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An elaborate theory of predictions of a causal hypothesis consists of sev-
eral falsifiable statements derived from the causal hypothesis. Statistical tests
for the various pieces of the elaborate theory help to clarify how much the
causal hypothesis is corroborated. In practice, the degree of corroboration
of the causal hypothesis has been assessed by a verbal description of which
of the several tests provides evidence for which of the several predictions.
This verbal approach can miss quantitative patterns. In this paper, we de-
velop a quantitative approach. We first decompose these various tests of the
predictions into independent factors with different sources of potential biases.
Support for the causal hypothesis is enhanced when many of these evidence
factors support the predictions. A sensitivity analysis is used to assess the po-
tential bias that could make the finding of the tests spurious. Along with this
multiparameter sensitivity analysis, we consider the partial conjunctions of
the tests. These partial conjunctions quantify the evidence supporting various
fractions of the collection of predictions. A partial conjunction test involves
combining tests of the components in the partial conjunction. We find the
asymptotically optimal combination of tests in the context of a sensitivity
analysis. Our analysis of an elaborate theory of a causal hypothesis controls
for the familywise error rate.

1. Introduction.

1.1. An elaborate theory of a causal effect and evidence factors. Fisher’s response to the
question “what can be done in observational studies to clarify the step from association to
causation[?]” was: “Make your theories elaborate” (Cochran (1965)). Cochran explains this
response by stating that to clarify the step from association to causation one should envision
as many different consequences as possible of the causal hypothesis under investigation and
design studies which are able to scrutinize these consequences. In parallel to Cochran’s in-
terpretation of Fisher’s response, Popper (1934, 1972), through arguments of classical logic,
emphasizes the importance to scientific progress for a hypothesis to have a higher “degree
of testability.” By degree of testability, Popper means the amount of falsifiable “basic state-
ments” the theory generates. “If we look for confirmations,” Popper (1963) writes, “It is easy
to obtain confirmations . . . for nearly every theory,” while “[e]very genuine test of a theory is
an attempt to falsify it, or to refute it. Testability is falsifiability[.]”

The motivating example of this paper, discussed in detail in Section 2, considers the causal
hypothesis that exposure to lead of a parent at the workplace causes high level of lead in the
blood of a child at home. To test this causal hypothesis, Morton et al. (1982) established the
following elaborate theory Rosenbaum (2005): (a) children of parents who were occupation-
ally exposed to lead will have higher lead levels in the blood than otherwise similar control
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children; (b) among children of parents occupationally exposed to lead, children of parents
with higher occupational lead exposure will have higher lead levels than otherwise similar
children of parents with lower occupational lead exposure; and (c) among children of parents
occupationally exposed to lead, children whose parents practiced poorer hygiene before leav-
ing work will have higher lead levels than otherwise similar children whose parents practiced
better hygiene. We are interested in the question: what is the extent of corroboration of this
theory provided by the data? Popper (1972), in the addendum to his final chapter of The Logic
of Scientific Discovery, writes, “I tried to make clear that by the degree of corroboration of
a theory I mean a brief report that summarizes the way in which the theory has stood up to
tests, and how severe these tests were.” In practice, the degree of corroboration of an elaborate
theory has been evaluated by reporting what fraction of test of predictions of the elaborate
theory have p-values < 0.05 (where rejecting the null supports the elaborate theory); see, for
example, Centerwall (1989) or Wong, Cook and Steiner (2015).

There are two problems with just counting the fraction of p-values less than 0.05 for as-
sessing degree of corroboration of an elaborate theory. First, if the tests are dependent, then
multiple tests rejecting may not be providing much more evidence than one test rejecting.
Second, counting the fraction of p-values less than 0.05 is not an efficient combination of
the evidence. For example, if two independent tests of the same null hypothesis both have
p-values 0.06, this is strong evidence against the null by Fisher’s method of combining inde-
pendent tests (Fisher (1932)), the p-value for Fisher’s combined test is 0.02.

An additional problem with the current practice for assessing the degree of corroboration
for an elaborate theory is that the p-value computed for each test of the elaborate theory
assumes no unmeasured confounding. In most observational studies, unmeasured confound-
ing is a concern, and we would not find convincing an inference that was valid with no
unmeasured confounding but invalid with a little bit of unmeasured confounding. A sen-
sitivity analysis examines how much bias from unmeasured confounding could change the
conclusions of a study that assumed no unmeasured confounding (Cornfield et al. (1959);
Rosenbaum (1987); Hosman, Hansen and Holland (2010); Keele and Minozzi (2013); Stuart
et al. (2013); Ding and Vanderweele (2016); Fogarty and Hasegawa (2019)).

We develop a method for assessing the extent of corroboration of an elaborate theory that
overcomes the three shortcomings we identified above of the current p-value counting ap-
proach. Our method involves three aspects: (i) we decompose the test of the elaborate theory
into evidence factors, pieces that are affected by different biases and statistically near in-
dependent (Rosenbaum (2011, 2017); Zubizarreta et al. (2012)) (the additional requirement
of different biases in each test increases robustness of the analysis against multiple poten-
tial sources of biases); (ii) we assess the extent of corroboration in a way that combines
the information from different tests efficiently and, furthermore, we use partial conjunction
tests (Benjamini and Heller (2008); Benjamini, Heller and Yekutieli (2009)); and (iii) we test
the evidence factors using sensitivity analysis methods that allow for specified amounts of
unmeasured confounding. The novel contributions of the paper are the following: (a) we pro-
vide a systematic approach to decomposing an elaborate theory into evidence factors; (b) as a
way to test for partial corroboration of the elaborate theory, we introduce partial conjunction
tests (partial conjunction tests have been previously developed for the purpose of inference
in neuroimaging experiments by Benjamini and Heller (2008); (c) we develop a sensitivity
analysis method for carrying out (a) and (b) that allows for a specified degree of unmeasured
confounding; (d) we show that the method developed for (c) controls for the overall fami-
lywise error rate in the multiparameter sensitivity analysis; and (e) for the method for (c),
which involves combining sensitivity analyses for each of the evidence factors, we find the
asymptotically optimal such combining method.
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1.2. Sir Karl Popper and degree of corroboration. The term “degree of corroboration”
was introduced by Popper in response to an inattentive translation, “degree of confirmation,”
of his original phrase “Grad der Bewährung.” Two decades after Logik der Forschung, in
three Br. J. Philos. Sci. notes (vol. 5, pp. 143–149, 1954; vol. 7, pp. 350–353, 1957; and
vol. 8, pp. 294–302, 1958) Popper came up with a definition of degree of confirmation or de-
gree of corroboration. In these notes, his motivation was rather different. He first attempted
to show that, in the sense it is to be used in science, degree of corroboration or acceptability
of a theory cannot be a probability. After showing this, he suggested a definition of the degree
to which a statement x is confirmed by a statement y which he named the degree of confirma-
tion of x by y. This definition was based on a list of desiderata he had put down for such a
quantity. This definition may serve its purpose, but does not serve ours. First, such a definition
depends on a background probability measure appropriately defined on first-order languages,
and computations under this probability measure have not been well developed for statistical
practice (Popper (1954); Crupi, Chater and Tentori (2013)). Second, it is still an unsettled
debate whether such a quantity is an adequate measure of corroboration (Rowbottom (2013);
Sprenger (2018)). Finally, this definition attempts to answer a very different question than
ours. We are interested in the investigation of a causal hypothesis in an observational study
and how best to make inferences about it from a frequentist perspective, whereas Popper at-
tempted to define a quantity which would replace the p-value in investigation of a scientific
theory.

1.3. Outline of the paper. The paper is organized as follows. We discuss our motivating
example in Section 2. Here, we briefly recall the original study. The notation for our method
is introduced in Section 3.1. Section 3.2 recalls the treatment assignment models for the ob-
served data. A brief review of the testing procedures and their sensitivity analysis is given in
Section 3.3. The decomposition of the tests into evidence factors is established in Section 4.
Our main method is developed in Section 5. In particular, Proposition 2 defines the (maxi-
mum) p-values for tests of partial conjunction of the hypotheses. Using these p-values, we
get tests of all the partial conjunctions of the hypotheses for any given value of the sensitivity
parameters. Theorem 3 and its corollaries show that the familywise error rate is controlled
in our multiparameter sensitivity analysis, with a range of values of the bias parameter, for
the tests of the collection of all the partial conjunctions of the hypotheses. Section 6 com-
pares the methods of testing the elaborate theory in their performance in sensitivity analysis.
Section 6.2 finds asymptotically optimal methods in sensitivity analysis for tests of partial
conjunctions of the hypotheses for elaborate theories. In Section 6.3, a simulation study is
used for comparison of various methods in their power of sensitivity analysis. The simulation
show that methods that pool evidence from the various evidence factors are favorable over
methods that look at the individual tests who lose power when looking at fractions of the
elaborate theory. Results of the study in Section 2 are in Section 7 and the paper ends with a
short conclusion in Section 8.

2. Lead absorption study of Morton et al.

2.1. The elaborate theory and the analysis. Morton et al. (1982) studied the effect on
children of a parent’s occupational exposure to lead. Does exposure of a parent, who works
in a battery manufacturing plant (in Oklahoma), to lead at the workplace cause an increase in
lead level in the blood of a child in the household? The causal hypothesis is that an employee
who is exposed to lead at the workplace carries lead dust back to the household and causes
the child to have a higher lead level. To study their elaborate theory, given in Section 1.1, they
collected data on 33 matched pairs, with one exposed child and one control child forming a
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pair. Data were collected on the lead level in the blood of the children; on the lead exposure
levels, at the workplace, of the parents of the exposed children—categorized as high, medium
and low; and on hygiene practices of the parents of the exposed children before leaving
work—categorized as good, moderately good and poor.

A multitude of tests were carried out to see if the observed data are consistent with various
pieces of the elaborate theory. They found a significantly higher lead level in exposed children
compared to their controls. Exposed children of parents with higher lead exposure seemed to
have higher lead levels, and parent’s better hygiene practices seemed to indicate a lower lead
level in the blood of the children. Focus was not on the separate pieces of the analyses but on
the fact that there was a tendency of the evidence to converge to the same direction of con-
firming the elaborate theory. Although not all the tests corroborated the elaborate theory, for
example, in comparing the exposed children depending on their parent’s lead exposure level,
“the medium exposure group was not significantly different from the low exposure group,”
the concluding remark of the authors was that the study “provides additional confirmation
that increased risk of lead absorption occurs in children of employees in a lead-related indus-
try[.]” Clearly, the strategy was of a multiplist (Reynolds and West (1987)—several pieces
of evidence seeming to converge in favor of the causal hypothesis has been taken as a confir-
mation of the hypothesis. We will develop a more quantitative approach to summarizing the
evidence about the elaborate theory from the study.

2.2. Is there evidence for a causal effect on children of occupational exposure to lead?.
Wilcoxon’s signed rank test for a higher lead level in the blood for exposed child compared
to its control has a p-value P1 = 6.96 · 10−5. Among the exposed children, the p-value in
comparing high or moderate lead exposure at workplace for the parent versus a low exposure,
using Wilcoxon’s rank sum test, is P2 = 3.81 · 10−3. A comparison of exposed children with
high lead exposure level of the parents to medium lead exposure level of the parents is P3 =
9.59 · 10−2. Of these three comparisons, the first one tests part (a) of the elaborate theory, the
latter two are tests for part (b) of the elaborate theory. For part (c), consider exposed children
from families with parent exposed to high level of lead. The p-value is P4 = 9.44 · 10−3

when comparing poor hygiene practice versus a good or moderately good hygiene practice,
and the p-value is P5 = 0.42 in comparing a moderately good to a good hygiene practice.
Note that for each test, a prediction of a true causal hypothesis is set up as an alternative
hypothesis.

If we ask for evidence that all pieces of the elaborate theory are true, we would look at
the maximum of those five p-values, which is 0.42. However, if were to pool all the p-values
using Fisher’s method—which will be shown using Theorem 1 gives a valid p-value—the
pooled p-value is 1.41 · 10−6, evidence in support of the hypothesis that at least one part of
the elaborate theory is true. These are two drastically different numbers—neither suffices for
our requirement of representing the extent of corroboration of the elaborate theory offered by
the study. If we use the Holm–Bonferroni procedure, it would say that, at level 0.05, there
is evidence to reject three out of the five tests, since (5 + 1 − 3)P(3) = 0.02832 < 0.05 and
(5 + 1 − 4)P(4) = 0.191846 > 0.05 (Holm (1979). We provide the results from our method
in Section 7. Our method, which we will now present, looks at the partial conjunction of the
tests in combination with a sensitivity analysis.

3. Matched pair design with multiple treatments across pairs.

3.1. Notation: K treatments in I pairs. There are I pairs of units matched on their ob-
served covariates. Let ij , for j = 1,2, index the units in pair i, i = 1, . . . , I . The observed
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covariates for unit ij are xij ; xi1 = xi2 in each pair. Let Z
(1)
ij be the indicator of exposure to

treatment 1 for unit ij . In each pair, there is one unit with treatment 1 and the other unit is
not exposed to that treatment; so Z

(1)
i1 + Z

(1)
i2 = 1. Each unit is further exposed to treatments

2, . . . ,K . We denote by Z
(k)
ij the exposure status to treatment k for ij .

In the lead absorption study of Section 2, the first treatment, treatment 1, was employ-
ment of a parent in a battery manufacturing plant in Oklahoma. For an exposed child the
subsequent treatments were based on parent’s potential occupational exposure to lead—high
or medium versus low, treatment 2 and high versus medium or low, treatment 3—and fur-
ther based on hygiene level of the parent—good or moderately good versus poor, and good
versus moderately good or poor, treatment 4 and treatment 5, respectively. So, I = 33 and
K = 5. Morton et al. collected data on occupation level of lead exposure and hygiene prac-
tice, only for the individuals exposed to treatment 1. Thus, the data for Z

(2)
ij , . . . ,Z

(5)
ij were

not available when Z
(1)
ij = 0. This does not hinder our analysis. As will become clear in our

methodological development, the effect of treatment 2 will be analyzed only after condition-
ing on Zij = 1. Similarly, the effect of treatment 3 will be assessed only for exposed child
with father exposed to high or medium level of occupational lead exposure. In practice, to
create a matched design from two groups with Z

(1)
i = 1 and Z(0) = 0, on a set of covariates x,

one can use algorithms available in the literature; see Hansen (2004), Pimentel et al. (2015)
and Zubizarreta, Paredes and Rosenbaum (2014).

Let Zijk = (Z
(1)
ij , . . . ,Z

(k)
ij ) be the k dimensional partial assignment vector of the first

k treatments to unit ij , 1 ≤ k ≤ K . The units are assumed to be assigned treatments
independently—ZijK is independent of Zi′j ′K for two different units ij and i′j ′ across pairs,

but the different treatments to a unit need not be assigned independently—Z
(k)
ij need not be

independent of Z
(k′)
ij for any k′. A father of an exposed child may have poor hygiene because

he is accustomed to work in an environment where exposure to lead is high, or he may have
good hygiene. Since we make no assumption about the dependence structure of ZijK , either
of the above associations is allowed in this model. Let Zk = (Z11k,Z12k, . . . ,ZI2k) be the
2kI vector of first k treatment assignments on 2I units.

The outcome for unit ij is Rij = rij (ZijK), determined from a set of 2K potential out-
comes, rij (zK) where zK ∈ {0,1}K (Splawa-Neyman (1990); Rubin (1974)). Only a single
element of this set is observed. If there is a causal effect, for example, in Section 2, an effect
of occupational exposure to lead, then the elaborate theory states that rij (zK) > rij (z

′
K) for

zK, z′
K ∈ {0,1}K whenever zK � z′

K (� denotes the partial ordering induced by coordinate-
wise ordering).

3.2. Assignment of treatment ZK . As mentioned above, it is assumed that ZijK is inde-
pendent of Zi′j ′K and that there is no interference between the units. This section defines
the distribution of treatment exposure ZijK . The treatment assignment model is determined
by the observed pretreatment variables and the unmeasured confounders. This section also
introduces the sensitivity parameters of our analysis.

Let uij1, . . . , uijK be K unmeasured variables, 0 ≤ uijk ≤ 1, 1 ≤ k ≤ K (Rosenbaum
(2002)). Set F = {({rij (zK), zK ∈ {0,1}K},xij , uij1, . . . , uijK); i = 1, . . . ,K, j = 1,2}. We
specify the distribution of ZijK as the product of conditional distributions, that is, Pr(ZijK =
zijK | F) = Pr(Z(1)

ij = z
(1)
ij | F)

∏
k≥2 Pr(Z(k)

ij = z
(k)
ij | F,Zij (k−1) = zij (k−1)).

For the first treatment, treatment 1, we consider the model

(1) Pr
(
Z

(1)
ij = 1 | F) = exp(θ1(xij ) + γ1uij1)

1 + exp(θ1(xij ) + γ1uij1)
.
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Here, θ1() is an arbitrary unknown function and γ1 ≥ 0 is a sensitivity parameter, also un-
known. Under this model, as units are matched so that Z

(1)
i1 + Z

(1)
i2 = 1, we have

(2) Pr
(
Z

(1)
i1 = 1 | F,Z

(1)
i1 + Z

(1)
i2 = 1

) = exp(γ1uij1)

exp(γ1uij2) + exp(γ1uij1)
.

With �1 = exp(γ1), the odds ratio of treatment 1 satisfies �−1
1 ≤ Pr(Z(1)

i1 = 1 | F,Z
(1)
i1 +

Z
(1)
i2 = 1)Pr(Z(1)

i2 = 0 | F,Z
(1)
i1 + Z

(1)
i2 = 1){Pr(Z(1)

i1 = 0 | F,Z
(1)
i1 + Z

(1)
i2 = 1)Pr(Z(1)

i2 = 1 |
F,Z

(1)
i1 + Z

(1)
i2 = 1)}−1 ≤ �1. When �1 = 1 (γ1 = 0), the odds ratio is 1 and the probability

of unit ij getting treatment 1 in pair i is a coin flip. Thus, �1 is a parameter that measures the
deviation from the random assignment of treatment 1 in the pairs.

Consider the model for Z
(k)
ij as

(3) Pr
(
Z

(k)
ij = 1 | F,Zij (k−1) = zij (k−1)

) = exp(θk(zij (k−1)) + γkuijk)

1 + exp(θk(zij (k−1)) + γkuijk)
,

for k ≥ 2. As before, θk() is an unknown function and γk ≥ 0 is a sensitivity parameter.
Upon conditioning on Zk−1, the interpretation of γk becomes clearer when we consider the

distribution of (Z
(k)
11 ,Z

(k)
12 , . . . ,Z

(k)
I2 ). Let ak−1 ∈ {0,1}k−1, consider the set of all units with

Zij (k−1) = ak−1; write it as Ik−1(ak−1). Further write |Ik−1(ak−1)| = nak−1 for the number
of these units. Denote by Z(k)(Ik−1(ak−1)) the vector of length nak−1 of kth treatment of
the units in Ik−1(ak−1) and by uk(Ik−1(ak−1)) the corresponding vector of kth unmeasured
confounders, uijk’s. For 1 ≤ m ≤ nak−1 , let Znak−1 ,m be the binary vectors of length nak−1

with m ones and nak−1 − m zeros. Then (3) implies

Pr
(
Z(k)(Ik−1(ak−1)

) = z | F,Zk−1,
∑

ij∈Ik−1(ak−1)

Z
(k)
ij = m

)

= exp(γkz�uk(Ik−1(ak−1)))∑
ζ∈Znak−1 ,m

exp(γkζ�uk(Ik−1(ak−1)))
for z ∈ Znak−1 ,m.

(4)

Irrespective of the value of uijk’s, if γk = 0 (�k := exp(γk) = 1), this probability is
(nak−1

m

)−1,
which indicates a randomized assignment of m units to be treated with treatment k among
the units in I(ak−1). The larger the value of �k is the bias in treatment k is further from this
random assignment.

REMARK. Models (1) and (3) are our sensitivity analysis models. The parameters �1 and
�k’s are the sensitivity parameters whose values we choose to constrain the amount of bias
in the treatment assignment due to unmeasured confounding. Further, these models are also
fully nonparametric, in the following sense. If �1 is the bias in treatment 1, so that for any
two units which are similar in their observed covariates, the odds ratio of being exposed to
treatment 1 is at most �1, then there exists θ1 and uij1’s so that (1) holds. For a proof of this
statement, see Rosenbaum (2002), Section 4.2. Similarly, a specification of �k is equivalent
to model (3).

3.3. K tests for the causal hypothesis and their sensitivity to unmeasured confounding.
The causal hypothesis has broad implications. When it is true, an exposure to the treatment,
at any level, increases the outcome. This section reviews various nonparametric test statis-
tics for the implications of the causal hypothesis and, using the treatment assignment model
discussed in Section 3.2, also reviews the methods to assess the sensitivity of these tests to
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unmeasured confounders. Consider ranking of the responses by a preferred choice of rank-
ing/scoring method for the K tests. Let qijk be the nonnegative score of unit ij for test k,
k = 1, . . . ,K . The scores are determined from the observed outcomes (R11,R12, . . . ,RI2).

Fix a = (a1, . . . , aK) ∈ {0,1}K and let ak−1 = (a1, . . . , ak−1), 2 ≤ k ≤ K . For conve-
nience, we further write for k = 1, k − 1 = 0, ak−1 = a0 = ∅. As in our discussion of Sec-
tion 3.2, let Ik−1(ak−1) be the set of units with Zij (k−1) = ak−1. Set I0(a0) = I0(∅) to be
the set of all 2I study units. Then we consider the following form the test statistics for the
paired comparison on treatment 1

T1,a0 =
I∑

i=1

sgn
{(

Z
(1)
i1 − Z

(1)
i2

)
(Ri1 − Ri2)

}
(qi11 + qi21).

The function sgn(x) is −1, 0 or 1 depending on x < 0, x = 0 or x > 0. Our test statistics for
the effect of treatment k ≥ 2 is

Tk,ak−1 = ∑
ij∈Ik−1(ak−1)

Z
(k)
ij qijk.

When k = 1, the test statistics is a pairwise comparison. In particular, if qi1k = qi2k is the
rank of absolute difference |Ri1 − Ri2| in the sorted list of the pairwise absolute differences,
then T1,a0 is twice the Wilcoxon signed rank test statistics. When k ≥ 2, the test is across pairs.

But since it conditions on ak−1, thus in particular fixes Z
(1)
ij of all the units in Ik−1(ak−1), at

most one unit from each pair is considered. Technically, though there is no harm in scoring
ij ∈ Ik−1(ak−1) as qijk by also using outcomes of units i′j ′ /∈ Ik−1(ak−1).

Let Pk,ak−1 be the p-value assessing the extent to which the test statistics Tk,ak−1 provides
evidence for an effect of treatment k. The null hypothesis, H0, is Fisher’s sharp null so that
rij (zijK) = rij (z

′
ijK) for all ij and zijK, z′

ijK ∈ {0,1}K (Fisher (1935)). If T obs
k,ak−1

is the ob-
served value of the test statistics in the data then

(5) Pk,ak−1 = Pr
(
Tk,ak−1 ≥ T obs

k,ak−1

∣∣∣ F,Zk−1,
∑

ij∈Ik−1(ak−1)

Z
(k)
ij ,H0

)
.

The test for the effect of exposure to kth treatment conditions on Zk−1 and
∑

ij∈Ik−1(ak−1)
Z

(k)
ij

as they are irrelevant for the effect (Kalbfleisch (1975); Helland (1995)). Conditioning on H0
does not affect the treatment assignment distributions (1)–(4). If we could know uijk , we
would calculate these p-values from the first principle using the probability distribution (2)
if k = 1 and (4) if k ≥ 2. The same is true if γk = 0. In the former of these two cases,
there is potentially bias from confounding variable, but these variables are known. In the
second scenario, there is no bias from unmeasured confounding and we use the conditional
randomization distribution of the treatment k for calculating the p-values.

However, the unmeasured confounders, uijk’s are just that—unmeasured. Thus, Pk,ak−1

cannot be calculated if γk > 0. We calculate the maximum value of the p-value Pk,ak−1 , after
fixing �k = exp(γk), over the range of uijk ; call this maximum P k,ak−1,�k

. The calculation is
different between P 1,a0,�1 , the paired comparison for treatment 1, and P k,ak−1,�k

for k ≥ 2,
between pair comparisons. Consider the paired comparison. Then

P 1,a0,�1 = Pr

(
I∑

i=1

si(qi11 + qi21) ≥ T obs
1,a0

∣∣∣ F)
,

where si’s are independently distributed taking values 1 with probability �1/(1+�1) and −1
with probability (1 + �1)

−1 if Ri1 �= Ri2 and si ≡ 0 if Ri1 = Ri2 (Rosenbaum (1987, 2002),
Section 4.3).
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The finite sample calculation of P k,ak−1,�k
, k ≥ 2, is cumbersome. Recall Ik−1(ak−1) is

the set of units with Zij (k−1) = ak−1. Let nak−1 = |Ik−1(ak−1)| and m = ∑
ij∈Ik−1(ak−1)

Z
(k)
ij .

Temporarily denote the units in Ik−1(ak−1) by ĩ1, . . . , ĩnak−1 so that the corresponding
k scores are sorted in increasing order, q

ĩ1k
≤ · · · ≤ q

ĩnak−1k
. There are 2nak−1 values of

u(Ik−1(ak−1)) to maximize over. This can immediately be reduced to maximizing over only
ni,ak−1 − 1 of them. These u(Ik−1(ak−1))’s correspond to an l = 1, . . . , ni,ak−1 − 1, so that
u

ĩ1k
= · · · = u

ĩlk
= 0 and u

ĩ(l+1)k
= · · · = u

ĩnak−1k
= 1. Still, the exact evaluation of the

probabilities for these l instances is less than efficient. We consider the large sample approx-
imation bound. It requires the following function:

(6) Ck(a, b, c) =
min(b,c)∑

l=max(0,b+c−a)

(
c

l

)(
a − c

b − l

)
eγkl · 1(a ≥ b, b > 0, c > 0).

This function was discussed in Rosenbaum and Krieger (1990), equation (8). Let �l,ak−1

be a symmetric matrix of size nak−1 defined as follows. The diagonal element of this ma-
trix is �l,ak−1(j̃ , j̃ ) = Ck(nak−1 − 1,m − 1, l){Ck(nak−1,m, l)}−1 if j̃ ≤ l and �l,ak−1(j̃ , j̃ ) =
�kCk(nak−1 − 1,m − 1, l − 1){Ck(nak−1,m, l)}−1 if j̃ ≥ l + 1. The (j̃ , j̃ ′)th off-diagonal el-
ement of this symmetric matrix is Ck(nak−1 − 2,m − 2, l){Ck(nak−1,m, l)}−1 if j̃ ≤ l and
j̃ ′ ≤ l; it is �kCk(nak−1 − 2,m − 2, l − 1){Ck(nak−1,m, l)}−1 if j̃ ≤ l and j̃ ′ ≥ l + 1; and it is
�2

kCk(nak−1 − 2,m − 2, l − 2){Ck(nak−1,m, l)}−1 if j̃ ≥ l + 1 and j̃ ′ ≥ l + 1. Then the mean
of the test statistics for the unmeasured confounder l is

μl,ak−1 =
l∑

j̃=1

Ck(nak−1 − 1,m − 1, l)

Ck(nak−1,m, l)
q
ĩj̃k

+
nak−1∑
j̃=l+1

�k

Ck(nak−1 − 1,m − 1, l − 1)

Ck(nak−1,m, l)
q
ĩj̃k

=
nak−1∑
j̃=1

�l,ak−1(j̃ , j̃ )q
ĩj̃k

,

and the variance is

ν2
l,ak−1

=
nak−1∑
j̃ ,j̃ ′=1

�l,ak−1

(
j̃ , j̃ ′)q

ĩj̃k
q
ĩj̃ ′k − (μl,ak−1)

2.

Then the asymptotically correct value, as I → ∞, of the maximum p-value for the kth test
statistics is (Rosenbaum (2002), Section 4.6, Section 4.7)

P k,ak−1,�k
= 1 − min

l=1,...,nak−1−1
�−1((

T obs
k,ak−1

− μl,ak−1

)
/νl,ak−1

)
.

For each l, the computation of μl,ak−1 is a multiplication of two vectors of size nak−1 .
The computation of νl,ak−1 requires calculation of a quadratic form for a square matrix of
size nak−1 . Thus, when the values of the function Ck(a, b, c) can be queried in constant time,
the calculation of the means and the variances together has a computational complexity of
O(n2

ak−1
). To implement the proposed methods, it would make sense to have the values of

the function computed beforehand and stored, since they do not require the data. Also, the
computational cost of these functions is at most O(m) = O(nak−1) when the coefficients in
the summands of (6), the products of the binomial coefficients, are prestored. Each l only
requires 6 values of this function to define �l,ak−1 . The method for computing the bounds
P k,ak−1,�k

has been implemented in the R package senstrat.
For various methods of sensitivity analysis in observational studies, see Cornfield et al.

(1959), Egleston, Scharfstein and MacKenzie (2009), Fogarty and Small (2016), Fogarty and
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Hasegawa (2019), Gilbert, Bosch and Hudgens (2003), Hosman, Hansen and Holland (2010),
Liu, Kuramoto and Stuart (2013) and Yu and Gastwirth (2005). In particular, see Rosenbaum
(2018) for a comprehensive discussion and faster computation of P k,ak−1,�k

.

4. Evidence factors and pooling evidence. In the lead absorption study of Section 2,
there are K = 5 tests with a = (1,1,1,1,1) or a = (1,1,1,1,0); the last coordinate is irrel-
evant for the design of the tests. The K test statistics are Tk,ak−1 , 1 ≤ k ≤ K . The previous
section showed the computation of the maximum p-values for the these test statistics when
the bias from unmeasured confounders is at most �k . These maximum p-values are denoted
by P k,ak−1,�k

. Considered separately, for significance level α, the test using Tk,ak−1 is sen-
sitive at level �k if P k,ak−1,�k

≥ α. This section establishes that these tests form evidence
factors—they are biased by separate confoundings and they are nearly independent when the
null is true.

PROPOSITION 1. Fix a ∈ {0,1}K . Under H0, when the treatment assignment model is as
(1) and (3), that is, the bias in treatment k is at most �k = exp(γk)

Pr(P k,ak−1,�k
≤ αk ∀k ≥ 1 | F) ≤

K∏
k=1

αk.

PROOF. We first note that P k,ak−1,�k
, which is the maximum value of Pk,ak−1,�k

in (5)

under model, is a function of F , Zk−1 and
∑

ij∈Ik−1(ak−1)
Z

(k)
ij . We write

Pr(P k,ak−1,�k
≤ αk ∀k ≥ 1 | F)

= Pr(P 1,a0,�1 ≤ α1 | F) ×
K∏

k=2

Pr
(
P k,ak−1,�k

≤ αk | P k′,ak′−1,�k′ ≤ αk′ ∀k′ ≤ k − 1,F
)
.

Under H0 and (1), Pr(P 1,a0,�1 ≤ α1 | F) ≤ α1. Further for any k ≥ 2, Pr(P k,ak−1,�k
≤

αk | P k′,ak′−1,�k′ ≤ αk′ ∀k′ ≤ k − 1,F) = E[E{1(P k,ak−1,�k
≤ αk) | P k′,ak′−1,�k′ ≤ αk′ ∀k′ ≤

k − 1,F,Zk−1,
∑

ij∈Ik−1(ak−1)
Z

(k)
ij }]. The outer expectation marginalizes over Zk−1 and∑

ij∈Ik−1(ak−1)
Z

(k)
ij . Under H0 and (3), by (5), the inner expectation is at most αk . Combining

these facts gives the required result. �

THEOREM 1. Fix a ∈ {0,1}K . Let f : [0,1]K → (−∞,∞) be a function which is non-
decreasing in its coordinates, that is, f (x1, . . . , xk, . . . , xK) ≥ f (x1, . . . , x

′
k, . . . , xK) for any

x′
k ≥ xk . Suppose U1, . . . ,UK are K i.i.d. random variables uniformly distributed on [0,1].

Under H0, when the treatment assignment model is as in (1) and (3), for −∞ ≤ x ≤ ∞,

Pr
(
f (P 1,a0,�1, . . . ,P K,aK−1,�K

) ≤ x | F) ≤ Pr
(
f (U1, . . . ,UK) ≤ x

)
.

PROOF. The proof of the theorem follows from Proposition 1, along with Theorem 6.B.4
and Theorem 6.B.16 of Shaked and Shanthikumar (2007). A more general statement, Theo-
rem 2, is proved in the Appendix. �

Theorem 1 shows that the joint distribution of the K p-values is stochastically larger than
the uniform distribution on K dimensional hypercube. Thus, the tests are nearly independent
in the sense of Theorem 1. Thus, in the lead study, the maximum p-values corresponding to
testing the K = 5 pieces of the elaborate theory are nearly independent. The consequence
of Theorem 1 is that usual methods of combining independent p-values can be used to pool
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evidence and report a single number for the evidence against the null that there is no causal
effect. In particular, one can use Fisher’s method (Fisher (1932)) of combining p-values to
calculate P Fisher

K = Pr(χ2
2K > −2

∑K
k=1 logP k,ak−1,�k

). The dependence of P Fisher
K on �k’s is

suppressed here for convenience of notation. Theorem 1 implies that for any α ∈ [0,1], when
the biases are at most �k , under H0, Pr(P Fisher

K ≤ α) ≤ α. There are many such methods.
Becker (1994) is a convenient reference for such methods. Zaykin et al. (2002)s’ method
deserves special mention. Zaykin et al. proposed a variant of the Fisher’s method by combin-
ing independent p-values using a truncated product. The test statistics is a product of those
p-values that are smaller than some truncation point, κ. Hsu, Small and Rosenbaum (2013)
show that the truncated product with κ = 0.20 or κ = 0.10 often has higher power than
Fisher’s method when applied to p-value bounds from a sensitivity analysis. The intuition
is: the individual maximum p-values are not uniform but rather stochastically larger than a
uniform distribution on [0,1], thus conservative.

5. Evidence from a partial conjunction of the tests: A quantification of the extent of
corroboration. The pooled evidence from all the K tests has the benefit of ease of inter-
pretation, yet it only provide information on whether at least one of the K tests support the
alternative hypothesis, not whether a larger fraction support the alternative hypothesis. This
section considers evidence from partial conjunctions of the tests. Throughout this section, we
fix a ∈ {0,1}K .

Fix k, 1 ≤ k ≤ K . The null hypothesis for the effect of treatment k is the hypothe-
sis that treatment k does not change the potential outcome of the units. Written formally
H0,k : Rij (zijK) = Rij (z

′
ijK) for zijK, z′

ijK ∈ {0,1}K if zijK
(k′) = z′

ijK
(k′) for all k′ ≤ k − 1;

the alternative, H1,k , states that treatment k increases the response. The test statistics Tk,ak−1

tests for this null hypothesis. The global null H0 is equivalent to
⋂K

k=1 H0,k . Indeed, in
(5) we can replace H0 by H0,k , all arguments of Section 3.3 and Section 4 remain un-
changed. The pooled evidence as in Section 4 is evidence against intersection of K nulls
H0,ks. A small value of the pooled evidence tells us that we have evidence for at least
one of these (one-sided) alternatives. Consequently, it preserves the familywise error rate:
“Pr(Reject at least one H0,k;k = 1, . . . ,K) ≤ Pr(Reject

⋂K
k=1 H0,k) = Pr(Reject H0).”

The global null H0 is still false if at least one of the hypotheses is false, or at least k of
them are false. Is there evidence that at least k of the K hypotheses are false? Is there evidence
for the causal hypothesis that occupational exposure to lead among parents causes childrens’
lead level to increase based on the k of the K = 5 pieces of the elaborate theory? Write, for
1 ≤ k ≤ K

H
k|K
0 :

K⋃
l=K−k+1

⋂
t∈{t1,...,tl},1≤t1<···<tl≤K

H0,t ,

for the hypothesis that at most k − 1 of the K nulls are false. If H
k|K
0 is false, then at least k

hypotheses are false. Specifically, H
1|K
0 ≡ H0. The evidence against H

k|K
0 , that is, evidence

that at least k of the null hypotheses are false, is found by looking at the largest K − k + 1
p-values. Recall the p-values bounds were denoted by (P 1,a0,�1, . . . ,P K,aK−1,�K

). Let � =
(�1, . . . ,�K). We denote by P (1)a,� ≤ · · · ≤ P (K)a,� , those K values in increasing order.

Consider a function gk : [0,1]K−k+1 → [0,1]. Then the evidence against H
k|K
0 has the form

(7) P
k|K
a,� = gk(P (k)a,�, . . . ,P (K)a,�).

Theorem 2 is a general statement of Proposition 1 and Theorem 1 for any subset of the
tests. The proof of Theorem 2 is given in the Appendix. This theorem will be required to
study the p-values P

k|K
a,� s.
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THEOREM 2. Fix a ∈ {0,1}K . Let K = {k1, . . . , k|K|} ⊆ {1, . . . ,K}. Under
⋂

t∈K H0,t ,
when treatment assignment model is (1) and (3), but only for k ∈ K, then for any nonde-
creasing function fK : [0,1]|K| → (−∞,∞), for |K| i.i.d. uniform [0,1] random variables
U1, . . . ,U|K|, and −∞ < x < ∞,

Pr
(
fK(P k1,ak1−1,�k1

, . . . ,P k|K|,ak|K|−1,�k|K| ) ≤ x | F) ≤ Pr
(
fK(U1, . . . ,U|K|) ≤ x

)
.

The kth test become sensitive for bias level �k when P k,ak−1,�k
≥ α. The test for the partial

conjunction hypothesis, Hk|K
0 , is sensitive at bias level � = (�1, . . . ,�k) if the pooled p-value

is more than α, P
k|K
a,� ≥ α. Using Theorem 2 the following proposition establishes that P

k|K
a,�

in (7) is a p-value for testing H
k|K
0 . Proposition 2 is equivalent to Theorem 1 of Benjamini

and Heller (2008). See also Wang and Owen (2019) for related results.

PROPOSITION 2. Fix a ∈ {0,1}K . Consider model (1) and (3). Let gk : [0,1]K−k+1 →
[0,1] be a coordinatewise nondecreasing function in (7). Suppose, Pr(gk(Uk, . . . ,UK) ≤
α) ≤ α for some α ∈ [0,1], where U1, . . . ,UK are i.i.d uniform random variables on [0,1].
Then, under H

k|K
0

(8) Pr
(
P

k|K
a,� ≤ α | F) ≤ α.

PROOF. Recall, H
k|K
0 : ⋃K

l=K−k+1
⋂

t∈{t1,...,tl},1≤t1<···<tl≤K H0,t . Fix, 1 ≤ t1 < · · · < tl ≤
K for some l ≥ K − k + 1 and set K = {t1, . . . , tK−k+1}. Then

⋂
t∈{t1,...,tl} H0,t implies⋂

t∈K H0,k . By (7), with the fact that gk is coordinatewise nondecreasing and Theorem 2,
respectively, we bound the probability in (8) by

Pr
(
gk(P t1,at1−1,�t1

, . . . , P tK−k+1,atK−k+1−1,�tK−k+1
) ≤ α | F)

≤ Pr
(
gk(U1, . . . ,UK−k+1) ≤ α

) ≤ α. �

PROPOSITION 3. Consider K functions, gk : [0,1]K−k+1 → [0,1], 1 ≤ k ≤ K . Assume
the following, for i.i.d. uniform [0,1] random variables U1, . . . ,UK , for all k = 1, . . . ,K

(a) gk is nondecreasing in its coordinates.
(b) Pr(gk(Uk, . . . ,UK) ≤ α) ≤ α, for some α ∈ [0,1].
(c) gk(xk, xk+1, . . . , xK) ≤ gk+1(xk+1, . . . , xK) for all xk+1, . . . , xK ∈ [0,1] and xk ≤

min{xk+1, . . . , xK}.
Condition (c) is void if k = K . Fix a ∈ {0,1}K . Suppose we reject H

k|K
0 if P

k|K
a,� =

gk(P (k)a,�, . . . ,P (K)a,�) is less than α. Under model (1) and (3), the probability of rejecting

any true null hypothesis among {Hk|K
0 ;k = 1, . . . ,K} is at most α.

PROOF. Since, H
k|K
0 is the hypothesis that at most k − 1 nulls are false, they sat-

isfy H
1|K
0 ⊆ · · · ⊆ H

K|K
0 . Further, condition (c) implies P

1|K
a,� ≤ · · · ≤ P

K|K
a,� . This is be-

cause, by (c), for k = 1, . . . ,K − 1, P
k|K
a,� = gk(P (k)a,�, . . . ,P (K)a,�) ≤ gk+1(P (k+1)a,�, . . . ,

P (K)a,�) = P
k+1|K
a,� .

If there is no true null among {Hk|K
0 ;k = 1, . . . ,K} there is nothing to prove. Otherwise,

let k be the smallest number such that H
k|K
0 is true. Consequently, H

1|K
0 , . . . ,H

k−1|K
0 are

false. Then a false rejection implies rejection of a null hypothesis H
k′|K
0 which is true and

k′ ≥ k with P
k′|K
a,� < α. From the ordering of the p-values noted above, it implies P

k|K
a,� <
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α. Hence the probability of rejecting any true null hypothesis among {Hk|K
0 ;k = 1, . . . ,K}

is bounded by Pr(P k|K
a,� < α | F,H

k|K
0 ). This is at most α by condition (a) and (b) using

Proposition 2. �

By the above proposition, for the proposed method, for testing the set of K hypotheses for
the partial conjunctions of the different pieces of the elaborate theory, the type-I error rate is
at most the nominal level α.

Condition (c) of Proposition 3 is satisfied by Simes’ method of combining p-values (Simes
(1986)). To see this, consider 0 ≤ xk ≤ xk+1 ≤ · · · ≤ xK ≤ 1. Simes’ method uses the function
gk(xk, xk+1, . . . , xK) = minl=1,...,K−k+1 l−1(K −k+1)xk+l−1 in calculating P

k|K
a,� using (7).

Accordingly, gk+1(xk+1, . . . , xK) = minl=1,...,K−k l−1(K − k)xk+l = minl=2,...,K−k+1(l −
1)−1(K − k)xk+l−1. It follows that

gk(xk, xk+1, . . . , xK)

= min
l=1,...,K−k+1

l−1(K − k + 1)xk+l−1

≤ min
l=2,...,K−k+1

l−1(K − k + 1)xk+l−1

= min
l=2,...,K−k+1

{
(l − 1)l−1(K − k + 1)(K − k)−1}

(l − 1)−1(K − k)xk+l−1

≤ min
l=2,...,K−k+1

(l − 1)−1(K − k)xk+l−1

= gk+1(xk+1, . . . , xK).

Although, this condition may not be satisfied generally by any method of combining p-values.
For example, it is not satisfied by Fisher’s method. To see this, let K = 2, x1 = x2 = 0.5.
Then g1(x1, x2) = Pr(χ2

4 > −2 logx1 · x2) ≈ 0.596 > 0.5 = Pr(χ2
2 > −2 logx2) = g2(x2).

The following proposition lists other methods that satisfies the conditions (a)–(c) of Proposi-
tion 3. The first one in this list looks only at the minimum p-value P (k)a,� for testing H

k|K
0 .

This “minimum p-value” method is fairly well known in the statistics literature. The follow-
ing method is Stouffer’s method which is popular in the meta-analysis literature (Stouffer
et al. (1949)). The last method in this list is a modification of ‘additive p-value method’ of
Edgington (1972).

PROPOSITION 4. Conditions (a)–(c) of Proposition 3 are satisfied by each of the follow-
ing specifications of gks:

1. (minimum p-value method) gk(xk, . . . , xK) = 1 − (1 − min{xk, . . . , xK})K−k+1.
2. (sum of z’s) gk(xk, . . . , xK) = 1 − �((�−1(1 − xk) + · · · + �−1(1 − xK))/

√
(K − k +

1)).
3. (modified additive p-value method) With Ak = xk + · · · + xK , gk(xk, . . . , xK) =

(min{ AK−k+1
k

(K−k+1)! ,1})1(Ak≤ck) where ck = (K − k + 1)(1 − (K − k + 2)−1)K−k+1.

The proof of this proposition is given in the Appendix. It might often be useful to weight
the p-values when combining them. However, the validity of the combined p-value for the par-
tial conjunction hypothesis would usually require the weights to be predetermined. Also, the
optimal choice of the weights could depend on the specific problem (Chen (2011), Lancaster
(1961), Lipták (1958), Whitlock (2005), Zaykin (2011)). We do not discuss the various meth-
ods of weighted combinations in this paper.
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The rest of this section considers the sensitivity analysis to unmeasured confounding over
the multiple sensitivity parameters. There are K sensitivity parameters, �1, . . . ,�K . We grad-
ually establish that the proposed sensitivity analysis for testing of partial conjunction of the
hypotheses will control for the familywise error rate. These results ensure the validity of our
analysis, which is presented in Section 7, of the elaborate theory of the causal hypothesis for
the effect of occupational lead exposure among parents on children.

In the sensitivity analysis, one first fixes a range of values of the bias parameters. Let
1 = �11 < · · · < �1S1 be the range of values for the bias parameter �1 for bias in treatment
1; 1 = �k1 < · · · < �kSk

is the range of values for the bias parameter �k for treatment k.
Let J = {� = (�1s1, . . . ,�KsK ) : 1 ≤ s1 ≤ S1; . . . ;1 ≤ sK ≤ SK}. The goal is to find the
least amount of bias that could explain an observed association. We denote by H

k|K
0,� the

conjunction of the hypothesis H
k|K
0 and that the bias is at most �. The statement that—the

bias is at most � = (�1, . . . ,�K)—means the treatment assignment satisfies (1) and (3) with
γk = log�k for some set of unmeasured confounders uijk’s. The following theorem says that

the maximum error of the multiparameter sensitivity analysis using P
k|K
a,� s is bounded by α.

THEOREM 3. Fix k, 1 ≤ k ≤ K . Consider the set of sensitivity parameters J = {� =
(�1s1, . . . ,�KsK ) : 1 ≤ s1 ≤ S1; . . . ;1 ≤ sK ≤ SK}. Assume the conditions of Proposition 2.
Fix a ∈ {0,1}K . Consider the procedure that rejects H

k|K
0,� for � ∈ J if P

k|K
a,� < α. Then the

probability of rejecting any true null hypothesis among the set of hypotheses {Hk|K
0,� ;� ∈ J}

is at most α.

PROOF. Note first that H
k|K
0,� ⊆ H

k|K
0,�′ for �′ � �. This is true since a bias of at most �k

implies bias at most �′
k for �k ≤ �′

k . Let � ∈ J be such that H
k|K
0,�

is true and if � ∈ J and

H
k|K
0,� is true then � � �. � might be empty, in which case there is nothing to prove.

Next, we note that P
k|K
a,� is increasing in �; P

k|K
a,� ≤ P

k|K
a,�′ for � ≤ �′. A rejection of a true

null hypothesis when the corresponding maximum p-value is less than α, implies P
k|K
a,�

< α.

Thus, the probability of rejecting any true null hypothesis is upper bounded by Pr(P k|K
a,�

< α),
which is at most α by Proposition 2. �

The following corollary to the theorem considers a sensitivity analysis with the same bias
parameter for all the factors. The proof of the following two corollaries are given in the
Appendix.

COROLLARY 1. Assume the same conditions as in Theorem 3, except let J = {� =
�l(1, . . . ,1) : 1 = �1 < �2 < · · · < �L}. Fix a ∈ {0,1}K and k, 1 ≤ k ≤ K . Consider the
testing procedure that rejects H

k|K
0,� for � ∈ J if P

k|K
a,� < α. Then the probability of rejecting

any true null hypothesis among the set of hypotheses {Hk|K
0,� ;� ∈ J} is at most α.

This corollary is relevant to the analyses of the lead example revisited in Section 7, which
considers �1 = 1, �2 = 1.2, . . ., �11 = 3, �12 = 4, �13 = 4.8 and �11 = 5; see Table 3. The
final corollary combines the situations of Proposition 3 and Theorem 3.

COROLLARY 2. Assume that conditions (a)–(c) of Proposition 3 are satisfied and assume
the structure of J either as in Theorem 3 or as in Corollary 1. Fix a ∈ {0,1}K . Consider the
procedure that rejects H

k|K
0,� for � ∈ J if P

k|K
a,� < α. Then the probability of rejecting any true

null hypothesis among {Hk|K
0,� ;1 ≤ k ≤ K,� ∈ J} is at most α.
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After rejecting a partial conjunction hypothesis it could be of interest to test the individual
hypotheses, asking, if at least k of the K hypotheses are false, that is, if H

k|K
0 is rejected,

which of the individual hypotheses are false? The following proposition states that, in the
multiparameter sensitivity analysis, the individual hypotheses can be tested, after rejecting
the partial conjunction hypothesis H

k|K
0,� , with a correction factor (K − k).

PROPOSITION 5. Consider the setting of Theorem 3. Consider the testing procedure that
rejects H

k|K
0,� for � ∈ J if P

k|K
a,� < α; and when H

k|K
0,� is rejected, for 1 ≤ t ≤ K the procedure

further rejects the hypothesis H0,t when the bias is at most �t if P t,at−1,�t < α/(K −k). Then
the probability that this testing procedure rejects any true null hypothesis is at most α.

PROOF. By Theorem 3, the probability that the procedure rejects any true hypothesis
in {Hk|K

0,� ;� ∈ J} is at most α. Suppose that a hypothesis H0,t when the bias is at most �t is

falsely rejected. For this to happen, the procedure must first reject the hypothesis H
k|K
0,� . There

are two possibilities. First, H
k|K
0,� is true. In which case the probability of the false rejection is

controlled by Theorem 3.
Otherwise, H

k|K
0,� is false. Then, by definition, at most K − k individual hypotheses are

true and the t th hypothesis is one of them. This also implies that the minimum bias in factor t

is at least �t . Suppose �̄t is the true bias in factor t . Then �̄t < �t . Thus, the rejection due to
P t,at−1,�t < α/(K − k), implies P t,at−1,�̄t

< α/(K − k), as the individual sensitivity analysis
p-values are increasing in the sensitivity parameters. Thus, the probability of rejecting any
true null hypothesis of the K individual hypotheses is bounded by the probability of rejecting
at least one of at most K − k true null hypotheses H0,t and a bias of at most �̄t . This prob-
ability is less than the sum of the probability of rejecting each of them, which is less than
(K − k) × α/(K − k) = α. �

Therefore, in our lead example, where K = 5, under the setting of Corollary 2, if we have
evidence for at least 3 of 5 pieces of the elaborate theory, we can test the 5 individual pieces
of the theory by comparing the separate sensitivity analyses p-values to α/2. By comparison,
a Bonferroni correction would have compared the separate sensitivity analyses p-values to
α/5.

6. Comparison of combining methods.

6.1. Settings under which power of sensitivity analysis is judged. In a sensitivity analysis
to unmeasured confounding, there are some situations in which it is clear what we would like
a procedure to do and some situations in which the desired answer is unclear. An example of
one of the latter situations is when there is large bias from unmeasured confounding and a
treatment effect—we are nearly assured to reject the null for moderate values of the sensitivity
parameter, but such a rejection decision is not unambiguously sought after as we would also
have rejected the null with moderate bias when the null is indeed true. One of the former
situations, in which we are clear about the desired answer of the sensitivity analysis, is when
there is a treatment effect and no bias from unmeasured confounding. In this situation, a
sensitivity analysis with a chosen value of the sensitivity parameter checks whether we are
still able to reject the null, allowing for the level of bias given by the sensitivity parameter. It
is desired then that a method is not fooled by moderate values of the sensitivity parameter and
rejects the null. This situation has been called the “favorable situation” and is the situation
under which power of sensitivity analysis has been evaluated (Rosenbaum (2010); Hansen,
Rosenbaum and Small (2014)).
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One might wonder why we evaluate the power of a sensitivity analysis under a setting in
which there is actually no bias from unmeasured confounding when the sensitivity analysis
is worried about bias. The reason is that, in most observational studies, we are worried about
bias and cannot know that there is no bias, but we would like to have high power to say that
we have evidence for a treatment effect that is insensitive to moderate bias if in fact there is a
treatment effect and no bias.

In Section 6.2, we will analyze the asymptotics of power of sensitivity analysis when
the sample size goes to infinity. There we provide a characterization of the asymptotically
optimal choice of combining method, and find asymptotically optimal combining methods.
In Section 6.3, we compare the combining methods in their power of sensitivity analysis
using a simulation study. Since in practice we only have a finite sample, looking at the power
of sensitivity analysis for finite samples might give us more guidance about the choice of
method for analysis.

6.2. Asymptotically optimal tests. When there is a treatment effect and no unmeasured
confounding, a method is preferred that can withstand larger bias in sensitivity analysis.
When the sample size goes to infinity, this threshold of the sensitivity parameter is quan-
tified as the design sensitivity of the method (Rosenbaum (2004); Rosenbaum (2010); Hsu,
Small and Rosenbaum (2013); Hansen, Rosenbaum and Small (2014); Zhao (2019)). How-
ever, for partial conjunction testing from K evidence factors, design sensitivity for the various
combining methods is a crude criterion of comparison. As we will see in Proposition 6 below,
most combining methods have the same design sensitivity. Instead, we look at the rate of re-
jection for the combining methods in their sensitivity analysis when there is treatment effect
and no unmeasured confounding. This rate of rejection is the Bahadur slope of a sensitivity
analysis (Rosenbaum (2015)). The ratio of the slopes of two competing methods of analy-
sis is called the Bahadur efficiency of sensitivity analysis. A method with larger slope needs
a smaller sample size to make the desired decision with high probability (Bahadur (1967);
Rosenbaum (2015); Ertefaie, Small and Rosenbaum (2018)). In the following, we show that
Fisher’s method and the truncated product method are optimal in this regard. Put differently,
Fisher’s method (Fisher (1932)) and the truncated product method (Zaykin et al. (2002)) have
Bahadur efficiency of sensitivity analysis one, relative to each other, and have efficiency at
least one, relative to any other combining method.

We first introduce some notation to facilitate the discussion. Recall, the partial conjunction
p-values are defined for a set of functions (g1, . . . , gK) where gk : [0,1]K−k+1 → [0,1],
k = 1, . . . ,K , as

P
k|K
a,� = gk(P (k)a,�, . . . ,P (K)a,�).

Here, P (1)a,� ≤ · · · ≤ P (K)a,� are the ordered values of P 1,a0,�1, . . . ,P K,aK−1,�K
. Now

we emphasize the choice of the combining functions by denoting g = (g1, . . . , gK) and
using P

k|K
a,� (g) to denote the above quantity. We use the notation ef = (f1, . . . , fK) to

denote Fisher’s combining functions. That is, the kth function in ef is fk(xk, . . . , xK) =
Pr(χ2

2(K−k+1) > −2
∑K

j=k logxj ). The optimality statement made in this section is an asymp-

totic statement. We must think of P k,ak−1,�k
as function of I , the number of pairs. Conse-

quently, P
k|K
a,� (g) is also a function of I . These dependencies will not be made explicit below.

The asymptotic here is with K fixed and I going to infinity.
Consider the situation where there is an effect, that is, some of the K hypotheses H0,k are

false. Suppose, there is no unmeasured confounding. We noted that the desired result of a
sensitivity analysis, in this situation, is to be able to reject the null. Suppose H0,k is false.
The maximum p-value for the kth factor is P k,ak−1,�k

. For any sample size, as �k → ∞ this
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maximum p-value P k,ak−1,�k
→ 1, a formal statement for the known fact that any treatment

effect, however large, can be explained by large enough bias. The design sensitivity for this
factor is the bias level �̃k such that P k,ak−1,�k

→ 0 for �k < �̃k and P k,ak−1,�k
→ 1 for

�k > �̃k ; the limit here is with I → ∞. For example, in the lead study, each test for the 5
pieces of the elaborate theory has a design sensitivity. When a piece of the theory is true, then
with sufficient sample the test would provide evidence for it as long as, and only when, the
bias level is less than the design sensitivity of the test.

Now we look at the sensitivity analysis for the partial conjunctions of these evidence fac-
tors. The following proposition studies the design sensitivity of this multiparameter sensitiv-
ity analysis, and concludes that most methods are indistinguishable in this regard.

PROPOSITION 6. Take any combining method g. Suppose, gk(0, . . .) = 0 and gk(1, . . . ,

1) = 1 and gk is continuous at {0,1}K−k+1. With the sensitivity parameter � = (�1, . . . ,�K)

for the partial conjunction testing, we have P
k|K
a,� (g) → 1 if �̃l < �l for K − k + 1 many �l .

Also, P
k|K
a,� (g) → 0 if �l < �̃l for at least k many �l and �l �= �̃l for all l.

The following theorem says that, in the class of functions for g considered in Section 5,
Fisher’s method, ef, has the optimal Bahadur slope.

ASSUMPTION. A sequence of numbers c(I ) satisfies c(I ) → ∞ as I → ∞. As I in-
creases to infinity, c(I )−1 logP k,ak−1,�k

→ −rk(�k) almost surely, where rk(�k) ∈ [0,∞],
for k = 1, . . . ,K . We call rk(�k) the slope of test k at �k .

THEOREM 4. Consider any set of K combining functions g = (g1, . . . , gK) such that
each gk is coordinatewise nondecreasing and satisfies Pr(gk(Uk, . . . ,UK) ≤ α) ≤ α, for any
α ∈ [0,1], for i.i.d. uniform(0, 1) random variables U1, . . . ,UK ; k = 1, . . . ,K . We have, for
Fisher’s combining method ef= (f1, . . . , fK),

lim
I→∞ c(I )−1 logP

k′|K
a,� (ef) ≤ lim inf

I→∞ c(I )−1 logP
k|K
a,� (g) for k′ ≤ k

almost surely for k, k′ = 1, . . . ,K .

The assumption talks about the Bahadur slope of sensitivity analysis for the individual
factors. Rosenbaum (2015) provides a detailed discussion on the existence and calculation
of the limit. The limit depends on the choice of the test statistic, the joint distribution of the
potential outcomes for the units, and the distribution of the treatment assignment. The above
assumption and the theorem while general also allow us to consolidate several important
implications.

Following Proposition 6, our interest is in the case when we are able to reject the null
in the sensitivity analysis, when in truth there is an effect. This is the case for a sensitivity
parameter � with some of the bias levels less than the design sensitivity. Let k̃ be the number
of �l with �l < �̃l . Any method in Proposition 6 will reject H

k|K
0 whenever k ≤ k̃, as the

sample size goes to infinity. The rate of rejection is used in Theorem 4 to tell the combining
methods apart. The following proposition finds the slope of Fisher’s method. This slope is
the same as that of the truncated product method with a truncation level κ, and is at least as
large as any other method that satisfies the conditions of Theorem 4.

PROPOSITION 7. Suppose there is no unmeasured confounding and H0 is false. Let the
design sensitivity of the test k be �̃k . Consider a sensitivity analysis with sensitivity parameter
� such that �k �= �̃k for all k. Let k̃ be the number of �l with �l < �̃l . Finally, let r(1)� ≤ · · · ≤
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r(K)� are ordered values of r1(�1), . . . , rK(�K). We have limI→∞ c(I )−1 logP
k|K
a,� (ef) =

−1(k ≤ k̃)
∑K−k+1

K−k̃+1
r(l)� . The truncated product method with κ ∈ (0,1] has the same slope

as Fisher’s method.

6.3. Simulation study: Finite sample power of sensitivity analysis. Section 5 discussed
various choices of the function gk , which is used to define P

k|K
a,� . In this section, we com-

pare these combining methods in their power of sensitivity analysis in finite samples using a
simulation study.

In the simulation setting, we set I = 150 and K = 5. Treatment k has an additive effect
βk and we assume a standard normal variate for the base response in the absence of any
treatment. Thus, when a unit has been assigned treatment (z1, . . . , zK), a binary vector of
length K , the response of that unit is

∑K
k=1 zkβk + N(0,1). We simulate a treatment assign-

ment which is random, thus within each pair, each unit has probability 1/2 of getting the first
treatment. Further, the treatments are simulated to be independent of each other in a way that

Z
(k)
ij

i.i.d∼ Bernoulli(0.6) for 2 ≤ k ≤ 4 and Z
(5)
ij ∼ Bernoulli(0.5). In the Appendix, we present

more simulation results exploring other data generating processes, varying I , using different
number of treatments, using correlated treatment assignments, and by varying the model of
the response.

In the power of sensitivity analysis, we look at the simulated power of of rejecting H
k|K
0

for the various methods when we assume various � values for bias. A method is less sensi-
tive if, in the presence of a treatment effect, it maintains power to detect that treatment effect
at higher values of � (Rosenbaum (2004)). We take a = (1,1,1,1,1) as in the Section 2.
The basic tests use Wilcoxon’s paired sample and two sample statistics. These simulation
results are presented in Table 1, where each sampling situation was replicated 15,000 times,
so that a binomial proportion has a standard error less than

√
0.25/15,000 ≈ 0.004. The

four methods compared in the simulation are Holm–Bonferroni method (henceforth Holm’s),
Simes’ method, the modified additive p-value method (henceforth SumP) and the truncated
product method. Holm’s method ignores the near independence of the separate analyses es-
tablished in Theorem 2. For Holm’s method gk(xk, . . . , xK) = (K − k + 1)xk (Holm (1979)).
Simes’ method and the SumP method satisfy the desired conditions of Proposition 3, Holm’s
method does not. For the truncated product method, we consider the familiar level of trunca-
tion κ = 0.2. This method was further modified to redefine P

k|K
a,� = max{P 1|K

a,� , . . . ,P
k|K
a,� } for

k = 1, . . . ,K , so that it provided monotone p-values, required in Proposition 3. In Table 1, a
simulated power of 0 is replaced by a blank cell for ease of viewing.

Table 1 does not show the results of a näive method that only counts the number of hy-
potheses rejected when each sensitivity analyses is compared to level 0.05. Because, this
method does not provide control of the type-I error for the testing problem. In the null case,
scenario 1, in our simulations, the probability of rejecting H

1|5
0 is 0.224, while the expected

level is 0.05. Holm’s method, whose simulated power is reported in the table, is the modifi-
cation of the näive method that controls the type-I error rate.

There are at least two ways of reading Table 1. First, we look at each of the methods
individually and compare the various scenarios of treatment effect. Note that, the power for
each of the methods decrease as we read the table from right to left, increasing the value of k,
and top to bottom in each scenario, increasing the value of �. The null case of no treatment
effect, scenario 1, is a check that the analysis is performed at level of significance 0.05 and
the methods control the type 1 error. Across the scenarios, moving from the null scenario
to the scenario where each treatment has an effect of size 0.25 (scenario 3), the simulated
power increases for each of the methods. The power of rejecting at least 3 basic hypotheses
out of 5, H

3|5
0 , for � = 1, is 9% for SumP method in Scenario 2 and 32% in Scenario 3. The
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TABLE 1
Simulation results for the power of sensitivity analysis evaluated at level 0.05. Numbers are out of 100. A cell

value is the percentage of times the decision that at least k many H0,ls are false is made, with
�1 = · · · = �5 =: �, out of 15,000 simulations. Empty cells represent the value 0. tP = truncated product method
with truncation level κ = 0.20; sP = the modified additive p-value method in Proposition 4; Si = Simes’ method;

HB = Holm–Bonferroni method

k → 5 4 3 2 1

� ↓ tP sP Si HB tP sP Si HB tP sP Si HB tP sP Si HB tP sP Si HB

Scenario 1: (null case) β1 = · · · = β5 = 0
1 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 5 5 5 5

Scenario 2: β1 = β2 = β3 = 0.25, β4 = β5 = 0
1 1 2 7 9 5 5 40 28 33 32 99 57 99 99
1.2 2 3 1 1 18 12 16 16 90 34 94 93
1.4 1 7 4 7 7 66 16 78 77
1.6 2 2 2 2 38 7 55 55
1.8 1 1 1 1 18 3 35 34
2 7 1 19 19
2.2 3 10 10
2.4 1 4 4
2.6 2 2
2.8 1 1
3

Scenario 3: β1 = β2 = β3 = β4 = β5 = 0.25
1 6 10 2 1 23 32 10 8 59 61 42 39 100 84 100 100
1.2 1 3 8 15 3 3 34 37 23 21 100 64 100 100
1.4 1 3 6 1 1 17 19 12 11 99 43 100 100
1.6 1 2 8 9 6 6 95 26 99 99
1.8 1 4 4 3 3 83 14 96 95
2 2 1 2 2 65 7 89 89
2.2 1 1 1 1 46 3 78 78
2.4 1 1 29 1 65 64
2.6 17 1 50 50
2.8 9 37 36
3 5 26 25
3.6 1 8 7
4 3 3

corresponding numbers are 5% and 10% for the Simes’ method, and 7% and 23% for the
truncated product method.

Consider a second perspective to Table 1. We compare the methods within the various sce-
narios. The power of the SumP method is much smaller in rejecting H

1|5
0 (k = 1) compared

to the other methods. The power, in scenario 2 with � = 1, is 57% for SumP compared to
99% for Holm’s, Simes’ and the truncated product method. Also, in terms of the maximum
bias level of sensitivity analysis a method can tolerate, (which, one can read by looking at
the level of bias where the numbers in the column first vanishes) Holm’s and Simes’ method
are less sensitive when k = 1 for both scenario 2 and 3. The story is somewhat reversed for
larger k. For example, consider k = 3 or H

3|5
0 in scenario 3. The simulated power for � = 1

is highest for SumP (32%) and lowest for Holm’s method (8%) and second lowest for Simes’
method (10%); for the truncated product it is 23%. Further, SumP is less sensitive (sensitive
at � = 2) compared to Simes’, and Holm’s method (sensitive at � = 1.6) and the truncated
product method (sensitive at � = 1.8).
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To summarize, no one method is victorious. But it seems Simes’ or Holm’s method is a
poor choice as they lose their power fast going from right to left of the table. Holm’s method
essentially looks at the individual p-values and does not pool them, thus it often misses that
there is evidence for some fraction of the nulls not being true when each test does not have
sufficient power. While SumP has a much smaller power in providing evidence that at least
one of the nulls is false, it retains a lot of its power when looking for more pieces of evidence
(going right to left). The truncated product method seems be a fair compromise based on
these simulations.

7. Revisiting the lead absorption study. The p-values for the five tests were reported
in Section 2 for the causal hypothesis that occupational exposure to lead increases the lead
level in the blood of the children. If there is no bias due to unmeasured confounding, that is,
assuming �1 = · · · = �5 = 1, these p-values are P1 = 2.69 · 10−5, P2 = 3.81 · 10−3, P3 =
9.59 ·10−2, P4 = 9.44 ·10−3 and P5 = 0.42. The p-values for the tests for partial conjunction
of the hypotheses are given in Table 2. This table reports the results from four methods of
pooling evidence. Qualitatively, the results from the four methods are similar. At α = 0.05, we
have evidence for rejecting at least 3 out of 5 basic nulls. The p-values from Fisher’s method
and truncated product method are much smaller when compared to the other methods.

How sensitive are these tests to unmeasured confounding? The maximum p-values for the
five tests are presented at the top half of Table 3. At significance level 0.05, of the five tests, the
first, second and the fourth test rejects the corresponding hypotheses, assuming no bias from
unmeasured confounding. These tests become sensitive at bias levels �1 = 4.8, �2 = 2.8,
and �4 = 3, respectively. But, this is an incorrect interpretation of the results. The type-I
error is at most 0.05 in each column. But, across the rows the type-I error is not controlled
in this top half of Table 3. If we control for the type-I error using Bonferroni correction, we
would compare the maximum p-values to 0.05/5 = 0.01. Thus, in the top half of the table,
maximum p-values less than 0.01 are highlighted in bold. The first test becomes sensitive at
�1 = 2.6, the second test at �2 = 1.4 and the fourth test is sensitive even at �4 = 1.2.

The bottom half of Table 3 presents a sensitivity analysis for the partial conjunctions of
the tests. By Corollary 2, this part of the table provides an adaptive analysis, in the sense
that the total type-I error is at most 0.05. Learning from the results of the simulation study
in Section 6 we chose the truncated product method with truncation level 0.20 in computing
the partial conjunction p-values. When the bias is at most � = 1.6 we have evidence to reject

TABLE 2
The p-values, under the assumption of no unmeasured confounding,
for testing the hypothesis that at least k many H0,ls are false in the
lead absorption study. K = 5 and �1 = · · · = �5 = 1. SumP = the

modified additive p-value method in Proposition 4

Method

Truncated
Product

k Simes’ SumP Fisher’s (κ = 0.20)

5 0.420036 0.420036 0.420036 1
4 0.191846 0.133107 0.169691 0.193477
3 0.028322 0.024172 0.015168 0.017172
2 0.015242 0.003268 0.000739 0.000795
1 0.000348 0.000346 1.41 · 10−6 1.57 · 10−6
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TABLE 3
Evidence factors analysis of the lead absorption study. (1) The first half of the table: Maximum p-values

corresponding to the five tests with �k = �, 1 ≤ k ≤ 5. We dropped the subscript ak−1 from Pk,ak−1,� used in
Section 3.3–Section 6. (2) The second half of the table: Maximum p-values for testing at least k of H0,ls are false

when the bias is at most �1 = · · · = �5 = � (using the truncated product method; truncation level κ = 0.20).
The maximum p-values less than 0.05 in the lower half, and less than 0.05/5 = 0.01 in the upper half are

highlighted in bold

� ↓ P 5,� P 4,� P 3,� P 2,� P 1,�

1 0.420036 0.009441 0.095923 0.00381 0.00007
1.2 0.470253 0.013512 0.128619 0.006773 0.000263
1.4 0.512934 0.017814 0.161157 0.010557 0.000688
1.6 0.549884 0.022219 0.192914 0.015089 0.001425
1.8 0.582428 0.02672 0.223553 0.020268 0.002525
2 0.611224 0.031257 0.252909 0.025994 0.004007
2.2 0.636902 0.035769 0.280914 0.032177 0.005867
2.4 0.659949 0.040228 0.307565 0.038738 0.008085
2.6 0.680756 0.044615 0.332889 0.045607 0.010632
2.8 0.699635 0.048916 0.356935 0.052721 0.013472
3 0.716841 0.053123 0.379764 0.060029 0.016569
4 0.784073 0.072632 0.477894 0.098608 0.034756
4.8 0.822295 0.08707 0.541509 0.130282 0.051015
5 0.830333 0.090589 0.555832 0.138152 0.055166

� ↓ P
5|5
� P

4|5
� P

3|5
� P

2|5
� P

1|5
�

1 1 0.193477 0.017172 0.000795 0.000002
1.2 1 0.24579 0.027005 0.001965 0.000012
1.4 1 0.297852 0.037873 0.003864 0.000052
1.6 1 0.348663 0.049288 0.006544 0.00016
1.8 1 1 0.149304 0.026378 0.001114
2 1 1 0.161532 0.033879 0.002024
2.2 1 1 0.17212 0.041805 0.003305
2.4 1 1 0.181238 0.050012 0.004979
2.6 1 1 0.191565 0.05838 0.007052
2.8 1 1 0.205224 0.066817 0.009511
3 1 1 0.219255 0.075254 0.012336
4 1 1 0.293328 0.116672 0.030932
4.8 1 1 0.354142 0.148886 0.049496
5 1 1 0.369251 0.156729 0.054454

at least 3 of the 5 basic nulls. When the bias is at most � = 2 we no longer have evidence to
reject 3, but the evidence allows us to reject 2 of the 5 basic nulls.

We can also look at the individual tests after observing that at � = 1.6 we reject at least 3
out of the 5 nulls, by comparing them to 0.05/2 = 0.025; see Proposition 5. Three basic nulls,
the first, second and fourth, are rejected by this procedure with maximum p-values 0.001425,
0.015089 and 0.022219, respectively.

8. Conclusion. Study of a causal hypothesis is enhanced when directed tests are con-
sidered for the various predictions of the hypothesis. Of course, these testable predictions of
a causal hypothesis would be based on acknowledged theories at the time when the causal
hypothesis is being investigated. Inherent to these predictions are requirements of simplicity
and falsifiability.
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On the other spectrum of etiology, a statistical analysis of a causal or etiologic hypothesis
should focus on comprehensive reports that help explicate the step from an observed data to
corroboration of the hypothesis. With this aim, this paper presents a method of analysis of an
elaborate theory of predictions of a causal hypothesis. We consider such elaborate theories
whose falsifiable statements can be set up as alternative hypotheses in statistical hypothesis
testing problems. An etiologic hypothesis can still be false because some other prediction of
the hypothesis is not true. But the focus of this paper has been to assess the extent to which the
observed data supports the predictions in the elaborate theory. Our analysis suggests decom-
posing the tests of the elaborate theory into nearly independent factors. Partial conjunctions
of these tests tell us about fractions of the elaborate theory. As the tests might themselves be
biased by unmeasured confounding, we also consider a multiparameter sensitivity analysis.
We are thus able to quantify the bias levels at which the observed data supports a certain
fraction of the elaborate theory. When the tools of this analysis are appropriately chosen, the
overall type-I error of this analysis is controlled without having to pay a price for having
considered multiple tests, thus, without losing any power.

APPENDIX

PROOF OF THEOREM 2. Let K = {k1, . . . , k|K|} ⊆ {1, . . . ,K} and U1, . . . ,U|K| be |K|
i.i.d. random variables uniform on [0,1]. Since P k1,ak1−1,�k1

is the maximum of P k1,ak1−1

over the unmeasured confounders uijk1 ’s. For α1 ∈ [0,1], we have

Pr(P k1,ak1−1,�k1
≤ α1 | F,H0,k1)

≤ Pr(Pk1,ak1−1 ≤ α1 | F,H0,k1)

≤ E

[
Pr

(
Pk1,ak1−1 ≤ α1

∣∣∣ Zk1−1,
∑

ij∈Ik1−1(ak1−1)

Z
(k1)
ij ,F,H0,k1

)]

≤ E[α1] = Pr(U1 ≤ α1).

The expectation in the previous calculation is over the joint distribution of Zk1−1,∑
ij∈Ik1−1(ak1−1)

Z
(k1)
ij conditional on F , H0,k1 . We borrow the notation of Shaked and Shan-

thikumar (2007). Then U1 ≤st P k1,ak1−1,�k1
.

Now let 2 ≤ l ≤ |K|. Note that for any kl the maximum p-value P kl,akl−1,�kl
is a function

of Zl and F . Hence, for αl ∈ [0,1],
Pr(P kl,akl−1,�kl

≤ αl | P k1,ak1−1,�k1
, . . . , P kl−1,akl−1−1,�kl−1

,F,H0,kl
)

≤ Pr(Pkl,akl−1,�kl
≤ αl | P k1,ak1−1,�k1

, . . . ,P kl−1,akl−1−1,�kl−1
,F,H0,kl

)

≤ E

[
Pr

(
Pkl,akl−1,�kl

≤ αl

∣∣∣ Zl−1,
∑

ij∈Ikl−1(akl−1)

Z
(kl)
ij ,P k1,ak1−1,�k1

,

. . . ,P kl−1,akl−1−1,�kl−1
,F,H0,kl

)]
≤ E

[
Pr

(
Pkl,akl−1,�kl

≤ αl

∣∣∣ Zl−1,
∑

ij∈Ikl−1(akl−1)

Z
(kl)
ij ,F,H0,kl

) ∣∣∣
P k1,ak1−1,�k1

, . . . ,P kl−1,akl−1−1,�kl−1
,F,H0,kl

]
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≤ E[αl | P k1,ak1−1,�k1
, . . . ,P kl−1,akl−1−1,�kl−1

,F,H0,kl
]

≤ αl = Pr(Ul ≤ αl).

Thus under
⋂

t∈K H0,t and conditional on F ,

Ul ≤st [P kl,akl−1,�kl
≤ αl | P k1,ak1−1,�k1

, . . . ,P kl−1,akl−1−1,�kl−1
]

for all 2 ≤ l ≤ |K|.
Also, (U1, . . . ,U|K|) is a conditionally increasing in sequence (CIS) (see equation (6.B.11)

of Shaked and Shanthikumar (2007)). Thus, by Theorem 6.B.4 of Shaked and Shanthiku-
mar (2007) under

⋂
t∈K H0,t and conditional on F , (U1, . . . ,U|K|) ≤st (P k1,ak1−1,�k1

, . . . ,

P k|K|,ak|K|−1,�k|K| ).

Let U ⊂ R
|K| be called an upper set if, x ∈ U and y � x implies y ∈ U . Then

we have for any upper set of the |K| dimensional Euclidean space Pr((U1, . . . ,U|K|) ∈
U) ≤ Pr((P k1,ak1−1,�k1

, . . . ,P k|K|,ak|K|−1,�k|K| ) ∈ U). Now to complete the proof set U =
{(x1, . . . , x|K|) : fK(x1, . . . , x|K|) > x} and note that U is an upper set since fK is coordinate-
wise nondecreasing. �

PROOF OF PROPOSITION 4. 1. Consider first the “minimum p-value” method. Condition
(a) is obviously true. Next, note that Pr(min{Uk, . . . ,UK} ≤ p) = 1 − (1 − p)K−k+1. Thus
condition (b) is satisfied. Since, Pr(gk(Uk, . . . ,UK) ≤ α) = Pr(min{Uk, . . . ,UK} ≤ 1 − (1 −
α)1/(K−k+1)) = 1 − (1 − (1 − (1 − α)1/(K−k+1)))(K−k+1) = α. Finally, to check condition
(c) fix xk ≤ xk+1 ≤ · · · ≤ xK . To check gk(xk, . . . , xK) ≤ gk+1(xk+1, . . . , xK), it is enough
to show that (1 − xk)

K−k − (1 − xk+1)
K−k+1 ≥ 0. This is true since, (1 − xk)

K−k − (1 −
xk+1)

K−k+1 ≥ (1 − xk+1)
K−k − (1 − xk+1)

K−k+1 = (1 − xk+1)
K−kxk+1 ≥ 0.

2. Proofs of condition (a) and (b) are straightforward for Stouffer’s method. To check con-
dition (c), consider xk ≤ xk+1 ≤ · · · ≤ xK . Then, after some rearranging gk(xk, . . . , xK) ≤
gk+1(xk+1, . . . , xK) is equivalent to the inequality, (

√
(K − k + 1)/(K − k) − 1)(�−1(1 −

xk+1) + · · · + �−1(1 − xK)) ≤ �−1(1 − xk). Since xk ≤ min{xk+1, . . . , xK}, it is enough
to check that this condition holds with xk = 1 − �((�−1(1 − xk+1) + · · · + �−1(1 −
xK))/(K − k)). Then the check reduces to checking (

√
(K − k + 1)/(K − k) − 1)(�−1(1 −

xk+1) + · · · + �−1(1 − xK)) ≤ (�−1(1 − xk+1) + · · · + �−1(1 − xK))/(K − k), or
(
√

(K − k + 1)/(K − k) − 1) ≤ 1/(K − k), or
√

1 + 1/(K − k) ≤ 1 + 1/(K − k); which
is true.

3. Finally, consider the “modified additive p-value” method. Condition (a) is obvious since
gk is an increasing function of Ak = xk + · · · + xK . For condition (b) note from Edgington
(1972), Pr(Uk +· · ·+UK ≤ x) ≤ xK−k+1/(K −k+1)!. Let F(x) := Pr(Uk +· · ·+UK ≤ x).
Then F(x) ≤ min{1, xK−k+1/(K − k + 1)!} ≤ min{1, xK−k+1/(K − k + 1)!}1(x≤ck). Thus,
Pr(min{1, (Uk + · · · + UK)K−k+1/(K − k + 1)!}1((Uk+···+UK)≤ck) ≤ α) ≤ Pr(F (Uk + · · · +
UK) ≤ α) ≤ α.

For condition (c) fix xk ≤ xk+1 ≤ · · · ≤ xK . If Ak+1 = xk+1 + · · · + xK > ck+1,
gk+1(xk+1, . . . , xK) = 1, thus the condition is satisfied. Suppose now xk+1 + · · · + xK ≤
ck+1. Clearly, xk ≤ (xk+1 + · · · + xK)/(K − k) = Ak+1/(K − k); thus gk(xk, . . . , xK) ≤
gk(Ak+1/(K − k), xk+1, . . . , xK). Hence, it is enough to show that gk(Ak+1/(K − k), xk+1,

. . . , xK) ≤ gk+1(xk+1, . . . , xK). Note that, Ak+1/(K − k) + xk+1 + · · · + xK = Ak+1(K −
k + 1)/(K − k). Since, Ak+1 ≤ ck+1, we get, Ak+1(K − k + 1)/(K − k) ≤ ck . Hence, by
simple reduction gk(Ak+1/(K − k), xk+1, . . . , xK) ≤ gk+1(xk+1, . . . , xK) is equivalent to
AK−k+1

k+1 (K − k + 1)K−k/(K − k)K−k+1 ≤ AK−k
k+1 ; which simplifies to Ak+1 ≤ (K − k)(1 −

1/(K − k + 1))K−k = ck+1. Thus proving condition (c). �
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SKETCH OF PROOF OF COROLLARY 1. The proof is in line of the proof of Theorem 3
given in the main text. The main observation is that the thresholding level of the sensitivity
parameter, �̄ exists even when J is not a grid but a one dimensional hyperplane J = {� =
�l(1, . . . ,1) : 1 = �1 < · · · < �L}. Thus, probability of rejecting any of the true null among

{Hk|K
0,� ;� ∈ J} is at most Pr(P k|K

a,�̄
≤ α) ≤ α. �

SKETCH OF PROOF OF COROLLARY 2. If there is no null among {Hk|K
0 ;1 ≤ k ≤ K}

is true, there is nothing to prove. Otherwise, suppose H
t |K
0 is the first one in the list

which is true. Recall that, under conditions (a)–(c) of Proposition 3, which is assumed in
this corollary, for any � we have P

1|K
a,� ≤ · · · ≤ P

K|K
a,� . Thus, rejection of any true null in

{Hk|K
0,� ;� ∈ J,1 ≤ k ≤ K} will mean that a true null in {Ht |K

0,� ;� ∈ J} is rejected. Define �̄

as in the proof of Theorem 3 or Corollary 1. Since P
t |K
a,� is nondecreasing in �, rejecting any

true null among {Hk|K
0,� ;� ∈ J,1 ≤ k ≤ K} means rejecting H

t |K
0,�̄

, which has probability at
most α. �

PROOF OF PROPOSITION 6. Recall that P
k|K
a,� (g) = gk(P (k)a,�, . . . ,P (K)a,�). Consider

the first case, �l > �̃l for at most k many l. It follows from the definition of design sensitivity
that the largest K − k + 1 p-values converge to 1. Thus, P

k|K
a,� (g) → gk(1, . . . ,1) = 1. In the

second case, �l < �̃l for k or more l’s. By the definition of design sensitivity P (l)a,� → 0 for

l = 1, . . . , k and the rest goes to 1. Thus P
k|K
a,� (g) → gk(0, . . .) = 0. �

PROOF OF THEOREM 4. By the assumption, c(I )−1 logP k,ak−1,�k
→ −rk(�k) almost

surely for k = 1, . . . ,K . Let r(1)� ≤ · · · ≤ r(K)� be the ordered values of r1(�1), . . . ,

rK(�K). As I increases to infinity c(I )−1 logP (l)a,� → −r(K−l+1)� for 1 ≤ l ≤ K almost
surely.

Fix k. From the above, we note that c(I )−1 ∑K
l=k logP (l),al−1,� → −∑K−k+1

l=1 r(l)� almost
surely. Choose a < −∑K−k+1

l=1 r(l)� < b. We allow a = −∞ and −∞ < −∞. Consequently,
for any ε > 0 there exists Iε such that for I ≥ Iε , as c(I ) → ∞ when I increases to infinity,
with probability at least 1 − ε we get a < c(I)−1 ∑K

j=k logP (j)a,� < b. For I ≥ Iε with
probability at least 1 − ε

Pr
(
χ2

2(K−k+1) > −2c(I )a
) ≤ Pr

(
χ2

2(K−k+1) > −2
K∑

j=k

logP (j)a,�

)

≤ Pr
(
χ2

2(K−k+1) > −2c(I )b
)
.

Noting that, limn→∞ n−1 log Pr(χ2
d > nx) = −x/2 for any x ≥ 0 and d > 0 we get

a ≤ lim inf
I→∞ c(I )−1 log Pr

(
χ2

2(K−k+1) > −2
K∑

l=k

logP (l)a,�

)

≤ lim sup
I→∞

c(I )−1 log Pr

(
χ2

2(K−k+1) > −2
K∑

l=k

logP (l)a,�

)
≤ b.
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This is true for arbitrary ε > 0 and arbitrary numbers a and b such that a < −∑K−k+1
l=1 r(l)� <

b. Thus we conclude that

lim
I→∞ c(I )−1 logP

k|K
a,� (ef) = lim

I→∞ c(I )−1 log Pr

(
χ2

2(K−k+1) > −2
K∑

l=k

logP (l)a,�

)

= −
K−k+1∑

l=1

r(l)�.

This limit might be negative infinity.
Now consider logP

k|K
a,� (g) = loggk(P (k)a,�, . . . ,P (K)a,�) for any g. From the assumption

of the theorem, we have Pr(gk(Uk, . . . ,UK) ≤ α) ≤ α, for any α ∈ [0,1]. Thus for any 0 ≤
xk ≤ · · · ≤ xK

g(xk, . . . , xK) ≥ Pr
(
gk(U1, . . . ,UK−k+1) ≤ gk(xk, . . . , xK)

)
.

By the nondecreasing property of the function gk ,

Pr
(
gk(U1, . . . ,UK−k+1) ≤ gk(xk, . . . , xK)

) ≥ Pr(U1 ≤ xk, . . . ,UK ≤ xK)

=
K−k+1∏

l=1

Pr(Ul ≤ xj+k−1) =
K∏

l=k

xl.

Thus, g(xk, . . . , xK) ≥ ∏K
l=k xl . This implies

logP
k|K
a,� (g) ≥

K∑
l=k

logP (l)a,�.

We get by dividing by c(I ) and taking the limit, for 1 ≤ k′ ≤ k,

lim inf
I→∞ c(I )−1 logP

k|K
a,� (g)

≥ lim
I→∞ c(I )−1

K∑
l=k

logP (l)a,�

= −
K−k+1∑

l=1

r(l)� ≥ −
K−k′+1∑

l=1

r(l)� = lim
I→∞ c(I )−1 logP

k′|K
a,� (ef).

�

PROOF OF PROPOSITION 7. Following the proof of Theorem 4, we have for any
k = 1, . . . ,K , limI→∞ c(I )−1 logP

k|K
a,� = −∑K−k+1

l=1 r(l)� . Consider k such that �k > �̃k .
Since, �̃k is the design sensitivity of the kth factor, by definition of the design sensitivity,
P k,ak−1,�k

→ 1. Further, since c(I ) → ∞ as I → ∞, it implies rk(�k) = 0. The number of l

with �l < �̃l is called k̃. Hence, in the ordered values r(1)� ≤ · · · ≤ r(K)� the first K − k̃ are
zero. Thus the proof of the first part follows.

To prove of the final statement, consider the truncated product method. Let κ be the
truncation level. For a number a let aκ be the truncated version defined as a if a < κ,
otherwise it is 1. The combining method is gk(xk, . . . , xK) = Pr(

∏K
l=k Uκ

l <
∏K

l=k xκ

l ),
where U1, . . . ,UK are i.i.d. uniform(0, 1) random variables. For 0 ≤ x1, . . . , xK ≤ 1, let
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y = −c(I )−12 log
∏K

l=k xκ

l . We write with I → ∞ in mind (and K fixed)

gk(xk, . . . , xK)

= Pr

(
K∏

l=k

Uκ

l < exp
(−c(I )y/2

))

= Pr

(
−2

K∑
l=k

logUκ

l > c(I )y

)

= ∑
K⊆{k,...,K}

Pr

(
−2

K∑
l=k

logUκ

l > c(I )y | Uj ≥ κ,∀j ∈ Kc

)
Pr

(
Uj ≥ κ,∀j ∈ Kc)

= ∑
K⊆{k,...,K}

Pr
(
−2

∑
l∈K

logUl > c(I)y | Uj ≥ κ,∀j ∈ Kc

)
Pr

(
Uj ≥ κ,∀j ∈ Kc)

= ∑
K⊆{k,...,K}

Pr
(
−2

∑
l∈K

logUl > c(I)y

)
Pr

(
Uj ≥ κ,∀j ∈ Kc)

= ∑
K⊆{k,...,K},K �=∅

Pr
(
χ2

2|K| > c(I)y
) × (1 −κ)|Kc|

= ∑
K⊆{k,...,K},K �=∅

exp
{−c(I )y/2 + o

(
c(I )

)} × (1 −κ)|Kc|

= exp
{−c(I )y/2 + o

(
c(I )

)} ∑
K⊆{k,...,K},K �=∅

(1 −κ)|Kc|

= exp
{−c(I )y/2 + o

(
c(I )

)} × {
1 − (1 −κ)K−k+1}

.

We used the fact that limn→∞ n−1 log Pr(χ2
d > nx) = −x/2 for any x ≥ 0 and d > 0. Using

the truncated product method (call it tp),

P
k|K
a,� (tp) = exp

{
− log

K∏
l=k

P
κ

(l)a,� + o
(
c(I )

)} × {
1 − (1 −κ)K−k+1}

.

Thus, c(I )−1 logP
k|K
a,� (tp) = {−∑K

l=k c(I )−1 logP
κ

(l)a,� + o(1)} + o(1). Finally, for large I ,

P
κ

(l)a,� = P (l)a,� for all l since P (l)a,� converges to 0 or 1, in this setting. We get, from our

proof of Theorem 4, c(I )−1 logP
k|K
a,� (tp) − c(I )−1 logP

k|K
a,� (ef) = o(1). This completes the

proof. �

MORE SIMULATION RESULTS

The following discussion supplements the simulation results of Section 6.3. The simulation
settings are different from the ones reported in Section 6.3 in many ways. (1) We consider
different sample sizes, I = 200 and I = 500. (2) K = 4. (3) We allow correlated treatments:
for each unit, we simulated latent variables x1, . . . , x4 from a multivariate normal with zero
mean vector, with variance of the variables 1 and correlation of any two of them is 0.2; from
that we defined zk = 1 when xk < 0.1. (4) The outcomes are simulated from χ2

2 /2+∑
k zkθk .

(5) We consider two treatment effect scenarios: Scenario 1: θk = 0 for all k and Scenario 2:
βk ∼ Unif[0.1,0.2].
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TABLE 4
Simulation results for the power of sensitivity analysis evaluated at level 0.05. Numbers are out of 100. A cell

value is the percentage of times the decision that at least k many H0,ls are false is made, with
�1 = · · · = �4 =: �, out of 10,000 simulations. Empty cells represent the value 0. tP = truncated product method
with truncation level κ = 0.20; sP = the modified additive p-value method in Proposition 4; Si = Simes’ method;

HB = Holm–Bonferroni method. I = 200, K = 4

k → 4 3 2 1

� ↓ tP sP Si HB tP sP Si HB tP sP Si HB tP sP Si HB

Scenario 1: (null case) β1 = · · · = β4 = 0
1 0 0 0 0 0 0 0 0 0 1 0 0 5 5 5 5

Scenario 2: βk ∼ Unif(0.1,0.2) for all k

1 4 4 4 3 29 34 20 18 74 68 62 60 99 92 97 97
1.2 1 1 1 0 10 15 6 5 43 43 31 29 89 74 82 80
1.4 3 5 1 1 18 20 11 10 64 49 53 52
1.6 1 1 5 8 3 3 34 25 28 27
1.8 1 2 1 1 14 10 13 13
2 5 3 6 6
2.5 1 1
3

The results of the simulation are reported in Table 4 for sample size I = 200 and in Table 5
for sample size I = 500. The comparative simulation results between the methods are similar
to ones reported in Section 6.3. We make a few more observations based on these simulation
results. In scenario 1, as the theory suggests, the family wise error rate is controlled at level
0.05 (5%). Increasing the sample size increases the power of the tests. Although, increasing
the sample size does not increase the level of sensitivity to unmeasured confounding. As the
sample size increases to infinity, there is a threshold of �, called the design sensitivity of the
test, below that threshold the power goes to 1 and above it the power goes to 0.

TABLE 5
Simulation results for the power of sensitivity analysis evaluated at level 0.05. Numbers are out of 100. A cell

value is the percentage of times the decision that at least k many H0,ls are false is made, with
�1 = · · · = �4 =: �, out of 10,000 simulations. Empty cells represent the value 0. tP = truncated product method
with truncation level κ = 0.20; sP = the modified additive p-value method in Proposition 4; Si = Simes’ method;

HB = Holm–Bonferroni method. I = 500, K = 4

k → 4 3 2 1

� ↓ tP sP Si HB tP sP Si HB tP sP Si HB tP sP Si HB

Scenario 1: (null case) β1 = · · · = β4 = 0
1 0 0 0 0 0 0 0 0 0 1 0 0 5 5 5 5

Scenario 2: βk ∼ Unif(0.1,0.2) for all k

1 24 24 24 22 72 70 64 61 98 92 95 94 100 99 100 100
1.2 7 7 7 5 36 39 27 26 83 73 74 72 100 94 99 99
1.4 1 1 1 1 12 15 7 7 48 42 39 37 93 74 89 88
1.6 2 4 1 1 16 16 12 12 64 42 60 58
1.8 3 4 2 2 28 14 28 28
2 8 3 10 10
2.5
3
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