dent for different values of k, it performs reasonably well in simulations where we will see
that in many cases it leads to an improvement in MSE. An alternative approach to choosing
wn,k would consist of estimating the entire variance-covariance matrix of {Ĉn,k(u) : k ∈ Mn}
and minimize a corresponding quadratic form of wn,k . We leave a detailed investigation of
this question to future research.

Finally, note that if the second-order condition from Assumption 2.2 holds, then the de-
terministic bias term (see also the discussion in the next section) in Proposition 3.6 can be
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further decomposed as

B
agg
n,(M,w)(u) ≡ ∑

k∈Mn

wn,k

{
Ck(u) − C∞(u)

}
= ϕ(m)S(u)

∑
k∈Mn

wn,m(k/m)

{
(k/m)ρϕ + o(1)

}
= ϕ(m)S(u)

∫
A

f (a)aρϕ da + o
(
ϕ(m)

)
.

Note in particular that the asymptotic bias vanishes if ϕ(m)
√

n/m = o(1).

3.2. Bias correction. We begin by commenting on the notion of bias of Ĉn,〈ma〉(u) as an
estimator for the attractor copula C∞(u). The difference Ĉn,〈ma〉(u)−C∞(u) can be naturally
decomposed into two terms

D♦
n,m(u, a) = Ĉn,〈ma〉(u) − C〈ma〉(u), B♦

n,m(u, a) = C〈ma〉(u) − C∞(u).

The first term captures the stochastic part of Ĉn,〈ma〉(u) − C∞(u) and may be rewritten as

D♦
n,m(u, a) =

√
m

n
Ĉ♦

n,m(u, a) = OP

(√
m

n

)
.

Recall that Ĉ♦
n,m converges to a centered Gaussian process. For this reason, throughout the

remaining part of this paper, when discussing the bias of an estimator, we mostly concentrate
on (versions of) the deterministic sequence B♦

n,m, which might in fact be of larger order than
O((m/n)1/2) and which we will call the approximation part of the bias. Note that this is a
slight abuse of terminology as we never prove results about E[D♦

n,m(u, a)]; however, a similar
approach has also been taken in Fougères, de Haan and Mercadier (2015).

Regarding the approximation part of the bias, note that the fundamental Assumption 2.1
only guarantees that B♦

n,m = o(1). Under the second-order condition from Assumption 2.2,
however, we obtain a hold on both the size and the direction of the bias:

B♦
n,m(u, a) = ϕ

(〈ma〉)S(u) + o
(
ϕ
(〈ma〉)) = ϕ(m)aρϕS(u) + o

(
ϕ(m)

)
= O

(
ϕ(m)

)
.

(3.4)

In this section, we exploit the generality of Theorem 2.10 to construct estimators for C∞ with
a smaller order approximation bias.

More precisely, in the current Section 3.2, we present three approaches on how to re-
duce the bias under either the preliminary assumption that the second-order coefficient ρϕ is
known, or that an estimate ρ̂ϕ is available. In the next section, we will then discuss how to
obtain such an estimate. For the remaining parts of Section 3, suppose that the third-order
condition from Assumption 3.1 is met, which implies the expansion

(3.5) Cm(u) − C∞(u) = ϕ(m)S(u) + ϕ(m)ψ(m)T (u) + o
(
ϕ(m)ψ(m)

)
,

m → ∞, for the approximation part of the bias of Ĉn,m − C∞.

3.2.1. Naive bias-corrected estimator. The expansion in (3.5) implies that, assuming
ma ∈N for simplicity for the moment,

Cma(u) − Cm(u) = {
ϕ(ma) − ϕ(m)

}
S(u) + O

(
ϕ(m)ψ(m)

)
= (

aρϕ − 1
)
ϕ(m)S(u) + O

(
ϕ(m)ψ(m)

)
.
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This suggests that the leading bias term ϕ(m)S(u) in Expansion (3.5) can be estimated by
the plug-in version {Ĉm′,n(u) − Ĉm,n(u)}/{(m′/m)ρϕ − 1} where m′ �= m is an integer and
we set a = m′/m in the expansion above. Subtracting this estimated bias from the estimator
Ĉn,m naturally leads to the following naive bias-corrected estimator

Ĉ
bc,nai
n,(m,m′)(u) = Ĉn,m(u) − Ĉn,m′(u) − Ĉn,m(u)

(m′/m)ρϕ − 1
.

Note that this estimator is infeasible in practice since ρϕ is unknown. A feasible estimator
denoted by Č

bc,nai
n,(m,m′), can be obtained by replacing ρϕ with an estimator ρ̂ϕ . In the result be-

low, we quantify the impact of such a replacement under the mild condition ρ̂ϕ = ρϕ +oP(1),
estimators satisfying this assumption will be presented in Section 3.3 below. Furthermore, it
is worthwhile to mention that Ĉ

bc,nai
n,(m,m′) = Ĉ

bc,nai
n,(m′,m) as can be verified by a simple calculation.

Assuming that m′ = 〈ma〉 for some fixed value a ∈ (0,∞), a �= 1, the asymptotic distribu-
tion of this estimator is as follows.

PROPOSITION 3.7. Let any of the sufficient conditions in Theorem 2.10 be met. Addition-
ally, suppose that Assumption 3.1 is met and assume that m′ = 〈ma〉 for some fixed constant
0 < a �= 1. Then, in 	∞([0,1]d),√

n

m

(
Ĉ

bc,nai
n,(m,m′)(·) − C∞(·) − B

bc,nai
n,(m,m′)(·)

)
⇒ Ĉ♦

bc,nai(·, a) := Ĉ♦(·,1) − Ĉ♦(·, a) − Ĉ♦(·,1)

aρϕ − 1
,

where the bias term B
bc,nai
n,(m,m′) admits the expansion

B
bc,nai
n,(m,m′)(u) =

{
ϕ(m)ra(m)

S(u)

aρϕ − 1
+ ϕ(m)ψ(m)

1 − aρψ

1 − a−ρϕ
T (u)

}
+ ϕ(m)o

(
ψ(m) + ∣∣ra(m)

∣∣),
with ra(m) = (〈ma〉/m)ρϕ − ϕ(〈ma〉)/ϕ(m) = o(1) as in (3.2). In particular, we have

sup
u∈[0,1]d

∣∣Bbc,nai
n,(m,m′)(u)

∣∣ = ϕ(m)O
(
ψ(m) + ∣∣ra(m)

∣∣).
If moreover ρ̂ϕ satisfies ρ̂ϕ = ρϕ + oP(1), then uniformly in u ∈ [0,1]d

Č
bc,nai
n,(m,m′)(u) = Ĉ

bc,nai
n,(m,m′)(u) + OP

(|ρ̂ϕ − ρϕ|{ϕ(m) + √
m/n

})
.

Note that the bias term B
bc,nai
n,(m,m′) is of smaller order than the bias term B♦

n,m of the plain
empirical copula based on sliding block maxima; see (3.4). Moreover, in the i.i.d. case, we
can further bound |ra(m)| by O(ϕ(m) + ψ(m)); see Lemma 3.3 and Remark 3.4.

3.2.2. Improving the naive bias-corrected estimator by aggregation. The naive bias-
corrected estimator is fairly simple since it only considers two block length parameters m

and m′ = 〈am〉. One way to improve this estimator is to consider aggregation over different
block lengths; an approach that was shown to work well in Fougères, de Haan and Mercadier
(2015) for estimating the stable tail dependence function. Many kinds of aggregation are pos-
sible, but for the sake of brevity we will restrict our attention to the following version inspired
by Section 3.1 (which works well in finite-sample settings as demonstrated in Section 4)

Ĉ
bc,agg
n,(m,M,w)(u) = ∑

k∈Mn

wn,kĈ
bc,nai
n,(m,k)(u).
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Here, M = Mn ⊂ {1, . . . n} \ {mn} and {wn,k : k ∈ Mn} are assumed to satisfy Assump-

tion 3.5. Similar to the discussion in Section 3.2.1, let Č
bc,agg
n,(m,M,w) denote a feasible version

of Ĉ
bc,agg
n,(m,M,w), with ρϕ replaced by ρ̂ϕ .

PROPOSITION 3.8. Let any of the sufficient conditions in Theorem 2.10 be met. Addi-
tionally, suppose that Assumption 3.1 is met and that (Mn, {wn,k : k ∈ Mn}) satisfies Assump-
tion 3.5 and 1 /∈ A. Then, in 	∞([0,1]d),√

n

m

(
Ĉ

bc,agg
n,(m,M,w)(·) − C∞(·) − B

bc,agg
n,(m,M,w)(·)

) ⇒
∫
A

f (a)Ĉ♦
bc,nai(·, a)da,

where the bias term B
bc,agg
n,(m,M,w) satisfies

B
bc,agg
n,(m,M,w)(u)

=
∫
A

f (a)

{
ϕ(m)ra(m)

S(u)

aρϕ − 1
+ ϕ(m)ψ(m)

(1 − aρψ )T (u)

1 − a−ρϕ

}
da + o

(
r(m)

)
,

where, recalling ra(m) from (3.2),

r(m) = ϕ(m)
(
ψ(m) + sup

a∈A

∣∣ra(m)
∣∣).(3.6)

In particular, supu∈[0,1]d |Bbc,agg
n,(m,M,w)(u)| = O(r(m)). If moreover ρ̂ϕ = ρϕ + oP(1) then we

have, uniformly in u ∈ [0,1]d ,

Č
bc,agg
n,(m,M,w)(u) = Ĉ

bc,agg
n,(m,M,w)(u) + OP

(|ρ̂ϕ − ρϕ|{ϕ(m) + √
m/n

})
.

3.2.3. Regression-based bias correction. A more sophisticated, regression-based estima-
tor (inspired by Beirlant et al. (2016), where the POT-case is tackled) can be motivated by the
following consequence of the expansion in (3.5) and the regular variation of ϕ(·):
(3.7) C〈ma〉(u) = C∞(u) + aρϕϕ(m)S(u) + rm(u), m → ∞,

for all a > 0, where rm(u) = o(ϕ(m)). Letting yi,n := Ĉn,ki
(u) for suitable values ki (to be

determined below) we find that

(3.8) yi,n = C∞(u) + (ki/m)ρϕϕ(m)S(u) + εi,n,

where the remainder εi,n contains both the stochastic error Ĉn,ki
(u) − Cki

(u) and the de-
terministic error from expansion (3.7). This motivates the following weighted least square
estimator for C∞(u) and Bm(u) = ϕ(m)S(u):(

Ĉ
bc,reg
n,(M,w)(u), B̂

bc,reg
n,(m,M,w)(u)

)
∈ arg min

(b,c)∈R2

∑
k∈Mn

wn,k

{
Ĉn,k(u) − b − (k/m)ρϕc

}2
,

(3.9)

where wn,k and M = Mn ⊂ {1, . . . , n} are as in Section 3.1 with the additional assump-
tion that the weights wn,k are nonnegative. Note that, since the parameter ρϕ is fixed in

the above minimization problem, the value of Ĉ
bc,reg
n,(M,w)(u) does in fact not depend on

m, and hence we do not need to consider m as an index in Ĉ
bc,reg
n,(M,w)(u). Similar to the

discussion in Section 3.2.1, let (Č
bc,reg
n,(M,w)(u), B̌

bc,reg
n,(m,M,w)(u)) denote a feasible version of

(Ĉ
bc,reg
n,(M,w)(u), B̂

bc,reg
n,(m,M,w)(u)), where ρϕ is replaced by ρ̂ϕ .
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Assuming that Mn contains sufficiently many elements so that the inverse matrix in the
next display exists, the minimization problem above has the unique closed-form solution⎛⎝ Ĉ

bc,reg
n,(M,w)(u)

B̂
bc,reg
n,(m,M,w)(u)

⎞⎠ =
(

μ0,n μ1,n

μ1,n μ2,n

)−1 ( ∑
k∈Mn

wn,kĈn,k(u)∑
k∈Mn

wn,k(k/m)ρϕ Ĉn,k(u)

)

where we defined μv,n := ∑
k∈Mn

wn,k(k/m)vρϕ , v = 0,1,2. To state the asymptotics of this
estimator, define

κv :=
∫
A

f (a)avρϕ da, Tv(u) :=
∫
A

f (a)avρϕ Ĉ♦(u, a)da,

and

Tm,v(u) :=
∫
A

f (a)avρϕ
{
aρϕ+ρψ ϕ(m)ψ(m)T (u) − ϕ(m)ra(m)S(u)

}
da.

PROPOSITION 3.9. Let any of the sufficient conditions in Theorem 2.10 be met. Addi-
tionally, suppose that Assumption 3.1 is met and that (Mn, {wn,k : k ∈ Mn}) satisfies Assump-
tion 3.5. Then, in 	∞([0,1]d),√

n

m

(
Ĉ

bc,reg
n,(M,w)(·) − C∞(·) − B

bc,reg
n,(m,M,w)(·)

) ⇒ κ2T0(·) − κ1T1(·)
κ2κ0 − κ2

1

,

where the bias term B
bc,reg
n,(m,M,w) satisfies

B
bc,reg
n,(m,M,w)(u) = κ2Tm,0(u) − κ1Tm,1(u)

κ2κ0 − κ2
1

+ o
(
r(m)

) = O
(
r(m)

)
,

with r(m) as defined in (3.6). Moreover,√
n

m

(
B̂

bc,reg
n,(m,M,w)(·) − ϕ(m)S(·) − �B

n,(m,M,w)(·)
) ⇒ κ0T1(·) − κ1T0(·)

κ2κ0 − κ2
1

in 	∞([0,1]d), where the bias term �B
n,(m,M,w) satisfies

�B
n,(m,M,w)(u) = κ0Tm,1(u) − κ1Tm,0(u)

κ2κ0 − κ2
1

+ o
(
r(m)

) = O
(
r(m)

)
,

and the processes involving Ĉ
bc,reg
n,(M,w), B̂

bc,reg
n,(m,M,w) converge jointly. If moreover ρ̂ϕ = ρϕ +

oP(1), then we have, uniformly in u ∈ [0,1]d
Č

bc,reg
n,(M,w)(u) = Ĉ

bc,reg
n,(M,w)(u) + OP

(
r(m) + |ρ̂ϕ − ρϕ|{ϕ(m) + √

m/n
})

.

3.3. Estimating the second-order parameter. Estimators for ρϕ can be obtained by con-
sidering the expansion in (3.7). A simple estimator can be based on the observation that, for
any u with S(u) �= 0 and any a �= 1,

C〈ma2〉(u) − Cm(u)

C〈ma〉(u) − Cm(u)
= a2ρϕ − 1

aρϕ − 1
+ o(1) = aρϕ + 1 + o(1), m → ∞.

Letting mρ = mρ(n) denote a block length parameter (typically chosen of smaller order than
the block length m used for estimating C∞, whence the different notation here), this suggests
the following naive estimator for ρϕ :

ρ̂nai
ϕ (a,u) = loga

( Ĉn,〈mρa2〉(u) − Ĉn,mρ (u)

Ĉn,〈mρa〉(u) − Ĉn,mρ (u)
− 1

)
.



MULTIPLE BLOCK SIZES AND OVERLAPPING BLOCKS 311

PROPOSITION 3.10. Let Assumption 3.1 be met and let mρ = mρ(n) be an increasing
sequence of integers such that any of the sufficient conditions in Theorem 2.10 is met for
that sequence. Further assume that (mρ/n)1/2 = o(ϕ(mρ)). Then, for any u ∈ [0,1]d with
S(u) �= 0 and any a �= 1, we have

ϕ(mρ)

√
n

mρ

(
ρ̂nai

ϕ (a,u) − ρϕ − �ρ,nai
n,mρ

(u, a)
)

⇒ Ĉ♦(u, a2) − Ĉ♦(u,1) − (aρϕ + 1){Ĉ♦(u, a) − Ĉ♦(u,1)}
S(u)aρϕ (aρϕ − 1) loga

,

where

�ρ,nai
n,mρ

(u, a) = ψ(mρ)
T (u)

S(u)

(aρϕ+ρψ − 1)(aρψ − 1)

(aρϕ − 1) loga

+ O
(
ra2(mρ) + ra(mρ) + m−1

ρ

) + o
(
ψ(mρ)

)
.

In particular, we have

ρ̂nai
ϕ (a,u) − ρϕ = OP

(
1

ϕ(mρ)

√
mρ

n

)
+ O

(
m−1

ρ + ra2(mρ) + ra(mρ) + ψ(mρ)
)
.

While the estimator ρ̂nai
ϕ (a,u) defined above is easy to motivate and analyze theoretically,

we found in simulations that it does not work well when the sample size n is small or even
moderate (up to n = 5000). This motivated us to consider alternative estimators by treating
ρϕ in equation (3.8) as unknown. Specifically, we considered estimators of the form

(3.10)
(
b̂0, b̂1, ρ̂

reg
ϕ

) ∈ arg min
b0,b1,ρ<0

∑
k∈Mn

wn,k

(
Ĉn,k(u) − b0 − b1(k/mρ)ρ

)2
,

where wn,k and M = Mn ⊂ {1, . . . , n} are as in Section 3.1 with the additional assumption
that the weights wn,k are nonnegative. This lead to some improvement in performance com-
pared to using ρ̂nai

ϕ , but still did not lead to very satisfactory results, prompting us to refine
the estimator even further.

To gain an intuitive understanding of the shortcomings of ρ̂nai
ϕ , ρ̂

reg
ϕ as plug-in estimators

for bias correction, we take a closer look at the properties of the quantity

C̃nai
n,(m,〈ma〉)(u;γ ) := Ĉn,m(u) − Ĉn,〈ma〉(u) − Ĉn,m(u)

(〈ma〉/m)γ − 1
,

which is simply the naive bias-corrected estimator from Section 3.2.1 but with γ < 0 plugged
in instead of the true ρϕ . We next take a close look at the bias and variance of this “estimator”
as a function of γ under the third-order condition from Assumption 3.1. The leading part of
the bias is approximately given by

ϕ(m)S(u)

(
1 − aρϕ − 1

aγ − 1

)
= ϕ(m)S(u)

aγ − aρϕ

aγ − 1
.

A close analysis reveals that γ �→ g(γ ) := |aγ − aρϕ |/|aγ − 1| is decreasing on (−∞, ρϕ)

with limγ→−∞ g(γ ) = aρϕ if a > 1 and limγ→−∞ g(γ ) = 1 if a < 1 and increasing on
(ρϕ,0) with limγ↑0 g(γ ) = ∞ for a ∈ (0,∞) \ {1}; see Figure 3 for a picture of the graph
for two specific choices of a,ρϕ . Hence the leading bias will never be increased compared to
the original estimator if γ is smaller than ρϕ , but can increase dramatically if γ > ρϕ , espe-
cially if γ gets close to zero. Similarly, the asymptotic variance of the “bias correction part”
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FIG. 3. Function g for two choices of (a,ρϕ).

{Ĉn,〈ma〉(u) − Ĉn,m(u)}/{(〈ma〉/m)γ − 1} can be found to be a strictly increasing function
of γ .

In summary, the above findings suggest a very asymmetric behavior in the performance
of the naive bias corrected estimator with respect to values of γ that are too large or too
small relative to the true parameter ρϕ . This apparent asymmetry is not taken into account
in the minimization problem (3.10). It thus seems natural to introduce an additional penalty
term which discourages the estimator of ρϕ from being too close to 0. We hence consider the
estimator (

b̂0(u), b̂1(u), ρ̂pen
ϕ (u)

) ∈ arg min
ρ∈[K ′,K ′′],b0,b1∈R

R̂SSη(b0, b1, ρ;u),

where K ′ < K ′′ < 0 are fixed constants (in the simulations, we choose K ′ = −2 and K ′′ =
−0.1), η ≥ 0 denotes a penalty parameter, and

R̂SSη(b0, b1, ρ;u) = R̃SS(b0, b1, ρ;u) + η

|ρ| min
a0,a1∈R,K ′≤κ≤K ′′ R̃SS(a0, a1, κ;u),

R̃SS(b0, b1, ρ;u) = ∑
k∈Mm

wn,k

{
Ĉn,k(u) − b0 − b1(k/mρ)ρ

}2
.

To motivate the factor mina0,a1∈R,K ′≤κ≤K ′′ R̃SS(a0, a1, κ;u) in the penalty, note that, pro-
vided this factor is nonzero, an equivalent representation for the corresponding minimization
problem is to minimize

R̃SS(b0, b1, ρ;u)

mina0,a1∈R,K ′≤κ≤K ′′ R̃SS(a0, a1, κ;u)
+ η

|ρ| .

Since the minimal achievable value of the ratio equals 1, this automatically provides a scaling
for the penalty part η

|ρ| and makes this choice attractive in practice. Finally, observe that the
procedure described above produces an estimator of ρϕ for each value of u. We hence propose
to further aggregate estimators ρ̂

pen
ϕ (u) across different values of u ∈ U for some finite set

U ⊂ (0,1)d to obtain the aggregated estimator

ρ̂
pen,agg
ϕ,U := 1

|U |
∑
u∈U

ρ̂pen
ϕ (u).

Next, we prove consistency of the estimators defined above.

PROPOSITION 3.11. Suppose that Assumption 2.2 is met with ρϕ ∈ [K ′,K ′′] and let
mρ = mρ(n) be an increasing sequence of integers such that any of the sufficient conditions
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in Theorem 2.10 is met for that sequence. Further, assume that
√

n/mρϕ(mρ) → ∞, that
Assumption 3.5 is met with mρ instead of m, and that wn,k > 0 for all k,n. Then, for any
compact U ⊂ {u ∈ [0,1]d : S(u) �= 0} and any fixed η ≥ 0,

sup
u∈U

∣∣ρpen
ϕ (u) − ρϕ

∣∣ = oP(1).

Also, ρ̂
pen,agg
ϕ,U = ρϕ + oP(1) for any finite set U ⊂ {u ∈ [0,1]d : S(u) �= 0}.

4. Examples and finite-sample properties. The proposed estimators will be compared
in a simulation study. We begin by providing some details on several examples that will be
used in the simulations. Throughout this section, copulas will be denoted by C and D, where
D typically refers to the copula of i.i.d. innovations involved in a time series model whose
stationary distribution has copula C = C1. For the sake of simplicity, we only consider the
case d = 2 below. For a generic d ≥ 2, see Examples D.1 and D.2 in the Supplementary
Material (Zou, Volgushev and Bücher (2020)).

4.1. Examples.

EXAMPLE 4.1 (t-copula, i.i.d. case). For degrees of freedom ν ∈N and correlation θ ∈
(−1,1), the t-copula is defined, for (u, v) ∈ [0,1]2, as

D(u,v;ν, θ) =
∫ t−1

ν (u)

−∞

∫ t−1
ν (v)

−∞
�(ν+2

2 )

�(ν
2 )πν|P |1/2

(
1 + x′P −1x

ν

)− ν+2
2

dx2 dx1,

where x = (x1, x2)
′, P is a 2 × 2 correlation matrix with off-diagonal element θ , and tν is

the cumulative distribution function of a standard univariate t-distribution with degrees of
freedom ν. Let L and M be the first-order and the second-order POT-type limits associated
to D. More specifically,

L(x, y) = ytv+1

(
(y/x)1/ν − θ√

1 − θ2

√
ν + 1

)
+ xtv+1

(
(x/y)1/ν − θ√

1 − θ2

√
ν + 1

)
,

and M = M(x,y) is defined in Section 4 and 4.1 of Fougères, de Haan and Mercadier (2015).
Recall that D∞(e−x, e−y) = e−L(x,y). Let

�2(x, y) = x2(∂L/∂x)(x, y) + y2(∂L/∂y)(x, y).

By Theorem 2.6 of Bücher, Volgushev and Zou (2019), Assumption 2.2 holds for (Dm)m∈N
with Dm(u, v) = D(u1/m, v1/m)m. Specifically, when ν = 1, we have ρϕ = −1, ϕ(m) =
(2m)−1, and

S
(
e−x, e−y) = D∞

(
e−x, e−y)(�2(x, y) − L2(x, y)

);
when ν = 2, we have ρϕ = −1, ϕ(m) = (2m/3)−1, and

S
(
e−x, e−y) = D∞

(
e−x, e−y)[(1/3)

(
�2(x, y) − L2(x, y)

) − (2/3)M(x, y)
];

when ν = 3,4, . . . , we have ρϕ = −2ν−1, ϕ(m) = mρϕ , and

S
(
e−x, e−y) = −D∞

(
e−x, e−y)M(x,y).

EXAMPLE 4.2 (Outer-power transformation of Clayton copula, i.i.d. case). For θ > 0
and β ≥ 1, the outer-power transformation of a Clayton copula is defined as

D(u,v; θ,β) = [
1 + {(

u−θ − 1
)β + (

v−θ − 1
)β}1/β]−1/θ

, (u, v) ∈ [0,1]2
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which is to be interpreted as zero if min(u, v) = 0. By Theorem 4.1 in Charpentier and Segers
(2009), D is in the copula domain of attraction of the Gumbel–Hougaard copula with shape
parameter β , defined by

(4.1) D∞(u, v) = D(u,v;β) := exp
[−{

(− logu)β + (− logv)β
}1/β]

,

which is again to be interpreted as zero if min(u, v) = 0. Further, by Proposition 4.3 of Bücher
and Segers (2014), for Dm(u, v) = D(u1/m, v1/m)m, Assumption 2.2 is met with ρϕ = −1,
ϕ(m) = (2m)−1, and

S(u, v) = θ�(u, v;β),

where, letting x = − logu and y = − logv,

�(u,v;β) = D(u,v;β)
{(

xβ + yβ)2/β − (
xβ + yβ)1/β−1(

xβ+1 + yβ+1)}.
EXAMPLE 4.3 (Moving-maximum-process). Let D denote a copula and let (W t )t∈Z de-

note an i.i.d. sequence from D. Fix p ∈ N and let aij (i = 0, . . . , p; j = 1, . . . , d) denote
nonnegative constants satisfying

∑p
i=0 aij = 1 for j = 1, . . . , d . The moving maximum pro-

cess (U t )t∈Z of order p is defined as

Utj = max
i=0,...,p

W
1/aij

t−i,j (t ∈Z; j = 1, . . . , d),

with the convention that w1/0 = 0 for w ∈ (0,1). As suggested by the notation, the random
variables Utj are uniformly distributed on (0,1), whence a model with arbitrary continuous
margins can be obtained by considering Xtj = ηj (Utj ) for some strictly increasing (quantile)
function ηj : (0,1) →R.

Assume that the copula D is in the (i.i.d.) copula domain of attraction of an extreme-value
copula D∞, that is, for any u ∈ [0,1]d ,

Dm(u) = {
D

(
u1/m)}m −→ D∞(u) (m → ∞).(4.2)

Note that Dm is the copula of the componentwise block maximum of size m, based on the
sequence (W t )t∈N.

As a consequence of Proposition 4.1 in Bücher and Segers (2014), if Cm denotes the copula
of the componentwise block maximum of size m based on the sequence (U t )t∈N, then

lim
m→∞Cm(u) = D∞(u), u ∈ [0,1]d

as well, that is, Assumption 2.1 is met. We prove in the Appendix that if Assumption 2.2 is
met for (Dm)m (denote the auxiliary function by ϕD and SD), then it is also met for (Cm)m
provided that 1/m = o(ϕD(m)), with the same auxiliary functions. In case 1/m �= o(ϕD(m)),
additional technical assumptions are needed and the functions ϕD,SD and ϕ,S might differ.
Details in the general case are omitted for the sake of brevity.

EXAMPLE 4.4 (Random-repetition-process). Let X0, ξ1, ξ2, . . . be a sequence of i.i.d.
d-dimensional random vectors. Independently, let I1, I2, . . . be a sequence of i.i.d. indicator
random variables with p := P(It = 1) ∈ (0,1]. For t = 1,2, . . . , define

Xt =
{
ξ t if It = 1,

Xt−1 if It = 0.

The process X0,X1, . . . is a simplification of the doubly stochastic model in Smith and
Weissman (1994) and is a stationary process. By this stationarity and by Kolmogorov’s
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extension theorem, we can embed the process X0,X1, . . . in a two-sided stationary pro-
cess (Xt )t∈Z. By Bücher and Segers (2014), the process (Xt )t∈Z is β-mixing with β(h) =
O((1 − p)h) as h → ∞.

Assume that ξ1 has continuous marginal c.d.f.’s and copula D which is in the (i.i.d.) copula
domain of attraction of an extreme value copula D∞; see (4.2). Then, by Bücher and Segers
(2014), if Cm denotes the copula of the componentwise block maximum of size m based on
the sequence (Xt )t∈N, Cm → D∞ as m → ∞ as well. In particular, unlike for the moving
maximum process (see equation (8.3) in Bücher and Segers (2014)), the limit of Cm is equal
to the i.i.d. attractor of the copula C1 = D of the stationary distribution.

4.2. Finite-sample properties. In this section, we compare the estimators for C∞ intro-
duced in the previous section by means of Monte Carlo simulations. We focus on the case
d = 2 below; respective results in higher dimensions are quite similar and do not reveal
additional deep insights; see the cases d = 4,8 treated in Section D.2 in the Supplemen-
tary Material (Zou, Volgushev and Bücher (2020)). Results for all estimators are reported as
follows: each estimator is computed for all values u ∈ U := {.1, .2, . . . , .9}2 and block size
m ∈ {1, . . . ,20} (except for the aggregated versions, for which we specify the set of block
length parameters below). Squared bias, variance and MSE of each estimator and in each
point u ∈ U for sample size n = 1000 was estimated based on 1000 Monte Carlo replica-
tions. For the sake of brevity, we only report summary results which correspond to taking
averages of the squared bias, MSE and variance over all values u ∈ U . We present results on
the following six models:

(IID-OPC) i.i.d. realizations from an outer power Clayton copula with d = 2, θ = 1, β =
log(2)/ log(2 − 0.25).

(MM-OPC) A moving maximum process based on an outer power Clayton copula with
d = 2, θ = 1, β = log(2)/ log(2 − 0.25), a11 = 0.25, a12 = 0.5.

(RR-OPC) A random repetition process based on an outer power Clayton copula with
d = 2, θ = 1, β = log(2)/ log(2 − 0.25), and p = 0.5.

(IID-T5) i.i.d. realizations from a t-copula with d = 2, ν = 5, θ = 0.5.
(MM-T5) A moving maximum process based on a t-copula with d = 2, ν = 5, θ = 0.5

and a11 = 0.25, a12 = 0.5.
(MM-T3) A moving maximum process based on a t-copula with d = 2, ν = 3, θ = 0.25

and a11 = 0.25, a12 = 0.5.

Additional results for models called (RR-T5), (IID-T3) and (RR-T3) can be found in Sec-
tion D.1 of the Supplementary Material (Zou, Volgushev and Bücher (2020)). Note that we
also investigated other parameter combinations, but chose to only present results for the above
models as they provide, to a large extent, a representative subset of the results.

Following the heuristics after Proposition 3.6, weights w = {wn,k : k ∈ M} are always
chosen as

wn,k = k−1
(∑

	∈M

	−1
)−1

,(4.3)

with block length sets M = Mn as specified below, possibly depending on the specific esti-
mator.

4.2.1. Comparison of estimators without bias correction. We first focus on the perfor-
mance of three estimators that do not involve bias correction:

• the disjoint blocks estimator ĈD
n,m from Bücher and Segers (2014); see also Section 2.3;
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FIG. 4. 104×average MSE, average squared bias and average variance of plain sliding blocks estimator, disjoint
blocks estimator and aggregated sliding blocks estimator, for m ≥ 1.

• the plain sliding blocks estimator Ĉn,m from Section 2.2;
• the aggregated sliding blocks estimator Ĉ

agg
n,(M,w) from Section 3.1, with block length set

M = {m,m + 1, . . . ,m + 9} and weights as in (4.3).

The respective results are shown in Figure 4. As predicted by the theory, the variance curves
are linear in m, with the disjoints blocks estimator always exhibiting the largest variance,
while the variances of the aggregated and plain version of the sliding blocks estimator are
both smaller and similar to each other. In terms of bias, the disjoint and plain sliding blocks
estimators ĈD

n,m and Ĉn,m show a very similar behavior, with only some smaller deviations
(in particular visible for larger block sizes) which may possibly be explained by the fact that
the disjoint blocks estimator does not make use of all observations in case the block length
m is not a divisor of the sample size n = 1000. The aggregated sliding blocks estimator
typically has the smallest bias among the three competitors. Finally, in terms of MSE, the
aggregated sliding blocks estimator again shows the uniformly best performance. Except for
Model (MM-T3), the global minimum of the MSE-curve for Ĉ

agg
n,(M,w) is substantially smaller

than the minima for the other two estimators. Model (MM-T3), on the other hand, exhibits
little to no bias for all block sizes under consideration, even for m = 1. As a consequence, at
their minimal MSE, the three estimators yield comparably good results.

When comparing the i.i.d., the moving maximum, and the random repetition models, ob-
servant readers might note that the bias in the moving maximum Model (MM-OPC) seems
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to be the smallest, while the bias in the random repetition Model (RR-OPC) seems to be the
largest. Intuitively, this can be explained as follows. First, realizations from moving maximum
processes are already based on maxima, and thus it can be expected that their dependence
structure is closer to that of a “limiting” max-stable model described by C∞. Second, real-
izations from random repetition processes potentially have many repeated observations, and
consequently a block size larger than that in the i.i.d. case is needed to bring the dependence
structure of the block maxima close to its limit C∞.

4.2.2. Comparison of bias corrected estimators. In this section, three bias corrected esti-
mators for the plain sliding blocks estimator Ĉn,m are compared with Ĉn,m itself. In all cases,
the second-order parameter ρϕ is estimated through ρ̂ϕ = ρ̂

pen,agg
ϕ,U , with the parameters of that

estimator set to K ′ = −2,K ′′ = −0.1, η = 1/2,U = {(.1, .1), (.11, .11), . . . , (.5, .5)},M =
{2, . . . ,50} and weights as in (4.3). We consider the following estimators:

• The naive bias corrected estimator Č
bc,nai
n,(m,m′) with m′ = 1 and m ≥ 2.

• The aggregated naive bias corrected estimator Č
bc,agg
n,(m′,M,w) with (m′,M) = (1,

{m, . . . ,m + 9}) (where m ≥ 2 is on the x-axis) and with weights as in (4.3).
• The regression-based bias corrected estimator Č

bc,reg
n,(M,w) with M = {1,m,m + 1, . . . ,

m+9} (where m ≥ 2 is on the x-axis) and with weights as in (4.3) (recall from the discussion
right after (3.9) that Č

bc,reg
n,(M,w) does not depend on the parameter m in that equation).

The choice of small block sizes for the bias correction, in particular m′ = 1, is motivated
by the fact that this choice leads to the best performance in the simulations we tried. Similar
observations were made in Fougères, de Haan and Mercadier (2015) who recommend using
a very large value for the threshold k in the POT setting.

The results are presented in Figure 5. We observe that the naive bias corrected estimator
exhibits, at each fixed block size, a slightly larger variance and a slightly smaller squared
bias than the plain sliding blocks empirical copula. In terms of MSE, no universal statement
regarding the ordering between the two estimators can be made. Their minimal MSEs (for
each separate model, over all block length parameters) are however quite similar. We further
find that aggregating the naive bias-corrected estimator leads to substantial improvements for
small values of m and no major impact for larger values of m. This is similar to the findings
in the previous section. Compared with the plain sliding block estimator, the aggregated bias
corrected estimator shows much less sensitivity to the parameter m in the first four models,
where there is a substantial bias. In Model (MM-T3), where the bias is negligible compared
to the variance, attempts to correct the bias introduce a bit of variance leading to a slight
increase in MSE for all block sizes. Finally, the aggregated naive and regression-based bias
corrected estimators show very similar performance.

Based on the simulation results, we recommend using the aggregated bias corrected esti-
mator among all bias corrected estimators since it leads to better results than the naive esti-
mator, is reasonably fast to compute (see Section D.3 in the Supplementary Material (Zou,
Volgushev and Bücher (2020))), and is simpler to implement than the regression-based esti-
mator. At the same time, it is less sensitive to the choice of the block size parameter compared
to the estimator without bias correction.

4.3. Comments on the choice of m. In practice, a choice must be made regarding the
block length parameter m. This issue is delicate, and in fact comparable to the choice of k,
the number of upper order statistics, in the POT-approach, which has no universal answer.

Our theoretical results show that increasing m will increase the (asymptotic) variance
(which is proportional to m/n) but decrease the bias (which is proportional to ϕ(m); see
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FIG. 5. 104×average MSE, average squared bias and average variance of plain sliding blocks estimator, naive
bias corrected estimator, aggregated naive bias corrected estimator and regression-based bias corrected estimator,
for m ≥ 2.

also the discussion after Theorem 2.10). This theoretical prediction is clearly observed in the
simulation results reported in the previous section. An (asymptotic) MSE-minimizing choice
of m would need to balance the bias and variance and would depend on the parameters show-
ing up in the second-order condition and on the asymptotic variance. Those parameters would
need to be estimated to obtain a simple plug-in estimator for the optimal rate (our results on
estimating ρϕ provide a first step in that direction). However, within the similar POT-setting,
such approaches are typically known to be quiet unreliable in finite samples. A very common
and simple procedure consists of identifying stable regions within a plot of, in our case, m

against the estimator (Drees, de Haan and Resnick (2000)). Moreover, as shown by our simu-
lation results, applying aggregated or bias-reduced estimators may also make the choice of m

less critical, as the dependence of the performance of the estimator on m is less pronounced.
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SUPPLEMENTARY MATERIAL

Supplement to “Multiple block sizes and overlapping blocks for multivariate time se-
ries extremes” (DOI: 10.1214/20-AOS1957SUPP; .pdf). The supplement contains the proofs
for the results in this paper and additional simulation results.
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