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ASYMPTOTIC OPTIMALITY IN STOCHASTIC OPTIMIZATION
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We study local complexity measures for stochastic convex optimization
problems, providing a local minimax theory analogous to that of Hájek and
Le Cam for classical statistical problems. We give complementary optimality
results, developing fully online methods that adaptively achieve optimal con-
vergence guarantees. Our results provide function-specific lower bounds and
convergence results that make precise a correspondence between statistical
difficulty and the geometric notion of tilt-stability from optimization. As part
of this development, we show how variants of Nesterov’s dual averaging—a
stochastic gradient-based procedure—guarantee finite time identification of
constraints in optimization problems, while stochastic gradient procedures
fail. Additionally, we highlight a gap between problems with linear and non-
linear constraints: standard stochastic-gradient-based procedures are subopti-
mal even for the simplest nonlinear constraints, necessitating the development
of asymptotically optimal Riemannian stochastic gradient methods.

1. Introduction. In this paper, we consider smooth stochastic convex optimization prob-
lems of the form

minimize
x

f (x) := EP

[
f (x;S)

]= ∫
S

f (x; s) dP (s)

subject to x ∈X := {
x ∈ R

n : fi(x) ≤ 0 for i = 1, . . . ,m
}
,

(1)

where each fi : Rn → R is convex and smooth (C2), S ∼ P is a random variable, and for
s ∈ S the function R

n � x �→ f (x; s) is convex and continuously differentiable. We study

algorithms that attempt to solve problem (1) using a sample S1, . . . , Sk
iid∼ P . In this setting,

we investigate the optimality properties of stochastic optimization procedures, providing both
problem-specific lower bounds on the performance of any method and giving optimal algo-
rithms that adapt to problem structure.

Problems of the form (1) are of broad interest, as they encompass a variety of problems
in statistics, machine learning and optimization [26]. Because of their wide applicability, it
is important to carefully understand the difficulty of such problems. This includes under-
standing fundamental limits—how well the best algorithm can behave on problem (1)—as
well as adaptivity, meaning the extent to which algorithms can adapt to the specific prob-
lem at hand. In this paper, we address these problems, showing function-specific difficulty
measures and developing a variant of Nesterov’s dual averaging algorithm [37] that is (often)
optimal, though we demonstrate that alternative methods are necessary when the constraint
functions fi are nonlinear (and we provide one potential method). Unifying our results is an
understanding of the stability of solutions to optimization problems under perturbations; we
make precise connections between Poliquin and Rockafellar’s “tilt stability” [39] and sta-
tistical and computational difficulty, giving an analogue of Fisher information for stochastic
optimization problems (1).
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A standard approach to providing optimality guarantees is the minimax risk [3, 36, 51].
Here, one defines a class F of functions of interest (such as Lipschitz convex functions)
and measures algorithmic performance by the worst-case behavior over this function class.
Minimax risk is an imprecise hammer: a function f may belong to a number of classes
of functions, and the risk may differ substantially between these classes. The approach is
also often too conservative: if f is decreasing quickly near the boundary of X , it should
be “easier” to solve problem (1). Hájek and Le Cam’s local minimax theory [31, 51, 52]
addresses these issues in classical statistical problems, giving problem-specific notions of
difficulty and making rigorous the centrality of the Fisher information. In this paper, we build
on these results to answer the following: how hard is it to solve the particular problem (1)?

The idea in this line of work (see also Zhu et al. [57]) is to define a shrinking neighborhood
of problems, investigating worst-case complexity in this neighborhood. For stochastic opti-
mization problems (1), the objective (x, s) �→ f (x; s) is generally known, while the probabil-
ity distribution P is not; with that in mind, we study neighborhoods Pk(P ) whose elements

are tilted variants P̃ of the measure P satisfying dP̃ (s) ∈ [1 ± ck− 1
2 ]dP (s), so that Pk(P )

shrinks to P as k → ∞. Letting x̃ denote the minimizer of the objective (1) when P̃ replaces
P and L :Rn →R be a loss, we consider local minimax complexity measures of the form

(2) inf
x̂k

sup
P̃∈Pk

EP̃

[
L
(
x̂k(S1, . . . , Sk) − x̃

)]
,

where the expectation is taken over Si
iid∼ P̃ . To describe our lower bound, we leverage the tilt-

stability of an optimization problem [39], which describes the changes in solutions to problem
(1) when the tilt fv(x) := f (x) − vT x replaces f (x). Letting xv denote the minimizer of
fv(x) over X , let us assume the objective (1) is smoothly tilt stable, so xv = x� + Dv +
o(‖v‖) for some matrix D; we show (Proposition 1) the precise dependence of D on the
problem (1) via the objective f , distribution P , and constraints X . Our first main result
(Theorem 1) provides a lower bound on local complexity measures of the form (2). Here,
the matrix � := D Cov(∇f (x�;S))D is analogous to the classical inverse Fisher information
[51], and Theorem 1 shows that E[L(Zk)],Zk ∼ N(0, k−1�) is asymptotically a lower bound
for the local complexity (2).

The next question we address is whether our problem-dependent lower bounds are accu-
rate: are there procedures that achieve these guarantees, and can we adapt to specific problem
geometry? The classical sample average approximation (or empirical risk minimization) ap-
proach [47], which sets x̂k = argminx ∈ X {1

k

∑k
i=1 f (x;Si)}, is one approach. As we discuss

in the sequel, it is optimal and adaptive. Given the scale of many modern problems, how-
ever, it is important to develop computationally efficient online procedures. To that end, our
second contribution (Sections 4 and 5) is the development of stochastic-gradient-based pro-
cedures that are (asymptotically) optimal, achieving the infimum in the local complexity (2)
for smooth enough functions f .

We develop a variant of Nesterov’s dual averaging [37]; we iterate

(3) xk+1 := argmin
x∈X

{(
k∑

i=1

αi∇f (xi;Si)

)T

x + 1

2
‖x − x0‖2

2

}
,

where αi denotes a stepsize sequence. In the case that X = R
n, this method reduces

to the stochastic gradient method, and Polyak and Juditsky [40] show that the averages
xk = 1

k

∑k
i=1 xi are asymptotically normal with the optimal covariance we derive. In con-

trast, we show that (i) the iteration (3) converges a.s. and identifies the active constraints
in problem (1) in finite time, and (ii) as long as the constraints fi are linear, dual averag-
ing is optimal and adaptive (Theorems 2–4). Stochastic projected gradient descent methods
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do not enjoy these guarantees. An intriguing gap arises when the constraints are nonlinear:
our proposed algorithm and classical dual averaging [37] cannot be optimal with nonlinear
constraints, even for X = {x ∈ R

n : ‖x‖2
2 ≤ 1}. To address this, we develop an asymptoti-

cally optimal manifold-based online algorithm (Theorem 5), showing that closing this gap is
possible but nontrivial.

The unifying aspect of both threads—algorithms and lower bounds—throughout this work
is the geometry of the problem (1). Letting x� denote the minimizer of the problem (our
coming assumptions make this unique), we give a perturbation analysis [8] of parameterized
versions of problem (1) that shows how the active constraints {i : fi(x

�) = 0} affect solutions
to the perturbed problems (2). A similar perturbation analysis is also central to our results
on optimal constraint identification and the asymptotic covariance structure of the iterates of
dual averaging (3), providing a unifying geometric theme to our results and allowing us to
provide computational and optimization-based analogues of the Fisher information.

1.1. Related work. That problem geometry strongly influences optimization algorithms
is well known. In statistics, geometric conditions involving the continuity of the estimand
with respect to the underlying probability measure are central to minimax analyses [6, 16,
17], and the Fisher information characterizes classical asymptotics [31, 51, 52]. Our ap-
proach to local asymptotic minimax lower bounds builds out of the literature on semi and
nonparametric efficiency [5, 28, 48, 51], where one wishes to estimate a finite-dimensional
parameter of an infinite-dimensional nuisance, thus studying hardest finite-dimensional sub-
problems; we connect these hardest subproblems to stability in optimization. In deterministic
optimization, work by Burke and Moré [12] and Wright [55] shows how projected gradient
and Newton methods identify active constraints and converge quickly once identified, and
such identification underlies active set methods [38].

On the algorithmic side, there is a substantial literature on stochastic approximation and
optimization procedures, with growing recent importance for large-sample problems [9, 20,
30, 35, 40, 41, 56, 58]. Early works, beginning with Robbins and Monro [41] and continuing
through work by (among others) Ermoliev [22, 23], Venter [53], Fabian [24], Kushner [30]
and Walk [54], develop probability one convergence with and without constraints, as well as
asymptotic normality results in restricted situations [24, 53]. Polyak and Juditsky [40] show
the importance of averaging stochastic gradient methods with “long stepping,” establishing
a generic asymptotic normality result. Our results are a natural descendant of this work, but
they require new development, and given the subtleties that nonlinear constraints introduce
for asymptotics, we require extensions to and connections with Riemannian methods [2, 10,
49]. Recent progress on incremental gradient methods—which approximate the population
expectation (1) by an empirical average—develops efficient estimators using limited compu-
tation [14, 29, 32, 34], though the methods do not apply in fully online stochastic scenarios.

1.2. Notation and basic definitions. We let R+ = {x ∈ R : x ≥ 0} and R++ = {x ∈ R :
x > 0}. For any m ∈N, we use [m] to denote the set of integers {1,2, . . . ,m}. For a set C, we
use relint(C) to denote its relative interior [43], Section 6, and IC(x) to denote the extended
real valued function

IC(x) =
{

0 x ∈ C,

+∞ x /∈ C.

For a vector v, ‖v‖ denotes its Euclidean norm. For a matrix A, A† is its Moore–Penrose
inverse, and |||A||| = sup‖v‖=1 ‖Av‖ is its l2 operator norm.
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2. Background and assumptions. Before moving to our main results, we collect impor-
tant assumptions, definitions and recapitulate a few results on stochastic optimization. As we
view our results through the lens of stability and perturbation, we also present a perturbation
result on tilt-stability of optimization problems that underpins our development.

2.1. Main assumptions. We begin by formalizing the problems we consider. This in-
volves specifying smoothness and identifiability properties on f and x�, the unique mini-
mizer of problem (1) (our assumptions ensure uniqueness).

ASSUMPTION A. There exists L < ∞ such that∥∥∇f (x) − ∇f
(
x�)∥∥≤ L

∥∥x − x�
∥∥ for all x ∈ X .

There exist C,ε ∈ (0,∞) such that for x ∈X ∩ {x : ‖x − x�‖ ≤ ε},∥∥∇f (x) − ∇f
(
x�)− ∇2f

(
x�)(x − x�)∥∥≤ C

∥∥x − x�
∥∥2

.

Because we study perturbation of solutions and rates of convergence, we require constraint
qualifications to make precise guarantees. The normal cone to the set X at the point x is

NX (x) := {
v ∈R

n : 〈v, y − x〉 ≤ 0 for all y ∈ X
}
.

The optimality conditions for convex programming [11, 27] for problem (1) are that x� min-
imizes f over X if and only if −∇f (x�) ∈ NX (x�). The condition that −∇f (x�) ∈ NX (x�)

is insufficient for our identification and perturbation results, so we make a standard constraint
qualification [12, 55] and [25], Definition 2.4. Throughout, we let m0 be the number of active
constraints in problem (1), that is, the number of all indices i such that fi(x

�) = 0. Without
loss of generality, we assume f1, . . . , fm0 are the only active constraints.

ASSUMPTION B. The vector ∇f (x�) satisfies

−∇f
(
x�) ∈ relintNX

(
x�).

The constraint functions {f1, . . . , fm} are C2 near x�. Additionally, the active constraints
{f1, . . . , fm0} satisfy either:

i. The set {∇fi(x
�)}m0

i=1 is linearly independent
ii. The functions fi are affine.

Assumption B implies there exists a strictly positive λ� ∈R
m0++ such that

(4) ∇f
(
x�)+ m0∑

i=1

λ�
i ∇fi

(
x�)= 0,

and λ� is unique under Assumption B.i. This follows by standard constraint qualifications
[27], Chapter VII.2, for linear or independent constraints, which implies that NX (x�) =
{∑m0

i=1 λi∇fi(x
�), λ ∈ R

m0+ }, whose relative interior is the set with λ strictly positive. The
set of λ ∈ R

m0+ satisfying the KKT condition ∇f (x�) +∑
i λi∇fi(x

�) = 0 is a compact con-
vex polyhedron.

We require two additional assumptions on the structure of the function f . We define the
critical tangent set to X at x by

(5) TX (x) := {
w ∈R

n : ∇fi(x)T w = 0 for i ∈ [m] s.t. fi(x) = 0
}
.

With this definition, we make the following standard second-order sufficiency, or restricted
strong convexity, assumption [18, 46, 55].
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ASSUMPTION C. There exists μ > 0 such that for any w ∈ TX (x�),

wT

[
∇2f

(
x�)+ m0∑

i=1

λ�
i ∇2fi

(
x�)]w ≥ μ‖w‖2.

Assumption C guarantees the uniqueness of minimizers of the function f over X ; more,
it implies f has the following growth properties.

LEMMA 2.1 (Wright [55], Theorem 3.2(i)). Under Assumption C, there exists ε > 0 such
that 〈∇f (x), x − x�〉≥ f (x) − f

(
x�)≥ ε min

{∥∥x − x�
∥∥2

,
∥∥x − x�

∥∥} for x ∈ X .

Finally, we make the standard assumption [35, 40, 42] that the noise in the functions f is
not too substantial.

ASSUMPTION D. There exists C < ∞ such for all x ∈ X ,

E
[∥∥∇f (x;S) − ∇f

(
x�;S)∥∥2]≤ C

∥∥x − x�
∥∥2

.

The gradients ∇f (x�;S) have finite covariance � := Cov(∇f (x�;S)).

We provide two remarks on Assumption D. First, Assumptions A and D, coupled with
Jensen’s inequality, imply that for any x ∈ X we have

E
[∥∥∇f (x;S) − ∇f (x)

∥∥2]≤ E
[∥∥∇f (x;S)

∥∥2]≤ C
(
1 + ∥∥x − x�

∥∥2)
,(6)

where C < ∞ is some constant. Second, many statistical applications and stochastic pro-
gramming problems, including linear and logistic regression, satisfy Assumption D. Verify-
ing the assumptions for these is routine [40].

2.2. Perturbation of optimal solutions and classical asymptotics. The unifying thread
throughout this work is the importance of perturbation results for optimal solutions of opti-
mization problems, which form the building blocks of classical asymptotic results for prob-
lem (1) (cf. Shapiro [46]), for the local minimax lower bounds we develop, and for the iden-
tification and optimality results we provide for stochastic gradient-based algorithms.

With this in mind, we consider tilt-stability properties of solutions to problem (1). Tilt sta-
bility is the Lipschitz continuity of minimizers of tilted versions of an objective f , namely
minimizers of fv(x) := f (x) − 〈v, x〉 for v near 0; the notion has been influential in varia-
tional analysis and the development of optimization algorithms for some time [18, 19, 39]. In
our case, we can provide an implicit function theorem for the KKT system associated with
the optimality conditions for problem (1) under tilt-like perturbations of the objective. To
make this concrete, let v ∈ R

n be a perturbation vector, and assuming that fv is still convex,
we consider approximate tilts of f satisfying

(7) fv(x) = f (x) − vT x + cv + o
(‖v‖2 + ‖x − x0‖2)

for v near 0 and x near x0, where x0 minimizes f0(x) over X (i.e., x0 = x�) and cv depends
only on v. We then consider the tilted problem

(8) minimize fv(x) subject to fi(x) ≤ 0, i = 1, . . . ,m,

whose minimizer we denote by xv . By assumption, the problem (8) is convex, so we equiv-
alently assume that ∇xfv(x) = ∇f0(x) − v + o(‖v‖ + ‖x − x0‖). Let L(x, λ) = f (x) +
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i=1 λifi(x) denote the Lagrangian for problem (1), and define the Hessian of the problem

at optimality by

H� := ∇2
xL
(
x�, λ�)= ∇2f

(
x�)+ m0∑

i=1

λ�
i ∇2fi

(
x�).

Let PT denote the orthogonal projection onto the tangent set (5) at x�, which we recall is
TX (x�) =⋂m0

i=1{w : wT ∇fi(x
�) = 0}. That is, if A ∈ R

m0×n denotes the matrix with rows
∇fi(x

�)T , then PT = I − AT (AAT )†A. We then have the following perturbation result, an
implicit function theorem for the KKT system generated by problem (8).

PROPOSITION 1. Let Assumptions A, B and C hold. Assume that for any v ∈ R
n, the

function fv(x) is convex, and satisfies the Taylor expansion at equation (7). Then the mini-
mizer xv of equation (8) satisfies

xv = x0 + PT H�†PT v + o
(‖v‖).

Though Proposition 1 is essentially known, because of its centrality in our development,
we provide a proof based on [18], Theorem 2G.8, in Section 7.

2.3. The classical M-estimator. Proposition 1 underlies both achievability results for
stochastic convex optimization [46] and, as we show in the sequel, local asymptotic minimax
results. To illustrate, we give a heuristic sketch to show how Proposition 1 yields asymptotic
normality of standard M-estimators for problem (1). Given a sample S1, . . . , Sk , define

(9) x̂k ∈ argmin
x∈X

{
f̂k(x) := 1

k

k∑
i=1

f (x;Si)

}
.

Taylor’s theorem implies there are matrices Êk(x) and E(x), both o(1) as x → x� (we assume
heuristically this is uniform in k), such that

∇f̂k(x) = ∇f̂k

(
x�)+ (∇2f̂k

(
x�)+ Êk(x)

)(
x − x�) and

∇f (x) = ∇f
(
x�)+ (∇2f

(
x�)+ E(x)

)(
x − x�).

Then, defining v̂k = ∇f (x�) − ∇f̂k(x
�), we have that

∇f̂k(x) = ∇f (x) − v̂k + (∇2f̂k

(
x�)− ∇2f

(
x�)+ Êk(x) − E(x)

)(
x − x�)

= ∇f (x) − v̂k + (op(1) + o(1)
) · (x − x�),

where o(1) → 0 as x → x�, and the expansion (7) holds. Applying Proposition 1 yields that

x̂k satisfies x̂k − x� = PT H�†PT v̂k + op(‖v̂k‖), and finally noting that
√

k · v̂k
d� N(0,�)

gives the following corollary.

COROLLARY 1 (Shapiro [46], Theorem 3.3). Let Assumptions A–D hold and x̃k ∈ X
satisfy f̂k(x̃k) − infx∈X f̂k(x) = oP (1/k). Then

(10)
√

k
(
x̃k − x�) d� N

(
0,PT H�†PT �PT H�†PT

)
as k → ∞.

This result shows the M-estimator x̂k is asymptotically normal with the active constraints
restricting (and improving) the covariance.

Corollary 1 leads to two questions. First, is the result improvable? In Section 3, we show
that in a local minimax sense, the result is indeed optimal, so that it is essentially unim-
provable. Second, the M-estimator (9) is not really a procedure, as it may require nontrivial
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computation. Because Corollary 1 allows estimators that are o(1/k) accurate, recent effi-
cient methods for minimization of finite sums using careful variance reduction and sampling
techniques [14, 29, 32, 34] achieve the asymptotic normality (10), given a sample of size
k, while computing O(k log k) gradients ∇f (x;S) in total (the methods require storing the
entire dataset S1, . . . , Sk and iterating through it multiple times). It is, however, not immedi-
ate that the rates (10) are achievable using online or purely stochastic gradient methods that
compute a single stochastic gradient for each observation Si . In Section 5, we show this is
possible, developing asymptotically optimal online procedures.

3. Optimality guarantees. With the asymptotic normality guarantee of Corollary 1, it is
of interest to understand the best possible (statistical) behavior for optimization procedures.
As we discuss in the Introduction, standard minimax complexity guarantees [3, 36] are too
imprecise: they fail to provide guidance on specific to the problem at hand. With this in mind,
we consider a local asymptotic minimax variant of problem (1). It is natural to assume that
the loss f (x; s) is specified—we have a way to measure performance of the decision vector
x—but the distribution P may be unknown or is a nuisance parameter (we simply wish to
find the minimizing x).

We thus consider the difficulty of solving problem (1) over small neighborhoods of P .
To define these neighborhoods, for d ∈ N, we parameterize P via a vector u ∈ R

d (where
the original problem corresponds to u = 0 and P0), denoting the objective of problem (1)
by f0(x) = EP0[f (x;S)] and its (unique) optimum by x0. The perturbed distributions Pu

dovetail with our results on stability of minimizers under tilt-perturbation (Proposition 1):
in appropriate cases, we show that fu(x) = EPu[f (x;S)] ≈ f0(x) − uT �(x − x0), where
� = Cov(∇f (x0;S)). Our results elucidate the precise correspondence between tilt-stability
and difficulty of stochastic optimization.

3.1. Tilted distributions. To define the perturbed problems, let h : R → [−1,1] be any
three-times continuously differentiable function, where

(11) h(t) = t for t ∈ [−1/2,1/2],
the derivative h′ ≥ 0 is nonnegative, and the first three derivatives of h are bounded. (The
choice [−1/2,1/2] is immaterial; any interval containing 0 on which h(t) = t suffices.) Now,
let

Gd := {
g : S →R

d | EP0

[
g(S)

]= 0,EP0

[∥∥g(S)
∥∥2]

< ∞}
(the maximal tangent set to the set of distributions on S at P0, cf. [51], Chapter 25). Then for
g ∈ Gd and u ∈ R

d we consider the tilted distribution

(12) dPu(s) = 1 + h(uT g(s))

Cu

dP0(s) where Cu = 1 +
∫

h
(
uT g(s)

)
dP0(s).

This distribution approximates dPu(s) ∝ euT g(s) dP0(s) as u → 0, providing a slight
reweighting in directions g specifies. Such tilted constructions are central to proving lower
bounds for semiparametric inference problems (e.g., [28, 48] and [51], Example 25.16) where
the goal is to infer a finite-dimensional parameter of a distribution P0. The lower bound and
essential geometric difficulty arise by embedding hardest one-dimensional subproblems into
the broader problem. In this context, we identify the correct score (or influence) function [28,
51] for constrained stochastic optimization.

Thus, for u ∈ R
d , we consider convex programs Pu defined by

minimize
x

fu(x) := EPu

[
f (x;S)

]= ∫
f (x; s) dPu(s)

subject to fi(x) ≤ 0 for i = 1, . . . ,m,

(13)
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letting xu denote the minimizer of the tilted convex program (13). We develop a local asymp-
totic minimax theory as u varies in neighborhoods of zero of radius ∝ 1/

√
k, where k denotes

the sample size.
We require one additional assumption to show our lower bounds.

ASSUMPTION E. For P0-almost all s, the function f (·; s) is C2 in a neighborhood of x0.
There are a remainder Rem : X × S →R

n×n and M : S →R+ satisfying

∇2f (x; s) = ∇2f (x0; s) + Rem(x; s)
where for some δ > 0,

sup
‖x−x0‖≤δ

∣∣∣∣∣∣Rem(x; s)∣∣∣∣∣∣≤ M(s) and EP0

[
M(S)

]
< ∞.

Additionally, we have the following integrability conditions:

EP0

[
M(S)

∥∥∇f (x0;S)
∥∥]< ∞, EP0

[∥∥∇f (x0;S)
∣∣∣∣∣∣∇2f (x0;S)

∣∣∣∣∣∣]< ∞,

and for some δ > 0

sup
‖x−x0‖≤δ

EP0

[∣∣f (x;S)
∣∣∥∥∇f (x0;S)

∥∥2]
< ∞.

Note that Rem(x; s) → 0 as x → x0 by assumption that f (·; s) is C2.

3.2. A local asymptotic minimax theorem. With this assumption, we have the following
theorem, which provides a local asymptotic minimax lower bound on optimization. In the
theorem, we use the notation of Proposition 1, where PT ∈ R

n×n denotes the orthogonal
projection onto the tangent space T and H� = ∇2f (x�) +∑m0

i=1 λ�
i ∇2fi(x

�). We also recall
that L : Rn → R is quasiconvex if for all α ∈ R the sub-level sets {x ∈ R

n : L(x) ≤ α} are
convex, and let EP k

u
denote expectation under k i.i.d. observations Si ∼ Pu.

THEOREM 1. Let Assumptions A–E hold and let L : Rn → R be a symmetric quasi-
convex loss. For any sequence of estimators x̂k : Sk →R

n,

(14) sup
d∈N,g∈Gd

lim
c→∞ lim inf

k→∞ sup
‖u‖2≤c/

√
k

EP k
u

[
L
(√

k(x̂k − xu)
)]≥ E

[
L(Z)

]
,

where

Z ∼ N
(
0,PT H�†PT Cov

(∇f (x0;S)
)
PT H�†PT

)
.

Moreover, g(s) = ∇f (x0; s) −EP0[∇f (x0;S)] achieves the supremum (14).

Remarks. We provide the proof of Theorem 1 in Section 8, discussing it here. It is important
that the limit in k is taken before that in c, as this provides the local nature of the result: the
neighborhoods of problems, as given by the tilted distributions Pu in equation (12), have
size decreasing as O(1/

√
k). The rescaling of the estimator error x̂k − xu by

√
k reflects our

expectation that
√

k(x̂k − xu) is O(1) for good estimators x̂k by Corollary 1.
We may consider alternative choices of the neighborhood of P0. One is to use φ-

divergences [4, 13], where for φ convex with φ(1) = 0, one defines

Dφ(P ‖ Q) :=
∫

φ

(
dP

dQ

)
dQ ≥ 0.

For example, KL-divergence has φ(t) = t log t − t + 1, the χ2-divergence uses φ(t) = 1
2(t −

1)2, and the squared Hellinger distance corresponds to φ(t) = 1
2(

√
t − 1)2. It is no loss of
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generality to assume that φ′(1) = 0 in the definition of Dφ , as φ∗(t) = φ(t) − tφ′(1) + φ′(1)

satisfies Dφ = Dφ∗ . Consider now any φ-divergence with φ a C2 function in a neighborhood
of 1 and φ′′(1) > 0. Then Lebesgue’s dominated convergence theorem implies (see Section 8)
that the normalization Cu = 1 + o(‖u‖2), and so

Dφ(Pu ‖ P0) =
∫

φ

(
1 + h(uT g(s))

Cu

)
dP0(s)

= 1

2
φ′′(1)uT Cov

(
g(S)

)
u + o

(‖u‖2),
where we use that h(t) = t for t near 0. Replacing the supremum in the local minimax lower
bound (14) by any φ-divergence ball, where we let xP denote the minimizer of problem (1)
with distribution P on the data S, yields the following.

COROLLARY 2. Let the conditions of Theorem 1 hold and φ :R →R∪{+∞} be convex.
Assume that φ is C2 in a neighborhood of 1. Then

lim inf
c→∞ lim inf

k→∞ sup
P :Dφ(P‖P0)≤c/k

EP k

[
L
(√

k(x̂k − xP )
)]≥ E

[
L(Z)

]
,

where Z ∼ N(0,PT H�†PT �PT H�†PT ).

That is, our lower bounds imply lower bounds for natural nonparametric choices of the
neighborhood of P0.

It is possible to prove a somewhat stronger result than Theorem 1, which we do not do for
simplicity, where instead of the inner supremum over all vectors u such that ‖u‖2 ≤ c/

√
k,

we take an integral against the uniform measure π supported on the ball {u : ‖u‖2 ≤ c/
√

k}
(see the constructions in Le Cam and Yang [31], Chs. 6–7). We then have a superefficiency
result [50]: if x̂k denotes an estimator based on the sample S1, . . . , Sk , the set of u ∈ R

d for
problems (13) for which x̂k achieves lim supk EP k

u
[L(

√
k(x̂k − xu))] < E[L(Z)], for Z as in

the theorem, has Lebesgue measure zero.

4. Convergence and manifold identification for dual averaging. As we discuss fol-
lowing Corollary 1, the x̂k = argminx∈X 1

k

∑k
i=1 f (x;Si) achieves optimal asymptotic conver-

gence. In this and the next section, we investigate the possibilities of efficient purely online
stochastic gradient-based estimators. These have advantages—small storage space require-
ments, and they take a single pass through the data—that make them especially suitable for
modern large-scale regimes [9, 35, 44, 58]. We study three aspects of these methods: identi-
fication of the active constraints (those i such that fi(x

�) = 0), almost sure convergence, and
optimal asymptotic behavior. While stochastic gradient descent methods fail to even identify
the active constraints, we develop a variant of Nesterov’s dual averaging [37] that identifies
active constraints in finite time and (as we show in the next section) is asymptotically optimal
when the set X is a polytope; when the constraints are nonlinear, significant difficulties arise,
which we also discuss.

We first consider the stochastic gradient method [35, 40, 41] for problem (1), to minimize
f (x) subject to x ∈X . This procedure requires a stochastic gradient oracle, which at each it-
eration provides a random vector gk satisfying E[gk | xk] = ∇f (xk). In problem (1), drawing
Sk ∼ P and computing gk = ∇f (xk;Sk) evidently satisfies this condition. Given stochastic
gradients gk , the stochastic gradient method iteratively updates

(15) xk+1 = argmin
x∈X

{
〈gk, x − xk〉 + 1

2αk

‖x − xk‖2
2

}
,
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where αk ∝ k−β for some β ∈ [1
2 ,1] is a stepsize. While the iterates (15) converge to the

global optimum x�, they fail to identify optimal constraints [33]. As a simple example, we
may consider a problem with f (x) = x and X = [−1,1] = {x | x2 − 1 ≤ 0}, which satisfies
the assumptions of Theorem 1 and has x� = −1. Consider stochastic gradients gk = 1 + ξk

for ξk
iid∼ N(0,1); the iteration (15) satisfies P(xk ≥ −1 + αk) ≥ 1 − �(1), where � is the

standard normal CDF. That is, xk ≥ −1 + αk with constant probability at each iteration—it
jumps off of the constraint infinitely often.

This instability is one of the motivations for Nesterov’s dual averaging algorithm [37],
which iterates

(16) zk =
k∑

i=1

gi, xk+1 = argmin
x∈X

{
〈zk, x〉 + 1

2αk

‖x‖2
2

}
.

Practically, this procedure has much better constraint identification properties [33, 56] be-
cause of the averaging effects in the definition of zk . Xiao [56] notes its strong performance
in application to �1-regularized problems, while Lee and Wright [33] give arguments show-
ing that dual averaging spends most of its time on the “optimal manifold” for a variant
of problem (1), which essentially corresponds to the set of zeros of the active constraints
{x : fi(x) = 0, i ∈ [m0]}. The work [33] motivates this section, and we are able to show finite
identification of the optimal constraints for a variant of the dual averaging method and its
probability 1 convergence.

4.1. Almost sure convergence. We study a variant of dual averaging, which we view
as a lazy-projected gradient algorithm, as it interpolates the stochastic gradient method and
dual averaging. Given a sequence of positive stepsizes {αk}k∈N, initializing z0 = 0, at each
iteration k, we update

Update xk = argmin
x∈X

{
〈zk−1, x〉 + 1

2
‖x‖2

2

}
Draw Sk

iid∼ P, compute gk = ∇f (xk;Sk), set zk = zk−1 + αkgk

(17)

In contrast to the standard dual averaging update (16), procedure (17) constructs zk as a
weighted average and regularizes with 1

2‖x‖2
2. This has two consequences: first, in the un-

constrained case, we recover the stochastic gradient method, which Polyak and Juditsky [40]
show (when combined with averaging) is asymptotically normal with optimal covariance.
The form (17) also allows us to prove the convergence xk

a.s.→ x� and finite time identification
results. Without further comment, we assume the stepsizes αk satisfy

(18) αk = α0k
−β where α0 > 0 and

1

2
< β < 1.

We may prove our results under slightly weaker conditions than the i.i.d. sampling as-
sumed in the update (17), which we specify now for completeness. In particular, we assume
that at each iteration k we observe a noisy gradient gk = ∇f (xk)+ξk(xk), where ξk : X →R

n

is a random function with the property that E[ξk(x)] = 0 for all x ∈ X . We make the follow-
ing assumption.

ASSUMPTION D’. Define the filtration Fk := σ(ξ1, . . . , ξk). The noise ξk has the decom-
posable structure ξk(x) = ξ

(0)
k + ξ

(1)
k (x), where ξ

(0)
k and ξ

(1)
k (x) are both martingale differ-

ence sequences adapted to the filtration Fk . There exists a constant C < ∞ such that

E
[∥∥ξ (0)

k

∥∥2 | Fk−1
]≤ C and E

[∥∥ξ (1)
k (x)

∥∥2 | Fk−1
]≤ C

∥∥x − x�
∥∥2

.

Additionally, 1√
k

∑k
i=1 ξ

(0)
i

d� N(0,�) for some � � 0.
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Assumptions A (smoothness of f ) and D (variance bounds on ∇f (x;S)) imply D’ when
gk = ∇f (xk;Sk) = ∇f (xk;Sk) − ∇f (x�;Sk) + ∇f (x�;Sk) as in the update (17). The addi-
tional generality causes no special difficulty in the proofs, so for the remainder of this paper
we let Assumption D’ hold.

We begin with the almost sure convergence of xk . This a.s. convergence requires no con-
straint qualifications, just that there exists ε > 0, such that f (x) − f (x�) ≥ ε‖x − x�‖2 for
x ∈ X near x�.

THEOREM 2. Let xk be generated by the dual averaging iterates (17) with stepsizes (18),
let Assumptions A and D’ (or D) hold, and let the growth condition on f in the conclusion
of Lemma 2.1 hold. Then

xk
a.s.→ x�.

See Section 9.1 for a proof of the theorem.

4.2. Constraint identification. To segue into our results on identification of the optimal
surface of the constraint set X , note that Theorem 2 implies inactive constraints are inac-
tive at some finite time: for some (random) k < ∞ we have supl≥k fi(xl) < 0 for i > m0.
Conversely, Theorem 2 says little about whether xk identifies the constraints active at x�.

In brief, under the constraint qualifications of Assumption B, for the modified dual averag-
ing iteration (17), there is a (random) iterate kident such that for k ≥ kident, we have fi(xk) = 0
for i ∈ [m0]. To provide this guarantee, we give our second set of results on perturbation
of optimal solutions to convex programs, showing that solutions to linearized versions of
problem (1) belong to {x : fi(x) = 0, i ≤ m0}. The linear approximation (as opposed to the
quadratic approximations in Proposition 1) is a less immediate application of the results on
parametrized optimization [8, 46, 55], but (nearly) linear minimization problems dovetail
with the updates (17).

We give a few heuristics. Consider the problem

(19) minimize
x

〈∇f
(
x�), x〉 subject to fi(x) ≤ 0, i = 1, . . . ,m,

which has a linear objective. By Assumption B, the point x� satisfies the KKT conditions for
this problem and is optimal, but it may not be unique. The dual averaging iteration (17) even-
tually approximates a slightly perturbed version of the linear objective (19) because xk

a.s.→ x�

and we expect
∑k

i=1 αigi =∑k
i=1 αi∇f (xi) + o(

∑k
i=1 αi). This motivates the next two per-

turbation results, which we graphically describe in Figure 1. The intuition for each is that −zk

is in NX (x) for some x near enough x�, in which case the constraint qualifications (Assump-
tion B) imply that the projected point must lie on the set described by the active constraints
at x�.

Nonlinear constraints. We begin with a perturbation result for the case in which the con-
straints are nonlinear, as the linear independence constraint qualification (Assumption B.i)
makes the argument easier in this case. Let x� be a point such that fi(x

�) = 0 for 1 ≤ i ≤ m0
and fi(x

�) < 0 for m0 + 1 ≤ i ≤ m. Let λ� ∈ R
m0 with λ� > 0 be otherwise arbitrary, and

define g = −∑m0
i=1 λ�

i ∇fi(x
�). Let x0 ∈ R

n, and v ∈ R
n and δ > 0, and consider the tilted

and quadratically perturbed version of problem (19)

minimize
x

〈g, x〉 + 〈v, x〉 + δ

2
‖x − x0‖2

subject to fi(x) ≤ 0, i = 1, . . . ,m.

(20)

The problem (20) has a unique minimizer that we denote x�
v,δ . Then we have the following

lemma, whose proof we provide in the Supplementary Material [21], Section 11.1.
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FIG. 1. The set X = {x ∈ R
2 : x1 ≥ 0, f1(x) ≤ 0, f2(x) ≤ 0}, the top and bottom boundaries of X correspond-

ing to f1 and f2. The normal cone NX (x�) is the convex hull of ∇f1(x�) and ∇f2(x�). The vectors −v and its
perturbation −(v + g) both belong to relintNX (x�).

LEMMA 4.1. Let the sequence (vk, δk) ∈ R
n × R++ satisfy vk → 0, δk → 0, and that

xk := x�
vk,δk

→ x� as k → ∞. Then there exists K < ∞ such that fi(xk) = 0 for i ∈ [m0] and
k ≥ K .

Linear constraints. Considering linear constraints allows weaker assumptions than the case
in which the constraints fi are nonlinear. Assume that the matrix A ∈ R

m0×n and vector
b ∈ R

m0 represent the active constraints, while C ∈ R
(m−m0)×n and d ∈ R

m−m0 coincide with
the inactive constraints, so that Ax� = b and Cx� < d . Specializing the problem (19) and the
tilted problem (20) to this setting, for (v, δ) ∈R

n ×R+ we consider

minimize
x

〈g, x〉 + 〈v, x〉 + δ

2
‖x − x0‖2

subject to Ax ≤ b, Cx ≤ d.

(21)

As before, we assume that for some λ� ∈ R
m0++ we have g = AT λ� so that x� is a minimizer

of problem (21) at v = 0, δ = 0. The next lemma is the analogue of Lemma 4.1 for the linear
case. As in Lemma 4.1, x�

v,δ denotes the unique optimum for the perturbed problem (21) with
δ > 0. We provide a proof of the lemma in the Supplementary Material, Section 11.2.

LEMMA 4.2. Let the sequence (vk, δk) ∈ R
n × R++ satisfy vk → 0, δk → 0, and that

xk := x�
vk,δk

→ x� as k → ∞. Then there exists K < ∞ such that Axk = b for k ≥ K .

With the identification results provided by Lemmas 4.1 and 4.2, we can now show a result
that demonstrates that our variant (17) of dual averaging identifies the optimal manifold in
finite time with probability 1.

THEOREM 3. Let Assumptions A–D (or D’) hold. Then with probability one, there exists
some (random) K < ∞ such that k ≥ K implies

fi(xk) = 0 for i ≤ m0 and sup
k≥K

fi(xk) < 0 for i > m0.
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We provide the proof of Theorem 3 in Section 9.2. The outline of the proof, though, is
apparent from the above lemmas and Theorem 2. Letting Ak =∑k

i=1 αi , the dual averaging
iterates (17) perform the update

xk+1 = argmin
x∈X

{
〈zk, x〉 + 1

2
‖x‖2

}
= argmin

x∈X

{〈∇f
(
x�)+ vk, x

〉+ 1

2Ak

‖x‖2
}
,

where vk = 1
Ak

(zk − Ak∇f (x�)) = o(1), equivalent to problems (20) and (21).

5. Stochastic gradient procedures: Asymptotic normality. Now that we have estab-
lished that dual averaging converges almost surely and in finite time identifies constraints
active at x�, we turn asymptotic normality results. We focus first on the case that the con-
straints are linear, where dual averaging is locally asymptotically minimax optimal. As we
demonstrate, however, nonlinearity forces a departure from this optimality. Consequently, in
Section 5.3 we develop a joint dual-averaging and Riemannian stochastic gradient procedure
that is both online—it sequentially computes only a single gradient ∇f (x;Si) from each
observation—and asymptotically optimal.

5.1. Dual averaging: Asymptotic normality. When the problem is unconstrained with
X = R

n, Polyak and Juditsky [40] show that under our assumptions, the stochastic gra-
dient method is asymptotically normal when combined with averaging. In the notation of

Theorem 1, xk = 1
k

∑k
i=1 xi satisfies

√
k(xk − x�)

d� N(0,∇2f (x�)−1 Cov(∇f (x�;S)) ×
∇2f (x�)−1), which is optimal. In the constrained case, identical results hold if we solve
the problem over a subspace (i.e., {x : Ax = b}); there are no differences from the classi-
cal case [40]. We thus expect our dual averaging variant to behave as follows: eventually,
we identify the active constraints, that is, we have Axk = b and Cxk < d for all sufficiently
large k. Once this occurs, the iterations of the dual averaging variant are identical to those
of the stochastic gradient method in the subspace {x : Ax = b}. Thus, we expect asymptotic
normality, with the asymptotic covariance reflecting variability only in the null space of A.
While our development tracks this idea, the “sufficiently large k” for active set identification
is random, and to have Axk = b for all k depends on the entire future noise sequence {ξi}∞i=k ,
making this intuitive argument fail. With a bit more delicacy, we can provide a similar argu-
ment that builds off of Polyak and Juditsky’s treatment. Now, define the orthogonal projector
onto the null space {w : Aw = 0} = TX (x�),

PA := I − AT (AAT )†A.

We then have the following theorem.

THEOREM 4. Let Assumptions A–D’ hold, and assume that αk ∝ k−β for some β ∈
(1

2 ,1). Let � = Cov(∇f (x�;S)). Then

1√
k

k∑
i=1

(
xi − x�) d� N

(
0,PA

(∇2f
(
x�))†PA�PA

(∇2f
(
x�))†PA

)
.

We defer the proof of Theorem 4 to the Supplementary Material, Section 14.

5.2. Slow convergence for nonlinear constraint sets. Theorems 2 and 3 guarantee almost
sure convergence and finite time constraint identification, but Theorem 4 provides an opti-
mal convergence rate only when the constraints are linear, and this is fundamental. Indeed,
we provide two results showing the suboptimality of dual averaging (both our variant and
Nesterov’s original version [37]) on a simple optimization problem.
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To make this failure concrete, let e1 be the first standard basis vector. Consider the problem
(for n ≥ 2) with S = R

n, S ∼ N(0, I ), X = {x : ‖x‖2 − 1 ≤ 0} and f (x; s) = −(e1 + s)T x.
In this case, problem (1) becomes

(22) minimize
x∈Rn

−eT
1 x subject to ‖x‖2

2 ≤ 1.

The optimum for program (22) is x� = e1. The Lagrangian for the problem is L(x, λ) =
−eT

1 x + λ
2 (‖x‖2

2 − 1) with optimal dual multiplier λ� = 1, whence Corollary 1 and the lower
bound of Theorem 1 show that the optimal asymptotic covariance is I − e1e

T
1 . As we show,

however, dual averaging and our variant are suboptimal even with gk = e1 + Sk for Sk
iid∼

N(0, I ).
We first consider the variant (17) of dual averaging with zk =∑k

i=1 αigi .

OBSERVATION 5.1. Let the stepsizes αi = i−β for some β ∈ (1
2 ,1), and let the iterates

xk be generated by the dual averaging procedure (17). Then

1

kβ

k∑
i=1

(
xi − x�) d� N

(
0, σ 2

β

(
I − e1e

T
1
))

where σ 2
β := (1 − β)2

β2

∞∑
i=1

α2
i .

See the Supplementary Material, Section 12.1, for a proof. In this case, even the rate of
convergence is lost: denoting xk = 1

k

∑k
i=1 xi , then asymptotic normality holds for xk − x�,

but xk − x� is order kβ−1 � k− 1
2 ,

Our second observation applies to dual averaging with zk =∑k
i=1 gi .

OBSERVATION 5.2. Let the stepsize sequence αk ∝ k−β for some β ∈ [0,1). Then the
classical dual averaging (16) iterates satisfy

1√
k

k∑
i=1

(
xi − x�) d� N

(
0,2

(
I − e1e

T
1
))

.

See the Supplementary Material, Section 12.2 for a proof.
We give a bit of intuition for the difficulty in Observations 5.1 and 5.2. We have that∑k
i=1 αigi = (

∑k
i=1 αi)∇f (x�) + ∑k

i=1 αiξi , where ξi
iid∼ N(0, I ). But in projecting to the

curved surface of the ball {x : ‖x‖2 ≤ 1}, there is still sufficient noise in the sum
∑k

i=1 αiξi to
induce variance. In the case of linear constraints Ax ≤ b, the vector zk =∑k

i=1 αigi eventu-
ally lies in the normal cone to the active face {x : Ax = b}, so that projections force all iterates
into the subspace {x : Ax = b}, with no curvature for additional variance. Stochastic gradient
descent—which fails to even identify the active constraints—similarly has sub-optimal rates
for this problem.

5.3. A Riemannian stochastic gradient procedure. The challenges we outline in Sec-
tion 5.2 for classical dual averaging and stochastic gradient methods necessitate alternative
algorithms for asymptotically optimal online procedures. To that end, we develop an algo-
rithm that alternates between dual averaging and a stochastic gradient method on the mani-
fold of the active constraints. The intuition is that we use dual averaging (17) to identify the
optimal manifold, then use a Riemannian stochastic gradient-like method [7, 49] on the ac-
tive manifold. Letting M = {x : fi(x) = 0, i ∈ [m0]} denote the optimal manifold on which
the solutions lie, two challenges arise in the analysis of any such method. First, projections
onto M are not necessarily nonexpansive—a major component of most analyses of stochas-
tic gradient-based methods—so that showing convergence of a pure Riemannian method is
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Algorithm 1 Riemannian Stochastic Gradient with Dual Averaging
1: Initialize k = 0, y0 ∈ X , M0 = ∅. Input q ∈ (0,1), dual averaging times Tda with 1 �

|{i ∈ Tda | i ≤ k}|/kρ � 1 for some ρ ∈ (0,1), and stepsizes αk = α0k
−β with β ∈ (1

2 ,1).

Require that q < min{ 1−2β
(1−β)ρ

, 1
2(1−ρ)β

}.
2: for k = 1,2, . . ., k /∈ Tda do
3: Compute the manifold Mk that xda

k identifies:

Mk = ⋂
i∈Ik

{
x ∈ R

n : fi(x) = 0
}

where Ik = {
i ∈ [m] : fi

(
xda
tk

)= 0
}
.

4: Let gk = ∇f (yk) + ξk(yk) and compute the iterate

yman
k+1 =

{
�Mk

(yk − αkPTMk
(yk)gk) if Mk = Mk−1

xda
k otherwise.

5: Let xda
k := (

∑i≤k
i∈Tda

αda
i )−1∑i≤k

i∈Tda
αda

i xda
i .

6: Let Bk,1 = B(xda
k , εk) and Bk,3 = B(xda

k ,3εk) for εk = (
∑i≤k

i∈Tda
αda

i )−q . Compute

yk+1 =

⎧⎪⎪⎨⎪⎪⎩
�X

(
yman
k+1
)

if �X
(
yman
k+1
) ∈ Bk,3

argmin
{‖x‖ | x ∈Mk ∩X ∩Bk,1

}
if �X

(
yman
k+1
)

/∈ Bk,3,Mk ∩X ∩Bk,1 �= ∅

argmin
{‖x‖ | x ∈Mk ∩X

}
otherwise.

7: end for

challenging.1 Even in noiseless settings, gradient descent and other first-order methods do
not enjoy global convergence results for minimization of convex f :Rn →R on Riemannian
manifolds [1, 2, 10].

To that end, we present Algorithm 1, which is complex and perhaps of more intellectual
than practical interest, but fulfills our desiderata of being (i) fully online, (ii) convergent with
probability 1 and (iii) asymptotically optimal. To describe the algorithm and its convergence,
we require somewhat more notation. For a closed set M, let �M(x) = argminy∈M{‖x − y‖}
denote the Euclidean projection of x onto M, with an arbitrary rule for choosing the project-
ing if it is nonunique. When the set M = {x ∈ R

n : G(x) = 0} for a continuously differ-
entiable G : Rn → R

l , we let ∇G(x) = [∇g1(x) · · ·∇gl(x)] ∈ R
n×l and denote the tangent

space to M at x by

TM(x) := {
v ∈ R

n : ∇G(x)T v = 0
}
,

and we define the orthogonal projector

PTM(x) = I − ∇G(x)
(∇G(x)T ∇G(x)

)†∇G(x)T ∈ R
n×n.

With this notation established, we can describe Algorithm 1. The algorithm alternates be-
tween asymptotically infrequent iterates of dual averaging at iterates k ∈ Tda, constructing
a sequence xda

k , and frequent iterates of Riemannian stochastic gradient-like method that
projects onto the active constraints, the smooth manifold Mk = {x : fi(x) = 0 for i ∈ Ik}
where Ik = {i ∈ [m] | fi(x

da
k ) = 0} denotes the constraints dual averaging identifies. The

method takes a stepsize sequence {αk} for the Riemannian stochastic gradient method where

1Many papers on Riemannian stochastic gradient methods assume convergence, or that iterates remain in a
small neighborhood of x�, as a condition; cf. [7] and [49], Assumption 2.
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αk = α0k
−β . For the dual averaging iteration times k ∈ Tda, we set the dual averaging step-

sizes via αda
k = αtk where tk = |{i ∈ Tda | i ≤ k}|, the same stepsize scaling as the Rieman-

nian method. At each step k ∈ Tda, the method updates the dual averaging iterate via the
update (17) (with zk = ∑i≤k

i∈Tda
αda

i gi). Then for k /∈ Tda, the method performs a stochas-
tic gradient step (line 4) but projects the stochastic gradient gk onto the tangent space of
the active manifold Mk . The final step of the algorithm (line 6) guarantees that the iter-
ates yk of the method stay near enough the dual averaging iterates, which allows us to cir-
cumvent the difficulties of global convergence for Riemannian methods. As we demonstrate
in the proof, this asymptotically iterates a stochastic gradient method in the tangent space
T = {v : 〈∇fi(x

�), v〉 = 0, i ≤ m0}, and only updates line 4 occur, as Mk = Mk−1 and
yman
k ∈ X .

We prove the following theorem in the Supplementary Material, Section 15, using the
notation of Proposition 1, where H� = ∇2f (x�)+∑m0

i=1 λ�
i ∇2fi(x

�) and PT is the projection
onto the tangent space T = {v ∈ R

n : vT ∇fi(x
�) = 0, i ∈ [m0]}.

THEOREM 5. Let Assumptions A, B, C and D’ hold. Then the iterates yk of Algorithm 1
satisfy

1√
k

k∑
i=1

(
yi − x�) d� N

(
0,PT H�†PT �PT H�†PT

)
.

The extended Riemannian stochastic gradient method, coupled with identification results
that dual averaging supplies, is asymptotically optimal.

6. Numerical experiments. In this section, we perform a small simulation study to com-
pare dual averaging (17) with stochastic (and Riemannian) gradient methods on nonnegative
least squares and ridge regression. We take our observations (ai, bi) ∈ R

n × R and use the
squared loss f (x; (a, b)) = 1

2(〈a, x〉−b)2. Both problems are of the form (1), where for non-
negative least squares, we use the constraints X = R

n+, and for the ridge regression problem,
we set X = {x ∈ R

n : ‖x‖2 ≤ λ}, where λ > 0.
Now we describe our experimental setting. To allow easier visualization, we use dimension

n = 2 and generate bi = 〈ai, x
true〉+ξi for ai

iid∼ N(0, I2) and ξi
iid∼ N(0,1). For the nonnegative

least squares problem, we set xtrue = (1,−1), while for the ridge regression problem, we set
xtrue = (1,1) and λ = 1, giving solutions x� = (1,0) and x� = ( 1√

2
, 1√

2
), respectively. For

both problems, the unique solution x� lies on the boundary of the feasible set X . To fairly
compare the performance of the algorithms, we use the same parameters, initializing at x = 0
and using stepsizes αk = k−β for β = 3/4. In each experiment, we run each method for K

iterations, and we perform T independent replications.

6.1. Constraint identification. Our first set of numerical results shows that the stochas-
tic gradient method fails to identify active constraints, while dual averaging identifies them.
We present the results graphically in Figure 2. For each of the two plots, the horizontal axis
indexes the iteration k (over K = 100 iterations) and the vertical axis represents the propor-
tion of the T = 1000 tests in which the iterate xk lies on the active constraints. Both plots
show that the dual averaging iterates (the solid red curve) identify the constraints (with 100%
accuracy by iteration 40), while the stochastic gradient method (the dotted blue curve) does
not.
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FIG. 2. Success rate of manifold identification.

6.2. Accuracy. Our second set of numerical results shows the improved performance of
dual averaging relative to projected stochastic gradient descent, and that the manifold aware
algorithm 1 exhibits better behavior on nonlinear constraints, which we illustrate in Figure 3.
Each of the red triangles (resp., blue circles or green diamonds) represents an averaged dual
averaging (resp., stochastic gradient or Riemannian method 1) iterate x̄K = 1

K

∑K
i=1 xi (we

set K = 100) out of T = 20 experiments. The dual averaging results are typically closer to
x� (the black cross) and to the active constraints (the grey dotted curve) than the stochastic
gradient averages, while the right plot in Figure 3 shows the improved performance of the
Riemannian method we outline in Algorithm 1. The distance of the dual averaging iterates to
x� is typically shorter along the normals to the active constraints, leading to better accuracy
estimating x�.

6.3. Linear versus nonlinear constraints. For our third set of numerical results, we in-
vestigate the asymptotic variance of the variant dual averaging method (17) versus that
of the Riemannian method (Algorithm 1) and the optimal asymptotic variance that Theo-
rem 1 provides. For the nonnegative least squares problem, the linear constraints have tan-
gent set T = {tv�}t∈R, where v� = (1,0), while the ridge problem has T = {tv�}t∈R where
v� = (1,−1). In each case, we compute the variance of

√
k〈v�, xk − x�〉 for xk = 1

k

∑k
i=1 xi

for k ≤ K = 104 over T = 1000 independent trials. We present the results in Figure 4. In
each of the two plots, the red dashed curve shows the variance the dual averaging iterates
and the gray dotted line shows the optimal asymptotic variance (Theorem 1). In the left plot,

FIG. 3. The averaged iterates x̄K = 1
K

∑K
i=1 xi .
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FIG. 4. Asymptotic variance under linear and nonlinear constraints.

we see that dual averaging converges with the asymptotically optimal rate. In the right, the
Riemannian method (the solid green line) has asymptotically optimal variance, while the
dual averaging procedure has variance between 3 and 3.5, which is suboptimal; these results
suggest the accuracy of our theoretical predictions.

7. Proof of Proposition 1. This result is a consequence of Shapiro [45], Theorem 5.1, or
Dontchev and Rockafellar [18], Theorem 2G.8. First, consider the Lagrangian for the tilted
problem (8),

Lv(x, λ) = fv(x) +
m∑

i=1

λifi(x).

We perform a second-order Taylor approximation to Lv(x, λ) around x0, linearizing the ac-
tive constraints fi(x) for i ∈ [m0], and minimizers of this quadratic over linear constraints
are o(‖v‖)-close to xv . We make this precise.

Let �0 ⊂ R
m+ denote the set of optimal Lagrange multipliers for problem (1) (the tilted

problem (8) at v = 0), recalling that by Assumption B, this set is a compact polyhedron (and
is a singleton under B.i). In either case of Assumption B, the set {∇2

xL0(x0, λ) : λ ∈ �0} is a
singleton, so H� = ∇2

xL0(x
�, λ�) = ∇2L0(x0, λ) for any λ ∈ �0. At v = 0, our assumptions

imply ∇2
vLv(x0, λ) = 0 and ∇2

vxLv(x0, λ) = 0. Define the quadratic

(23) ζv(w) := 1

2
wT H�w − vT w = 1

2
wT ∇2

xL0(x0, λ)w − vT w,

which approximates Lv(x0 +w,λ) ≈ f0(x0)+ ζv(w) for w, v small, because ∇xL0(x0, λ) =
0 for λ ∈ �0. For λ ∈ �0, define the sets I0(λ) := {i ∈ [m0] | λi = 0} and I+(λ) := {i ∈ [m0] |
λi > 0}, and consider the tangent cone

T := ⋃
λ∈�0

{
w : wT ∇fi(x0) = 0 for i ∈ I+(λ),wT ∇fi(x0) ≤ 0 for i ∈ I0(λ)

}
.

The minimizers of the quadratic function (23) over T approximate those of the tilted problem
(8) as follows [18], Theorem 2G.8: if for v near 0 the function ζv(w) has a unique minimizer
wv over T , then

(24) lim
t↓0

xtv − x0

t
= wv.

Moreover [18], Theorem 2G.8 and Definition 2.4 (semiderivative), if wv is linear in v, then
v �→ xv is differentiable at v = 0 with xv = x0 + wv + o(‖v‖). We consider the two cases of
Assumption B to give the result.
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Case I: Linearly independent constraints. As noted following Assumption B, the set �0 =
{λ�}, a singleton. Thus T = T and following the quadratic expansion (23), we solve:

minimize
w

1

2
wT H�w − vT w subject to wT ∇fi(x0) = 0, i ∈ [m0].

This quadratic problem has solution PT H�†PT v, which is unique by Assumption C. Expres-
sion (24) gives the proposition in this case.

Case II: Affine constraints. In Assumption B.ii, the active fi are affine. We claim that,
though �0 may not be a singleton,

T = {w | Aw = 0}.
To see this, let u = −∇f0(x0), whence we know that u = AT λ� = 0 for some λ� > 0 by
Assumption B.ii. Writing A = [a1 · · ·am0]T , we see that for any λ ∈ �0, if we have

w ∈ {w | aT
i w = 0 for i s.t. λi > 0, aT

i w ≤ 0 otherwise
}
,

then u = AT λ and uT w = λT Aw =∑m0
i=1 λia

T
i w = 0, because aT

i w = 0 whenever λi �= 0.
But of course, we know that AT λ� = u, so that

0 = wT u = wT AT λ� =
m0∑
i=1

λ�
i a

T
i w

so each index i satisfies aT
i w = 0 as aT

i w ≤ 0 and λ�
i > 0. The simplification T = T as in

Case I applies; the remainder of the proof is identical.

8. Proof of Theorem 1: Local minimax lower bounds. We briefly outline the ap-
proach. We divide the proof into two parts: an analytic part studying properties of the per-
turbed solutions xu (Section 8.1), and a stochastic part applying Le Cam’s local asymptotic
normality theory (Section 8.2). In the first part, we investigate the perturbation properties of
the solutions xu as u → 0 via the implicit function result of Proposition 1. We show that
our choice (12) of Pu gives fu(x) ≈ f0(x) + uT �g(x − x0) for an appropriate �g , so that
xu = x0 +Du+ o(‖u‖) as u → 0 for a matrix D by Proposition 1. This allows application of
Le Cam’s local asymptotic normality theory [31, 51, 52]; heuristically, we may place a Gaus-
sian prior on u concentrated at rate 1/k, so that minimization in the problem (13) indexed
by u is asymptotically equivalent to estimating the Gaussian shift Du. By our construction
of the tilting (12), the vector u is asymptotically normally distributed (we make this precise
in Section 8.2), which allows us to apply standard normality optimality guarantees. We unify
our arguments in Section 8.3.

8.1. Perturbation of optimal solutions. We first consider optimal solutions to the problem
Pu defined in equation (13). We begin with a lemma that describes the perturbation of fu from
f0.

LEMMA 8.1. Let the conditions of Theorem 1 hold. Then (x, u) �→ fu(x) is C2 near
u = 0 and x = x0, and

fu(x) = f0(x) + uT �g,f (x − x0) + cu + o
(‖x − x0‖2 + ‖u‖2),

where �g,f := E[g(S)(∇f (x0;S) − ∇f (x0))
T ] and cu depends only on u.



40 J. C. DUCHI AND F. RUAN

The lemma consists of a number of applications of Lebesgue’s dominated convergence
theorem; we defer proof to the Supplementary Material, Section 10.1.

Evidently, Proposition 1 applies to the minimizers xu, as the problem Pu is asymptotically
equivalent to a linear tilt, exactly as in equation (8). Thus, it is immediate that the minimizers
xu of fu(x) = ∫

f (x; s) dPu(s) over X satisfy

√
k(xu/

√
k − x0) →

k↑∞−PT

(
∇2f0(x0) +

m0∑
i=1

λ�
i ∇2fi(x0)

)†

PT �T
g,f u,(25)

where we recall that PT denotes projection onto the tangent set (5) and λ� are optimal La-
grange multipliers for problem (1).

8.2. Local asymptotic normality. The tilts Pu are a locally asymptotically normal [31,
52] family of distributions indexed u ∈ R

d , which, when coupled with the differentiability
result (25), allows us to apply the Hájek–Le Cam local minimax theory. We first recall defini-
tions due to Le Cam [31] that we use to develop our problems with asymptotically Gaussian
structure.

DEFINITION 8.1. Let U ⊂ R
d be an open set containing 0. For each k ∈ N and u ∈ U ,

let Pk,u be a probability measure on a measurable space (Sk,Fk), and let Sk be a sample
from Pk,u. The sequence {Sk,Fk,Pk,u}u∈U is locally asymptotically normal with precision
K � 0 (LAN) if

log
dPk,u(S

k)

dPk,0(Sk)
= 〈u,Zk〉 − 1

2
uT Ku + oP0(1),

where Zk
d� N(0,K) under the distribution P0.

A second important definition is the regular estimand [51, 52].

DEFINITION 8.2. Let U ⊂ R
d be a neighborhood of 0 and κk : U → R

n. The sequence
{κk}k∈N is regular with derivative D ∈ R

n×d if√
k
(
κk(u) − κk(0)

)→ Du for all u ∈ U.

With these definitions, the following local asymptotic minimax result, a variant of the
Hájek–Le Cam minimax theorem, holds.

LEMMA 8.2 (Local minimax theorem, Theorem 3.11.5 [52] or Lemma 6.6.1 and The-
orem 6.6.2 [31]). Let the sequence {Sk,Fk,Pk,u}u∈U be locally asymptotically normal
with precision K (Definition 8.1) and let κk : U → R

n′
be regular with derivative D (Def-

inition 8.2). Let L : Rn → R+ be symmetric and quasi-convex. Then for any sequence
Tk : Sk →R

n of estimators,

sup
U0⊂U,|U0|<∞

lim inf
k→∞ max

u∈U0
EPu,k

[
L
(√

k
(
Tk

(
Sk)− κk(u)

))]≥ E
[
L(Z)

]
,

where Z ∼ N(0,DK−1DT ) when K � 0. If K is singular and range(DT ) ∩ null(K) �= ∅,
the result holds for Z ∼ N(0,D(K + λI)−1DT ) for any λ > 0.

Eq. (25) shows that κk(u) := argminx∈Xfu/
√

k(x) is regular (Def. 8.2): recalling the def-

inition of the Hessian H� = ∇2
xL(x�, λ�) in the statement of the theorem, the sequence is

regular with derivative PT H�†PT �T
g,f . It remains to establish the local asymptotic normal-

ity properties of Pu.
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LEMMA 8.3. Let Pu be as in expression (12). Let u ∈ R
d and define Pk = P k

u/
√

k
, the

k-fold product of Pu/
√

k . Let �g = EP0[g(S)g(S)T ]. Then

log
dPk(S1, . . . , Sk)

dP0(S1, . . . , Sk)
= − 1√

k
uT

k∑
i=1

g(Si) − 1

2
uT �gu + oP0(1).

See the Supplementary Material, Section 10.2 for a proof. In particular, we see that if Fk

denotes the σ -algebra on the product Sk , then the sequence{
Sk,Fk,P

k

u/
√

k

}
u∈Rn

is LAN with precision �g for g with EP0[g] = 0 and EP0[‖g‖2] < ∞.

8.3. Finalizing the argument. Now that we have the regularity of the sequence xu/
√

k

as k → ∞ (the convergence guarantee (25)) and the asymptotic normality of Lemma 8.3,
we may apply Lemma 8.2. Indeed, let Pu,k = P k

u/
√

k
be the distribution of an i.i.d. sample

Si
iid∼ Pu/

√
k for i = 1, . . . , k, and let x̂k be an arbitrary estimator based on S1:k . Lemma 8.2

implies

sup
U0⊂Rd ,|U0|<∞

lim inf
k→∞ max

u∈U0
EP k

u/
√

k

[
L
(√

k(x̂k − xu/
√

k)
)]≥ E

[
L(Zλ)

]
for any λ > 0, where

Zλ ∼ N
(
0,PT H�†PT �T

g,f (�g + λI)−1�g,f PT H�†PT
)
.

The theorem follows by taking λ ↓ 0, noting that for any two mean-zero random vectors Z

and Y , we have

(26) E
[
YZT ]

E
[
ZZT ]†

E
[
ZYT ]� E

[
YYT ],

and that (by Anderson’s lemma [51], Lemma 8.5) if �1 � �2 and Zi ∼ N(0,�i), then
E[L(Z1)] ≤ E[L(Z2)]. To see inequality (26), we may without loss of generality assume that
E[ZZT ] � I , as by letting � = E[ZZT ]†, we have E[�1/2ZZT �1/2] = �1/2�†�1/2 � I ;
to show inequality (26), it is thus equivalent to show that E[YZT ]E[ZYT ] � I for all Z such
that E[ZZT ] � I . To see this, let v be arbitrary, and note that by Cauchy-Schwarz we have∥∥E[vT YZ

]∥∥2
2 = sup

‖u‖≤1
E
[
vT YZT u

]2 ≤ E
[(

vT Y
)2] sup

‖u‖≤1
E
[(

uT Z
)2]≤ vT

E
[
YYT ]v.

9. Proofs of convergence for dual averaging. Here we collect the major arguments for
our proofs of the almost sure convergence and finite time constraint identification for our
variant (17) of dual averaging. We highlight new results and techniques, deferring technical
details.

9.1. Proof of Theorem 2: Almost sure convergence. First, we establish a few technical
properties of the stepsize sequence. We begin with the following lemma, whose proof is
immediate when αk ∝ k−β for β ∈ (1

2 ,1).

LEMMA 9.1. For αk satisfying condition (18),
∑∞

k=1
αk∑k
i=1 αi

= ∞.

Now we state a classical result that is useful for showing the almost convergence of
stochastic approximation algorithms.
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LEMMA 9.2 (Robbins and Siegmund [42]). Let Vk , Ak , Bk , Ck be nonnegative random
variables adapted to a filtration Fk . Assume that

E[Vk+1 | Fk] ≤ (1 + Ak)Vk + Bk − Ck.

Then on the event {∑k Ak < ∞,
∑

k Bk < ∞}, there is a random variable V∞ < ∞ such that

Vk
a.s.→ V∞ and

∑
k Ck < ∞ a.s.

We use Lemma 9.2 to show that the quantity

(27) Rk := 〈
zk + xk+1, x

� − xk+1
〉+ 1

2

∥∥xk+1 − x�
∥∥2

2

converges a.s. to some random variable R∞ < ∞, where zk :=∑k
i=1 αigi . We can decompose

Rk as the sum of two nonnegative random variables,

Rk = Gk + Vk, Gk = 〈
zk + xk+1, x

� − xk+1
〉≥ 0 and Vk = 1

2

∥∥xk+1 − x�
∥∥2

2.

Here we have Gk ≥ 0 because xk+1 minimizes 〈zk, x〉 + 1
2‖x‖2

2 over x ∈ X , so that 〈zk +
xk+1, y − xk+1〉 ≥ 0 for all y ∈ X (and x� ∈ X by definition), while Vk ≥ 0 clearly. Recall
the definition (Assumption D’) of the filtration

Fk := σ(ξ1, . . . , ξk)

as the σ -field generated by the noise sequence through time k. Then we have the measurabil-
ity Rk,Gk,Vk ∈ Fk and the following convergence.

LEMMA 9.3. Let Rk be as in (27) and assume that
∑

k α2
k < ∞. Then for some finite

random variable R∞, we have Rk
a.s.→ R∞. Moreover,

∞∑
i=1

αi

[
f (xi) − f

(
x∗)]< ∞ with probability 1.

PROOF. Let h(x) = 1
2‖x‖2

2 + IX (x) and define its conjugate h∗(z) = supx∈X {〈z, x〉 −
1
2‖x‖2

2}. Then h∗ has 1-Lipschitz continuous gradient with ∇h∗(z) = argmaxx∈X {〈z, x〉 −
1
2‖x‖2

2} [27], Chapter X, and

Rk = 〈
zk, x

� − xk+1
〉+ 1

2

∥∥x�
∥∥2

2 − 1

2
‖xk+1‖2

2 = 〈
zk, x

�〉+ 1

2

∥∥x�
∥∥2

2 + h∗(−zk).

Using ∇h∗(−zk−1) = xk and the Lipschitz continuity of ∇h∗, we have

h∗(−zk) ≤ h∗(−zk−1) + 〈∇h∗(−zk−1), zk−1 − zk

〉+ 1

2
‖zk − zk−1‖2

2

= h∗(−zk−1) − αk〈gk, xk〉 + α2
k

2
‖gk‖2

2.

That is, we have for any k that

Rk ≤ 〈zk, x
�〉+ 1

2

∥∥x�
∥∥2

2 + h∗(−zk−1) − αk〈gk, xk〉 + α2
k

2
‖gk‖2

2

= 〈
zk−1 + xk, x

� − xk

〉+ 1

2

∥∥xk − x�
∥∥2

2︸ ︷︷ ︸
=Rk−1

−αk

〈
gk, xk − x�〉+ α2

k

2
‖gk‖2

2.
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Taking conditional expectations and using that E[gk | Fk−1] = ∇f (xk) yields

E[Rk | Fk−1] ≤ Rk−1 − αk

〈∇f (xk), xk − x�〉+ α2
k

2
E
[‖gk‖2

2 | Fk−1
]

(i)≤ Gk−1 + Vk−1 − αk

〈∇f (xk), xk − x�〉+ α2
k

2

(
C
∥∥xk − x�

∥∥2
2 + C

)
(ii)≤ (

1 + Cα2
k

)[Gk−1 + Vk−1] − αk

〈∇f (xk), xk − x�〉+ Cα2
k ,

where inequality (i) follows by Assumption D’ and the discussion (Eq. (6)) immediately
following Assumption D, and inequality (ii) because Gk−1 ≥ 0 and Vk−1 = 1

2‖xk − x�‖2
2. In

particular, we have

E[Rk | Fk−1] ≤ (1 + Cα2
k

)
Rk−1 − αk

〈∇f (xk), xk − x�〉+ Cα2
k .

Because f (x�) ≥ f (xk) + 〈∇f (xk), x
� − xk〉, or 〈∇f (xk), xk − x�〉 ≥ f (xk) − f (x�) ≥ 0,

Lemma 9.2 applies. Thus we must have Rk
a.s.→ R∞ for some finite random variable R∞, and

moreover
∞∑
i=1

αi

[
f (xi) − f

(
x∗)]≤ ∞∑

i=1

αi

〈∇f (xi), xi − x∗〉< ∞,

where we have used the standard first-order convexity inequality. �

With these lemmas as background, we finally provide the proof of Theorem 2, by showing
that with Rk defined as in expression (27),

(28) Rk
a.s.→ 0 so that xk

a.s.→ x�.

We introduce a bit of notation. Let Ak = ∑k
i=1 αi , and recall that zk = ∑k

i=1 αigi . Define
z̄k =∑k

i=1 αi∇f (xi) to be the weighted partial sum of the (nonnoisy) gradients ∇f (xi), and
we let z�

k = Ak∇f (x�).
We first claim that the error sequence is asymptotically negligible:

(29)
1√
Ak

k∑
i=1

αiξi
a.s.→ 0.

To see the claim (29), we use the following lemma.

LEMMA 9.4 (Dembo [15], Exercise 5.3.35). Let Zk ∈ R
n be a martingale adapted to Fk

and let bk > 0 be a nonrandom sequence increasing to ∞. If
∑∞

k=1 b−2
k E[‖Zk − Zk−1‖2 |

Fk−1] < ∞, we have b−1
k Zk

a.s.→ 0.

Since {∑k
i=1 αiξi}∞k=1 is a martingale difference sequence, Lemma 9.4 shows that to obtain

the claim (29) it is sufficient to show that

∞∑
k=1

1

Ak

E
[‖αkξk‖2 | Fk−1

]
< ∞.

By Assumption D’, the left side of the preceding display has upper bound C
A1

∑∞
i=1 α2

i (1 +
‖xi − x�‖2), so that showing

∑∞
i=1 α2

i (1 + ‖xi − x�‖2) < ∞ proves the claim (29). With
that in mind, recall Lemma 2.1, which guarantees an ε > 0 such that f (x) − f (x�) ≥
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ε(‖x − x�‖2 ∧ ‖x − x�‖). Using Lemma 9.3, we know that M := supi ‖xi − x�‖ ∨ 1 < ∞.
Thus we have

f (xi) − f
(
x�)≥ ε min

{∥∥xi − x�
∥∥M/M,

∥∥xi − x�
∥∥2}≥ c

∥∥xi − x�
∥∥2

where c > 0 is a random positive constant that depends on the bound M . Combining this
result with Lemma 9.3, we have

LEMMA 9.5. Under the conditions of Theorem 2, we have
∞∑
i=1

αi

∥∥xi − x�
∥∥2 ≤ 1

c

∞∑
i=1

cαi

∥∥xi − x�
∥∥2 ≤ 1

c

∞∑
i=1

αi

[
f (xi) − f

(
x�)]< ∞.

Here the final inequality follows from Lemma 9.3. Noting that
∑∞

i=1 α2
i < ∞ by assump-

tion (18), we obtain the claim (29). Moreover, this implies that

(30)
zk − z̄k√

Ak

= 1√
Ak

k∑
i=1

αiξi
a.s.→ 0.

Now that we have the convergence guarantee (30), that Rk
a.s.→ R∞ < ∞ (Lemma 9.3), and

that
∑∞

i=1 αi‖xi − x�‖2 < ∞ with probability 1, we define

�0 :=
{ ∞∑

i=1

αi

∥∥xi − x�
∥∥2

< ∞,Rk → R∞ < ∞,
zk − z̄k√

Ak

→ 0

}
, P(�0) = 1.

On the set �0, using the Lipschitz continuity Assumption A, we may define

σ 2∞ :=
∞∑
i=1

αi

∥∥∇f (xi) − ∇f
(
x∗)∥∥2 ≤ L2

∞∑
i=1

αi

∥∥xi − x∗∥∥2
< ∞.

Then using Jenson’s inequality and recalling the definition z�
k = Ak∇f (x�),

∥∥z̄k − z�
k

∥∥2 =
∥∥∥∥∥

k∑
i=1

αi

(∇f (xi) − ∇f
(
x�))∥∥∥∥∥

2

≤ Akσ
2∞.

Hence, we have ‖z̄k − z�
k‖ ≤ √

Akσ∞. Now, we see that on �0,

∞ >

∞∑
i=1

αi

∥∥xi − x�
∥∥2 =

∞∑
i=1

αi

Ai

Ai

∥∥xi − x�
∥∥2

.

Lemma 9.1 (that
∑

i
αi

Ai
= ∞) implies there exists a subsequence {ki} with

lim
i→∞Aki

∥∥xki
− x�

∥∥2 = 0,

and moreover, ∥∥z̄ki
− z�

ki

∥∥∥∥xki
− x�

∥∥≤ σ∞
√

Aki

∥∥xki
− x�

∥∥→ 0.

Keep the subsequence {ki} fixed, and note that on �0, we have that Rki−1 → R∞. Let us
expand the terms in the definition of Rk to see that we must have R∞ = 0. Indeed, we have

Rk−1 = 〈
zk−1 + x�, x� − xk

〉− 1

2

∥∥xk − x�
∥∥2

≤ 〈zk−1 + x�, x� − xk

〉
= 〈

zk−1 − z�
k−1, x

� − xk

〉+ 〈z�
k−1, x

� − xk

〉+ 〈x�, x� − xk

〉
≤ ∥∥zk−1 − z�

k−1
∥∥∥∥x� − xk

∥∥+ Ak

〈∇f
(
x�), x� − xk

〉+ ∥∥x�
∥∥∥∥x� − xk

∥∥.
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The optimality conditions for x� imply 〈∇f (x�), x� − xk〉 ≤ 0. On the subequence ki , we
have

lim sup
i→∞

∥∥zki−1 − z�
ki−1

∥∥∥∥x� − xki

∥∥≤ lim sup
i→∞

σ∞
√

Aki−1
∥∥x� − xki

∥∥= 0

and lim supi→∞ ‖x�‖‖x� − xki
‖ = 0. In particular, that Rk ≥ 0 implies

0 ≤ lim inf
i→∞ Rki−1 ≤ lim sup

i→∞
Rki−1 = 0.

Because Rk → R∞ on �0, it must thus be the case that R∞ = 0.

9.2. Manifold identification: Theorem 3. Recall that zk =∑k
i=1 αigi is the weighted par-

tial sum of the noisy gradients, and let Ak =∑k
i=1 αi . The following lemma is a nearly im-

mediate consequence of our previous results and, given the perturbation results in Lemmas
4.1 and 4.2, is the key to our finite identification result.

LEMMA 9.6. Under the conditions of the Theorem 3, 1
Ak

zk
a.s.→ ∇f (x�).

PROOF. We first remove the randomness of ξi . By Jenson’s inequality,

∥∥∥∥ zk

Ak

− ∇f
(
x�)∥∥∥∥2

≤ 2

∥∥∥∥∥A−1
k

k∑
i=1

αi

(∇f (xi) − ∇f
(
x�))∥∥∥∥∥

2

+ 2

∥∥∥∥∥A−1
k

k∑
i=1

αiξi

∥∥∥∥∥
2

.

The second term converges almost surely to zero by the almost sure convergence (29) in the
proof of Theorem 2. We thus focus on the first term.

By Lemma 9.5 in the proof of Theorem 2 and the Lipschitz Assumption A, we know
that

∑∞
i=1 αi‖∇f (xi) − ∇f (x�)‖2 ≤ C

∑∞
i=1 αi‖xi − x�‖2 < ∞ with probability 1. Thus,

by Jenson’s inequality,

1

A2
k

∥∥∥∥∥
k∑

i=1

αi

(∇f (xi) − ∇f
(
x�))∥∥∥∥∥

2

≤ 1

Ak

∞∑
i=1

αi

∥∥∇f (xi) − ∇f
(
x�)∥∥2

.

Taking Ak → ∞ gives the result. �

Applying Assumption B, there exist λi > 0 and νi = 0 such that ∇f (x�) +∑m0
i=1 λi ×

∇fi(x
�)+∑m

i=m0+1 νi∇fi(x
�) = 0. Applying the standard KKT conditions, we immediately

see that x� is an optimum of the convex problem

minimize
x

〈∇f
(
x�), x〉 subject to fi(x) ≤ 0 for i ∈ [m].

The dual averaging update (17) chooses xk+1 via

xk+1 = argmin
x

{〈∇f
(
x�), x〉+ 〈vk, x〉 + 1

2Ak

‖x‖2
∣∣∣ fi(x) ≤ 0, i ∈ [m]

}
,

where vk = zk

Ak
− ∇f (x�). Theorem 2 guarantees that xk → x�, while Lemma 9.6 shows that

A−1
k zk − ∇f (x�) → 0 with probability 1. The perturbation results (Lemmas 4.1 and 4.2)

immediately yield the theorem.
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10. Discussion. We have developed asymptotic theory for stochastic optimization prob-
lems, showing a local asymptotic minimax lower bound and making precise connections be-
tween tilt stability in optimization and the (statistical) difficulty of solving risk minimization
problems. These optimal rates of convergence are achievable by the classical M-estimator
x̂k = argminx∈X 1

k

∑k
i=1 F(x;Si) (Corollary 1) and approximate versions thereof, for ex-

ample, from modern incremental gradient methods [14, 29, 32, 34]. Our dual averaging
(lazy projected gradient) and Riemannian stochastic gradient methods are also asymptoti-
cally optimal, though subtleties arise for nonlinear constraint sets. There are open questions
about whether simpler methods—for example, methods that do not explicitly track the ac-
tive manifold—can achieve these rates, and developing finite sample analogues of this theory
remains an open question.
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