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Conditional value-at-risk is a popular risk measure in risk management.
We study the inference problem of conditional value-at-risk under a linear
predictive regression model. We derive the asymptotic distribution of the
least squares estimator for the conditional value-at-risk. Our results relax the
model assumptions made in (Oper. Res. 60 (2012) 739–756) and correct their
mistake in the asymptotic variance expression. We show that the asymptotic
variance depends on the quantile density function of the unobserved error
and whether the model has a predictor with infinite variance, which makes it
challenging to actually quantify the uncertainty of the conditional risk mea-
sure. To make the inference feasible, we then propose a smooth empirical
likelihood based method for constructing a confidence interval for the condi-
tional value-at-risk based on either independent errors or GARCH errors. Our
approach not only bypasses the challenge of directly estimating the asymp-
totic variance but also does not need to know whether there exists an infinite
variance predictor in the predictive model. Furthermore, we apply the same
idea to the quantile regression method, which allows infinite variance pre-
dictors and generalizes the parameter estimation in (Econometric Theory 22
(2006) 173–205) to conditional value-at-risk in the Supplementary Material.
We demonstrate the finite sample performance of the derived confidence in-
tervals through numerical studies before applying them to real data.

1. Introduction. One important aspect of risk management is to infer a risk measure
with accurate statistical uncertainty quantification. There have been many well-known risk
measures in the literature, among which the value-at-risk, VaR, is arguably one of the most
widely used in finance and insurance. VaR is especially popular for summarizing distribu-
tional of tails of economic risk variables; see, for example, Duffie and Pan (1997, 2001),
Jorion (2007), Kou and Peng (2016), Kou, Peng and Heyde (2013). When an asset or a fi-
nancial variable can be predicted by some market variables or risk factors, a conditional risk
measure given the market situation is more meaningful than an unconditional risk measure,
as is the case for conditional VaR. We consider the inference issue of deriving the confidence
interval for a conditional VaR, which can be used to quantify estimation risk for regula-
tory purposes; see, for example, Christoffersen and Gonçalves (2005), Gao and Song (2008),
Jorion (1996).

A conditional VaR is defined as a conditional quantile of a return of interest given the
market situation. One can directly model the conditional quantile as a parametric form of the
market variables; hence, quantile regression techniques can be employed to infer the condi-
tional VaR, which gives the standard rate of convergence n−1/2; see, for example, Engle and
Manganelli (2004) and Fan et al. (2018). In this paper, we take this parametric approach and
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follow Chun, Shapiro and Uryasev (2012) to estimate conditional VaR via a predictive regres-
sion model. Alternatively, a model-free estimator of the conditional VaR can be constructed
by kernel smoothing techniques, which unfortunately results in a slower rate of convergence
than the standard rate and a complicated asymptotic variance that is not easy to be estimated
directly; see, for example, Xu (2016).

To fix ideas, let Y denote the return of an asset or a financial variable, and X =
(X1, . . . ,Xk)

T be the collection of predictors (market variables or risk factors). Here, AT

denotes the transpose of a matrix or a vector A. Suppose that we have n observations (data
points) {Yt ,Xt = (Xt,1, . . . ,Xt,k)

T }nt=1 from the following linear predictive regression:

(1.1) Yt = β0 +
k∑

i=1

βiXt,i + εt , t = 1, . . . , n,

where {εt } is a sequence of independent and identically distributed random variables with
zero mean and finite variance. Later we will study the case that {εt } follows a stationary gen-
eralized autoregressive conditional heteroscedasticity (GARCH) process (Bollerslev (1986)).

Under the model (1.1), the conditional VaR of Yt at level α ∈ (0,1), given Xt = x :=
(x1, . . . , xk)

T , is proposed as the conditional quantile (Chun, Shapiro and Uryasev (2012)):

VaRx(α) := inf
{
q : P(Yt ≤ q|Xt = x) ≥ α

}= F−1
ε (α) + zT β,

where β = (β0, β1, . . . , βk)
T , z = (1,xT )T , Fε denotes the distribution function of εt and

F−1
ε denotes the generalized inverse of Fε . It then follows that a simple estimator for the

above conditional VaR is

(1.2) V̂aRx(α) = ε̂n,[nα] + zT β̂,

where β̂ is a consistent estimator of β , ε̂t = Yt − β̂
T
Zt with Zt = (1,XT

t )T , ε̂n,1 ≤ · · · ≤ ε̂n,n

denote the order statistics of {̂ε1, . . . , ε̂n}, and [nα] is the nearest integer of nα.
Under Model (1.1), Chun, Shapiro and Uryasev (2012) recently considered the least

squares estimator:

(1.3) β̂ =
{

1

n

n∑
t=1

ZtZ
T
t

}−1
1

n

n∑
t=1

YtZt ,

and derived the asymptotic distribution of the corresponding V̂aRx(α). They assume that the
predictors Xt ’s are independent and identically distributed random vectors.

In this paper, we work under the same predictive model (1.1) and derive the asymptotic
distribution of the conditional VaR (1.2) based on the least squares estimator (1.3). Our es-
timator of the conditional quantile is different from the one obtained via quantile regression
(Koenker and Bassett (1978)). In the next section, we show that our least squares estimator is
asymptotically more efficient than the quantile regression estimator in regular cases, which
is consistent with the simulation results in Chun, Shapiro and Uryasev (2012); see Remark 2
below. We extend the assumptions of Chun, Shapiro and Uryasev (2012) by allowing the
predictors in Model (1.1) to be a stationary sequence, instead of being just an independent
sequence and, furthermore, incorporating scenarios where some predictors have infinite vari-
ance. In risk management, the phenomenon of infinite-variance variables has attracted great
attention since the seminal work by Mandelbrot (1963); see also, for example, Fama and
Roll (1971), Granger and Orr (1972), Rachev and Mittnik (2000), Rachev, Menn and Fabozzi
(2005), Resnick (2007) and many references therein.

Using the well-developed approximation results of the residual-based empirical processes
(see Koul (2002), Mammen (1996), Müller, Schick and Wefelmeyer (2012) and references
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therein), we derive the asymptotic variance of V̂aRx(α), and point out that the asymptotic
variance actually depends on whether all predictors have a finite variance or some of them
have an infinite variance. Our results also show that the variance formula derived by Chun,
Shapiro and Uryasev (2012) is actually wrong, even when E(XtX

T
t ) < ∞ is assumed; see

Remark 1 in Section 2.
Even with our correction, the asymptotic variance is so complicated that statistical infer-

ence for the conditional VaR is not trivial at all. To make the inference feasible, we further
propose a smooth empirical likelihood method to effectively construct a confidence interval
for the conditional VaR, without explicitly calculating the asymptotic variance.

Our method does not depend on whether all predictors have a finite variance or some of
them have an infinite variance. This not only avoids the challenging issue of testing whether
the variance of a predictor is finite or infinite, but also relaxes the restrictive boundedness
conditions on predictor variables in many existing smoothed inference procedures, such as
the well-known bootstrap method proposed in Horowitz (1998) and the empirical likeli-
hood method based on quantile regression in Whang (2006). Furthermore, we extend the
study for independent εt ’s to a GARCH sequence with potentially infinite kurtosis using a
self-weighting method motivated by Ling (2007). In the Supplementary Material (He et al.
(2020)), we also apply the same idea to quantile regression method, which generalizes the
interval estimation for β in Whang (2006) to conditional VaR by allowing some infinite-
variance predictors. As such, our proposed confidence intervals for the conditional VaR, given
the current market situation, are useful in monitoring the risk of an asset or a financial vari-
able.

We focus on linear models (in mean and conditional variance) for simplicity, which are
useful in economic and financial applications; see, for example, Engle (2001), Engle (2004)
for GARCH applications in value-at-risk forecasting, Cochrane (2009) for the discussions
on linear factor models in finance, and Adrian and Brunnermeier (2016) and Adrian, Bo-
yarchenko and Giannone (2019) for macroeconomic applications. In the most general case,
it is important to consider the nonlinear effects, and we leave them as possible future works;
see, for example, Spokoiny (2009), Lai and Xing (2013) and many references therein.

We organize the rest of the paper as follows. In Section 2, we derive the asymptotic distri-
bution of the (least-squares) conditional VaR estimator. In Section 3, we propose the empir-
ical likelihood method for deriving the corresponding confidence intervals via least squares
estimation; in the Supplementary Material (He et al. (2020)), we also extend the idea to the
quantile regression method. Section 4 generalizes the study for independent errors to GARCH
errors. We further demonstrate the performance of the proposed method through a simulation
study in Section 5 and a real data application in Section 6, respectively. We conclude the paper
in Section 7. Additional simulation and data analysis results and all the details of the proofs
are provided in the Supplementary Material (He et al. (2020)). Unless specified otherwise,
our asymptotic results hold as the sample size n → ∞.

2. Methodology based on least squares estimation. In this section, we study the
asymptotic distribution of the conditional VaR (1.2) based on the least squares estimator
(1.3). We consider the same predictive model (1.1) as in Chun, Shapiro and Uryasev (2012)
and generalize the model assumptions in two aspects that are important for financial appli-
cations: (1) we allow {Xt } to be a stationary sequence; (2) we consider cases where some
predictors have an infinite variance. In this section, we only work with (strongly) exogenous
predictors for simplicity, while the results may be extended for weakly exogenous predictors
at the cost of greater complications. In our main results for the empirical likelihood method
in the next section, we relax the exogeneity condition and allow general predictors, includ-

ing autoregressors. We denote
P−→ as convergence in probability and

d−→ as convergence in
distribution.
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First, we consider the case that all the predicting variables in the regression model (1.1)
have a finite variance. More specifically, we assume the following conditions:

A1 {εt } is a sequence of independent and identically distributed random variables with
zero mean and finite variance σ 2; {εt } and {Xt } are independent.

A2 {Xt } is a stationary sequence with E(‖Xt‖2+ι0) < ∞ for some ι0 > 0, and an ergodic
sequence such that

1

n

n∑
t=1

Xt
P→ EX1,

1

n

n∑
t=1

XtX
T
t

P→ E
(
X1X

T
1
)
.

A3 Let Z1 = (1,XT
1 )T and � := E(Z1Z

T
1 ). Assume that � is positive definite.

A4 F ′
ε(y) is continuous and positive in a neighborhood of y = F−1

ε (α).

Using the approximation results for the residual-based empirical process (see, e.g., equation
(2.3) of Mammen (1996)), and applying the delta method, we can expand that

√
n
(
V̂aRx(α) − VaRx(α)

)= n∑
t=1

Dnt + op(1),

where

Dnt = 1√
n

{
−I (εt ≤ γ ) − α

F ′
ε(γ )

+ εtZ
T
t �−1z − εtZ

T
t �−1E(Z1)

}
.

Note that {Dnt } is a martingale difference array adapted to the filtration {Ft }t≥0 =
{σ(ε1, . . . , εt ,Z1, . . . ,Zt ,Zt+1)}t≥0, where σ(·) means the sigma-algebra generated by ran-
dom variables. Applying a proper version of martingale central limit theorem, such as The-
orem 3.2 in Hall and Heyde (1980), we can establish the asymptotic normality of our VaR
estimator as follows.

THEOREM 1. Under conditions A1–A4, for α ∈ (0,1),

√
n
{
V̂aRx(α) − VaRx(α)

} d−→ N
(
0,ω2 + σ 2zT �−1z + 


)
,

where z = (1,xT )T , ω2 = α(1−α)

{F ′
ε(F

−1
ε (α))}2 , and 
 = 
1 + 
2 with


1 = σ 2E
(
ZT

1
)
�−1E(Z1) + 2

E(ε1I (ε1 ≤ F−1
ε (α)))

F ′
ε(F

−1
ε (α))

E
(
ZT

1
)
�−1E(Z1) and


2 = −2σ 2E
(
ZT

1
)
�−1z − 2

E(ε1I (ε1 ≤ F−1
ε (α)))

F ′
ε(F

−1
ε (α))

E
(
ZT

1
)
�−1z.

REMARK 1. The last term 
 in the above asymptotic variance is missing in the variance
formula (33) of Chun, Shapiro and Uryasev (2012). When Xt is demeaned, that is, E(Xt ) =
0, we have 
 = −σ 2, and thus the confidence interval overcovers when the standard error
of Chun, Shapiro and Uryasev (2012) is used. The first component 
1 is due to the impact
of the statistical uncertainty of the least squares estimator β̂ on residual quantile estimation.
The second component 
2 attributes to the interaction between β̂ and the residual quantile
estimation, and it is easy to verify that 
2 = 0 if εt is normally distributed. Our simulation
study in Section 5 demonstrates that overlooking the 
-term has a nonnegligible impact on
the coverage performance of the resulting confidence intervals.
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REMARK 2. An alternative way to estimate the conditional VaR for our linear model
(1.1) is to use the so-called linear quantile regression method in econometrics; see, for exam-
ple, Koenker (2005). The simulation study in Chun, Shapiro and Uryasev (2012), for exam-
ple, Tables 1 and 2 therein, clearly demonstrates that the least squares estimator outperforms
the quantile-regression-based estimator for many error distributions when α = 0.95. To un-
derstand this in large sample theory, let us consider a regular case that E(Xt ) = 0 and, without
loss of generality, σ = 1. Under the conditions of the above theorem, our least squares esti-
mator has an asymptotic variance 1

n
{ω2 +xT �−1

X x} with �X = E(X1X1
T ), which is smaller

than the asymptotic variance of the linear quantile regression estimator (derived from (3.7)
in Koenker (2005)) given as 1

n
{ω2 + ω2 · xT �−1

X x} if ω2 = α(1−α)

{F ′
ε(F

−1
ε (α))}2 > 1. The condition

ω2 = ω2(α) > 1 is trivial for large α in VaR applications under weak conditions such as
normally and Student t-distributed errors.

Next, we show that the infinite-variance predictor does not play a role in the asymptotic
variance of VaR estimator. Without loss of generality, we only consider the case where the
kth predictor has an infinite variance, that is, EX2

t,k = ∞; the proof for the cases with mul-
tiple infinite variance variables are completely analogous. Our proposed empirical likelihood
method in the next section allows arbitrarily many infinite variance predictors and some pre-
dictors to be the lags of Yt because we assume that εt is independent of {Xs : s ≤ t} for all
t ≥ 1. We now assume the following conditions:

B1 {εt } is a sequence of independent and identically distributed random variables with
zero mean and finite variance σ 2; {εt } is independent of {Xt }.

B2 {Xt } is a stationary sequence with 1
n

∑n
t=1 Xt

P→ EX1, EX2
t,i < ∞ for i = 1, . . . , k −

1, EX2
t,k = ∞.

B3 Let X̃t = (Xt,1, . . . ,Xt,k−1)
T . Assume E(‖X̃t‖2+ι0) < ∞ for some ι0 > 0, and as

n → ∞,

1

n

n∑
t=1

X̃tX̃
T
t

P→ E
(
X̃1X̃

T
1
)
.

B4 Let Z̃1 = (1,X1,1, . . . ,X1,k−1)
T and �̃ := E(Z̃1Z̃

T
1 ). Assume �̃ is positive definite.

B5 F ′
ε(y) is continuous and positive in a neighborhood of y = F−1

ε (α).
B6 The distribution function Fk of Xt,k lies in the domain of attraction of a stable law with

index d ∈ (1,2) (see Feller (1971) for details on stable law). Further assume
∑n

t=1(Xt,k −
E(Xt,k)) = Op(n1/dL(n)), and

∑n
t=1 X2

t,k = Op(n2/dL(n)) for some slowly varying L(n),
that is, L(tx)/L(t) → 1 for any x > 0 as t → ∞. See Davis and Hsing (1995) for detailed
conditions to ensure the above rate.

THEOREM 2. Under conditions B1–B6, for α ∈ (0,1),
√

n
{
V̂aRx(α) − VaRx(α)

} d−→ N
(
0,ω2 + σ 2z̃T �̃−1z̃ + 
̃

)
,

where z̃ = (1, x1, . . . , xk−1)
T , ω2 = α(1−α)

{F ′
ε(F

−1
ε (α))}2 , and 
̃ = 
̃1 + 
̃2 with


̃1 = σ 2E
(
Z̃

T
1
)
�̃−1E(Z̃1) + 2

E(ε1I (ε1 ≤ F−1
ε (α)))

F ′
ε(F

−1
ε (α))

E
(
Z̃

T
1
)
�̃−1E(Z̃1) and


̃2 = −2σ 2E
(
Z̃

T
1
)
�̃−1z̃ − 2

E(ε1I (ε1 ≤ F−1
ε (α)))

F ′
ε(F

−1
ε (α))

E
(
Z̃

T
1
)
�̃−1z̃.
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The proof of Theorem 2 is similar to that of Theorem 1, except it is more involved to re-
move the effect of the infinite-variance predictor(s). Using the fact that β̂k − βk has a faster
rate of convergence than n−1/d∗

for some d∗ ∈ (d,2) [see, e.g., Davis and Wu (1997), Sec-
tion 4], we can establish a similar martingale approximation of the residual-based empirical
process for the subsample with |Xt,k| ≤ n1/d∗

using the techniques in Shorack and Wellner
(2009), Chapter 4. The result then follows after showing that the truncation effect is asymp-
totically trivial. A direct calculation indicates the negligible contribution from the infinite
variance predictor in the asymptotic variance by again recalling the faster convergence rate
of β̂k − βk .

3. Empirical likelihood method with independent errors. It is known that quantifying
the statistical uncertainty of a risk measure is important and challenging in risk management;
see, for example, McNeil, Frey and Embrechts (2015). Theorems 1 and 2 in Section 2 have
provided the theoretical foundation for measuring the uncertainty of the conditional VaR
(1.2). However, the theorems show that the asymptotic variance depends on whether there
exist some infinite-variance predictors, which are difficult to verify in practice. Furthermore,
even if one can do so, the asymptotic variance is so complicated that its calculation is nontriv-
ial at all. Moreover, the applicability of a bootstrap method remains unknown due to possibly
infinite variance predictors.

To make it feasible to quantify the uncertainty of the conditional VaR, here we propose an
empirical likelihood method that uses a combination of estimating equations in Qin and Law-
less (1994) and the smoothing technique in Chen and Hall (1993). The empirical likelihood
is a distribution-free statistical inference method based on a data-driven likelihood ratio func-
tion. We refer to Owen (2001) for an overview of the empirical likelihood method, which has
been shown to be quite effective in interval estimation and hypothesis testing. To effectively
construct interval estimation of a VaR for regulatory purposes, empirical likelihood method
for a quantile can be employed; see Chen and Hall (1993) and Baysal and Staum (2008).

First, we consider the least-squares settings and present the relevant notations. Define
Xt,0 := 1 and Zt = (1,Xt,1, . . . ,Xt,k)

T for t ≥ 1. Consider a smooth distribution function
K(·) and a bandwidth parameter h = h(n) > 0, and define

(3.1)

W t (β, θ) =: 1

‖Zt‖2 W̃ t (β, θ)

=: 1

‖Zt‖2

(
W̃t,1(β, θ), W̃t,2(β), . . . , W̃t,k+2(β)

)T
with

W̃t,1(β, θ) = K

(
θ − βT z − (Yt − βT Zt )

h

)
− α,

W̃t,i+2(β) = (
Yt − βT Zt

)
Xt,i for i = 0,1, . . . , k,

where z is defined earlier in Theorem 1, and ‖ · ‖ denotes Euclidean norm.
The reason to employ the weight ‖Zt‖−2 is to remove the effect of infinite moments of Xt ,

so that we can have a unified inference procedure. One can choose different weight functions
such as ‖Zt‖−2∞ := (max0≤i≤k |Xt,i |)−2. The observations W̃ t (β, θ) can be weighted less
(or even not weighted at all), if the first (and second) moment(s) of ‖Zt‖ is (are) finite; see
Remarks 3 and 4 below. Choosing an optimal weight function is beyond the scope of this
paper.

We now can define the empirical likelihood function for β and θ as

L(β, θ) = sup

{
n∏

t=1

(npt ) : p1 ≥ 0, . . . , pn ≥ 0,

n∑
t=1

pt = 1,

n∑
t=1

ptW t (β, θ) = 0

}
.
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Since we are only interested in the conditional VaR, θ0 = VaRx(α), we treat β as the nui-
sance parameter and consider the so-called profile empirical likelihood function: LP (θ) =
maxβ L(β, θ). We use the original empirical likelihood proposed by Owen (1990) for sim-
plicity. It may not be well-defined over the entire parameter space as the zero vector may
be outside the convex hull of {W t (β, θ)} for some (β, θ). This is strong evidence that these
points are not the true value if the models are correctly misspecified. We then adopt the con-
vention that assigns L(β, θ) = 0, or logL(β, θ) = −∞, at such points; see, for example,
Kitamura (2007), Section 8 for further discussions. To construct positive likelihood values
everywhere, one may alternatively work with the adjusted empirical likelihood (Chen, Variy-
ath and Abraham (2008), Emerson and Owen (2009)) by adding some clever pseudo obser-
vation(s), the penalized empirical likelihood (Bartolucci (2007), Lahiri and Mukhopadhyay
(2012)) that drops the convex hull constraint, or the extended empirical likelihood (Tsao and
Wu (2013)) that maps the full parameter space to the natural domain of the empirical likeli-
hood function. Our proofs imply that the empirical likelihood function is well-defined with
probability tending to 1 in a neighborhood around the true value, and we restrict the domain
of the nuisance parameters in this neighborhood if necessary.

To derive the confidence interval, we need to establish a Wilks type of result for the twice-
negative (profile) empirical log-likelihood function. For that purpose, we assume the follow-
ing:

C1 {εt } is a sequence of independent and identically distributed random variables with
zero mean and E(|εt |2+ι0) < ∞ for some ι0 > 0. For all t ≥ 1, εt is independent of {Xs :
s ≤ t}. Furthermore, F ′

ε(y) is Lipschitz continuous and positive in a neighborhood of y =
F−1

ε (α).
C2 The stationary sequence {Xt } is ergodic such that

1

n

n∑
t=1

ZtZ
T
t

‖Zt‖2
P→ E

(
Z1Z

T
1

‖Z1‖2

)
,

1

n

n∑
t=1

ZtZ
T
t

‖Zt‖4
P→ E

(
Z1Z

T
1

‖Z1‖4

)
.

C3 Define

�1 := E

⎧⎪⎨⎪⎩
⎛⎜⎝I (ε1 ≤ F−1

ε (α)) − α

‖Z1‖2

ε1Z1/‖Z1‖2

⎞⎟⎠(I (ε1 ≤ F−1
ε (α)) − α

‖Z1‖2 , ε1Z
T
1 /‖Z1‖2

)⎫⎪⎬⎪⎭ ,

�2 :=
⎛⎝F ′

ε

(
F−1

ε (α)
)
E
(
(Z1 − z)T /‖Z1‖2)

−E
(
Z1Z

T
1 /‖Z1‖2)

⎞⎠ .

Assume �1 is positive definite and �2 has full (column) rank.
C4 Assume K(x) = ∫ x

−1 g(s) ds, where g(x) is a symmetric density function on [−1,1]
with bounded derivative. Furthermore, assume nh4 → 0 and nhr0 → ∞ for some r0 ∈ (2,4).

THEOREM 3. Under the above conditions C1–C4, −2 logLP (VaRx(α)) converges in
distribution to χ2(1), a chi-squared limit with one degree of freedom as n → ∞.

We develop a new approach to prove the Wilks-type theorems throughout the paper, in-
cluding Theorem 3 and more later on, using the so-called local asymptotic normality (LAN)
property of the empirical likelihood ratio function; see, for example, Chapter 7 in van der
Vaart (1998). This is more flexible than the high-order expansion approach by Qin and Law-
less (1994), which does not allow smoothing under heavy tails. Specifically, for β in a local
neighborhood around the true value β0, we show that

(3.2)
−2 logL

(
β, θ0)= νT �T

2 �−1
1 �2ν + 2νT �T

2 �−1
1 Wn +W

T
n �−1

1 Wn

+ oP (1) + oP

(‖ν‖)+ oP

(‖ν‖2),
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where

Wn := 1√
n

n∑
t=1

W t

(
β0, θ0) and ν := √

n
(
β − β0).

The asymptotic orders of the reminder are uniform. For this, we need to establish the uniform
convergence of the smoothed sample (second) moments and gradients for the parameters,
which involves many technical details given in the Supplementary Material (He et al. (2020)).

Now, with probability tending to one, there exists a maximum empirical likelihood esti-
mator β̃ in this neighborhood such that

(3.3) −2 logLP (θ0)= −2 logL
(
β̃, θ0)

and

(3.4)
√

n
(
β̃ − β0)= −(�T

2 �−1
1 �2

)−1
�T

2 �−1
1 Wn + oP (1),

by combining some arguments similar to that for Lemma 1 in Qin and Lawless (1994) and
that for Theorem 2 in Sherman (1993). Substituting (3.4) into (3.2) and (3.3) yields that

−2 logLP (θ0)= W
T
n �

−1/2
1 D�

−1/2
1 Wn + oP (1),

where

D := Ik+2 − �
−1/2
1 �2

(
�T

2 �−1
1 �2

)−1
�T

2 �
−1/2
1

is a symmetric, idempotent matrix with unit trace and Ik+2 denotes the identity (k + 2) ×
(k+2) matrix. The chi-squared limit follows from the orthogonal decomposition of quadratic

forms and the central limit theorem that �
−1/2
1 Wn

d→ N(0, Ik+2).
Based on Theorem 3, an asymptotic confidence interval for VaRx(α) with level ξ ∈ (0,1)

is

Iξ = {
θ : −2 logLP (θ) ≤ χ2

1,ξ

}
,

where χ2
1,ξ denotes the ξ -quantile of χ2(1). The above interval can be effectively determined

by using a standard search algorithm and often has good finite-sample coverage accuracy.
As noted above, we adopt the convention that assigns a zero empirical likelihood value to
the points where the convex hull condition is violated. Therefore, we exclude these points
from the confidence intervals. We will implement the procedure and demonstrate the good
coverage property in Section 5.

REMARK 3 (Predictors with finite mean). When E(‖Xt‖) < ∞, Theorem 3 remains true
if we replace the weight ‖Zt‖−2 in W t (3.1) by ‖Zt‖−1, and in conditions C1–C3 replace
the weights ‖Zt‖−2 by ‖Zt‖−1, and ‖Zt‖−4 by ‖Zt‖−2.

REMARK 4 (Predictors with finite variance). When E(‖Xt‖2) < ∞, Theorem 3 remains
true, if we remove the weight ‖Zt‖−2 in W t (3.1), as well as the weights ‖Zt‖−2 and ‖Zt‖−4

in conditions C1–C3.

REMARK 5. As in Qin and Lawless (1994), we can study the asymptotic limit of the
maximum empirical likelihood estimator defined by θ̂MELE = arg maxθ LP (θ). It has a dif-
ferent asymptotic variance from those given in Theorems 1 and 2 since the proposed profile
empirical likelihood method is based on a weighted least squares estimator instead of the
ordinary least squares estimator.

We can apply the same weighted idea to generalize the empirical likelihood method for
quantile regression in Whang (2006) by allowing infinite variance predictors. We construct
a confidence interval for the conditional VaR rather than a confidence region for the regres-
sion coefficients therein. Full details of the methodology and the proofs are provided in the
Supplementary Material (He et al. (2020)).
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4. Empirical likelihood method with GARCH errors. In this section, we generalize
the empirical likelihood method to allow GARCH errors in the regression model. That is, we
assume the errors εt ’s in (1.1) follow a GARCH process defined by the equation

(4.1) εt = ηt

√
ht , ht = ω +

r∑
i=1

aiε
2
t−i +

s∑
j=1

bjht−j .

Denote the parameters by ζ = (ω, a1, . . . , ar , b1, . . . , bs)
T and the parameter space by �ζ .

The true value ζ 0 satisfies the following conditions:

G1 �ζ is a compact subset of [0,∞)r+s+1, and ζ 0 is an interior point.
G2 ω > 0, ai, bj ≥ 0 for all i = 1, . . . , r and j = 1, . . . , s,

∑r
i=1 ai +∑s

j=1 bj < 1, and

there exists no common root for equations
∑r

i=1 aiz
i = 0 and 1 −∑s

j=1 bj z
j = 0.

G3 {ηt } is a sequence of independent and identically distributed random variables with
zero mean, variance 1 and distribution function Fη. For all t ∈ {0,±1, . . .}, ηt is independent
of {Xs : s ≤ t}. Furthermore, F ′

η(y) is Lipschitz continuous and positive in a neighborhood
of y = F−1

η (α).
G4 E(|ηt |4(1+ι0)) < ∞, E(|εt |2+ι0) < ∞ and E‖Xt‖ι0 < ∞ for some ι0 > 0.

Conditions G1–G3 are standard assumptions for the stationarity and identifiability of the
GARCH model. The moment condition on εt in G4 is the same as that in condition C1 for
the least-squares method. The moment condition on ηt is to ensure the asymptotic normality
of the quasi maximum likelihood estimator for GARCH parameters; see, for example, Hall
and Yao (2003).

Combining models (1.1) and (4.1), we are interested in the conditional VaR given by

(4.2)
VaRx,σ (α) = inf

{
q : P(Yt ≤ q|Xt = x,

√
ht = σ) ≥ α

}
= σF−1

η (α) + zT β,

where z = (1,xT )T and σ are given values. Note that ht depends on Ys for s < t . Slightly
extending the notation, in this section, we denote the parameter for VaRx,σ (α) by θ .

Given the observations {(Yt ,Xt
T )T : t = 1, . . . , n} and the initial values {(Yt ,Xt

T )T : t ≤
0} which are generated by models (1.1) and (4.1), we write the parametric model as

εt (β) = Yt − ZT
t β, ηt (ζ ,β) = εt (β)√

ht (ζ ,β)
and

ht (ζ ,β) = ω +
r∑

i=1

aiε
2
t−i(β) +

s∑
i=1

biht−i(ζ ,β).

Here, εt = εt (β
0), ht = ht (ζ

0,β0) and ηt = ηt (ζ
0,β0) where β0 and ζ 0 are true parameters.

Throughout the partial derivative, ∂εt

∂β means ∂εt (β)
∂β |β=β0

, and we use similar notation for
other partial derivatives for ηt and ht . For estimating VaRx,σ (α) in (4.2), we first estimate
β by minimizing

∑n
t=1 ε2

t (β) and then estimate ζ by maximizing the quasi log-likelihood
function

n∑
t=1

lt (ζ ,β), lt (ζ ,β) = −1

2
loght (ζ ,β) − ε2

t (β)

2ht (ζ ,β)

with β being replaced by the obtained estimator in the first step, and then estimate F−1
η (α)

by the empirical quantile of {ηt (ζ ,β)}nt=1 with β and ζ replaced by the obtained estimators
in the first and second step. Obviously, such an estimator will have a complicated asymptotic
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variance. To construct a confidence interval for this conditional VaR by allowing infinite vari-
ance predictors, one may apply the empirical likelihood method to some weighted estimating
equations derived from the above three-step estimation. Unlike the case of independent errors,
we need to bound the partial derivatives ∂2

∂β∂ζ T lt (ζ ,β) as we have to profile β eventually.

Like in Ling (2007), there exist ρ ∈ (0,1) and a neighborhood of υ0 := (ζ 0,β0), say �υ ,
such that

sup
�υ

∥∥∥∥∂2lt (υ)

∂ζ∂βT

∥∥∥∥≤ Cξ3
ρ,t

(
1 + η2

t

)(
1 + ξ̃ ι

ρ,t−1
)
,

where ξρ,t = 1+∑∞
i=0 ρi‖Xt−i‖ and ξ̃ρ,t−1 = 1+∑∞

i=0 ρi |εt−1−i |, ι is any sufficiently small
positive value and C is some constant that does not depend on t and n. Since E(η2

t ) < ∞ and
E|εt |ι < ∞ for small ι, we only need to bound ξ3

ρ,t .

For any given ρ ∈ (0,1), there exists N ≥ 1 such that ρi = ei logρ ≤ e− log2(i+1) for all
i ≥ N , that is,

∑∞
i=N ρi‖Xt−i‖ ≤ ∑∞

i=N e− log2(i+1)‖Xt−i‖. Obviously,
∑N

i=0 ρi‖Xt−i‖ ≤
C
∑N

i=0 e− log2(i+1)‖Xt−i‖ for some constant C > 0. Therefore,
∑∞

i=0 ρi‖Xt−i‖ can be

bounded up to a constant by
∑∞

i=0 e− log2(i+1)‖Xt−i‖.
This motivates to maximize the following weighted quasi likelihood function:

n∑
t=1

w̃t lt (ζ ,β) with

w̃t =
( ∞∑

i=0

e− log2(i+1){1[‖Xt−i‖ ≤ C0
]+ C−1

0 ‖Xt−i‖1[‖Xt−i‖ > C0
]})−3

for some constant C0 > 0. In practice, we do not observe ‖Xs‖ for s ≤ 0 and have to replace
them with some (small) constants. In this way, we can drop the initial values in the weight w̃t

completely and rewrite it as

wt =
(

t−1∑
i=0

e− log2(i+1){1[‖Xt−i‖ ≤ C0
]+ C−1

0 ‖Xt−i‖1[‖Xt−i‖ > C0
]})−3

and C0 is chosen as the 95% sample quantile of ‖Xt‖’s in our simulation study and real data
analysis. The initial values ‖Xs‖ for s ≤ 0 are ignorable, since by using E‖Xt‖ι0 < ∞, we
can show that the reminder satisfies

max
t≥nδ

∞∑
i=t

e− log2(i+1)‖Xt−i‖ = oP (1) for any δ ∈ (0,1);

see Lemmas F.5 and F.6 in our Supplementary Material (He et al. (2020)).
By taking δ small enough,

∑nδ

t=1 wt lt (ζ ,β) will be a smaller order term of
∑n

t=nδ wt lt (ζ ,

β). That is, we simply consider
∑n

t=1 wt lt (ζ ,β), and construct the estimation function

(4.3) W̄ t (ζ ,β, θ) =:
(
wtW̄t,1(ζ ,β, θ),

W̃t,2(β)

‖Zt‖2 , . . . ,
W̃t,k+2(β)

‖Zt‖2 ,wt

∂lt (ζ ,β)

∂ζ T

)T

,

where W̃t,2(β), . . . , W̃t,k+2(β) are the same as in (3.1) and

W̄t,1(ζ ,β, θ) = K

(
(θ − βT z)/σ − ηt (ζ ,β)

h

)
− α,

∂lt (ζ ,β)

∂ζ
= − 1

2ht (ζ ,β)

∂ht (ζ ,β)

∂ζ
+ η2

t (ζ ,β)

2ht (ζ ,β)

∂ht (ζ ,β)

∂ζ
.
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Our empirical likelihood function is given by

L̄(ζ ,β, θ) = sup

{
n∏

t=1

(npt ) : p1 ≥ 0, . . . , pn ≥ 0,

n∑
t=1

pt = 1,

n∑
t=1

ptW̄ t (ζ ,β, θ) = 0

}
,

and the profile empirical likelihood function is

L̄P (θ) = max
ζ ,β

L̄(ζ ,β, θ).

To profile out β in addition to ζ , we have to extend the Conditions C2 and C3 as follows:

G5 The sequence {Y t = (εt ,Xt , εt−1,Xt−1, . . .)
T } is strictly stationary and ergodic.

G6 Define

�1 := E

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
w̃1
(
I
(
η1 ≤ F−1

η (α)
)− α

)
ε1Z1/‖Z1‖2

1

2
w̃1
(
η2

1 − 1
) 1

h1

∂h1

∂ζ

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

w̃1
(
I
(
η1 ≤ F−1

η (α)
)− α

)
ε1Z1/‖Z1‖2

1

2
w̃1
(
η2

1 − 1
) 1

h1

∂h1

∂ζ

⎞⎟⎟⎟⎟⎠
T
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

,

�2 := E

⎛⎜⎜⎜⎜⎜⎜⎝

1

2
w̃1F

′
η

(
F−1

η (α)
)(

F−1
η (α)

1

h1

∂h1

∂ζ
,F−1

η (α)
1

h1

∂h1

∂β
+ Z1√

h1
− z

σ

)T

0(k+1)×(1+r+s),−Z1Z
T
1 /‖Z1‖2

−1

2
w̃1

1

h2
1

∂h1

∂ζ

∂h1

∂ζ T
,−1

2
w̃1

1

h2
1

∂h1

∂ζ

∂h1

∂βT

⎞⎟⎟⎟⎟⎟⎟⎠ .

Assume �1 is positive definite and �2 has full (column) rank.

THEOREM 4. Under conditions G1–G6 and C4, −2 log L̄P (VaRx,σ (α)) converges in
distribution to χ2(1), a chi-squared limit with one degree of freedom as n → ∞.

REMARK 6. Developing an empirical likelihood method based on quantile regression
for GARCH errors requires reparameterizing the GARCH model due to the identification is-
sue as in Lee and Noh (2013), which complicates the comparison with the above empirical
likelihood method based on least squares estimation. On the other hand, the simulation study
below for independent errors shows that the interval derived from the empirical likelihood
method based on least squares estimation is more accurate than that based on quantile regres-
sion. Hence we skip the study of proposing an empirical likelihood method based on quantile
regression for GARCH errors.

Similar to Theorem 3, it suffices to establish the LAN property of the empirical likelihood
function, that is, uniformly for the nuisance parameters υ = (ζ T ,βT )T in a neighborhood
around the true value υ0 = (ζ 0T ,β0T )T ,

(4.4)
−2 log L̄

(
υ, θ0)= ν̄T �T

2 �−1
1 �2ν̄ + 2ν̄T �T

2 �−1
1 W̄n + W̄

T
n �−1

1 W̄n

+ oP (1) + oP

(‖ν̄‖)+ oP

(‖ν̄‖2),
where

W̄n := 1√
n

n∑
t=1

W̄ t

(
υ0, θ0) and ν̄ := √

n
(
υ − υ0).

For this, we need the nonasymptotic bounds for ht (ζ ,β) and ηt (ζ ,β) and for their (second-
order) gradients over this neighborhood. We generalize the bounds in Ling (2007) therein
to allow more general predictors (not necessarily autoregressors) in our model. Using these
bounds, we can show that the downweighting is sufficient for the asymptotic normality of the
quasi-score functions and the uniform convergence of the quasi-information matrix.
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5. Simulation study. In this section, we carry out a simulation study to illustrate the
performance of the proposed weighted least squares estimation, empirical likelihood methods
based on least squares estimation, and quantile regression.

We consider the following predictive linear model:

Yt = 1 + 2Xt,1 + 2Xt,2 + εt ,

with β0 = 1, β1 = 2, β2 = 2, and choose various types of predictors and error distributions.
More specifically, for the predictors (Xt,1,Xt,2)

T , we assume that they are mutually inde-
pendent, and distributed according to one of the following three settings:

• {Xt,1} ∼ Student-t with 1.5 degrees of freedom (t (1.5)), and
{Xt,2} ∼ stationary autoregressive process of order 1 (AR(1)):

Xt,2 = 0.355Xt−1,2 + φt , φt ∼ N(0,1).

Note that {Xt,1} then has an infinite variance.
• {Xt,1} ∼ t (1.5), and

{Xt,2} ∼ stationary generalized autoregressive conditional heteroscedasticity model of
lag 1 (GARCH(1,1)):

Xt,2 = σtηt , σ 2
t = 0.1 + 0.7X2

t−1,2 + 0.1σ 2
t−1, ηt ∼ N(0,1).

• {Xt,1} ∼ AR(1):

Xt,1 = 0.355Xt−1,1 + φt , φt ∼ N(0,1) and

{Xt,2} ∼ GARCH(1,1):

Xt,2 = σtηt , σ 2
t = 0.1 + 0.7X2

t−1,2 + 0.1σ 2
t−1, ηt ∼ N(0,1).

The error εt is generated from one of the following three settings: (1) i.i.d. standard normal
distribution (N(0,1)); (2) i.i.d. centered (i.e., shifted to have mean zero) log normal distribu-
tion with location parameter 0 and scale parameter 1/16 (LN(0,1/16)); (3) GARCH model
εt = σtet , σ 2

t = 0.1 + 0.3σ 2
t−1 + 0.3ε2

t−1 with et standard normal innovations. Therefore, we
study 9 combinations of different regressors and errors.

We choose the sample size(s) n = 2000 or/and 5000 for the value-at-risk level α =
0.95,0.99, the biweight kernel function g(u) = 15

16(1 − u2)21[|u| ≤ 1], the bandwidth h =
0.5 × n−1/3 or 1 × n−1/3 or 1.5 × n−1/3 and consider the predictor values x = (0.1,0.1)T .
Note that the order n−1/3 for the bandwidth is motivated by the optimal bandwidth in smooth
distribution function estimation.

5.1. Point estimation. Before investigating the coverage performance, we compare the
mean and root of mean squared error (RMSE) of the weighted least squares estimator (1.2)
and the standard quantile regression estimator. We set the value-at-risk level α = 0.95,0.99
and the sample size n = 2000. We repeat 10,000 times and report the mean and RMSE in
Table 1. Note that the true conditional VaR θ0 for the case of GARCH errors is calculated
via the average of 100,000 quantiles at level α by simulating the GARCH error with sample
size n = 5000. The weighted least squares estimator is consistently better in terms of RMSE,
while the RMSE increases as α becomes larger. In next subsections, we shall show that the
least-squares confidence interval also has better coverage performance especially when α is
large.
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TABLE 1
Mean and RMSE based on 10,000 replications for the weighted least squares estimator and the quantile

regression estimator with α = 0.95 and α = 0.99 and n = 2000

LSE QR

Error Regressors θ0 Mean RMSE Mean RMSE

α = 0.95
t + AR 3.0416 0.0470 3.0438 0.0474

Normal t + GARCH 3.0449 3.0419 0.0475 3.0440 0.0479
AR + GARCH 3.0421 0.0473 3.0442 0.0480

Log t + AR 1.8758 0.0180 1.8768 0.0180
Normal t + GARCH 1.8769 1.8756 0.0179 1.8766 0.0181

AR + GARCH 1.8756 0.0177 1.8766 0.0180

t + AR 2.2041 0.0302 2.2056 0.0305
GARCH t + GARCH 2.2046 2.2044 0.0310 2.2057 0.0313

AR + GARCH 2.2043 0.0303 2.2056 0.0307

α = 0.99
t + AR 3.7146 0.0839 3.7221 0.0835

Normal t + GARCH 3.7263 3.7167 0.0835 3.7242 0.0847
AR + GARCH 3.7150 0.0823 3.7236 0.0842

Log t + AR 2.1522 0.0375 2.1560 0.0379
Normal t + GARCH 2.1571 2.1518 0.0369 2.1559 0.0374

AR + GARCH 2.1526 0.0365 2.1569 0.0375

t + AR 2.6145 0.0442 2.6171 0.0456
GARCH t + GARCH 2.6039 2.6143 0.0445 2.6168 0.0460

AR + GARCH 2.6146 0.0447 2.6174 0.0462

5.2. Interval estimation for independent errors. By considering independent errors, this
subsection uses the R package “emplik” to implement the proposed empirical likelihood con-
fidence interval with level γ based on the weighted least squares estimator (LSE) and that
based the quantile regression estimator (QR) developed in our supplement (see the discussion
at the end of Section 3), and compares with the interval based on the asymptotic variance in
Chun, Shapiro and Uryasev (2012) (CSU) which tends to overcover in theory.

By drawing 10,000 random samples from each setting, we calculate the coverage proba-
bilities of these three intervals at γ = 95% confidence level for VaRx(0.95) and VaRx(0.99).
We repeat the analysis for γ = 90% confidence intervals in the Supplementary Material (He
et al. (2020)), and the conclusions are qualitatively the same.

From the simulation results in Tables 2 and 3, we observe the following:

(i) The proposed empirical likelihood confidence interval based on least squares estima-
tion has an accurate coverage probability for both α = 0.95 and α = 0.99, its performance
improves as the sample size increases, and it is robust against the considered three choices of
the bandwidth hi , i = 1,2,3.

(ii) The proposed empirical likelihood confidence interval based on quantile regression
has an accurate coverage probability when α = 0.95. However its performance is unsatisfying
when α = 0.99 and {Xt,2} follows from a GARCH(1,1) model. This may be explained by
the fact that the conventional inference for quantile regression does not apply sufficiently far
in the tails; see, for example, Chernozhukov (2005).
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TABLE 2
Empirical coverage probabilities for the 95% confidence intervals of VaRx(0.95) and VaRx(0.99) for N(0,1)

errors, with bandwidth hi = 0.5i × n−1/3

Regressors: t + AR t + GARCH AR + GARCH

n: 2000 5000 2000 5000 2000 5000

95% CI of VaRx(0.95), x = (0.1,0.1)T

CSU 0.9646 0.9679 0.9689 0.9703 0.9675 0.9696

LSE, h1 0.9492 0.9509 0.9497 0.9513 0.9513 0.9490
LSE, h2 0.9498 0.9507 0.9499 0.9506 0.9500 0.9493
LSE, h3 0.9491 0.9508 0.9498 0.9494 0.9508 0.9481

QR, h1 0.9479 0.9525 0.9539 0.9555 0.9564 0.9538
QR, h2 0.9477 0.9507 0.9513 0.9530 0.9542 0.9516
QR, h3 0.9456 0.9498 0.9505 0.9522 0.9521 0.9502

95% CI of VaRx(0.99), x = (0.1,0.1)T

CSU 0.9338 0.9469 0.9389 0.9462 0.9322 0.9506

LSE, h1 0.9715 0.9478 0.9705 0.9516 0.9654 0.9528
LSE, h2 0.9708 0.9470 0.9699 0.9510 0.9643 0.9527
LSE, h3 0.9692 0.9470 0.9693 0.9511 0.9648 0.9529

QR, h1 0.9489 0.9418 0.9215 0.9301 0.9199 0.8907
QR, h2 0.9447 0.9399 0.9218 0.9270 0.9187 0.8923
QR, h3 0.9430 0.9385 0.9239 0.9285 0.9159 0.8962

TABLE 3
Empirical coverage probabilities for the 95% confidence intervals of VaRx(0.95) and VaRx(0.99) for

centered-LN(0,1/16) errors, with bandwidth hi = 0.5i × n−1/3

Regressors: t + AR t + GARCH AR + GARCH

n: 2000 5000 2000 5000 2000 5000

95% CI of VaRx(0.95), x = (0.1,0.1)T

CSU 0.9978 1.0000 0.9984 1.0000 0.9984 1.0000

LSE, h1 0.9490 0.9511 0.9482 0.9497 0.9497 0.9489
LSE, h2 0.9489 0.9486 0.9473 0.9489 0.9465 0.9459
LSE, h3 0.9400 0.9415 0.9346 0.9388 0.9320 0.9359

QR, h1 0.9479 0.9496 0.9325 0.9468 0.9379 0.9433
QR, h2 0.9478 0.9480 0.9296 0.9431 0.9303 0.9318
QR, h3 0.9382 0.9399 0.9178 0.9297 0.9170 0.9247

95% CI of VaRx(0.99), x = (0.1,0.1)T

CSU 0.9630 0.9729 0.9650 0.9728 0.9621 0.9740

LSE, h1 0.9469 0.9469 0.9506 0.9508 0.9469 0.9525
LSE, h2 0.9439 0.9458 0.9511 0.9500 0.9448 0.9513
LSE, h3 0.9403 0.9437 0.9481 0.9468 0.9418 0.9455

QR, h1 0.9223 0.8896 0.8294 0.7033 0.7851 0.6900
QR, h2 0.9143 0.8804 0.8482 0.7164 0.7923 0.6956
QR, h3 0.9020 0.8766 0.8492 0.7388 0.8078 0.7003
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TABLE 4
Empirical coverage probabilities for the 95% confidence intervals of VaRx,σ (0.95) and VaRx,σ (0.99) for

GARCH(1,1) errors (εt = σt et , σ 2
t = 0.1 + 0.3σ 2

t−1 + 0.3ε2
t−1, et ∼ N(0,1)), with bandwidth

hi = 0.5i × n−1/3

Regressors: t + AR t + GARCH AR + GARCH

n: 2000 5000 2000 5000 2000 5000

95% CI of VaRx,σ (0.95), x = (0.1,0.1)T and σ = √
0.25

LSE, h1 0.952 0.965 0.952 0.948 0.960 0.960
LSE, h2 0.946 0.962 0.942 0.949 0.952 0.952
LSE, h3 0.946 0.959 0.944 0.950 0.947 0.953

95% CI of VaRx,σ (0.99), x = (0.1,0.1)T and σ = √
0.25

LSE, h1 0.966 0.954 0.966 0.961 0.960 0.964
LSE, h2 0.974 0.945 0.967 0.956 0.952 0.957
LSE, h3 0.970 0.941 0.958 0.946 0.951 0.953

(iii) The poor performance of Chun, Shapiro and Uryasev (2012)’s confidence intervals,
especially for the nonnormal cases in Table 3, confirms that the asymptotic variance in Chun,
Shapiro and Uryasev (2012) is incorrect.

5.3. Empirical likelihood method for GARCH errors. This subsection investigates the
finite sample performance of the proposed empirical likelihood interval based on the least
squares estimator for GARCH errors given in Section 4.

Due to the heavy computation, we draw 1000 instead of 10,000 random samples from the
three settings for predictors and report the coverage probabilities in Tables 4. Again we only
report the results for 95% confidence intervals and postpone that for 90% confidence intervals
in the Supplementary Material (He et al. (2020)). The results prefer a larger bandwidth and are
(slightly) less accurate than those for the independent errors given in the previous subsection.

6. Real data analysis. This section illustrates how our proposed method may be em-
ployed to monitor the conditional value-at-risk of an individual financial institution, given
the lagged information of economic state variables. We consider four US banks: Citigroup,
JPMorgan Chase, Wachovia and Wells Fargo. We assume a linear regression similar to model
(11a) in Adrian and Brunnermeier (2016).

Particularly, for each institution indexed by j , we construct the weekly prediction inter-
val(s) for its next-week conditional VaR at 95% level based on the following model:

X
(j)
t = β

(j)
0 +

7∑
i=1

β
(j)
i Mi,t−1 + ε

(j)
t ,(6.1)

ε
(j)
t = η

(j)
t

√
h

(j)
t , h

(j)
t = w(j) + a(j){ε(j)

t−1

}2 + b(j)h
(j)
t−1,(6.2)

where X
(j)
t is the weekly equity loss of the financial institution j at week t , and the predictors

M1,t−1, . . . ,M7,t−1 are the one-week lagged value of the following seven economic state
variables:

• M1,t−1—the change in the 3-month yield;
• M2,t−1—the change in the slope of the yield curve, measured by the spread between the

composite long-term bond yield and the 3-month bill rate;
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• M3,t−1—a short-term TED spread, defined as the difference between the 3-month LIBOR
rate and the 3-month secondary market Treasury bill rate;

• M4,t−1—the change in the credit spread between Moody’s Baa-rated bonds and the 10-
year Treasury rate;

• M5,t−1—the weekly market return on the S&P500 index;
• M6,t−1—the weekly real estate sector return in excess of the market financial sector return;
• M7,t−1—equity volatility, which is computed as the 22-day rolling standard deviation of

the daily CRSP equity market return.

For more details and explanations, we refer to Adrian and Brunnermeier (2016),
page 1719. All the data are downloadable from https://www.aeaweb.org/aer/data/10607/
20120555_data.zip.

To show the importance of avoiding the moments conditions, we plot the Hill (1975) esti-
mates of the tail index (i.e., the largest order of finite moment) as a function of the number of
upper order statistics used in estimation for three predictors: the change in the 3-month yield
(yeild3m), the change in the credit spread (credit) and the change in the slope of the yield
curve (term). Figure 1 shows that they all have tail indices close to or below 2, suggesting
the possibility of an infinite variance. These Hill plots suggest that it is necessary to take the
infinite variance into account.

Before computing the proposed intervals based on either independent errors (i.e., a(j) =
b(j) = 0 in (6.2)) or GARCH errors, we examine the autocorrelation functions of {ε(j)

t } and
{η(j)

t } above. First, we fit model (6.1) by the least squares method and then plot the time series
of (fitted) residuals {ε(j)

t } and their autocorrelation functions. Second, we fit the GARCH
model (6.2) to the least squares residuals by the quasi maximum likelihood method, and
then plot the (fitted) GARCH residuals {η(j)

t } and their autocorrelation functions. Figure 2
shows the plots for our first bank, Citigroup, and both {ε(j)

t } and {η(j)
t } suggest significant

correlation at lag one. We carefully repeat the analysis for all other banks (JPMorgan Chase,
Wachovia and Wells Fargo), and observe the same pattern; see our Supplementary Materials
(He et al. (2020)) for the other plots. These results suggest considering the following extended

FIG. 1. Hill estimates as a function of the number of upper order statistics for three weekly economic state
variables that may have infinite variances. The names of the variables are from the original data set.

https://www.aeaweb.org/aer/data/10607/20120555_data.zip
https://www.aeaweb.org/aer/data/10607/20120555_data.zip
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FIG. 2. Time series and autocorrelation plots for Citigroup. The top plots are for the least-squares residuals

{ε(j)
t } from the model (6.1), and bottom plots are for the corresponding GARCH residual {η(j)

t } from the model
(6.2). The middle plots are for their nominal levels, and right plots are for their squares.

regression model instead of (6.1) in Adrian and Brunnermeier (2016):

(6.3) X
(j)
t = β

(j)
0 +

7∑
i=1

β
(j)
i Mi,t−1 + β

(j)
8 X

(j)
t−1 + β

(j)
9 X

(j)
t−2 + ε

(j)
t ,

that is, the considered model is a combination of equations (6.3) and (6.2), where the case of
a(j) = b(j) = 0 leads to independent errors.

Again, in Figure 3 we plot the time series, and the autocorrelations of the (squared) fitted
least-squares residuals and GARCH residuals for Citigroup based on the extended regression
model (6.3) and the GARCH model (6.2). The plots show a better fitness at least in terms
of autocorrelations. We carefully check the same model specifications for all other banks
and consistently observe good fitness, while the volatility clustering effects seem weaker for
Wachovia and Wells Fargo. The results are comparable over all banks and, therefore, we
again leave the plots for other banks in the Supplementary Material (He et al. (2020)).

Hence, we apply the proposed empirical likelihood methods to construct intervals
for the conditional Value-at-Risk, VaRx(0.95), based on (6.3) with independent errors,
and VaRx,σ (0.95) based on GARCH(1,1) errors (i.e., models (6.3) and (6.2)), where
x is chosen as the latest one hundred observations of the predicting variables, that is,
{(M1,t−1, . . . ,M7,t−1,X

(j)
t−1,X

(j)
t−2)

T : t = n,n − 1, . . . , n − 99}, and σ is chosen as the latest
one hundred estimated σt in case of GARCH(1,1) errors. For replication purpose, we use
the time index as the week number in the dataset.

To calculate the empirical-likelihood-based interval for the conditional Value-at-Risk
VaRx(0.95) based on independent errors, first, we compute the weighted least squares es-
timate of β(j). Second, we estimate the conditional Value-at-Risk by combining the pre-
dicted mean and the empirical quantile of residuals. Third, we use these estimates as an
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FIG. 3. Time series and autocorrelation plots for Citigroup. The top plots are for the least-squares residuals

{ε(j)
t } from the model (6.3), and bottom plots are for the corresponding GARCH residual {η(j)

t } from the model
(6.2). The middle plots are for their nominal levels, and right plots are for their squares.

initial value to solve
∑n

t=1 W t (β, θ) = 0 in Theorem 3, which gives V̂aRx(0.95). Finally,
the interval is obtained by increasing and decreasing θ from V̂aRx(0.95) with step 0.01 un-
til −2 logLP (θ) > χ2

1,0.95. The predicted values and the lower and upper endpoints of the
empirical likelihood intervals with level 95% are plotted in Figure 4. We use the bandwidth
h = n−1/3 throughout the analysis.

Similar to calculating the empirical-likelihood-based interval for the conditional Value-at-
Risk VaRx,σ (0.95) based on GARCH errors, first, we obtain weighted least squares estimate
of β(j) and residuals in (6.3). Second, we fit the GARCH model (6.2) to these residuals using
the fGarch package in R. Third, we obtain an estimate of VaRx,σ (0.95) by using the estimated
parameters, and the empirical quantile of the GARCH residuals. Fourth, we use this Value-
at-Risk estimate as an initial value to solve

∑n
t=1 W̄ t (ζ ,β, θ) = 0 in Theorem 4, which gives

V̂aRx,σ (0.95). Finally, the interval is obtained by increasing and decreasing θ in Theorem 4
from V̂aRx,σ (0.95) with step 0.01 until −2 log L̄P (θ) > χ2

1,0.95. The point estimates and the
lower and upper endpoints of the empirical likelihood intervals with level 95% are plotted in
Figure 5.

One can observe that the empirical likelihood method produces asymmetric confidence
intervals in both independent-errors and GARCH models, and the upper parts are typically
much wider than the lower part. This may indicate the different severity of the estimation
risk compared to the point estimates. The confidence interval by normal approximation can
hardly capture such asymmetric property driven from the data. Also the independent-errors
model produces relatively flatter point estimates and confidence intervals than the GARCH
model across time. This indicates that the GARCH model is preferred when the data express
the feature of heteroskedastic volatility. For example, the peak values in the plots of Figure 5
are not detected by the independent-errors model in the plots of Figure 4. Finally, Citigroup
and JPMorgan Chase have wider intervals than Wachovia and Wells Fargo in general, and
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FIG. 4. Empirical-likelihood-based 95% confidence intervals (dashed) and predicted values (solid) for the con-
ditional VaR(0.95) of weekly bank loss (in percentage) based on regression Model (6.3) with independent errors.
The time index is the week number in our dataset.
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FIG. 5. Empirical-likelihood-based 95% confidence intervals (dashed) and predicted values (solid) for the con-
ditional VaR(0.95) of weekly bank loss (in percentage) based on the regression model (6.3) with GARCH errors
(6.2). The time index is the week number in our dataset.
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the intervals for Wachovia seems most robust against the model specifications. The upper
endpoints of Well Fargo are bumpiest in the GARCH model.

7. Conclusions. When an asset or a financial variable is predicted by some known mar-
ket variables or risk factors, a conditional VaR becomes more meaningful for risk manage-
ment. This paper starts from revisiting the distribution-free estimation procedure proposed by
Chun, Shapiro and Uryasev (2012) and extends their asymptotic results for the conditional
VaR estimator under more general model assumptions. We also correct their miscalculated
asymptotic variance. We show that the asymptotic variance depends on whether there are
predictors with infinite variance. Since the derived asymptotic variance is very complicated,
this paper further proposes an empirical likelihood method to effectively construct a confi-
dence interval for the conditional VaR. Our approach does not need to explicitly estimate
the asymptotic variance nor know whether there exist infinite variance predictors. Further-
more, we apply the same idea to quantile regression method, which allows infinite variance
predictors and extends the study in Whang (2006) to conditional VaR in the Supplementary
Material. Numerical studies demonstrate that the proposed intervals are accurate and useful
in monitoring/managing the risk of the underlying asset or financial variable.
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SUPPLEMENTARY MATERIAL

Supplement to “Inference for conditional value-at-risk of a predictive regression”
(DOI: 10.1214/19-AOS1937SUPP; .pdf). In this supplement, we provide more simulation
and empirical analysis results, and we prove all the theorems stated in this paper.
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