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Covariances and spectral density functions play a fundamental role in the
theory of time series. There is a well-developed asymptotic theory for their es-
timates for low-dimensional stationary processes. For high-dimensional non-
stationary processes, however, many important problems on their asymptotic
behaviors are still unanswered. This paper presents a systematic asymptotic
theory for the estimates of time-varying second-order statistics for a general
class of high-dimensional locally stationary processes. Using the framework
of functional dependence measure, we derive convergence rates of the es-
timates which depend on the sample size T, the dimension p, the moment
condition and the dependence of the underlying processes.

1. Introduction. During the past several decades, there has been a well-developed the-
ory for stationary processes. However, the assumption of stationarity may not be valid in
many applications. Nonstationary time series analysis has gained popularity in finance, sig-
nal processing, neuroscience, meteorology, seismology and many other areas.

As an important class of nonstationary processes, locally stationary processes have at-
tracted considerable attention in the past few years. Different approaches for modelling
locally stationary processes have been developed. For example, Dahlhaus (1997, 2000a)
adopted a time-varying spectral representation; see also Priestley (1981, 1988). Mallat, Pa-
panicolaou and Zhang (1998) considered processes whose covariance operators are time-
varying convolutions. Another method of modelling nonstationarity is to approximate non-
stationary processes by piecewise stationary processes; see Adak (1998) and Ombao, von
Sachs and Guo (2005). Other notable work includes Nason, von Sachs and Kroisandt (2000),
Moulines, Priouret and Roueff (2005) and more recently Zhou (2010) and Vogt (2012); see
Dahlhaus (2012) for a comprehensive overview.

Parametric locally stationary processes with time-varying coefficients have been largely
studied; see, for example, time-varying AR models (Subba Rao (1970), Dahlhaus (1997),
Moulines, Priouret and Roueff (2005)), ARMA models (Grenier (1983), Dahlhaus and
Polonik (2009)), ARCH and GARCH models (Dahlhaus and Subba Rao (2006), Dahlhaus
and Subba Rao (2007), Hafner and Linton (2010), Fryzlewicz and Subba Rao (2011)). In this
paper, we consider nonparametric locally stationary processes. Let (X; ) szl be the observed
sequence generated from the model

(1.1) Xer=X:(t/T)=G@t/T,F)=Xei1s-» Xep1) |

where F; = (..., &—-1,8&), &, t € Z, are ii.d. random elements, G(-,-) = (g1(-, ), ...,
gp(, T is a RP-valued measurable function such that X;(u) = G (u, F) is a well-defined
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random vector and the uniform stochastic Lipschitz continuity holds: there exists some con-
stant /C > O for which

(1.2) max lgj(u, Fi) —gj(w, Fr)| <Klu—v| forallu,vel0,1],
=<J=p

where, for a random variable X, the L? norm || X || = (EX?)!/2. In the scalar case with p =
1, Zhou (2010) performed nonparametric specification tests for quantile curves under the
framework of (1.1). If G(u, -) does not depend on u, then (1.1) becomes X; = G (F;), which
defines a large class of stationary processes. Under this framework, Chen, Xu and Wu (2013)
quantified the convergence rates in covariance and precision matrix estimation. Zhang and
Wu (2017) derived a Gaussian approximation result for the maximum of the sample mean
vector of high-dimensional stationary processes. It is still an open problem on whether an
asymptotic theory for the estimates of second-order characteristics including covariance and
spectral density matrices can be developed for high-dimensional nonstationary processes via
such a general data-generating mechanism.

Estimating second-order characteristics is of fundamental importance in many aspects of
statistics. During the past decades, estimation of various cases of second-order statistics has
been studied for dependent and nonstationary processes. For example, in finance, Jacquier,
Polson and Rossi (2004) concerned multivariate stochastic volatility models parameterized
by time-varying covariance matrices with fat tails and correlated errors. In environmental
science, Wikle and Hooten (2010) proposed nonlinear spatiotemporal dynamic models to ac-
commodate quadratic interactions between processes which are critical for many geophysical
(Kondrashov et al. (2005), Majda, Abramov and Grote (2005)) and ecological (Hooten and
Wikle (2008)) processes. In electroencephalographic (EEG) studies, Prado, West and Krystal
(2001) considered dynamic regression models with time-varying lag-lead structure to analyze
multichannel EEG recordings of scalp electrical potential activity, and Park, Eckley and Om-
bao (2014) developed multivariate locally stationary wavelet processes to capture the time-
evolving scale-specific cross-dependence between components of the nonstationary signals.
In essence, researchers face a number of challenges in solving these real-world problems: (i)
nonlinear dynamics of data generating systems, (ii) temporally dependent and nonstationary
observations, (iii) non-Gaussian distributions and/or (iv) high-dimensional data.

Motivated by those real-world applications, we shall study properties of estimates of
second-order characteristics of a general class of locally stationary processes which can be
high-dimensional and non-Gaussian, and lay a theoretical foundation for estimation consis-
tency. In Section 2, we shall introduce the framework of high-dimensional locally stationary
processes and some concepts about functional dependence measures that are useful for es-
tablishing an asymptotic theory. Section 3 concerns the estimation of time-varying autoco-
variance matrix functions. Section 4 introduces the nonparametric estimation of time-varying
spectral density and coherence matrices. In Section 5, we use the constrained £; minimiza-
tion approach to estimate the inverse of the spectral density matrix which can be used to
identify the graphical structure for high-dimensional locally stationary processes. Section 6
provides Hanson—Wright-type inequalities for tail probabilities for nonstationary processes
with finite polynomial moments. Proofs are given in the Supplementary Material (Zhang and
Wu (2020)).

We now introduce some notation. For a random variable X and ¢ > 1, we define || X||; =
(E|X|?)!/4. Denote ||X|| = || X]|> and the operator Ey with Eo(X) := X — EX. Define
the projection operator P;- = E(-|F;) — E(-|F;—1) where F; = (..., &_1, &). For a vector
v = (vl,...,vp)T and g > 1, we define |v|; = (Zle |vj|q)l/q and |v|eo = max; |vj|. For
a matrix A = (aij)szl , define the element-wise £ norm |A|s = max; ; |a;;| and the ma-
trix £1 norm |Aly, = max; Y, |a;;|. Write the p x p identity matrix as I,,. For an interval
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T C R, denote by C'Z, i € N, be the collection of functions that have i-th order continuous
derivatives on Z. For two real numbers, set x V y = max(x, y) and x A y = min(x, y). We
use C, Cy, Cy, ... to denote positive constants whose values may differ from place to place.
A constant with a symbolic subscript is used to emphasize the dependence of the value on the
subscript. Throughout the paper, we use r, s, t to denote time indexes and use i, j to denote
dimension indexes.

2. High-dimensional locally stationary processes. Consider the p-dimensional pro-
cess (X;,7) generated from the model (1.1). For convenience of notation, we shall abbreviate
X;rand (Xs1.75 - -, XU,,,T)T as X; and (X4, ..., X,p)T, respectively. The stochastic conti-
nuity condition (1.2) indicates that X,;(u) = g;(u, F;) changes smoothly in u. One has local
stationarity in the sense that, for a fixed u, the nonstationary process (X;;) for # over the win-
dow T (u — b) <t < T(u + b) with a small b can be approximated by the stationary process
X;j(u) = gj(u, Fr) in view of

’

t
I, = X0 < K| =

which converges to 0 if t/T — u — 0. In the stationary case in which G (-, -) does not depend
on u, one can let K = 0 in (1.2). With condition (1.2), the form (1.1) provides a convenient
framework for studying locally stationary processes and covers a large range of nonstationary
time series models. In the scalar case with p = 1, Wiener (1958) studied stationary processes
that can be coded by using i.i.d. random variables &; via a possibly nonlinear function G; see
also Rosenblatt (1971), Priestley (1988), Tong (1990), Wu (2005), Tsay (2005)) for classes
of processes of this form. The representation X, = G (F;) also includes recursive model of
the form X; = G(X;_1, &), which includes Markov chain models and nonlinear autoregres-
sive models such as threshold autoregressive models, autoregressive models with conditional
heteroscedasticity and exponential autoregressive models. By allowing the data-generating
function G to change flexibly over time u, it extends a large number of existing stationary
processes into their nonstationary counterparts in a natural way.

To develop an asymptotic theory for estimators of time-varying second-order characteris-
tics, we need to introduce appropriate dependence measures. Assume that
maxi<;j<p Sup,co.1; 1€ @, Fo)llg < oo for some g > 1. Let &g, &, s,t € Z, be i.i.d. ran-
dom variables. For t > 0 and 1 < j < p, we define the element-wise functional dependence
measures

(2.1) 8t.q.j = sup |g;(u, Fo) —gju. Friop|,.
uel0,1]
where F; gy = (..., &-1, el/, &l+1, ..., &) 1s a coupled version of F; with & in F; replaced
by ¢;, and the uniform or L> functional dependence measure
(2.2) wrg= sup [|Gu, Fr) — G u, Friop s,
uel0,1]

Note that F; oy = F; if t <0. Hence, §; 4,; =0 and w; 4 = 0 for # < 0. Wu (2005) introduced
a functional dependence measure for stationary processes in which the data-generating mech-
anism g; does not vary with time u. In our setting, the quantity &, , ; measures the depen-
dence of g;(u, F;) on the single input &y over u € [0, 1], which can be viewed as the uniform
dependence measure with lag ¢ for locally stationary processes.

Equipped with the dependence measures in (2.1) and (2.2), we define in the following the
dependence adjusted norms (d.a.n.):

(0,0]
2.3) 1X.jllg,« = sup(m+ 1)“Am,q’j, a>0 where Ay 4= Z 8t.q.j

mZO =m
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o0
(2.4) 11X Joclly o = SUpm + 1) g, = 0 Where Qg = ) @ q.
m>0 t=m
We use a to depict the decay rate of the cumulative (tail) dependence measure A, 4 j =
> 2 81.q,j by noting that A, 4 j < [ X.jllg,a(m + 1)~ for all m € N. In this sense, it quan-
tifies the strength of temporal dependence: larger « implies faster decay of tail dependence
measures, and thus weaker temporal dependence. We can interpret the quantity || X.;|l;.« as
the gth moment by taking dependence into account. Elementary calculations show if X;;,
t € Z, are i.id., then || X;jll; < I1X.jllg.e < 21 Xijlly, suggesting that the dependence ad-
justed norm is equivalent to the classical L? norm. Due to temporal dependence, it may
happen that max; || X;;[l; < oo while ||X ||, = 0o. For example, if & 4 ; < =P, B> 1,
then || X jllg o =00ifa> B —1and [|X.jlge <o0ifa<p —1.
The d.an. || X jllg,« accounts for temporal dependence for the component process
(Xtj)rez- To adjust for dimensionality, we further define respectively the overall and the
uniform dependence adjusted norms

P 2/q
2.5) Og.a = (Z ||X._,-||g,/§> . Bge= max Xl
= I<j=<p

The quantities [||X.|oollg,a» ©g,« and @, o provide a concise and natural measure of depen-
dence which can effectively account for high dimensionality and temporal dependence. They
will be imposed in our theorems. It can be easily seen that ®, o < [||X.|0cllg,a < Oy,o. They
may be unbounded functions in terms of the dimension p.

EXAMPLE 2.1 (Time-varying nonlinear vector autoregressive model). Let ¢; be i.i.d.

and consider the p-dimensional process X; , t =1,..., T, which is generated from the
time-varying recursive model
(26) X;)’TzR(t/T, X?—I,T’st)’

where supy, <1 [I|R (&, x0, €0)|ocllq < 00 for some g > 2 and xp and it satisfies

2.7 Xi= sup sup 1R (u, x, €0) — R(u, y, €0)lllq

uel0,1] x#y |x — y]oo
The tvVAR(1) model X ;’ r=At/T)X ?—I,T + &; for some transition matrix A(-) is a special
case of (2.6). It also includes other time-varying parametric models such as tvVARCH(1) and
tvTAR(1); see, for example, Dahlhaus and Subba Rao (2006) and Zhou and Wu (2009) for
low-dimensional processes. We shall show that the process defined by the recursion (2.6) can
be well approximated by our (1.1). For fixed u € [0, 1], the stationary approximation in this
case is given by

(2.8) X, () = R(u, X;—1 (), &).

By the arguments of Theorem 2 in Wu and Shao (2004), for any u« € [0, 1], (2.8) admits a
unique stationary solution and iterations of (2.8) lead to X;(u) = G(u, F;). Assume M :=
sup,epo,17 1 K (Xt ()|l < oo where

< 1.

R > - R s Ny
2.9) K (x) = sup IR, x, 80) — R(v, x 80)|oo||q.
U#v |Lt — U|

By generalizing Lemma 4.5 in Dahlhaus, Richter and Wu (2019) to the vector case, we can
obtain [|[X;(u) — X;(V)|ecllg = Mlu —v|/(1 = x) and

(2.10) slupT|||XfT—X,(t/T)|oo||q5/\/1 X__ .-t

=1,..., ’ (1—x)?
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Note that the approximation error in (2.10) cannot be avoided; see equation (49) in
Dahlhaus (2012) for the tvAR(l) case. For the more general version of (2.6), X7, =
R@/T, X} 7. X7 570 s X{_g 7,61, d =2, we can compute the approximation error
similarly, as stated in Lemma A.1.

EXAMPLE 2.2 (Time-varying vector linear processes). Let &, ¢, j € Z, be i.i.d. ran-
dom variables with mean 0, variance 1 and finite gth moment p, :=E(|&;;]?) < 00, g > 2.
Let Ap(u) = (am,ij (u))f?j:1 be p x p matrices with real entries such that a, ;;(u) €
C0,1], m =0, 1 <i,j < p, and sup,cpo.1) Someo LA W) A ()] < co. Write & =

(&t1y -+ etp)T. By Kolmogorov’s three series theorem, the p-dimensional linear process
o.¢]
2.11) Xiw) =) Anu)er_m
m=0

is well defined and the assumptions on A,, (u) ensure the local stationarity of the process
X;(t/T). Let Ay, j.(u) and Ay, .j(u) be the jth row and jth column of A, (u). By Lemma
D.3, the element-wise and L functional dependence measures can be computed by

Siq.j= sup [Arjweol, <Cq sup A ()], uy/7,
uelo.1] uelo,1]

g = sup [[Aieoly
uel0,1]

P 12

2

< C,(1Vvlogp)'? sup <Z|A,,-j(u)|oo> phuy,
uel0,11\; 5]

since |[|leololly < pl/q,u;/q. If there exist ¢ > 1 and K, K» > 0, such that for all t+ > 0
and 1 < j < p, sup,¢o.1)1As,j- ()2 < K(r + 1) and Supue[o,l](Zle |At,.j(M)|<2>o)1/2 =
K> (t + 1)7° hold, then with « = ¢ — 1, we have

®q,a =< Cq,aKlpz/q/chl]/q’ qu,a = C‘IaO‘KIM;/q’

X Iocl, o < C) K21 v log p) 210100,

g0 =

where the constants Cy o, Cc’m both depend on ¢ and o only. It also applies to the process
with a Lipschitz continuous transform of X,(u) in (2.11): Y;(u) = (Y;1(u), ..., Y,p(u))T,
where Y;j(u) = g;(X;j(u)) and g;(-) are Lipschitz continuous with uniformly bounded Lip-
schitz constants.

3. Estimation of autocovariance matrix functions. Autocovariances play an impor-
tant role in almost every aspect of time series analysis. For zero-mean stationary processes
X; = G(F;) where the function G (u, -) in (1.1) does not depend on u, we shall estimate the
autocovariance matrices ['; = IE(XOXIT) based on the observations X1, ..., X7 by

. 1 L
(3.1) L= > XiuX[ forl=0,
t=Il+1

and [, = f‘Il for / < 0. For the locally stationary process (1.1) of mean zero, the time-varying
autocovariance matrix with lag / is defined by

(3.2) Ty(u) = E(Xow)X;(u) ")  where X;(u) = G(u, F;).
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For fixed u € (0, 1), by local stationarity, X;; ~ g;(u, J;) for t close to Tu. Thus we can use

observations X; with ¢ close to Tu to construct the estimator f‘l (u). Specifically, let b be
the bandwidth

T'(u) = Tu] — [Tbr| +1, Ir(u) = Tu] + |Thr |

and M = 2|Tby ] be the window width. For u# € [b7,1 — br] and 0 <[/ < M, a natural
estimator of [';(u«) from the sample { X, t = T1(u), ..., Tr(u)} is

R Tr(u)
(3.3) Dw=— > XX/,
r=I+T;(u)

and [y (u) =TT, (u) for I < 0.

We shall study the maximum deviation over the range 0 <[ < m with m < | M? | for some
0<pB <1, thatis,
(3.4) y7i=max  sup D) =T,

O<l<mye(br,1-br]
or in the stationary case
Y7 = max I —I'|ec.
0<l<m

For univariate stationary processes with p = 1, uniform convergence of autocovariance es-
timates is closely related to the estimation of orders of ARMA processes or linear systems
in general. The pioneering works in this direction were given by E. J. Hannan and his col-
laborators; see, for example, Hannan (1974) and An, Chen and Hannan (1982). Readers can
find a summary of those works and references in Section 5.3 of Hannan and Deistler (1988).
Giurcanu and Spokoiny (2004) obtained an upper bound of maxg<;< |f‘1 — I'y| for Gaussian
stationary processes and also extended to the locally stationary case (cf. Propositions 2.3 and
3.5 therein). More recently, Xiao and Wu (2014) considered maximum deviations for sample
autocovariances of univariate stationary processes.

Since the process X; can be nonlinear, nonstationary, non-Gaussian and high-dimensional,
it can be quite involved to derive an upper bound for ¥7. or &} Theorem 3.1 below provides
a nonasymptotic bound of the stochastic part for locally stationary processes
(3.5) Y7 = max sup  |Ty(u) — Ef‘l(u)|oo

O=l<mye[br,1-br]

with the existence of finite gth moment of the underlying process, while Theorem 3.2 con-
cerns Gaussian processes. In our setting, with the framework of functional dependence mea-
sures, it turns out that we can have a close form of the upper bound in the form of (3.6) or
(3.7). The convergence rate depends in a subtle way on the temporal dependence character-
ized by « [cf. (2.3) and (2.4)], the dependence adjusted norms ||| X.|xcllg, ©g,o and Py 4,
the sample size T and the dimension p. We present the results for the stationary case in
Proposition 3.3.

THEOREM 3.1.  Assume that E(X;) =0 and ©4 o < o0 for some q > 4 and a > 0. Let
br be the bandwidth and M = 2| Thy|. Assume M <T and m < | MP | for some 0 < f < 1.
Let £ =1V log p. Then there exist an absolute constant C, constant Cy only depending on o
and constant Cy o only depending on q and o such that for any x > 0,
Cq,aTHM,m(£|||X-|oo”q,a N ®q,oz)q

(M)C)Q/2

+Cszexp<— Moc? )
C“(Di,ot ’

P(yr zx) <
(3.6)
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where Hyp,m = m9/4(log M)+ 4+ M/4=242=\y for o < 1/2 — 2/q, and Hyp,m =
m?/*(log M)+ fora > 1/2 —2/q.

Despite the complicated nature of our problem which involves temporal dependencies,
cross-sectional dependencies and possibly nonstationarity, one essentially only needs to deal
with quantities ||| X .| lg,a> ®g,o and @4 o in our nonasymptotic bound in Theorem 3.1. They
concisely quantify measure of dependence which can naturally account for high dimension-
ality. They are also used in other theorems in the following sections.

For the term £[[|X.|xllg,a A Og,o In (3.6), consider the case in which each compo-
nent process is balanced with a similar order of d.a.n., that is, there exist constants
C1,Cy > 0 such that C; < ||X.j|l4.0 < C> for all j. Then ©, 4 < 2/4_ Since 11X loollg.a <
(Zle 1X.; ||Z,a)1/q = p!/4_ the order of 21X |ocllg,« is smaller than that of ®, . Then the

term L[] X.|sollg.0 A Og.q < €p1/4.

THEOREM 3.2. Let (X;) be a Gaussian process of form (1.1), which satisfies E(X;) =0
and ®, ¢ < 00. Let by be the bandwidth and M =2|Tbr]. Assume M <T and m < LMﬂJ
for some 0 < B < 1. Then there exists an absolute constant C > 0 such that for any x > 0,

Mx*> M
(3.7) P(yr > x) < 2Tmp? exp[—C min(Tx, Tx>]
ot @
2,0 2,0

PROPOSITION 3.3. Consider the zero-mean stationary process X; = G(Fy). Let f‘l be

the autocovariance matrix estimator given in (3.1). Define

(3.8) Ur = max |[7 — ElY|s.
0<l<m

(i) Under the assumptions of Theorem 3.1, we have
CqoTHT ,,(LIIX |cllga A Oga)?
(T_x)Q/z

+ Cmp? ( s )
mp~exp| — ,
Caq)i,a

P(Jr > x) <
3.9

where H7. —mq/4f0roc >1/2—2/q and H} , =md/* 4+ T9424/2= iy for o < 1/2 —
2/q. (i) Under the assumptions of Theorem 3. 2 we have

- _(Tx* Tx
(3.10) P(y7 > x) < 2mp> exp[—C m1n<q)T, @Tﬂ
2,0 2,0

For stationary processes, the bounds of Y7 in Proposition 3.3 can be useful for nonlinear
spectra estimation (cf. Paparoditis and Politis (2012)). For one-dimensional linear processes,
Jirak (2011) proved the Gumbel convergence of maxg<;<, |f‘1 — Ef‘ll for m growing at most
logarithmic speed. And Xiao and Wu (2014) considered general stationary processes within
our framework and relaxed the growth speed to be m = O(T#) for some 0 < 8 < 1. Our
result (3.9) allows the same wide range and the same sharp bound when p = 1 as the latter,
that is,

max |f1 —Ef‘1| = Op(

O<l<m

log T)
T

with § <min(1 —4/q, g /2) as the requirement.
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We now conduct a detailed discussion about how the different factors take effect on the
convergence rate.

Effect of local stationarity. The stationary case admits a sharper bound than the locally sta-
tionary case, as it does not involve the maximum over the time u. For example, in comparison
with (3.6) by letting M =T, (3.9) excludes the additional (log T)?+! in the polynomial term
and has a slightly sharper exponential term by multiplying with mp? instead of T p?.

Effect of moment condition. Theorem 3.1 is a Nagaev-type inequality and it indicates two
types of bounds for the tail probability: polynomial tail and sub-Gaussian type tail, which
respectively induce the two orders below

(T Hy,m)*' log(pT)
G Hi= (€] Xl A Opa)’s Ho= ngcpia.

We have Y7 = Op(H1 + H3). For large (resp., small) x, the polynomial (resp., the sub-
Gaussian) tail dominates. As a comparison, Theorem 3.2 admits an exponential bound for
Gaussian processes and it implies 7 = Op(H3) where

|log(pT) log(pT)
(312) H} = Tq)%’o \ TQ)%’O'

Looking into the rates in two cases, if log(pT) < M, ®4,4 =< 1 and P3¢ < 1, it holds that
H> =< Hj, thus H; is the additional term characterized by the moment order ¢ if each com-
ponent process only has finite gth moment rather than the Gaussianity.

Effect of dependence. If X; are i.i.d., then §; 4 j =0 and w; 4 =0 forall r > 1, §p 4, ; =
| Xo; — X6j||q and wo 4 = [1X0o — X{loollq» Where Xo and X{, are i.i.d. The quantities

11X loollg,ar ®g,e and Py o in Proposition 3.3 thus reduce to wo g, (Z;):l 83’/q2,j)2/q and

max < 80,4, j» respectively. To account for temporal dependence, we need to use the depen-

dence adjusted norms ||| X.|collg.a> ®y.« and ®, o, which are generally larger than the ones
J g.a> 9q, q, g y larg

under independence.

COROLLARY 3.4. Let 7 be the maximum deviation defined in (3.4). Let condition (1.2)
be satisfied. Recall H1, Hy defined in (3.11) and H3 defined in (3.12). (i) Under the assump-
tions of Theorem 3.1, we have

(3.13) Vr =O0p(H1 +Ha+ Ay),
where
A _ICMq) N 1+m_"‘+1q> o
v =7 P20 " 2,092,q.
(ii) Under the assumptions of Theorem 3.2,
(3.14) Y1 = Op(Hz + Ay).

For the bias maxo<;<m |EIA“1 — I'lloo in the stationary case, the first term in Ay should
disappear in view of X = (. Consequently, it follows that maxo<;<n |Ef‘1 —Ioo = 0O((1 +
m=t®, 0@, 4/ T).

Effect of the dimension p. The terms H1, H2, H3 all involve the dimension p, where the
former depends on p via the dependence norm £|| X.|oollg,« A ®4,« and the latter two depend
on p logarithmically. We further investigate how p takes effect analytically by examining the
case where 8 =0, and thus m = 1. We focus on the sample covariance matrix with lag/ =0
only and consider the case with the existence of finite gth moments. Assume that || X . ;|4 ¢ =<
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land ||| X.|xllg,« < p* for some > 0. In the strongest cross-sectional dependence case with
X;j =ajX; and Cy < |a;| < C; for some constants C, C; > 0, we have T = 0. We can have

T2/9 H* 02 p2t log(pT
(3.15) = O WP g, [loeeT)
M M

where Hj, = (logM)**?/49 if ¢ > 1/2 —2/q and Hj, = M'/>72/9=% for o < 1/2 —2/q. If
we choose a relatively small window width, say M < T44,H, is always the dominant order.
As a natural requirement of consistency, we need M /H}; > T2/ and

. M
(1viegp)p" = o(m).
As can be seen, if M /(T4 Hy;) < T€ for some 0 < ¢ <1 —2/g, we can allow ultra-high
dimension p with log p = o(T°) for t = 0 and polynomial increase with 7" which should
satisfy p = o((T¢/log T)'/7) for > 0. Furthermore, a wider range of p is allowed if the
temporal dependence is weaker in view of H}; which is nonincreasing with «.

The larger the window width M we choose, the wider the range of p is allowed for consis-
tency of the stochastic part. In view of Corollary 3.4, we need to balance the bias term Ay, .
Below is a discussion on the choice of M.

The choice of the window width M. Regarding the choice of M, there is a trade-off between
the deviation bound #, H>, H3 and the bias order Ay . Consider the case where the process
only has finite gth moments, m =1 and || X . |4, < 1, and recall the orders of H; and H>
in (3.15). We examine the strong temporal dependence case o < 1/2 — 2/gq. To minimize
Hi + Hz + Ay, M is chosen to be

M = max{(Tz/qﬂszT/log(pT))l/(z/q“L“), (Tz(log(pT)))m},

which is nonincreasing in «, nondecreasing in 7 and increasing with p. That is to say, a
larger window width is required if the process has stronger temporal dependence and larger
dimension. For Gaussian processes, we consider the case where log(pT) < T and &7 0 < 1.
To minimize H3 + Ay, the optimal M satisfies

M = (T?1og(pT))'/".

REMARK 1. Using the idea of local smoothing, one can consider the following weighted
version of (3.3) with a kernel:

Tr(u)
A 1 — T
f=q1 3 K(Er )X,
M M
F=I4+T) ()
where K (-) is symmetric, nonnegative and differentiable with bounded derivatives on the

support (—1/2,1/2), and K(0) = 1. A careful check of the proofs of Theorems 3.1 and 3.2
suggests that they still hold accordingly.

REMARK 2. Consider the time-varying recursive model (2.6) in Example 2.1. For ease
of notation, we write X7 for X7 ;. Assume EX? =0andletI'y, = E(X°Xx°T). Since Iy, ~
I'¢4y 14, for small r, we can estimate I'y, by a similar form of (3.3)

1 [Thr]

o o o T
Fs,t = M Z XH""XH"' ’
r=—|Thr|+1
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where M = 2|Tby| < T. And we can draw a similar conclusion as Theorem 3.1 for
Y = maxX|s_s|<m |f‘;”, - Ef‘;’),l. Assume for convenience the starting point Xg = 0 and
U = supg—,<; IR (@, 0, £0)loollg < 00. By (2.7), we have [|[X{ — R(t/T,0, en)lssllp <
X NX7_ilooll p, implying [[|XPlooll p = U + x 1 X7_; ool p, and hence || X7 [oollp <U/(1 = X)
by recursion. We now compute the uniform functional dependence measure. Write X; =
Rf:t o Rgt_}l 0-+-0 Rgl (0) =: H;(F;), t > 1, where the map R.(-) = R(t/T,-, &) and H; is
a measurable function consisting of composites of R.. Recall (2.1) that F; g1y is a coupled
version of F; with ¢; in F; replaced by el/. For k > 0, write Xf’{t_k} = H;(Fi (i—ky), and L™
dependence measure for the process (X;)

2xku

< 4

We,q = SlthH |H (F) = He(Fr—i) oo |y = 20 11X5 il oM, = I~

by recursion (2.7). Since wy q decays geometrically in k, we can simply let o = 1.
Then the uniform dependence adjusted norm ||| X | llg,0 < ¢ With ¢, = 2max;,>o(m +
DY, x'/(1 = x), and @4 < c,U. By Theorem 3.1, there exists constant C, Cy, Cy 4
such that

. Cy.x Tm?/*(log M4+ 044 5 Mx?
P(yp >x) < (M)l +CTp exp(—cxu4>.

4. Spectral density and coherence matrix. Spectral analysis is a fundamental tool to
gain insights into the cyclical behavior of time series. The spectrum provides an adequate
description of the frequency domain characteristics of stationary processes. Estimation of
spectral density has been extensively studied in the univariate stationary case; see, for exam-
ple, Anderson (1971), Priestley (1981), Rosenblatt (1985), among many others. Coherence,
also known as the time series analogue in the frequency domain of the standard correla-
tion coefficient, measures the linear relationship between a pair of time series as a function
of frequency; see, for example, Brillinger (1975) and Brockwell and Davis (1991). Since
nonstationary data with time-varying structural changes are increasingly common in diverse
fields, time-varying spectrum and coherence become a popular tool to reveal the dynamics
of the underlying mechanism. For example, in EEG data analysis, it has been widely used
to measure brain functional connectivity; see Liu, Gaetz and Zhu (2010), Simpson, Bowman
and Laurienti (2013), Lindquist et al. (2014) among others.

Various models and methods have been developed to estimate the time-varying spectra
and coherences for nonstationary processes. Priestley and Tong (1973) concerned the cross-
spectrum and coherence between oscillatory processes stemming from a time-varying spec-
tral representation, which was later investigated by Dahlhaus (2000a) allowing for rigorous
asymptotic considerations. Ombao et al. (2001) proposed a method based on the smooth lo-
calized complex exponentials to select the span which can be used to obtain the smoothed
estimates of the time-varying spectra and coherence. Sanderson, Fryzlewicz and Jones (2010)
and Park, Eckley and Ombao (2014) considered the problem of estimating time-evolving
cross-dependence in a collection of locally stationary wavelet processes. Ombao and Van
Bellegem (2008) developed a coherence estimation procedure using time-localized linear fil-
tering. Many of the previous results require restrictive structural condition on the underlying
processes such as linearity or Gaussianity.

Under the framework (1.1), the time-varying spectral density matrix function is defined as

1
F(u,0) = > > Ti(u)exp(—ikd) where 1 =~/—1.
keZ
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To estimate the time-varying spectral density matrix consistently, we use smoothing and con-
sider the lag window estimate

R 1 N
“4.1) F(u,9)=§ Z K{/m)T'(u) exp(—ul0),
I=—m

where f‘l (u) is the estimate of the autocovariance matrix function with lag / defined in (3.3),
m is the window width satisfying the natural conditions m < M# for some 0 < B < 1 and
K (-) is a continuous symmetric nonnegative kernel function with the support [—1, 1] and
K (0) = 1. In the special case of stationary processes X; = G (F;), the spectral density matrix
FO)=Q2n)™! > kez 'k exp(—tk8) and we can estimate F(6) by

~ 1z N
4.2) F(@):g > K(I/m)Texp(—ulf),

I=—m

where I'; are estimates of autocovariance matrices, given by (3.1). .

Theorem 4.1 and Theorem 4.2 below provide nonasymptotic bounds for |F(u,6) —
EF (u,0)|co uniformly over u and 8, under the assumption of finite polynomial moments and
Gaussianity, respectively, while Proposition 4.3 concerns the stationary case. Corollary 4.4
concerns the deviation of F (u, 0) and the true spectral density matrix F'(u, 6).

THEOREM 4.1.  Assume that E(X;) =0 and ©4 4 < 00 for some q > 4 and a > 0. Let
br be the bandwidth and M = 2| Tbr . Assume M <T and m < | M? | forsome 0 < B < 1.
Let ¢ =1V logp. Let

(4.3) or=sup max|F(u,0) —EF(u,0)|.
uelby,1-br] ¢

Then for any x > 0, we have

P(pr = x) < Cq o (M) Tm Ry m (€ 1X loo] .o A Og.ar)

+CT Zex ( M—xz)
prexp Coa®y m/’

4.4)

where Ry = mQ/Z_l(logM)q“for a>1/2—-2/q,and Ry ;m = md/2=1. (logM)‘f+1 +
Ma/A=1=24/210a/% for o < 1/2 —2/q.

THEOREM 4.2. Let (X;) be a Gaussian process of the form (1.1), which satisfies
E(X;) =0 and &2, < co. Let by be the bandwidth and M = 2|Tbr|. Assume M <T and
m < | MP] for some 0 < B < 1. Then there exist universal constants Cy, C> > 0 such that for
any x >0,

Mx*> M
4.5) P(¢r > x) < CiTmp* exp[—C2 min(—);, —)2()]
m®; o mP3

PROPOSITION 4.3. For zero-mean stationary processes X; = G (F;), define
or = meax}ﬁ(é) —~EF®©)|,.
(1) Under the assumptions of Theorem 4.1, we have

P(¢r > x) < Cqo(Tx) 1 *TmR5,, (¢4 X Jooly0 A Ogra)’

+Cmp?e ( Tx* >
mp-expl ——— ),
prexp CaCDiam

(4.6)
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where R}, =mi> " fora > 1/2—2/q, and RT. —mQ/2 U4 79/471-24/24/3 for o <
1/2-2 / q (11) For Gaussian stationary processes, lt becomes

T T
4.7 P(or > x) SClmpzeXp[—szin( x4 —); )]
m®; o m®;

As expected, the tail probabilities for @7 for stationary processes are sharper that the ones
in Theorems 4.1 and 4.2, as ¢7 does not concern the supremum over the time index. The
proof of Proposition 4.3 is simpler and the argument is given in the Supplementary Material
(Zhang and Wu (2020)).

REMARK 3. The long-run covariance matrix (a.k.a. asymptotic covariance matrix) can
be determined by the spectral density matrix at the zero frequency. The estimation of the
long-run covariance matrix is an important problem in statistical inference for time series
and has been extensively studies in the low-dimensional stationary case; see Newey and West
(1987), Politis, Romano and Wolf (1999), Biihimann (2002), Lahiri (2003), Alexopoulos and
Goldsman (2004). For locally stationary processes, we can estimate the time-varying long-
run covariance matrix X (u) = > 7o x(u) by the idea of smoothing similarly as (4.1).
Then nonasymptotic results similar to Theorem 4.1 and Theorem 4.2 can be established in
high dimensions without extra difficulty. The convergence rate of the long-run covariance
matrix estimator is sharper than that of @7 given in (4.4) or (4.5) since there is no need to
account for the supremum over 8; see Corollary B.1 in the Supplementary Material for details
(Zhang and Wu (2020)).

COROLLARY 4.4. Define

Ay= sup max|EF(u,0) — F(u,0)|,
uelby 1-br] 9
@y = sup rnax|1’:"(u,9)—F(u,9)|OO
uelby 1—br] 9
Under condition (1.2), it follows that Ay < Viu m, 7 + VWi, where
2KM\/m r(m
Vi, M, T = 7\/_<D2,0 + ﬂ_l(m_“ + ( ))Cbz,o@z,a,
nT M

Wi =n"tsup) (1= K(/m))|Ti(w)] .
"=t

and r(im)=11ifa>1,r(m)=logm ifa =1 and r(m) = m! Y if a < 1. Consequently,
07 = Op(R1 + Ro + Ay) under the assumptions of Theorem 4.1 and ¢ = Op(R3 + Ay)
under the assumptions of Theorem 4.2 with

(TmRyum)* s 2 mlog(pT)
Rl = Mm (E / |||X’|OO||q,a A ®41105) ’ R2 = M q>4,oe’
|mlog(pT) ,  mlog(pT) ,
R?, - T(DZ’O \ TCDZ,O

The term W,, depends on the kernel function. Its order is determined by the smoothness
of K (-) at zero. In particular, this term vanishes if K (-) is the rectangular kernel. In general,
flat-top kernels which take value 1 at a neighbor of 0 have been employed to render a bias
reduced estimator of spectral density; see for example, Politis and Romano (1995, 1999) and
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Politis (2011). If 1 — K(x) = O(|x]") at x =0 for some a > 0 and sup,, |I';(4)|oec = ol
for some b > 1, then W,, = O(m ™% +m' 7).

For the bias Aj = maxg |Eﬁ (0) — F(9)|x in the stationary case, since K = 0, we can
obtain Ag < f/m,r + Wm where

~ rm
Vi1 = 7T_1<m_“ + %)q?z,oq)z,a,

Wi =7""sup > (1= K(/m))[Tioo,
o=l

with r(m) defined the same as in Corollary 4.4.

A similar discussion as Section 3 can be made to concern the effects of local stationarity,
moment condition, dependence strength and dimension on the convergence rates. The details
are omitted here.

Next, we shall discuss how our results can be used.

Regularized estimation of sparse spectral density matrices. In the above Theorems 4.1

and 4.2, sparseness conditions are not imposed for spectral density matrix estimation. Sun et
al. (2018) investigated regularized estimation of high-dimensional spectral density matrices
for stationary Gaussian processes by imposing weak sparsity on the spectral density matrix
in the sense that it falls within a small ¢4 ball in C?>? for some 0 <d < 1. In particular,
they proposed hard thresholding of averaged periodograms to estimate the spectral density
matrix and established nonasymptotic bounds for the concentration of the estimator around
its expectation using spectral norm and Frobenius norm. The idea of thresholding has been
widely used in high-dimensional covariance matrix estimation; see, for example, Bickel and
Levina (2008) for i.i.d. vectors and Chen, Xu and Wu (2013) for time series. Applying the
thresholding procedure to the lag-window estimate F (u,0) in (4.1), we can introduce the
regularized estimate in our regime:
(4.8) Te(F(u,0)) = (Fij(u, O] Fij @, 0)| = h)! ),
where 7 > 0 is a tuning parameter and 77 (-) is a thresholding operator. Assume that F (u, 6)
has weak sparsity, that is, for some 0 <d < 1, SUp, [0, 1) MaXp Max; 25:1 | Fij(u, 0)|d <R,.
Recall the definition of ¢% in Corollary 4.4. We can adopt similar techniques in Bickel and
Levina (2008) to obtain that under the event ¢} < 7/2,

sup maXHTt(ﬁ(u,Q))—F(u,G)” §7t1_dRp,
uelbr,1—br] ¢

sup  max||T; (F(u,0)) — F(u,0)|, <13t 7R,
uelbr, 1—-br] ¢

Hence, the nonasymptotic bound in L° norm can be used to derive the uniform convergence
in spectral norm and Frobenius norm for thresholded estimates in the sparse case. In compar-
ison with Sun et al. (2018), we allow more general processes which can be non-Gaussian and
nonstationary, and we can provide a uniform bound by taking supreme over the frequency
while they established a pointwise result at each single frequency. We shall comment that for
the stationary Gaussian case considered in Sun et al. (2018) we can obtain the same result as
Proposition 3.6 in that paper.

Application to the estimation of locally stationary generalized dynamic factor mod-
els. Barigozzi et al. (2019) considered Time-varying Generalized Dynamic Factor Mod-
els (tvGDFM), extending the influential GDFM introduced in Forni et al. (2000) to
locally stationary processes. To perform theoretical analysis of the estimation proce-
dure for the tvGDFM, one needs to establish a moment bounds for uniform distance
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sup, maxg |1:“,-j (u,0) — Fij(u,0)|. Our Theorem 4.1 and Corollary 4.4 can provide such a
theoretical foundation. Using E(p% =[5 P((p% > v)dv, we obtain

(4.9) E|ph|* = Esupmglx|ﬁ(u, 0) — F(u,0)|2 < Cq(R} +R3 + A2),
u

where R, R2 and A, have been defined in Corollary 4.4. Note that the term ”R% + R% in
(4.9) should be R% for Gaussian processes. For a more user-friendly bound, consider o >
1/2 — 2/q and choose the rectangular kernel K (-). Let m = | M#] for some 0 < 8 < 1.
Assume that [|X.j|lge < 1forall 1 <j<p, Kx1and |[|X|xlge=<p',0=<1=2/q.
Then (4.9) becomes
2« 744 (log M)*+4/4 min{p*" (1 v log p)°, p/1)
~ M?2-28
log(pT) M>**F
M1-F T2 °
and, by considering the cross spectral density for each pair of component processes in Theo-
rem 4.1 and Corollary 4.4, we have

Elp7|
(4.10)

T4 (log M)**t44  logT ~ M*HP
M?2-28 M1-B + T2

max Esupmax|Fj;(u,0) — Fij(u,0)* <
I<ijsp w0 '

Estimation of coherence matrices. In many applications, it is of interest to estimate the
coherence matrix. In our framework, the time-varying coherence matrix is given by

Cu,0) = diag[ F (u,0)]""*F (u, 6) diag[ F (u, 6)] /2.
We estimate the coherence matrix C(u, 6) by the plug-in estimator
(4.11) Clu, 0) = diag[F (u,0)]"*F (u, 0) diag[ F (u, 0)]~"/?,

where F (u, 0) is the estimate of the spectral density matrix given by (4.1). We shall concern
the bound for the maximum deviation

or = sup maX\CA(u,O)—C(u,G)|OO.
uelby 1-br] 9

Corollary 4.5 below gives a bound of p7 in terms of ¢7., by which the results for ¢ can be
used to bound p7.

COROLLARY 4.5. Assume ¢y = inf, ming minj <<, F;;j(u,0) > 0. Then

30* 2 *2
(4.12) pr=2L L T
(&) CO

where @7 = sup, maxg Iﬁ(u, 0) — F(u, 0)| as defined in Corollary 4.4.

5. Graphical model and inverse spectral density matrix. The concept of graphical
model for multivariate data has been extended to multivariate time series (e.g., Brillinger
(1996), Dahlhaus (2000b), Timmer et al. (2000), Eichler (2012) among others). A vertex of
the graph represents a component process and each edge indicates the partial correlation of
the two corresponding components given others. Hence, for stationary Gaussian processes,
this induced graph is a conditional independence graph in the frequency domain, the proper-
ties of which has been investigated largely (cf. Dahlhaus (2000b), Fried and Didelez (2003),
Bach and Jordan (2004), etc.). For non-Gaussian processes, it is termed partial correlation



HIGH DIMENSIONAL LOCALLY STATIONARY PROCESSES 247

graph in Dahlhaus (2000b) using partial spectral coherence as a measure for the dependence
between two marginal time series after removing the linear effects of some other components.
Partial spectral coherence has been widely used in many real-world applications; see, for ex-
ample, Gather, Imhoff and Fried (2002), Salvador et al. (2005), Eichler (2007), Medkour,
Walden and Burgess (2009). Recently researchers study functional connectivities of brain
networks in neuroscience based on inverse of spectral density matrices; see, for example,
Baccald and Sameshima (2001), Eichler, Dahlhaus and Sandkiihler (2003), Blinowska (2011)
and Lennartz et al. (2018). Baccald and Sameshima (2001) proposed partial direct coherence,
a normalized quantity for inverse of spectral density matrices which measures frequency
domain direct causal relations. A zero value in the inverse of spectral density matrices sug-
gests no partial direct coherence. For locally stationary processes, it is natural to study the
time-varying functional connectivity based on the inverse spectral density matrix function.
However, in the high-dimensional case where the dimension p can be even much larger than
the sample size T, since the estimated spectral density matrix may not be invertible, classical
methods developed under the low-dimensional setting are no longer applicable. In this sec-
tion, we shall provide a solution to this challenging problem under the more general setting
in which the process can be locally stationary and hence the inverse spectral density matrix
varies with time.

For 0 < u < 1 and 6, denote by Q°(u, 0) = F(u,0)™', the inverse of the spectral density
matrix. We estimate the spectral density matrix by the lag window estimate [cf. (4.1)]. For
simplicity, we consider the rectangular kernel, that is, K(x) =1 for |[x|] <1 and K(x) =0
otherwise. Then we use the constrained ¢; minimization approach to estimate Q°(u, 0). Let

(5.1 Qu,0) = argmin|§2(u,0)]€] subject to |I:“(u,9)S2(u,9) —Ip| <2,

where A > 0 is a tuning parameter. The constrained £; minimization approach has been
adopted in many applications; see Candes and Tao (2007), Bickel, Ritov and Tsybakov
(2009), Cai, Liu and Luo (2011) among many others. The optimization program (5.1) can
be decomposed into p parallel vector minimization sub-problems. Let e; be the standard unit
vector in R? with 1 in the ith coordinate and O in all others. For 1 <i < p, let w; (u, 0) be
the solution to the following convex optimization problem:

(5.2) min|w|; subject to | F (u, H)w — e;| < A,

where w is a vector in R”. By a similar argument as Lemma 1 of Cai, Liu and Luo (2011),
we can show that solving the optimization problem (5.1) is equivalent to solving the p opti-
mization problems (5.2), that is,

(5.3) fZ(u,Q)=(12)1(u,0),...,12)p(u,9)).
We estimate Q°(u, 6) by
Qu,0) + Q7 (u, 6)
2 b
where T is the conjugate transpose of a matrix. Theorem 5.1 provides a nonasymptotic bound
concerning the uniform convergence of 2(u, 6). To this end, we need to introduce quantity

ko which characterizes the sparseness of °(u, ). Note that sparseness conditions are not
needed for covariance and spectral density matrix estimates in Theorems 3.1 and 4.1.

(5.4) Qu,0) =

THEOREM 5.1.  Define ko = supg, < maxy IQO(u, 0)|e, and

or=sup max|Qu,0) — Qu,0)|,.
uelby,1-by] ¢
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Recall Corollary 4.4 for Vy, m.7. (1) Let the assumptions of Theorem 4.1 be satisfied. For any
X >Vum. 1V (AKo), we have

Cqa TmRM m (O |1X Jo0 ] o0 A Ogra)?

P
Plor > Txkj) < (Mx)i/2
(5.5
+CTp?ex ( Mx? )
p-exp Co,mCDia

(ii) Let the assumptions of Theorem 4.2 be satisfied. For any x > Vy, y.7 V (A/K0), we have

Mx? Mx )i|
m@‘é’o’md)%’o '

(5.6) P(or > 7x1(g) < C\Tmp? exp|:—C2 min<

REMARK 4. In the special case of stationary processes, denote the inverse spectral den-
sity matArix by Q%0) = F©)~!. As in (5.2) and (5.3), we can similarly consider the min-
imizer 2(0) = (W1(0), ..., w,(#)) in which w;(0) € R?, 1 <i < p, is the solution to the
following convex optimization problem:

(5.7) min [w|; subject to |F(O)w — ;| <2,

where w is a vector in R” and 13"(49) is given in (4.2). Let §2(9) = (Q(@) + Q*(@))/Z The tail
probability bound in the right-hand side of (5.5) and (5.6) concerning maxy |S~2(9) —Q%0) |00
should be the same as that in (4.6) and (4.7) respectively. To prove it, we can follow all the
arguments in the proof of Theorem 5.1 and then replace the last step by the corresponding
result for stationary processes established in Proposition 4.3.

Fiecas et al. (2019) adopted the essentially same approach as (5.7) to estimate the inverse
spectral density matrix for stationary processes. But they required more restrictive assump-
tions to establish the nonasymptotic bound. For one thing, they assumed geometric moment
contraction, that is, A, 2 ; = O(A™) for some 0 < A < 1, while we can deal with much
stronger dependence with algebraic decay characterized by the parameter «. For another,
they required the existence of finite exponential moment for each component process while
we can allow the mild condition with the existence of polynomial moment.

Note that the bound for the tail probability in Case (i) (resp., Case (ii)) of Theorem 5.1
is the same to Theorem 4.1 (resp., Theorem 4.2). We shall discuss the newly introduced
parameter ko, which characterizes the sparseness of Q°(u, ). Consider the class of high-
dimensional vector autoregressive models: X; = AX; 1 + &;. Assume that Cov(g;) =1, and
the spectral radius of A = (a; j)f =1 is smaller than 1. By elementary calculation, we can
obtain Q¥(0) =27 (1,+ ATA—Ae ™ — ATe?). Let L = max(|Alg,, |AT|¢,) where |A]¢, =
max; » j |la;j|. Then ko < 27 (1+ L)% and the sparseness of A ensures the sparseness of QY)
in terms of the £; norm.

Fiecas et al. (2019) also incorporated the £; norm of QY8) for high-dimensional stationary
processes and additionally assumed the inverse spectral density matrix falls within a small £¢
ball, 0 <d < 1. Similarly, if we further assume Qo(u, 0) is weakly sparse within a small o4
ball, we can also work out the bounds in spectral norm and Frobenius norm accordingly; see
Remark B.1 for detailed results.

6. Hanson—-Wright-type inequalities. In this section, we shall provide Hanson—Wright-
type tail probability inequalities for locally stationary processes. The celebrated Hanson—
Wright inequality provided a concentration result for quadratic forms of sub-Gaussian
i.i.d. random variables; see Hanson and Wright (1971), Wright (1973) and Rudelson and
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Vershynin (2013). There has been a large literature concerning large/moderate deviations
for quadratic forms of Gaussian processes; see, for example, Bercu, Gamboa and Rouault
(1997), Bryc and Dembo (1997), Zani (2002), Kakizawa (2007) among others. Xiao and Wu
(2012) obtained tail probability upper bounds for quadratic forms of stationary processes
with finite polynomial moments. We aim to relax the (i) i.i.d., (ii) Gaussian/sub-Gaussian,
(iii) one-dimensional or (iv) stationary assumptions which were imposed in previous works,
and develop tail probability inequalities for quadratic forms for high-dimensional locally sta-
tionary processes.
Consider the quadratic form of the high-dimensional locally stationary process (X;):

QT = Z as,thX;r,

1<s<t<T

where the coefficients in our setting satisfy a; ; = a,—g (¢ > ), which depends on the distance
t — 5. Moreover, we assume sup; ; |as | <1 and a5, =0if t —s > B, where B < T. Theo-
rem 6.1 and Theorem 6.3 provide tail probability inequalities for | Q7 — EQ1|c0. The former
assumes the existence of finite polynomial moments and the latter assumes the Gaussianity.

THEOREM 6.1. For the process (1.1), assume 8(X;) = 0 and, for some g > 4 and o > 0,
11X |oollg,a <00.Let € =1Vlog pandlet B <T.Then there exist constants C, Cy, Cy o >0
such that for any x > 0,

P(|Q7 —EQrloo = X) < Cqax 120X |oo|? , Fr.5
pre Ca®; ,TB)’
where Fr p = T B4/>71 (resp., TB1/?~! 4 T4/4=24/2B4/%Y if o > 1/2 — 2/q (resp., o <
1/2-2/q).

Proposition 6.2 below concerns the special case of one-dimensional processes, by letting
¢ =1 and replacing the L*° dependence adjusted norm |||X.|sc|lg,« in Theorem 6.1 by the
component-wise dependence adjusted norms || X ;{l4,¢ and | X.j|lg,q-

PROPOSITION 6.2. For 1 <i,j < p, let Qrij = ) |<5<i<71 5,1 Xs5i X1j. Under the as-
sumptions of Theorem 6.1, we have

P(|Qr.ij —EQr.ijl = x) < Cgax 12X I14/211X ;192 Fr. 5

x2
+ Cex (——),
P Ca®; ,TB

where Fr p is defined the same as in Theorem 6.1.

THEOREM 6.3. Let (X;) be a Gaussian process of the form (1.1), which satisfies
E(X;) =0 and 2 < 0o. Let B < T. Then there exists a universal constant C > 0 such
that for any x > 0,

2

X X
P -E > x) <2prex [—Cmin( , )}
(|QT QT|OO )_ 4 P TBCI)‘Z"O B@%’O
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Theorems 6.4 and 6.6 below concern the following special case of O7:

(6.1) Lr(B):= Y  aXi-pX,/,
B+1<t<T

where sup, |a;| <1 and 0 < B < T. Proposition 6.5 applies to the one-dimensional case.
They are useful to prove the results of the estimates of autocovariance matrices in Section 3.

THEOREM 6.4. For the process (1.1), assume E(X;) = 0 and, for some g > 4 and o > 0,
X loollg,w <00.Let £ =1VIog p andlet B < T.Then there exists a constant Cy4 o > 0 such
that for any x > 0,

P(|L7(B) —EL7(B)|, = x) < Cqox 12 ||X || ,Dr.58

2
+ sz exp(—xi),
Co®} T

where Dy g = T B4/*~! (resp., TB4/*~1 4- T4/4=4/2) if o > 1/2 —2/q (resp., a0 < 1/2 —
2/q).

PROPOSITION 6.5. Let L7;j(B) =Y pij<i<7 4t X@—B)iX1j» | <1, j < p. Under the
assumptions of Theorem 6.4, we have

P(|L7.ij(B) —EL7ij(B)| = x) < Cgax I Xi19/21X ;142 D1 5

x2
+Cep(— o),
P Ca®} T

where Dt p is defined the same as in Theorem 6.4.

THEOREM 6.6. Let (X;) be a Gaussian process of the form (1.1), which satisfies
E(X;) =0 and &2, < 0o. Then there exists a universal constant C > 0 such that for any
x>0,

2
. X X
P(|L7(B) —=EL7(B)|y, > x) < QPZCXP[—Cmm(T—4’ ch)]
2,0 2,0

7. Concluding remarks. High-dimensional nonstationary processes arise in a wide
range of disciplines. In this paper, we have made contributions towards a general theory for
high-dimensional locally stationary processes that goes beyond the investigation of specific
parametric models. We showed that many commonly seen parametric recursive models fit
approximately within the framework of functional dependence measure, a convenient frame-
work to depict the temporal dependence for high-dimensional processes. Equipped with func-
tional dependence measure, the main tools we developed are tail probability inequalities for
quadratic forms involving high-dimensional processes. We established a Nagaev-type bound
on tail probability of quadratic forms with the existence of finite polynomial moments and
a Hanson—Wright-type bound for Gaussian processes, based on which, we were able to esti-
mate the autocovariance functions, spectral density matrix and inverse spectral density ma-
trix. The convergence rate depends on the temporal dependence, the moment condition, the
dimension and the sample size. To perform statistical inference of the estimates such as hy-
pothesis testing and construction of simultaneous confidence bands, one needs to develop the
more refined result in terms of asymptotic distributional theory. The latter is more challenging
and we leave it as future work.
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