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LIMIT DISTRIBUTION THEORY FOR BLOCK ESTIMATORS
IN MULTIPLE ISOTONIC REGRESSION
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We study limit distributions for the tuning-free max–min block estima-
tor originally proposed in (Fokianos, Leucht and Neumann (2017)) in the
problem of multiple isotonic regression, under both fixed lattice design and
random design settings. We show that, if the regression function f0 admits
vanishing derivatives up to order αk along the kth dimension (k = 1, . . . , d)
at a fixed point x0 ∈ (0,1)d , and the errors have variance σ 2, then the max–
min block estimator f̂n satisfies

(
n∗/σ 2) 1

2+∑
k∈D∗ α

−1
k

(
f̂n(x0) − f0(x0)

)
�C(f0, x0).

Here, D∗, n∗, depending on {αk} and the design points, are the set of all
“effective dimensions” and the size of “effective samples” that drive the
asymptotic limiting distribution, respectively. If furthermore either {αk} are
relative primes to each other or all mixed derivatives of f0 of certain crit-
ical order vanish at x0, then the limiting distribution can be represented as
C(f0, x0) =d K(f0, x0) · Dα , where K(f0, x0) is a constant depending on
the local structure of the regression function f0 at x0, and Dα is a nonstan-
dard limiting distribution generalizing the well-known Chernoff distribution
in univariate problems. The above limit theorem is also shown to be opti-
mal both in terms of the local rate of convergence and the dependence on
the unknown regression function whenever such dependence is explicit (i.e.,
K(f0, x0)), for the full range of {αk} in a local asymptotic minimax sense.

There are two interesting features in our local theory. First, the max–min
block estimator automatically adapts to the local smoothness and the intrinsic
dimension of the isotonic regression function at the optimal rate. Second, the
optimally adaptive local rates are in general not the same in fixed lattice and
random designs. In fact, the local rate in the fixed lattice design case is no
slower than that in the random design case, and can be much faster when the
local smoothness levels of the isotonic regression function or the sizes of the
lattice differ substantially along different dimensions.

1. Introduction.

1.1. Overview. Limit distribution theory for shape-restricted estimators is of fundamen-
tal importance in the area of statistical inference under shape restrictions. There are two main
types of limit distribution theories so far available in the literature.

One line starts from the seminal contribution of [57], who showed that the limiting distri-
bution of the maximum likelihood estimator (MLE) of a decreasing density on [0,∞) (known
as Grenander estimator) at a fixed point is given by the following: Suppose the true density f0
is decreasing on [0,∞) and continuously differentiable around x0 ∈ (0,∞) with f ′

0(x0) < 0.
Then the MLE f̂n satisfies

n1/3(
f̂n(x0) − f0(x0)

)
�

∣∣f ′
0(x0)f0(x0)/2

∣∣1/3
Z.(1.1)
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Here, Z, known as the Chernoff distribution, is the slope at zero of the least concave majo-
rant of the process t �→ B(t) − t2, where B is the standard Brownian motion starting at 0.
Later on, [31] gives an exact analytic characterization of the limiting Chernoff distribution,
whereas [30] suggests the “switching relation” that quickly becomes popular as a powerful
proof technique in univariate problems with monotonicity shape restrictions. The limiting
Chernoff distribution arises in a number of different problems with univariate monotonicity
shape restrictions, for example, (1) estimation of a regression function [16, 62, 64], (2) es-
timation of a monotone failure rate [45, 46, 58], (3) estimation in interval censoring models
[32, 39], etc. We refer the reader to the recent survey [27] for extensive references in this
direction.

Another line of limit theorems for shape restricted estimators is pioneered by [37, 38], who
studied limit distribution for the MLE of a convex decreasing density on [0,∞) and the least
squares estimator (LSE) of a convex regression function at a fixed point. In the density setting,
if the true density f0 is convex decreasing on [0,∞) and twice continuously differentiable in
a neighborhood of x0 with f ′′

0 (x0) > 0, [38] showed that the MLE f̂n satisfies

n2/5(
f̂n(x0) − f0(x0)

)
�

(
f ′′

0 (x0)f
2
0 (x0)/24

)1/5
H

′′(0),(1.2)

where H is a particular upper invelope of an integrated two-sided Brownian motion plus t4; cf.
[37]. The process H appears in several other problems involving univariate convexity shape
restrictions, for example, for the MLE of a log-concave density on R (cf. [9]), for the MLE
of a convex bathtub-shaped hazard function (cf. [49]), for the Rényi-divergence estimators
for s-concave densities on R (cf. [43]), etc. A generalized version of H appears in [10] in the
context of k-monotone density estimation.

Limit theorems of types (1.1)–(1.2) are not only interesting from a statistical point of
view, but are of theoretical value in their own rights. Indeed, these limit theorems and the
proof techniques used therein serve as fundamental building blocks for numerous further
developments, including likelihood based inferential methods [11, 13, 23, 36], bootstrap in
nonstandard problems [53, 60], estimation and inference with dependence structures [2, 4, 5],
limit theory for global loss functions and functionals [25, 26, 33, 47, 54], limit distribution
theory for shape-restricted estimators of discrete functions [6–8, 48], limit distribution theory
for split points in decision trees [12, 17], cube-root asymptotics in more general settings [4,
52], just to name a few.

Despite the wealth of limit distribution theories for univariate shape-restricted problems,
much less is known in multidimensional settings. The only exception we are aware of is the
recent work [3], in which asymptotic distributions for isotonized estimators are derived in
the settings of multidimensional discrete isotonic regression and probability mass function
estimation. The goal of this paper is to study limit theorems for shape-restricted estimators,
with a focus on the problem of multiple isotonic regression in a continuous setting.

Here is our setup. Consider the regression model

Yi = f0(Xi) + ξi, i = 1, . . . , n,(1.3)

where X1, . . . ,Xn are design points which can be either fixed or random, and ξ1, . . . , ξn

are random errors. By multiple isotonic regression, we assume that the regression function
f0 ∈ Fd , where Fd denotes the class of coordinate-wise nondecreasing functions on [0,1]d :

Fd ≡ {
f : [0,1]d →R, f (x) ≤ f (y) if xi ≤ yi for all i = 1, . . . , d

}
.

In addition to the aforementioned importance of having a limit distribution theory for shape
restricted estimators beyond univariate settings, there is one further consideration for such a
theory, related to one distinct attractive feature of shape-constrained models: the MLE/LSE
often exists and automatically adapts to certain structures of the underlying truth without the
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need of any tuning. This automatic adaptation property has attracted a lot of recent attention,
mostly from a global perspective. Indeed, adaptation of shape constrained MLEs/LSEs to
piecewise simple structures in global metrics is confirmed extensively in various univariate
models; cf. [14, 19, 40, 51, 65]. Typically, these tuning-free estimators adapt to piecewise
constant/linear signals in univariate models with monotonicity/convexity shape constraints.
For the multiple isotonic regression model (1.3), global adaptation of the LSE to piecewise
constant signals is proved for the bivariate case d = 2 in [20], and for the case of general
dimensions in [42]. See also [41]. Despite these very positive adaptation results, there remain
two important drawbacks for considering global adaptation of the natural LSE in the multiple
isotonic regression model:

(D1) The isotonic regression function is of global smoothness level 1 or ∞, so the LSE
can adapt, if at all possible, to limited global structures. In fact, piecewise constancy is the
only known global structure to which the LSE is confirmed to adapt, cf. [20, 42].

(D2) The LSE does not adapt at the optimal rate to constant signals when d ≥ 3: it is
shown in [42] that the LSE adapts to the global constant structures at a strictly sub-minimax
rate n−1/d (up to logarithmic factors) in L2-type losses.

The reasons for these limitations, however, lie in very different places: the drawback in (D1)
is due to the perspective of considering global adaptation, while the drawback in (D2) is due
to the use of the LSE.

In view of these limitations, in this paper we consider the local behavior of the following
alternative max–min block estimator originally proposed by [28]: for any x0 ∈ [0,1]d ,

f̂n(x0) ≡ max
xu≤x0

min
xv≥x0[xu,xv]∩{Xi}�=∅

∑
i:xu≤Xi≤xv

Yi

|{i : xu ≤ Xi ≤ xv}|

= max
xu≤x0

min
xv≥x0[xu,xv]∩{Xi}�=∅

Ȳ |[xu,xv]

= max
xu≤x0

min
xv≥x0[xu,xv]∩{Xi}�=∅

Ȳ |[xu,1]∩[0,xv].

(1.4)

Here, [xu, xv] = {x ∈ R
d : xu ≤ x ≤ xv}, Ȳ |A is the average of {Yi : Xi ∈ A} as in (1.6), and

for any x, y ∈ R
d , x ≤ y if and only if xj ≤ yj for all 1 ≤ j ≤ d , and the similar definition

applies to ≥. It is easy to see that f̂n ∈ Fd and is tuning-free. The computation for (1.4) is
exact and requires at most O(n2) for each design point, so the total computational complexity
is at most O(n3), independent of the dimension d .

The max–min block estimator (1.4) above is closely related to the LSE studied in [42], in
the sense that the LSE also admits a max–min representation [59], but with the rectangles
[xu,1], [0, xv] replaced by all upper sets and lower sets containing x0. Since the upper and
lower sets reduce to intervals in dimension one, (1.4) coincides with the standard univariate
isotonic LSE in d = 1. The representation through upper and lower sets is also observed in a
related monotone density estimation problem in d = 2; cf. [56].

The max–min representation gives one heuristic explanation for the difficulty of the LSE
in the sense of (D2): the class of upper and lower sets is too large for the partial sum process
to remain tight in the large sample limit as soon as d ≥ 3 (cf., [24]). On the other hand, using
the smaller class of rectangles as in (1.4), it is shown in [22] that (1.4) does adapt to constant
signals at a nearly optimal parametric rate in all dimensions, as opposed to the slower rate
n−1/d for the LSE; cf. (D2). For the same reason, it is hard to expect a limiting distribution
theory for the LSE.

The main contribution of this paper is to develop a limit distribution theory for the max–
min block estimator (1.4). We show that, the limiting distribution of f̂n, depending on the
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local structure of f0 at x0, takes the following general form: Suppose f0 admits vanishing
derivatives up to order αk along the kth dimension (k = 1, . . . , d) at a fixed point x0 ∈ (0,1)d ,
and the errors {ξi} have variance σ 2. Then

(
n∗/σ 2) 1

2+∑
k∈D∗ α

−1
k

(
f̂n(x0) − f0(x0)

)
� C(f0, x0).(1.5)

Here, D∗ and n∗, determined by the value of (α1, . . . , αd) and the design of {Xi}, are the
set of all “effective dimensions” and the size of “effective samples” that drive the asymptotic
limiting distribution, the exact meaning of which will be clarified in Section 2. The depen-
dence of the limiting distribution C(f0, x0) on the local properties of f0 at x0 cannot be in
general expressed by a simple factor, due to possible existence of nonzero mixed derivatives
of critical order j = (j1, . . . , jd) satisfying

∑d
k=1 jk/αk = 1 and ‖j‖0 > 1. However, in sit-

uations where {αk} are relative primes to each other (so that any such index vector j must
have ‖j‖0 = 1), or all mixed derivatives of f0 of the critical order vanish at x0, the limiting
distribution C(f0, x0) can be represented in a similar form as in (1.1)–(1.2), namely

C(f0, x0) =d K(f0, x0) ·Dα.

Here, K(f0, x0) is a constant depending on the local structure of the regression function f0
at x0 to be specified in Section 2, and Dα is the nonstandard limiting distribution playing the
similar role as the Chernoff distribution Z in univariate problems.

One important and canonical setting for (1.5) is the following: Suppose (i) f0 depends only
through its first s coordinates (0 ≤ s ≤ d), and all nontrivial first-order partial derivatives of
f0 are nonvanishing at x0: ∂kf0(x0) > 0,1 ≤ k ≤ s, and (ii) the design points {Xi} are either
of a balanced fixed lattice design (see Section 2 for a precise definition) or a random design
with uniform distribution on [0,1]d . In this setting, (1.5) reduces to

(
n/σ 2) 1

2+s
(
f̂n(x0) − f0(x0)

)
�

{
s∏

k=1

(
∂kf0(x0)/2

)} 1
2+s

·D(1, . . . ,1︸ ︷︷ ︸
s many 1’s

,∞,...,∞).

When s = d = 1, we recover the familiar limit distribution theory for univariate isotonic least
squares estimator.

The limit theory in (1.5), as we will see in Section 2, implies that the max–min block esti-
mator (1.4) automatically adapts to the local smoothness structures and the intrinsic dimen-
sion of f0. The local adaptation is in similar spirit to [9, 21, 64], who showed that univariate
shape-restricted MLEs/LSEs adapt to local smoothness of the truth. It should be emphasized
here that local smoothness to which adaptation occurs specifically refers to the number of
vanishing (partial) derivatives. A distinct feature for the max–min block estimator (1.4) here

is that both (i) the local rate of convergence, that is, n

1

2+∑
k∈D∗ α

−1
k∗ , and (ii) the dependence on

{f0, x0} whenever explicit, that is, the constant K(f0, x0) in the limit distribution, are optimal
in a local asymptotic minimax sense for all possible local smoothness levels. So in this sense
the limit distribution theory for the max–min block estimator (1.4) in the form of (1.5) is the
best one can hope for in the problem of multiple isotonic regression.

Another interesting consequence of (1.5) and its local asymptotic minimaxity is that the
optimal local rates of convergence are in general not the same in fixed lattice and random
designs. In fact, the local rate in the fixed lattice design case is no slower than that in the
random design case, and can be much faster when (a) the local smoothness levels of the
isotonic regression function, or (b) the sizes of the lattice, differ substantially along different
dimensions. The reason for the discrepancy in the local rates can be attributed to the fact
that significant imbalance in (a) or (b) screens out dimensions with “low regularity” that do
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not contribute to the asymptotics in the fixed lattice design case. Here dimensions with “low
regularity,” loosely speaking, refer to those with low smoothness levels in (a), and to those
with sparsely spaced design points in (b).

The proof of the limit theory (1.5) in general dimensions is significantly more challenging
than its univariate counterpart. Indeed, thanks to the “switching relation” put forward by
[30], it is now well understood that limiting distributions for various univariate monotonicity
shape constrained estimators can be obtained via the argmax continuous mapping theory,
upon a proper one-sided localization (typically) on the order of a cube-root rate (cf. [63]).
In contrast, in the multiple isotonic regression problem we consider here, the key step in the
proof is a two-sided localization technique, where the stochastic orders of the length of all
sides of the rectangle over which the max–min block estimator (1.4) takes average, need to
be estimated sharply both from above and below. These estimates bring about substantial
technical challenges as opposed to univariate problems.

Finally, we mention the work of [22], in which global risk bounds in Lq norms for the
max–min block estimator (1.4) are thoroughly studied. Risk bounds in global metrics, as
already mentioned in (D1), have a limited scope of structures for adaptation due to the strict
global smoothness of the isotonic functions. Our local limit distribution theory (1.5) can
therefore also be viewed as a further step in understanding the adaptive behavior of the max–
min block estimator (1.4) to a rich class of structures that are exhibited only through local
properties of the isotonic regression function.

The rest of the paper is organized as follows. In Section 2, we present the limit distribution
theory (1.5) for the max–min block estimator (1.4), and discuss its many implications. In
Section 3, we establish a local asymptotic minimax lower bound, showing the information-
theoretic optimality of the limit theorem (1.5). Due to the highly technical nature of the
proofs, Section 4 is devoted to an outline of the main ideas in the proofs. Section 5 concludes
the paper with a brief discussion. All the proof details are presented in Section 6 and the
Supplementary Material [44].

1.2. Notation. For a real-valued measurable function f defined on (X ,A,P ),
‖f ‖Lp(P ) ≡ ‖f ‖P,p ≡ (P |f |p)1/p denotes the usual Lp-norm under P , and ‖f ‖∞ ≡
supx∈X |f (x)|. Let (F,‖·‖) be a subset of the normed space of real functions f : X →R. For
ε > 0, let N (ε,F,‖·‖) be the ε-covering number of F ; see page 83 of [63] for more details.

For the regression model (1.3), for any A ⊂ [0,1]d , define

Ȳ |A ≡ 1

nA

∑
i:Xi∈A

Yi, f̄0|A ≡ 1

nA

∑
i:Xi∈A

f0(Xi), ξ̄ |A ≡ 1

nA

∑
i:Xi∈A

ξi(1.6)

where nA ≡ |{i : Xi ∈ A}|.
For two real numbers a, b, a ∨ b ≡ max{a, b} and a ∧ b ≡ min{a, b}. For x ∈R

d , let ‖x‖p

denote its p-norm (0 ≤ p ≤ ∞). For any x, y ∈ R
d , let [x, y] ≡ ∏d

k=1[xk ∧ yk, xk ∨ yk],
xy ≡ (xkyk)

d
k=1, and x ∧ (∨)y ≡ (xk ∧ (∨)yk)

d
k=1. For �1, �2 ∈ {1, . . . , d}, we let 1[�1:�2] ∈ R

d

be such that (1[�1:�2])k = 1�1≤k≤�2 , and 1 ≡ 1[1:d] for simplicity. Cx will denote a generic
finite constant that depends only on a generic quantity x, whose numeric value may change
from line to line unless otherwise specified. a �x b and a �x b mean a ≤ Cxb and a ≥
Cxb, respectively, and a �x b means a �x b and a �x b [a � b means a ≤ Cb for some
absolute constant C]. OP and oP denote the usual big and small O notation in probability. � is
reserved for weak convergence. For two integers k1 > k2, we interpret

∑k2
k=k1

≡ 0,
∏k2

k=k1
≡ 1.

We also interpret (∞)−1 ≡ 0,0/0 ≡ 0.
For f : Rd → R, and k ∈ {1, . . . , d}, αk ∈ Z≥1, let ∂

αk

k f (x) ≡ dαk

dx
αk
k

f (x). For a multi-

index j = (j1, . . . , jd) ∈ Z
d≥0, let ∂j ≡ ∂

j1
1 · · · ∂jd

d , and j ! ≡ j1! · · · jd ! and xj ≡ x
j1
1 . . . x

jd

d
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for x ∈ R
d . For α = (α1, . . . , αd) ∈ Z

d≥1 in Assumption A below, that is, for some 0 ≤
s ≤ d , 1 ≤ α1, . . . , αs < ∞ = αs+1 = · · · = αd , let J (α) (resp., J∗(α)) be the set of all
j = (j1, . . . , jd) ∈ Z

d≥0 satisfying 0 <
∑s

k=1 jk/αk ≤ 1 (resp.,
∑s

k=1 jk/αk = 1) and jk = 0
for s + 1 ≤ k ≤ d , and let J0(α) ≡ J (α) ∪ {0}. We often write J = J (α), J∗ = J∗(α) and
J0 = J0(α) if no confusion arises. The set J,J∗ will play a crucial role below in determining
j ’s for which ∂jf0(x0) can be nonzero under Assumption A; cf. Lemma 1.

2. Limit distribution theory.

2.1. Assumptions. We first state the assumptions on the local smoothness of f0 at the
point of interest x0 ∈ (0,1)d and the intrinsic dimension of f0.

ASSUMPTION A. f0 is coordinate-wise nondecreasing (i.e., f0 ∈ Fd ), and is α-smooth
at x0 with intrinsic dimension s, α = (α1, . . . , αd) with integers 1 ≤ α1, . . . , αs < ∞ =
αs+1 = · · · = αd , 0 ≤ s ≤ d , in the sense that ∂

jk

k f0(x0) = 0 for 1 ≤ jk ≤ αk − 1 and
∂

αk

k f0(x0) �= 0, 1 ≤ k ≤ s, and in rectangles of the form
⋂d

k=1{|(x − x0)k| ≤ L0 · (rn)k},
rn = (ω

1/α1
n , . . . ,ω

1/αd
n ) with ωn > 0, the Taylor expansion of f0 satisfies for all L0 > 0,

lim
ωn↘0

ω−1
n sup

x∈[0,1]d ,
|(x−x0)k |≤L0·(rn)k,

1≤k≤d

∣∣∣∣f0(x) − ∑
j∈J0

∂jf0(x0)

j ! (x − x0)
j

∣∣∣∣ = 0.

Assumption A concerns the local smoothness of f0 at a fixed-point x0, allowing for po-
tentially different local smoothness levels along different coordinates {1, . . . , s}. The Taylor
expansion, which includes all terms of order ωn or larger in a small hyperrectangle, inter-
estingly features different rates ω

1/αk
n in different dimensions in the x-domain. This is quite

different from the Taylor expansion in Euclidean balls which includes all terms with ‖j‖1 ≤ α

for a certain smoothness index α. Our expansion has the prescribed convergence rate if f0 is
locally Cmax1≤k≤s αk at x0 and depends only through its first s coordinates. Note that Assump-
tion A is interesting mostly from a local perspective. Indeed, if this condition holds for all
x0 ∈ (0,1)d with some 1 ≤ α1, . . . , αs < ∞, then we must have α1 = · · · = αs = 1.

Now we consider a few examples that satisfy Assumption A with different values of α’s. In
the following examples, we consider d = 2 and x0 = (1/2,1/2) unless otherwise specified.

EXAMPLE 1. Let f
(1)
0 (x1, x2) = x1 + x2. Then α1 = α2 = 1.

EXAMPLE 2. Let f
(2)
0 (x1, x2) = x1. Then s = 1 with α1 = 1, α2 = ∞.

EXAMPLE 3. Let f
(3)
0 (x1, x2) = (x1 + x2)10≤x1≤1/4 + 8x1 · 11/4<x1<3/4 + 8(x1 + x2) ×

13/4≤x1≤1. Then s = 1 with α1 = 1, α2 = ∞ for x0 ∈ (1/4,3/4) × (0,1), and s = 2 with
α1 = α2 = 1 for x0 ∈ (0,1/4) × (0,1) ∪ (3/4,1) × (0,1).

Example 2 is a canonical example for which the regression function is globally of intrinsic
dimension 1, while in Example 3 the function can be locally of intrinsic dimension 1 in the
strip (1/4,3/4) × (0,1).

EXAMPLE 4. Let f
(4)
0 (x1, x2) = (x1 − 1/2)3 + (x2 − 1/2)3. Then α1 = 3, α2 = 3.
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EXAMPLE 5. Let f
(5)
0 (x1, x2) = (x1 − 1/2)3 + (x1 − 1/2)2(x2 − 1/2) + (x1 − 1/2) ×

(x2 − 1/2)2 + (x2 − 1/2)3. Then α1 = 3, α2 = 3.

Example 4 and Example 5 both share the same local smoothness level α = (3,3), but
are quite different in that for f

(4)
0 all mixed derivatives vanish, while for f

(5)
0 certain mixed

derivatives do no vanish: ∂jf
(5)
0 (x0) �= 0 for j ∈ {(1,2), (2,1)}.

LEMMA 1. The following statements hold:

1. Suppose Assumption A holds. αk must be odd and ∂
αk

k f0(x0) > 0 for 1 ≤ k ≤ s.
2. Suppose Assumption A holds. Any mixed derivative of the form ∂jf0(x0), 0 �= j ∈ J \

J∗, vanishes at x0, and thus for some ε1 > 0, L1 > 0 depending only on f0, x0,

sup
0<ωn≤ε1

sup
x∈[0,1]d ,

|(x−x0)k |≤(rn)k,
1≤k≤d

ω−1
n

∣∣f0(x) − f0(x0)
∣∣ ≤ L1.

3. Let J1 ≡ {j ∈ J∗ : ‖j‖0 > 1}. Then J1 = ∅ if and only if |J∗| = s, if and only if {αk}sk=1
is a set of relative primes, that is, the greatest common divisor of {αk1, αk2} is 1 for all 1 ≤
k1 < k2 ≤ s.

4. When α is such that J1 �= ∅, there exists some f ∈ Fd for which f satisfies Assump-
tion A with α, but ∂jf (x0) �= 0 for some j ∈ J1.

PROOF. See Appendix B in [44]. �

Lemma 1 reveals an important and unique feature of multiple isotonic functions compared
with smooth functions: If f0 satisfies the “marginal smoothness” Assumption A with α =
(α1, . . . , αd) at x0, then the only possible nonzero mixed derivatives ∂jf0(x0) in the Taylor
expansion must have critical order j ∈ J∗ satisfying

∑s
k=1 jk/αk = 1. Such possible nonzero

mixed derivatives cannot be ruled out under Assumption A as soon as certain pair of {αk} has
a nontrivial common divisor. The importance of such a feature lies in the fact that these mixed
derivatives {∂jf0(x0) : j ∈ J∗} contribute to the convergence rate of the same order as the
marginal derivatives {∂αk

k f0(x0)}, in rectangles of the form
⋂d

k=1{|(x − x0)k| ≤ L0 · (rn)k},
rn = (ω

1/α1
n , . . . ,ω

1/αd
n ) with ωn ↘ 0. Hence adaptation of the max–min estimator (1.4) to

marginal smoothness levels—which only uses marginal information in rectangles—becomes
possible.

Next we state the assumptions on the design of the covariates.

ASSUMPTION B. The design points {Xi}ni=1 satisfy either of the following:

• (Fixed design) {Xi}’s follow a β-fixed lattice design: there exist some {β1, . . . , βd} ⊂
(0,1) with

∑d
k=1 βk = 1 such that x0 ∈ {Xi}ni=1 = ∏d

k=1{x1,k, . . . , xnk,k}, where {x1,k, . . . ,

xnk,k} are equally spaced in [0,1] (i.e., |xj,k − xj+1,k| = 1/nk for all j = 1, . . . , nk − 1) and
nk = �nβk�.

• (Random design) {Xi}’s follow i.i.d. random design with law P independent of {ξi}’s.
The Lebesgue density π of P is bounded away from 0 and ∞ on [0,1]d and is continuous
over an open set containing the region {((x0)1, . . . , (x0)s, xs+1, . . . , xd) : 0 ≤ xk ≤ 1, s + 1 ≤
k ≤ d}.

In the fixed lattice design case, we use βk to control the size of the lattice in dimension k.
A balanced fixed lattice design refers to the special case with βk = 1/d for all k = 1, . . . , d .
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In the random design case, the continuity of the density π is imposed over the region where
asymptotics take place.

We choose without loss of generality the index {1, . . . , d} such that

0 ≤ α1β1 ≤ · · · ≤ αsβs ≤ · · · ≤ αdβd ≤ ∞.(2.1)

This requirement facilitates the statement of our main Theorem 1 below. Otherwise, we may
find some permutation τ of {1, . . . , d} for which ατ(1)βτ(1) ≤ · · · ≤ ατ(d)βτ(d), and consider
the coordinate-wise nondecreasing function f̃0(x1, . . . , . . . , xd) ≡ f0(xτ(1), . . . , xτ(d)). Such
a reparametrization is compatible with Assumption A since αkβk = ∞ if and only if αk = ∞.

2.2. Limit distribution theory. Let x0 ∈ (0,1)d . Let π(x) ≡ 1 in the β-fixed lattice design
case and π(x) ≡ dP/(dx1 · · ·dxd) be the Lebesgue density of P in the random design case.
For any 0 ≤ s ≤ d , and h1, h2 ∈ R

d≥0 such that (h1)k ≤ (x0)k, (h2)k ≤ (1−x0)k for all s +1 ≤
k ≤ d , let

I[s+1:d]
π (h1, h2) ≡

∫
(x0−h1)k≤xk≤(x0+h2)k

s+1≤k≤d

π
(
(x0)1, . . . , (x0)s, xs+1, . . . , xd

)
dxs+1 · · ·dxd,

and I[d+1:d]
π ≡ π(x0). The integration above is carried out over the region {(x0 − h1)k ≤

xk ≤ (x0 + h2)k : s + 1 ≤ k ≤ d} ⊂ [0,1]d−s with the integrand given by the Lebesgue den-
sity π of the design distribution P . In the β-fixed lattice design case, I[s+1:d]

π (h1, h2) =∏d
k=s+1(h1 + h2)k .
Let κ∗, n∗ be defined in Table 1 below. Let the limit process C(f0, x0) be defined by

(2.2)

C(f0, x0)

≡ sup
h1>0,

(h1)k≤(x0)k,
s+1≤k≤d

inf
h2>0,

(h2)k≤(1−x0)k,
s+1≤k≤d

[
G(h1, h2)∏s

k=κ∗((h1)k + (h2)k)I[s+1:d]
π (h1, h2)

+ f̄0(h1, h2;x0)

]
,

where G is a centered Gaussian process defined on R
d≥0 ×R

d≥0 with the following covariance
structure: for any (h1, h2), (h

′
1, h

′
2),

Cov
(
G(h1, h2),G

(
h′

1, h
′
2
))

=
s∏

k=κ∗

(
(h1)k ∧ (

h′
1
)
k + (h2)k ∧ (

h′
2
)
k

) · I[s+1:d]
π

(
h1 ∧ h′

1, h2 ∧ h′
2
)

and

f̄0(h1, h2;x0) ≡ ∑
j∈J∗,

jk=0,1≤k≤κ∗−1

∂jf0(x0)

(j + 1)!
s∏

k=κ∗

(h2)
jk+1
k − (−h1)

jk+1
k

(h2)k + (h1)k
.

TABLE 1
Definitions of κ∗, n∗

β-fixed lattice design Random design

κ∗ arg max1≤�≤d

∑d
k=� βk

2+∑s
k=� α−1

k

1

n∗ n
∑d

k=κ∗ βk n
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Furthermore, let Dα be defined by

Dα ≡ sup
h1>0,

(h1)k≤(x0)k,
s+1≤k≤d

inf
h2>0,

(h2)k≤(1−x0)k,
s+1≤k≤d

[
G(h1, h2)∏s

k=κ∗((h1)k + (h2)k)I[s+1:d]
π (h1, h2)

+
s∑

k=κ∗

(h2)
αk+1
k − (h1)

αk+1
k

(h2)k + (h1)k

]
.

(2.3)

With these definitions, we are now in position to state the main result of this paper.

THEOREM 1. Suppose Assumptions A–B hold, and the errors {ξi} are i.i.d. mean-zero
with finite variance Eξ2

1 = σ 2 < ∞ (and are independent of {Xi} in the random design case).
With κ∗, n∗ defined in Table 1, we have the following local rate of convergence:

(
n∗/σ 2) 1

2+∑s
k=κ∗ α

−1
k

(
f̂n(x0) − f0(x0)

) =OP(1).

If κ∗ is uniquely defined, with C(f0, x0) defined in (2.2), the following limit theory holds:

(
n∗/σ 2) 1

2+∑s
k=κ∗ α

−1
k

(
f̂n(x0) − f0(x0)

)
� C(f0, x0).

Furthermore, if either {αk} is a set of relative primes or all mixed derivatives of f0 vanish at
x0 in J∗, then

C(f0, x0) =d K(f0, x0) ·Dα,

where K(f0, x0) = {∏s
k=κ∗(∂

αk

k f0(x0)/(αk + 1)!)1/αk }
1

2+∑s
k=κ∗ α

−1
k and Dα is defined in (2.3).

PROOF. See Section 6. �

REMARK 1. A few technical remarks:

1. In the β-fixed lattice design case where π(x) = 1 is used to calculate I[s+1:d]
π (h1, h2),

the covariance structure of G is simpler:

Cov
(
G(h1, h2),G

(
h′

1, h
′
2
)) =

d∏
k=κ∗

(
(h1)k ∧ (

h′
1
)
k + (h2)k ∧ (

h′
2
)
k

)
,(2.4)

and can be represented as follows: let d∗ ≡ d − κ∗ + 1, and let {Bi : i ∈ {1,2}d∗} be indepen-
dent Brownian sheets on R

d∗≥0. For any h1, h2 ∈ R
d≥0, let Ḡ(h1, h2) ≡ ∑

i∈{1,2}d∗ Bi ((hi1)κ∗,

. . . , (hid∗ )d). Then G(·, ·) =d Ḡ(·, ·). A similar representation holds in the random design
case for s = d .

2. C(f0, x0) has at least a sub-Gaussian tail, and hence admits moments of all orders (cf.
Lemma 4).

3. When either {αk} is a set of relative primes or all mixed derivatives of f0 vanish at x0 in
J∗, the following self-similarity property of the process G(·, ·) is essential for the representa-
tion C(f0, x0) =d K(f0, x0) ·Dα : for γ ∈ R

d≥0 with γ1 = · · · = γκ∗−1 = 0, γκ∗ . . . , γs, γs+1 =
· · · = γd = 1, G(γ ·, γ ·) =d (

∏s
k=κ∗ γk)

1/2 ·G(·, ·).
4. Dα (and C(f0, x0)) can be represented by sup-inf over the summation of a stochastic

term plus a nonrandom drift term, similar to that of the Chernoff distribution; see (2.6) below
for an explicit derivation of D1 being the Chernoff distribution.
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5. Although implicit in notation, Dα can depend on x0 through I[s+1:d]
π . However, such

dependence disappears under (i) the fixed lattice design and (ii) the random design with
uniform distribution. For general distributions P in the random design case, if s = d and
C(f0, x0) =d K(f0, x0) · Dα , the dependence of x0 within Dα can be assimilated into the
constant. In fact, by taking σ to be σ/

√
π(x0) in (6.17), we have

(
π(x0)n/σ 2) 1

2+∑d
k=1 α

−1
k

(
f̂n(x0) − f0(x0)

)
� K(f0, x0) sup

h1>0
inf

h2>0

[
G(h1, h2)∏d

k=1((h1)k + (h2)k)
+

d∏
k=1

(h2)
αk+1
k − (h1)

αk+1
k

(h2)k + (h1)k

]
,

where G is the Gaussian process with the covariance structure (2.4).

Theorem 1 shows that the max–min block estimator (1.4) adapts to the local smooth-
ness levels {αk} and the intrinsic dimension s of the isotonic regression function f0, in both
the fixed lattice and random design settings. One particularly interesting consequence of the
above theorem is that the adaptive local rates for the fixed lattice and random design cases
are in general not the same. Indeed,

ωfixed
n ≡ n

−
∑d

k=κ∗ βk

2+∑s
k=κ∗ α

−1
k = n

−max1≤�≤d

∑d
k=�

βk

2+∑s
k=�

α
−1
k ,

ωrandom
n ≡ n

− 1

2+∑s
k=1 α

−1
k = n

−
∑d

k=1 βk

2+∑s
k=1 α

−1
k ,

so that ωfixed
n ≤ ωrandom

n , that is, the local rate in the fixed lattice design case is no slower than
that in the random design case.

The following proposition gives an equivalent definition of κ∗ in the fixed lattice design
case in Theorem 1.

PROPOSITION 1. The following are equivalent under (2.1):

(1) The maximizer of � �→
∑d

k=� βk

2+∑s
k=� α−1

k

is unique and κ∗ = arg max1≤�≤d

∑d
k=� βk

2+∑s
k=� α−1

k

.

(2) For any 1 ≤ � ≤ d ,
α−1

�

2+∑s
k=� α−1

k

�= β�∑d
k=� βk

, and κ∗ = min{1 ≤ � ≤ d : α−1
�

2+∑s
k=� α−1

k

<

β�∑d
k=� βk

} = min{1 ≤ � ≤ d : (ω(�)
n )1/α�nβ� > 1}. Here, ω

(�)
n ≡ n

−
∑d

k=�
βk

2+∑s
k=�

α
−1
k is the unique solu-

tion of the fixed-point equation

ω = 1√∏d
k=�(ω

1/αknβk )
.(2.5)

PROOF. By algebra, for any relationship ∼ in the set {<,≤,>,≥}, we have

(i)
∑d

k=� βk

2+∑s
k=� α−1

k

∼
∑d

k=�+1 βk

2+∑s
k=�+1 α−1

k

if and only if (ii) β�∑d
k=� βk

∼ α−1
�

2+∑s
k=� α−1

k

if and only if

(iii) 2 ∼ ∑d
k=� βk(

1
α�β�

− 1
αkβk

) ≡ ψ(�). Under the ordering (2.1), � �→ ψ(�) is nonincreasing,
so the statement (1) holds if and only if ∼ is taken as < for all 1 ≤ � ≤ κ∗ − 1 and as > for
κ∗ ≤ � ≤ d in (i), if and only if the same ∼ are taken in (ii), if and only if the statement (2)
holds. �

Proposition 1(2) shows that κ∗ can be determined by a sequence of bias-variance equations
in (2.5). This gives an interesting interpretation of the quantities κ∗, n∗ in the β-fixed lattice
design case:
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• κ∗ (≤ (s + 1) ∧ d) can be viewed as a “critical dimension” in the sense that samples in
dimensions {1, . . . κ∗ −1} do not contribute in the asymptotics of f̂n. In other words, the limit
distribution of f̂n is fully driven by samples in dimensions {κ∗, . . . , d}. The uniqueness of the

maximizer of � �→
∑d

k=� βk

2+∑s
k=� α−1

k

gives a well-defined κ∗ and, therefore, the limiting distribution

C(f0, x0).

• n∗ = n
∑d

k=κ∗ βk can be viewed as the “effective sample size” over the effective dimen-
sions {κ∗, . . . , d} for the asymptotics of f̂n.

In contrast, in the random design case the “critical dimension” κ∗ is always κ∗ = 1, as
long as the Lebesgue density of P is suitably regular at x0. In this setting, all dimensions
{1, . . . , d} are effective, and the “effective sample size” is simply n∗ = n.

The local rate of convergence in Theorem 1 can now be interpreted very naturally: the ex-
ponent for the “effective sample size” n∗, namely, 1

2+∑s
k=κ∗ α−1

k

becomes the local smoothness

along “effective dimensions” {κ∗, . . . , d} (note that α−1
k = 0 for s + 1 ≤ k ≤ d).

REMARK 2. In the special case that f0 is globally flat, that is, f0 ≡ c for some c ∈ R,
we have α1 = · · · = αd = ∞ and, therefore, the local rate of convergence for the max–min
block estimator (1.4) is parametric OP(n−1/2). When f0 is locally flat, it is shown by [18]
(see also [29]) that in the closely related univariate monotone density estimation problem, the
Grenander estimator converges at a parametric rate, with a limiting distribution involving the
maximal interval contained in the flat region. In the multivariate case, the shape for locally flat
regions can be quite complicated. For example, for d = 2 and any upper set U ⊂ [1/2,1]2,
consider f0 ≡ 1U . Then the local rate of convergence for the max–min block estimator (1.4)
is still parametric at, say, (1/4,1/4), but the limiting distribution would depend crucially on
the exact shape of U . It is an interesting open problem to characterize all possible locally flat
regions and derive the corresponding limiting distributions for the max–min block estimator
(1.4).

2.3. Comparison of local rates. In this section, we make comparisons of the local rates
in different fixed lattice and random designs. As will be seen below, the discrepancy of the
local rates appears when either the local smoothness levels of the isotonic regression function,
or the sizes of the lattice differ substantially along different dimensions.

2.3.1. Difference in local rates due to imbalanced local smoothness levels. Consider the
case where the local smoothness levels are imbalanced with α1 = · · · = αs = α,αs+1 = · · · =
αd = ∞ for some α ≥ 1,1 ≤ s < d , while the sizes of the lattice are balanced with β1 = · · · =
βd = 1/d . By Theorem 1, we have the following corollary:

COROLLARY 1. Suppose that the assumptions in Theorem 1 hold with α1 = · · · = αs =
α ≥ 1, αs+1 = · · · = αd = ∞ for some 1 ≤ s < d and β1 = · · · = βd = 1/d . Then in the fixed
lattice design case,(

n/σ 2) 1
2+s/α

(
f̂n(x0) − f0(x0)

)
� C(f0, x0), α > (d − s)/2;(

n1−s/d/σ 2)1/2(
f̂n(x0) − f0(x0)

)
� C(f0, x0), α < (d − s)/2.

In the random design case,(
n/σ 2) 1

2+s/α
(
f̂n(x0) − f0(x0)

)
� C(f0, x0).

The local rates can be written more compactly:



3262 Q. HAN AND C.-H. ZHANG

• (Fixed design) f̂n(x0) − f0(x0) = OP(n
−max{ 1

2+s/α
, 1

2 · d−s
d

}
).

• (Random design) f̂n(x0) − f0(x0) =OP(n
− 1

2+s/α ).

Below we consider two scenarios according to the phase transition boundary α = (d −s)/2
given above in the balanced fixed lattice design case.

(Scenario 1: α > (d − s)/2.) In this case, κ∗ = 1 in the fixed lattice design case, so

ωfixed
n = ωrandom

n = n
− 1

2+s/α . This includes the important case of s = d . In the special case
where d = 1 and α1 = 1, Corollary 1 reduces to the limit distribution theory for univariate
isotonic regression: Suppose for simplicity we consider the fixed balanced lattice design, or
the uniform random design. Then C(f0, x0) =d K(f0, x0) · D1 = (f ′

0(x0)/2)1/3 · D1, where
D1 is the well-known (rescaled) Chernoff distribution. To see this, with B denoting the stan-
dard two-sided Brownian motion starting at 0, we have (cf. Section 3.3 of [35])

D1 = sup
h1>0

inf
h2>0

[
G(h1, h2)

h1 + h2
+ (h2 − h1)

]

=d sup
−h1<0

inf
h2>0

[
(B(h2) + h2

2) − (B(−h1) + (−h1)
2)

h2 − (−h1)

]

= slope at zero of the greatest convex minorant of t �→ B(t) + t2

=d slope at zero of the least concave majorant of t �→ B(t) − t2.

(2.6)

It is also interesting to observe that for the most natural case α1 = · · · = αd = 1, the local
rate is OP(n−1/(2+d)). This local rate is, somewhat surprisingly, faster than the global min-
imax rate O(n−1/2d) in L2 metric for d ≥ 3, cf. [42]. The reason for this is that the global
minimax rate in L2 metric is dominated by the antichain structure of the multiple isotonic
regression functions (cf. [42]), while the smoothness constraint rules out such a structure lo-
cally at a fixed point. To put the problem in other words, the global minimax rate in L2 metric
is too conservative in capturing the smoothness structure of the isotonic functions as soon as
d ≥ 3.

(Scenario 2: α < (d − s)/2.) In this case, κ∗ = s + 1 > 1, so the local rate of convergence
in the fixed lattice design case is much faster than that in the random design case: ωfixed

n �
ωrandom

n .
Let us consider one concrete situation to better understand this phenomenon: α = 1, s = 1

and d > 3. The local rate is then OP(n− 1
2 · d−1

d ) in the fixed lattice design case, and is
OP(n−1/3) in the random design case. Suppose for simplicity the regression function
f0(x0) = f0((x0)1, . . . , (x0)d) = g0((x0)1) for some one-dimensional nondecreasing func-
tion g0. Consider fixed lattice and random design cases separately:

• In the fixed lattice design case, the oracle estimator first takes sample mean in dimen-
sions 2 to d , and then performs isotonic regression in dimension 1 with reduced variance
σ 2

1 ≡ σ 2/n(d−1)/d and sample size n1 = n1/d . However, as long as d > 3, there are no longer
large samples within the oracle bandwidth (σ 2

1 /n1)
1/3 = (σ 2/n)1/3 � n−1/d in dimension

1 due to the smoothness. This means that the oracle estimator is simply the sample mean

over dimensions 2 to d with a convergence rate n− 1
2 · d−1

d when d > 3. See the left panel of
Figure 1.

• In the random design case, since the first coordinates of the design points are distinct
with probability one, the oracle estimator is the one-dimensional estimator with a bandwidth
on the order of n−1/3. This gives the usual convergence rate n−1/3. See the right panel of
Figure 1.
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FIG. 1. Illustration of the oracle estimator in the balanced fixed lattice and random design cases. Horizontal
direction = dimension 1. Vertical direction = dimensions 2 to d . Red point = x0. Blue strip = samples over which
the oracle estimator takes the average.

Corollary 1 with α = 1, s = 1, d > 3 can then be understood as saying that the max–min
block estimator (1.4) mimics this oracle behavior in terms of the local rate of convergence,
in both the fixed lattice and random design cases. In more general settings of Corollary 1,
as soon as the local smoothness levels α < (d − s)/2, the first s dimensions are screened
out in the fixed lattice design case, so the asymptotics only take place over pure noises in
dimensions {s + 1, . . . , d}.

2.3.2. Difference in local rates due to imbalanced lattice sizes. Consider the case where
the local smoothness levels are balanced with α1 = · · · = αd = α ≥ 1, while the sizes of the
lattice are imbalanced with β1 ≤ · · · ≤ βd . Using

∑d
k=1 βk = 1, Theorem 1 and the equivalent

definition of κ∗ in Proposition 1, we have the following.

COROLLARY 2. Suppose that the assumptions in Theorem 1 hold with α1 = · · · = αd =
α ≥ 1, and β1 ≤ · · · ≤ βd .

In the fixed lattice design case, suppose β� �= 1−∑�−1
k=1 βk

2α+d−�+1 for all 1 ≤ � ≤ d . Let κ∗ ≡
min{1 ≤ � ≤ d : β� >

1−∑�−1
k=1 βk

2α+d−�+1} and d∗ ≡ d − κ∗ + 1. Then(
n

∑d
k=κ∗ βk/σ 2)1/(2+d∗/α)(

f̂n(x0) − f0(x0)
)
� C(f0, x0).

In the random design case,(
n/σ 2) 1

2+d/α
(
f̂n(x0) − f0(x0)

)
� C(f0, x0).

Alternatively, we may write the local rates more compactly:

• (Fixed design) f̂n(x0) − f0(x0) = OP(n
−max1≤�≤d

∑d
k=�

βk
2+(d−�+1)/α ).

• (Random design) f̂n(x0) − f0(x0) =OP(n
− 1

2+d/α ).

The basic pattern for the phase transition phenomenon here is similar to the discussion in
the previous section. The difference is that now it is the imbalance of the sizes of the lattice
in different dimensions, rather than the local smoothness levels, that screens out dimensions
with too sparsely spaced design points. See Figure 2 for the concrete phase transition in
the line segment {β1 + β2 = 1, β1 ≤ β2} for d = 2 and in the triangle {β1 + β2 + β3 = 1,

β1 ≤ β2 ≤ β3} for d = 3.
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FIG. 2. Phase transitions of the local rate of convergence for the β-fixed lattice design in d = 2 (left panel, in the
line segment {β1 ≤ 1/2, β2 = 1 −β1}) and d = 3 (right panel, in the triangle {β1 ≤ 1/3, β1 ≤ β2 ≤ (1 −β1)/2}).
ω

(�)
n = local rate with κ∗ = �. Local rates in fixed lattice and random design cases match for κ∗ = 1. Green

points = values of (β1, β2) for the balanced fixed lattice design.

REMARK 3. The improvement of the local rate in the fixed lattice design case over the
random design case is strongly tied to the lattice structure. It is possible that the local rate in
nonlattice fixed design case is slower than that in the random design case. For instance, in the
extreme case in d = 2, suppose that the fixed design points are all located on a straight line
{(x1, x2) ⊂ [0,1]2 : x2 − 1/2 = θ(x1 − 1/2),0 ≤ x1 ≤ 1} with θ < 0. Then we do not have
consistent estimation in general as g(·) ≡ f (·, θ ·) may not be monotonically nondecreasing.
The situations for general fixed designs will be more complicated. Although we expect that
the local rates in “most” fixed design cases will match that in the random design case, it
remains an open question to give a complete characterization.

2.4. An illustrative simulation result. We present here an illustrative simulation result to
assess the accuracy of the distributional approximation in Theorem 1 for the case d = 2 and
α1 = α2 = 1.

We consider two isotonic regression functions: f1(x) = ex1+x2 and f2(x) = e(x1 +x2), and
x0 = (1/2,1/2). Clearly, f2 is linearization of f1 at x0. In particular, the product of the partial
derivatives of the two isotonic functions are the same at x0, that is, K(f1, x0) = K(f2, x0).
Theorem 1 indicates that the limiting distributions for the weighted statistics n1/4(f̂n(x0) −
fi(x0)) will be the same for i = 1,2.

We consider the following lattice sizes in the simulation: 15×15,20×20,25×25,30×30.
Figure 3 plots the empirical cumulative distribution functions for the weighted statistics
n1/4(f̂n(x0) − fi(x0))(i = 1,2) based on B = 300 repetitions with i.i.d. normal errors
N (0,1); it shows that even for the quite small lattice of size 15 × 15, the max–min block
estimator (1.4) already achieves reasonable distributional approximation. Not surprisingly,
the shapes of the empirical cumulative distribution functions for f1, f2 are rather similar.
This can be further verified through the QQ-plots for different lattice sizes in Figure 4.

3. Local asymptotic minimax lower bound. We derive in Theorem 1 the precise lim-
iting distribution of the max–min block estimator (1.4) with a local rate of convergence and
a limit distribution depending on the unknown smoothness of the regression function at the
point of interest. It is natural to wonder if the local rate and the limiting distribution are
optimal.
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FIG. 3. Empirical cumulative distribution functions for n1/4(f̂n(x0) − fi(x0)) (i = 1,2) based on B = 300
repetitions. Here, d = 2, f1(x1, x2) = ex1+x2 in the left panel and f2(x1, x2) = e(x1 + x2) in the right panel, and
x0 = (1/2,1/2). Lattice sizes: 15 × 15,20 × 20,25 × 25,30 × 30.

THEOREM 2. Suppose Assumptions A–B hold, and the errors {ξi} are i.i.d. N (0, σ 2).
Then with κ∗, n∗ defined in Theorem 1, we have

sup
τ>0

lim inf
n→∞ inf

f̃n

sup
f ∈Fd :�2

2(f,f0)≤τσ 2/n

Ef

[(
n∗/σ 2) 1

2+∑s
k=κ∗ α

−1
k

∣∣f̃n(x0) − f (x0)
∣∣]

≥ Ld,‖α‖∞,P ,f0 .

FIG. 4. QQ-plots for the distributions of n1/4(f̂n(x0) − f1(x0)) (horizontal) versus n1/4(f̂n(x0) − f2(x0))

(vertical) based on the same simulation as in Figure 3. Lattice sizes: 15 × 15,20 × 20,25 × 25,30 × 30.



3266 Q. HAN AND C.-H. ZHANG

Furthermore, if all mixed derivatives of f0 vanish at x0, then

sup
τ>0

lim inf
n→∞ inf

f̃n

sup
f ∈Fd :�2

2(f,f0)≤τσ 2/n

Ef

[(
n∗/σ 2) 1

2+∑s
k=κ∗ α

−1
k

∣∣f̃n(x0) − f (x0)
∣∣]

≥ Ld,‖α‖∞,P ·
(

s∏
k=κ∗

(
∂

αk

k f0(x0)

(αk + 1)!
)1/αk

) 1

2+∑s
k=κ∗ α

−1
k

.

Here, ‖α‖∞ ≡ maxκ∗≤k≤s αk , �2
2(f, f0) ≡ n−1 ∑n

i=1(f (Xi) − f0(Xi))
2 for the fixed lattice

design case and �2
2(f, f0) ≡ P(f − f0)

2 for the random design case.

PROOF. See Appendix A in [44]. �

Theorem 2 shows that the max–min block estimator (1.4) enjoys a strong oracle property:
Both (i) the adaptive local rate of convergence and (ii) the dependence on the constants,
whenever explicit, concerning the unknown regression function f0 in the limit distribution
are optimal in a local asymptotic minimax sense, up to a constant factor depending only on
d,‖α‖∞,P . Note that here the local minimax lower bound is computed over an �2-ball with
radius of order O(n−1/2).

REMARK 4. The dependence of the constant Ld,‖α‖∞,P on P in the second claim of
Theorem 2 can be further improved if s = d in the random design setting: a slight modifi-

cation of the proof of Theorem 2 shows that Ld,‖α‖∞,P = (π(x0))
−1/(2+∑d

k=1 α−1
k )Ld,‖α‖∞ .

The limit distribution of max–min block estimator (1.4) achieves the optimal dependence on
π(x0) in this setting; cf. Remark 1.

REMARK 5. In a related block-decreasing density estimation problem, [55] establishes
a local minimax lower bound in the special case of α1 = · · · = αd = 1. Their result and
Theorem 2 concern different problems but are similar in spirit. Global minimax lower bounds
in L1 and global risk bounds for histogram-type estimators in the same model are studied in
[15].

4. Outline of the proofs.

4.1. Outline for the proof of Theorem 1. The proof of Theorem 1 is rather involved, so
we highlight the main proof ideas here. Recall that κ∗ = 1 in the random design case. Let

ωn ≡ n

− 1

2+∑s
k=κ∗ α

−1
k∗ , rn ≡ (

ω1/α1
n , . . . ,ω1/αd

n

)
1[κ∗:d].(4.1)

The components of rn indicate the localization rate along each dimension. Now we may
reparametrize the max–min block estimator (1.4) on the scale of the rate vector rn. To this
end, let h∗

1, h
∗
2 ∈ R

d≥0 be such that

f̂n(x0) = max
h1≥0

min
h2≥0

Ȳ |[x0−h1rn,x0+h2rn] = Ȳ |[x0−h∗
1rn,x0+h∗

2rn].(4.2)

We remind the reader that Ȳ |· is the average response over subsets as defined in (1.6). Such a
reparametrization relates the problem to its limit Gaussian version. Note that the first κ∗ − 1
coordinates of rn is 0, but this is no problem: we will show that such h∗

1, h
∗
2 exist with high

probability.



LIMIT DISTRIBUTION THEORY 3267

For any c > 1, define the localized max–min block estimator

f̂n,c(x0) ≡ max
c−γ∗1≤h1≤c1

min
c−γ∗1≤h2≤c1

Ȳ |[x0−h1rn,x0+h2rn],(4.3)

where γ∗ > 0 is chosen large enough. The difference of (4.3) compared with (4.2) is that the
range of max and min in the global estimator (4.2) is restricted to a compact rectangle away
from 0 and ∞ in (4.3), so the squared bias and variance in the partial sum process in (4.3)
are on the same order. We may therefore expect a nondegenerate limit theory for properly
normalized (4.2) by “interchanging” the limit and max–min operations in (4.3) and showing
that (4.2) and (4.3) are sufficiently “close” to each other.

Formally, we need the following localization-delocalization result, due to [57].

PROPOSITION 2. Suppose that three sequences of random variables {Wn,c}, {Wn} and
{Wc} satisfy the following conditions:

1. limc→∞ lim supn→∞P(Wn,c �= Wn) = 0.
2. For every c > 0, Wn,c � Wc as n → ∞.
3. limc→∞ P(Wc �= W) = 0.

Then Wn � W as n → ∞.

We choose

Wn,c ≡ ω−1
n

(
f̂n,c(x0) − f0(x0)

)
, Wn ≡ ω−1

n

(
f̂n(x0) − f0(x0)

)
.

Now we need to verify the conditions of Proposition 2 for the above defined Wn,c and Wn,
and find out the limit process Wc.

To illustrate the most important ideas in our proof, we focus on the simplest 2-dimensional
balanced fixed lattice design case where α1 = α2 = 1, rn = (n−1/4, n−1/4) and ωn = n−1/4 in
(4.1); cf. Assumption A.

The first step is to show that the block max–min estimator (4.2) can be localized through
its local version (4.3):

lim
c→∞ lim sup

n→∞
P

(
f̂n(x0) �= f̂n,c(x0)

) = 0.(4.4)

It is easy to see that proving (4.4) reduces to showing that h∗
1 and h∗

2 are both bounded away
from ∞ and 0 in probability, which we refer to as the large deviation and small deviation
problems, respectively. In other words, neither the bias nor the variance of the partial sum
process in (4.2) within the block [x0 −h∗

1rn, x0 +h∗
2rn] will be too large. We accomplish this

goal for, for example, h∗
2, in several steps:

(a) First, similarly as in many one-dimensional problems, we establish a local rate of con-
vergence:

f̂n(x0) − f0(x0) =OP
(
n−1/4)

.

(b) Next, we handle the large deviation problem. In other words, we want to show that
max{(h∗

2)1, (h
∗
2)2} ≤ c with high probability for large c > 0. By the max–min formula,

f̂n(x0) − f0(x0) ≥ (
f̄0|[x0−n−1/4,x0+h∗

2n−1/4] − f0(x0)
)

︸ ︷︷ ︸
bias

+ ξ̄ |[x0−n−1/4,x0+h∗
2n−1/4]︸ ︷︷ ︸

noise

.

The bias term can be handled via (localized) Taylor expansion: suppose max{(h∗
2)1, (h

∗
2)2} >

c � 1 (see, e.g., the thick red and blue lines in the left panel of Figure 5), then

bias � n−1/4(
max

{(
h∗

2
)
1,

(
h∗

2
)
2

} − const.
)
� c · n−1/4.
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FIG. 5. Proof outlines: Large and small deviation problems.

The noise term is essentially contributed by the shaded area in the left panel of Figure 5:

noise � −∣∣OP(1)
∣∣n−1/4.

Combining the above estimates, if max{(h∗
2)1, (h

∗
2)2} > c, then

n1/4(
f̂n(x0) − f0(x0)

)
� c − ∣∣OP(1)

∣∣,
which by (a) should occur with small probability for large c > 0.

(c) Finally, we handle the small deviation problem. By (b), we may assume that
max{(h∗

2)1, (h
∗
2)2} ≤ c. Let 0 < b < γ∗ be constants to be determined. Suppose now

(h∗
2)1 < c−γ∗ (as in the blue strip in the right panel of Figure 5). Using the max–min for-

mula again (but in a different way) and lower bounding the bias yield that

f̂n(x0) − f0(x0) ≥ max
0≤(h1)1≤c−b

0≤(h1)2≤c2

ξ̄ |[x0−h1n
−1/4,x0+h∗

2n−1/4]

+ min
0≤(h1)1≤c−b

0≤(h1)2≤c2

(
f̄0|[x0−h1n

−1/4,x0+h∗
2n−1/4] − f0(x0)

)

� n−1/4
[

max
0≤(h1)1≤c−b

0≤(h1)2≤c2

G(h1, h
∗
2)∏2

k=1(h1 + h∗
2)k

− C1 · c2
]
.

The idea here is to choose a larger block for h1 compared with the localized block for h∗
2.

This creates a large positive fluctuation of the noise process G(·, ·) within the shaded re-
gion that dominates the relatively small fluctuation within the region in the red dashed line;
see the right panel in Figure 5. Indeed, it can be shown that for γ∗ < b + 1, the following

small fluctuation holds with high probability: G(h1, h
∗
2) − G(h1,0) ≥ −C2 ·

√
c2−γ∗ log c

for large C2 > 0. The scaling c2−γ∗ is the order of the area of the region within the red
dashed line in the right panel of Figure 5. On the other hand, the large positive fluctuation
max0≤(h1)1≤c−b,0≤(h1)2≤c2 G(h1,0) ≥ C3 · √c2−b holds for small C3 > 0 with high probabil-
ity (see the shaded area in the right panel of Figure 5). Therefore, with high probability, for c
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large,

n1/4(
f̂n(x0) − f0(x0)

)
�

C3
√

c2−b − C2

√
c2−γ∗ log c

(c2 + c)(c−b + c−γ∗)
− C1c

2

≥ C4c
(b/2)−1 − C1c

2.

Now by choosing b > 6 and γ∗ ∈ (b, b + 1), the above display can only occur with small
probability for large c by (a), so (h∗

2)1 > c−γ∗ with high probability.
Once the first step (4.4) is completed, we may proceed with the second step and conclude

that

Wn,c ≡ max
c−γ∗1≤h1≤c1

min
c−γ∗1≤h2≤c1

Un(h1, h2)

= max
c−γ∗1≤h1≤c1

min
c−γ∗1≤h2≤c1

[
n1/4ξ̄ |[x0−h1n

−1/4,x0+h2n
−1/4]

+ n1/4(
f̄0|[x0−h1n

−1/4,x0+h2n
−1/4] − f0(x0)

)]
� max

c−γ∗1≤h1≤c1
min

c−γ∗1≤h2≤c1

[
σ ·G(h1, h2)∏2

k=1((h1)k + (h2)k)

+ 1

2

2∑
k=1

∂kf0(x0)
(
(h2)k − (h1)k

)]

≡ max
c−γ∗1≤h1≤c1

min
c−γ∗1≤h2≤c1

U(h1, h2) ≡ Wc.

To establish the weak convergence in the above display, we need to establish weak conver-
gence of the process Un to U in �∞([c−γ∗1, c1] × [c−γ∗1, c1]). Finite dimensional conver-
gence follows immediately by the Taylor expansion in Assumption A. Asymptotic equiconti-
nuity will be verified by general tools developed for uniform central limit theorems for partial
sum processes (essentially) in [1] and further developed in [63]. Note that such asymptotic
equicontinuity is possible as the max–min formula searches over rectangles, rather than upper
and lower sets as for the least squares estimator.

The last step attempts at localizing the limit of W ≡ W∞ by showing that h̃1, h̃2 are
bounded away from ∞ and 0 in probability, where h̃1, h̃2 are such that W = U(h̃1, h̃2). This
problem can be viewed as the limit Gaussian analogue of the first step and, therefore, shares
a similar proof strategy as detailed above, but further simplifications are possible due to the
exact Gaussian structure in the limit.

Finally, we list the key properties of the partial sum and limit processes that are used in the
proofs. For simplicity, we only consider fixed balanced lattice design with α1 = · · · = αd = 1.

Fix ρ ∈ (0,1). Let ωn,ρ ≡ n
− 1−ρ

1+d(1−ρ) , rn,ρ ≡ ωn,ρ1 and for any h1, h2 ∈R
d≥0, let

Gn,ρ(h1, h2) ≡ ω−1
n,ρ

(
nωd

n,ρ

)−1 ∑
i:x0−h1rn,ρ≤Xi≤x0+h2rn,ρ

ξi .

Suppose the following properties hold:

(P1) Gn,ρ � Gρ in �∞([0, c1] × [0, c1]) for any c > 0, and the limit process Gρ(·, ·)
is separable and self-similar with index ρ ∈ (0,1) in the sense that for any γ ∈ R

d≥0,

Gρ(γ ·, γ ·) =d (
∏d

k=1 γk)
ρ ·Gρ(·, ·).

(P2) It holds that

sup
h>0

|Gn,ρ(h,1)| ∨ |Gn,ρ(1, h)|∏d
k=1(hk + 1)

+ sup
h>0

|Gρ(h,1)| ∨ |Gρ(1, h)|∏d
k=1(hk + 1)

= OP(1).
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(P3) P(sup0≤h≤1 Gρ(h,0) ≤ 0) = P(sup0≤h≤1 Gρ(0, h) ≤ 0) = 0.

Then

ω−1
n,ρ

(
f̂n(x0) − f0(x0)

)
� Kρ(f0, x0) ·Dd,ρ,

where Kρ(f0, x0) ≡ {∏d
k=1(∂kf0(x0)/2)} 1−ρ

1+d(1−ρ) and

Dd,ρ ≡ sup
h1>0

inf
h2>0

[
Gρ(h1, h2)∏d

k=1((h1)k + (h2)k)
+

d∑
k=1

(
(h2)k − (h1)k

)]
.

Some comments on the properties (P1)–(P3):

• (P1) requires a functional limit theory for the process Gn,ρ to its limit Gρ over all
compact rectangles. The self-similarity index ρ ∈ (0,1) reflects the dependence structure
within the errors {ξi}. In the i.i.d. case as considered in this paper, ρ = 1/2.

• (P2) requires some uniform control of the moduli of the processes Gn,ρ,Gρ . That the
first term in (P2) being stochastically bounded can also be written as

sup
h>0

ω−1
n,ρ

(∣∣ξ̄ |[x0−hrn,ρ,x0+rn,ρ ]
∣∣ ∨ ∣∣ξ̄ |[x0−rn,ρ ,x0+hrn,ρ ]

∣∣) = OP(1).

For i.i.d. errors, this can established by martingale properties of the partial sum process. The
stochastic boundedness of the second term in (P2) can be verified by good tail estimates on
Gρ .

• (P3) is a regularity condition on the limit process Gρ . In the univariate case with i.i.d.
errors, this can be easily verified by the reflection principle of Brownian motion.

It is also possible to consider, with substantially increased technicalities, more general as-
sumptions on the local smoothness of f0 at x0 and the design points as in Assumptions A–B,
but we shall omit these details here.

4.2. Outline for the proof of Theorem 2. The basic minimax machinery we use is the
following.

PROPOSITION 3. Suppose that the errors ξi ’s are i.i.d. N (0, σ 2). Let fn be such that
n�2

2(fn, f0) ≤ α and |fn(x0) − f0(x0)| ≥ γn. Then

inf
f̃n

sup
f ∈{fn,f0}

Ef

[∣∣f̃n(x0) − f (x0)
∣∣] ≥ γn

8
exp

(
− α

2σ 2

)
.

The �2 metric is defined in the statement of Theorem 2.

Results of this type are well known in the context of density estimation [34, 50], which
can also be viewed a special case of minimax reduction scheme with two hypothesis (cf.
[61]). We provide a (short) proof in Appendix A in [44] in the context of regression for the
convenience of the reader.

Now the problem reduces to that of finding a permissible perturbation fn. By the second
step in the outline for the proof of Theorem 1, the constants concerning the unknown regres-
sion function in the limiting distribution essentially come from the local Taylor expansion, so
it is tempting to consider the local perturbation function of the form

f̃n(x) =
{
f0(x0 − hrn) if x ∈ [x0 − hrn, x0],
f0(x) otherwise,

with a good choice of h ∈ R
d . The complication arises from the fact that f̃n /∈ Fd in general,

so suitable modifications are needed for a valid construction of fn. Details can be found in
Appendix A in [44].
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5. Discussion and final remarks. We developed in this paper pointwise limiting distri-
bution theory for the max–min block estimator (1.4) under local smoothness conditions at a
fixed point, and considered both fixed lattice and random designs. One important question is
how to use this limit distribution theory for inference. The common bootstrap is known to
be inconsistent in a closely related univariate monotone density estimation problem [53, 60],
so simple bootstrap procedures are unlikely to succeed here as well. It is an important yet
nontrivial task to develop a tuning-free inference method for the multiple isotonic regression
model (1.3), even with the limiting distribution theory developed in this paper. A detailed
study for the inference problem will therefore be pursued elsewhere.

It should however be mentioned that the limit distribution theory is foundational for further
developments of inference methods. In the univariate isotonic regression, the limit distribu-
tion theory [16, 64] is essential both in terms of the results and the proof techniques for the
popular inference procedure based on likelihood ratio test developed much later (cf. [11, 13]).
We expect that the results and proof techniques in this paper will also be useful in this and
other directions. However, such developments would not be parallel to the univariate analysis
based on the linearity of the monotonicity relationship graph.

From another angle, the limiting distribution theory developed in this paper differs
markedly from the univariate cases where usually maximum likelihood/least squares esti-
mators are studied. The common difficulty for these MLE/LSEs in higher dimensions is that
the underlying “empirical process” (= partial sum process in (1.4) in our setting) is not tight
in the large sample limit, so it is hard to obtain limit distribution theories for these estimators.
Our results and techniques can therefore also be viewed as a compliment to the extensive
literature on the limit theories for univariate MLE/LSEs.

6. Proof of Theorem 1. Let ε0 > 0 be such that f0 is (sufficiently) differentiable on the
rectangle [x0 − ε01, x0 + ε01]. Recall κ∗ = 1 in the random design case, and ωn ∈R, rn ∈ R

d

are defined in (4.1). Let d∗ ≡ d − κ∗ + 1 and s∗ ≡ s − κ∗ + 1. We often omit the requirement
that [xu, xv] ∩ {Xi} �= ∅ in (1.4) for notational simplicity. In the random design setting, we
assume that P is the uniform distribution on [0,1]d to avoid unnecessary notational digres-
sions; then the covariance structure of G is given by the simplified expression (2.4).

In the sequel, we consider separately the cases for 1 ≤ κ∗ < s + 1, and κ∗ = s + 1. In the
former case, there is at least one nontrivial term in the Taylor expansion of f0 at x0, so the
problem of limiting distribution is essentially local. In the latter case, since there is only noise
present, so the problem is nonlocal.

6.1. Local rate of convergence. In this subsection, we establish the local rate of conver-
gence for f̂n(x0). This corresponds to step (a) in Section 4.1.

PROPOSITION 4. Let 1 ≤ κ∗ < s +1. Assume the same conditions as in Theorem 1. Then
f̂n(x0) − f0(x0) = OP(ωn).

We need the following to control the contribution of the noise.

LEMMA 2. Assume the same conditions as in Theorem 1. Let rn be as in (4.1).
Then for any fixed τ > 0, in both fixed lattice and random design cases, we have
suph>0|ξ̄ |[x0−hrn,x0+τrn]| = OP(ωn).

PROOF. See Appendix B in [44]. �

PROOF OF PROPOSITION 4. Let x∗
u be such that f̂n(x0) = minxv≥x0 Ȳ |[x∗

u,xv]. Fix a small
enough τ > 0. Since for n large, [x0, x0 + τrn] ∩ {Xi} �= ∅ holds in the fixed lattice design
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case, and with probability tending to one in the random design case, using the max–min
formula we have

f̂n(x0) ≤ f̄0|[x∗
u,x0+τrn] + ξ̄ |[x∗

u,x0+τrn].(6.1)

In both fixed lattice and random design cases, by monotonicity of f0, we have for n large
enough,

f̄0|[x∗
u,x0+τrn] − f0(x0) ≤ f0(x0 + τrn) − f0(x0)(6.2)

= ∑
j∈J∗

∂jf0(x0)

j !
(
1 + o(1)

)
(τ rn)

j = O(ωn).

On the other hand, in both fixed lattice and random design cases, Lemma 2 entails that

sup
h1>0

|ξ̄ |[x0−h1rn,x0+τrn]| = OP(ωn).(6.3)

The one-sided claim follows by combining (6.1)–(6.3). The other direction follows from
similar arguments. �

6.2. Localizing the estimator. In this subsection, we tackle the large and small deviation
problems, that is, steps (b)–(c), as described in Section 4.1.

PROPOSITION 5. Let 1 ≤ κ∗ < s + 1. Assume the same conditions as in Theorem 1 and
κ∗ is unique. Then

lim
c→∞ lim sup

n→∞
P

(
f̂n(x0) �= f̂n,c(x0)

) = 0.

In other words, limc→∞ lim supn→∞P(Wn,c �= Wn) = 0.

PROOF. (Step 1: the large deviation problem.) In this step, we handle the large devia-
tion problem. For the proof in this step only, define rn ≡ (ω

1/α1
n , . . . ,ω

1/αd
n ) for notational

convenience. Let h∗
1, h

∗
2 be defined as in (4.2) but using the current rn, and

Hc ≡
{
h ≥ 0 : h� = 0,1 ≤ � ≤ κ∗ − 1, max

κ∗≤k≤d
hk ≤ c

}
.(6.4)

We will show that

lim
c→∞ lim sup

n→∞
P

(
h∗

1 /∈ Hc

) ∨ P
(
h∗

2 /∈ Hc

) = 0.(6.5)

We only show this for P(h∗
2 /∈ Hc); the situation for h∗

1 is similar.
For any h∗

2, let h̄∗
2 ≡ h∗

2 ∧ (ε0(rn)
−1
1 , . . . , ε0(rn)

−1
d ). Clearly, h̄∗

2 ≤ h∗
2. Then by the max–

min formula and the monotonicity of f0, in the fixed lattice design case it holds for any h1 ≥ 0
that

f̂n(x0) ≥ f̄0|[x0−h1rn,x0+h∗
2rn] + ξ̄ |[x0−h1rn,x0+h∗

2rn]

≥ f̄0|[x0−h1rn,x0+h̄∗
2rn] + ξ̄ |[x0−h1rn,x0+h∗

2rn].
(6.6)

(Step 1a: fixed design, effective dimension.) First, we will show that we may take (h∗
2)� = 0

for 1 ≤ � ≤ κ∗ − 1 with high probability as n → ∞. Note this is only for the fixed lattice
design case. Since we have a lattice design, we only need to show that (h∗

2)� < n−β�(rn)
−1
�

for 1 ≤ � ≤ κ∗ − 1. On the event
⋃

1≤�≤κ∗−1{(h∗
2)� ≥ n−β�(rn)

−1
� }, we have by Lemma C.1

that for n large enough,

f̄0|[x0−rn1[κ∗:d],x0+h̄∗
2rn] − f0(x0) � ωn max

1≤�≤κ∗−1

(
h∗

2
)α�

� ≥ ωn · nδ,
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where the last inequality follows from Proposition 1 that min1≤�≤κ∗−1 n−β�(rn)
−1
� = nδ for

some δ > 0. On the other hand, (a slight modification of) Lemma 2 yields that

|ξ̄ |[x0−rn1[κ∗:d],x0+h∗
2rn]| ≤ sup

h2≥0
|ξ̄ |[x0−rn1[κ∗:d],x0+h2rn]| = OP(ωn).(6.7)

Combined with (6.6) using h1 = (1/2)1[κ∗:d], this shows that on the event⋃
1≤�≤κ∗−1{(h∗

2)� ≥ 1},
f̂n(x0) − f0(x0) � ωn · nδ(1 − oP(1)

)
,(6.8)

which can only occur with arbitrarily small probability according to Proposition 4. This
means

lim
n→∞P

( ⋃
1≤�≤κ∗−1

{(
h∗

2
)
� ≥ 1

}) = 0.(6.9)

Hence we may take (h∗
2)� = 0 for 1 ≤ � ≤ κ∗ − 1 from now on. We remind again the reader

that this claim is for fixed lattice design only.
(Step 1b: fixed and random designs.) Next, consider the event {maxκ∗≤k≤d(h∗

2)k > c}. For
c > maxs+1≤k≤d(1 − x0)k , we only need to consider the event {maxκ∗≤k≤s(h

∗
2)k > c}. Again

using Lemma C.1, for c, n large enough, and with probability at least 1 − O(n−2) in the
random design case,

f̄0|[x0−rn1[κ∗:d],x0+h̄∗
2rn] − f0(x0) � ω̃n � ωn · c.

For the noise term, (6.7) holds in both fixed lattice and random design cases. Hence on the
intersection of the event {maxκ∗≤k≤d(h∗

2)k > c} and an event with probability tending to 1,

f̂n(x0) − f0(x0) ≥ ωn

(
c −OP(1)

)
holds in both fixed lattice and random design cases. However, in view of Proposition 4,
this occurs with arbitrarily small probability for large values of c > 0, n ∈ N. So the event
{maxκ∗≤k≤d(h∗

2)k > c} must occur with arbitrarily small probability for c, n large enough.
This proves (6.5).

(Step 2: the small deviation problem.) In this step, we handle the small deviation prob-
lem. rn is now defined as in (4.1). Fix ε > 0. By Step 1, we may choose c > 0, n ∈ N

large enough such that the event �
(0)
ε,c ≡ {h∗

2 ∈ Hc} holds with probability at least 1 − ε.
Let a, b, γ∗ > 0 with a > 1,0 < b < γ∗ < b + (a − 1) be constants to be determined later on,
and let Ha,b,γ∗(c) ≡ {(h1, h2) ∈ R

d≥0 × R
d≥0 : 0 ≤ (h1)k ≤ ca1κ∗≤k≤s + (x0)k1s+1≤k≤d,0 ≤

(h1)d ≤ c−b,0 ≤ (h2)k ≤ c1κ∗≤k≤s + (1 − x0)k1s+1≤k≤d,0 ≤ (h2)d ≤ c−γ∗} be defined as
in Lemma C.6. Consider the event �

(1)
c ≡ {(h∗

2)d < c−γ∗}. For simplicity of notation, we
consider s < d; the case s = d follows similarly with slightly different estimates due to
Lemma C.6. Let Zni be defined by

Zni(h1, h2) ≡ ωnξi1Xi∈[x0−h1rn,x0+h2rn].
It is verified in the proof of Lemma C.6 ahead that for any finite τ > 0,

Gn(·, ·) ≡
n∑

i=1

Zni(·, ·) � σ ·G(·, ·) in �∞([0, τ1], [0, τ1]).
Hence by Lemma C.6, as long as c > 0, n ∈ N are large enough, there exists a constant
C1 = C1(d, σ, a) such that the event

�(2)
ε ≡

{
sup

(h1,h2)∈Ha,b,γ∗ (c)

∣∣Gn(h1, h2) −Gn(h1, h21[s+1:d−1])
∣∣ ≤ (C1/ε)

√
cas∗−γ∗ log c

}
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holds with probability at least 1 − ε. On the other hand, by Lemma C.8, for u ≡√
cas∗−b/(x0)d · ρε where ρε is taken from Lemma C.8, if a > 1 and c > 1, it holds for n

large enough that

P

(
min

0≤(h2)k≤c1κ∗≤k≤d

0≤(h2)d≤c−γ∗

max
0≤(h1)k≤ca1κ∗≤k≤d

0≤(h1)d≤c−b

Gn(h1, h21[s+1:d−1]) ≤ u
)

� P

(
min

0≤(h2)k≤c1s+1≤k≤d

(h2)d=0

max
0≤(h1)k≤ca1κ∗≤k≤d

0≤(h1)d≤c−b

G(h1, h2) ≤ u
)

≤ P

(
min

0≤(h2)k≤1s+1≤k≤d

(h2)d=0

max
(h1)k≤1κ∗≤k≤d

(h1)d≤(x0)d

√
cas∗−b/(x0)d ·G(h1, h2) ≤ u

)
≤ ε.

Hence there exists some constant C2 = C2(x0, ρε) > 0 such that the event

�(3)
ε ≡ {

for any 0 ≤ (h2)k ≤ c1κ∗≤k≤d,0 ≤ (h2)d ≤ c−γ∗,

∃h1 with 0 ≤ (h1)k ≤ ca1κ∗≤k≤d,0 ≤ (h1)d ≤ c−b

such that Gn(h1, h21[s+1:d−1]) ≥ C2 ·
√

cas∗−b
}(6.10)

holds with probability at least 1 − ε for n large enough.
(Step 2a: fixed design, noise.) In the fixed lattice design case, on the event �

(0)
ε,c ∩ �

(1)
c ∩

�
(2)
ε ∩ �

(3)
ε , we have for c > 0, n ∈ N large enough,

ω−1
n max

0≤(h1)k≤ca1κ∗≤k≤d

0≤(h1)d≤c−b

ξ̄ |[x0−h1rn,x0+h∗
2rn]

= max
0≤(h1)k≤ca1κ∗≤k≤d

0≤(h1)d≤c−b

∑n
i=1 Zni(h1, h

∗
2)

ω2
n

∏d
k=κ∗(�(h1rn)knβk� + �(h∗

2rn)kn
βk� + 1)

≥ max
0≤(h1)k≤ca1κ∗≤k≤d

0≤(h1)d≤c−b

Gn(h1, h
∗
21[s+1:d−1]) − (C1/ε)

√
cas∗−γ∗ log c

ω2
n

∏d
k=κ∗(�(h1rn)knβk� + �(h∗

2rn)kn
βk� + 1)

≥ C2
√

cas∗−b − (C1/ε)
√

cas∗−γ∗ log c

(ca + c)s∗(c−b + c−γ∗)(1 + o(1))
≥ C3 · c(b−as∗)/2.

(6.11)

(Step 2b: random design, noise.) In the random design case, let h1(c), h2(c) be such
that (h1(c))k = ca1κ∗≤k≤s + (x0)k1s+1≤k≤d−1 + c−b1k=d , and (h2(c))k = c1κ∗≤k≤s +
(1 − x0)k1s+1≤k≤d−1 + c−γ∗1k=d . Using Bernstein’s inequality,

P
(∣∣(Pn − P)1X∈[x0−h1(c)rn,x0+h2(c)rn]

∣∣ ≥ σ 2
c

) ≤ Ce−C−1nσ 2
c ,

where σ 2
c ≡ Var(1X∈[x0−h1(c)rn,x0+h2(c)rn]) ≈ cas∗−b ∏d

k=κ∗(rn)k for c, n large. Hence the
event

�(4)
c ≡ {

Pn1X∈[x0−h1(c)rn,x0+h2(c)rn]

≤ P 1X∈[x0−h1(c)rn,x0+h2(c)rn] + σ 2
c

}(6.12)
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occurs with probability at least 1−Ce−C−1nσ 2
c . So, in the random design setting, on the event

�
(0)
ε,c ∩ �

(1)
c ∩ �

(2)
ε ∩ �

(3)
ε ∩ �

(4)
c , it holds that

ω−1
n max

0≤(h1)k≤ca1κ∗≤k≤d

0≤(h1)d≤c−b

ξ̄ |[x0−h1rn,x0+h∗
2rn]

= max
0≤(h1)k≤ca1κ∗≤k≤d

0≤(h1)d≤c−b

∑n
i=1 Zni(h1, h

∗
2)

ω2
n(1 ∨ nPn1X∈[x0−h1rn,x0+h∗

2rn])

≥ C2
√

cas∗−b − (C1/ε)
√

cas∗−γ∗ log c

(ca + c)s∗(c−b + c−γ∗) + (1 + o(1))cas∗−b
≥ C3 · c(b−as∗)/2.

(6.13)

(Step 2c: fixed and random designs, bias.) On the other hand, in both fixed lattice and
random design cases,

min
0≤(h1)k≤ca1κ∗≤k≤d

0≤(h1)d≤c−b

f̄0|[x0−h1rn,x0+h∗
2rn] − f0(x0)

≥ f0
(
x0 − ca1[κ∗:d]rn

) − f0(x0) ≥ −C4 · ca maxκ∗≤k≤s αk · ωn.

(6.14)

Combining the estimates (6.11), (6.13) and (6.14), we see that for fixed ε > 0, if c > 0, n ∈N

are chosen large enough, on the intersection of the event {(h∗
2)d < c−γ∗} and an event with

probability at least 1 − 4ε, it holds that

f̂n(x0) − f0(x0) ≥ max
0≤(h1)k≤ca1κ∗≤k≤d

0≤(h1)d≤c−b

ξ̄ |[x0−h1rn,x0+h∗
2rn]

+ min
0≤(h1)k≤ca1κ∗≤k≤d

0≤(h1)d≤c−b

f̄0|[x0−h1rn,x0+h∗
2rn] − f0(x0)

≥ ωnc
a maxκ∗≤k≤s αk

(
C3 · c(b−as∗)/2−a maxκ∗≤k≤s αk − C4

)
.

We choose a ≥ 3, b ≥ 2(1 + a maxκ∗≤k≤s αk) + as∗ and γ∗ = b + 1, so that the above dis-
play can only occur with arbitrarily small probability by Proposition 4 for large c > 0, n ∈ N.
Hence the event {(h∗

2)d < c−γ∗}, and thereby {minκ∗≤k≤d(h∗
2)k < c−γ∗}, must occur with ar-

bitrarily small probability for large c > 0. The small deviation for h∗
1 can be handled similarly

so we omit the details. �

6.3. Compact convergence. In this subsection, we establish the weak convergence of the
localized process Wn,c to the localized limit Wc.

PROPOSITION 6. Let 1 ≤ κ∗ < s + 1. Assume the same conditions as in Theorem 1. For
any c > 1,

Wn,c ≡ ω−1
n

(
f̂n,c(x0) − f0(x0)

)
� max

c−γ∗1≤h1≤c1
min

c−γ∗1≤h2≤c1

[
σ ·G(h1, h2)∏d

k=κ∗((h1)k + (h2)k)

+ ∑
j∈J∗,

jk=0,1≤k≤κ∗−1

∂jf0(x0)

(j + 1)!
s∏

k=κ∗

(h2)
jk+1
k − (−h1)

jk+1
k

(h2)k + (h1)k

]

≡ Wc.

Here, σ and G are specified in Theorem 1.
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We need the following functional central limit theorem.

LEMMA 3. For any h1, h2 > 0, let

Gn(h1, h2) ≡ ωn

∑
i:x0−h1rn≤Xi≤x0+h2rn

ξi .

Then for any c > 1, Gn � σ ·G in �∞([c−γ∗1, c1] × [c−γ∗1, c1]).

PROOF. See Appendix B in [44]. �

PROOF OF PROPOSITION 6. Note that in the fixed lattice design case,

Wn,c = max
c−γ∗1≤h1≤c1

min
c−γ∗1≤h2≤c1

ω−1
n∏d

k=κ∗(�(h1rn)knβk� + �(h2rn)knβk� + 1)

×
[ ∑
i:x0−h1rn≤Xi≤x0+h2rn

ξi + ∑
i:x0−h1rn≤Xi≤x0+h2rn

(
f0(Xi) − f0(x0)

)]

= max
c−γ∗1≤h1≤c1

min
c−γ∗1≤h2≤c1

[
Gn(h1, h2)∏d

k=κ∗((h1)k + (h2)k)
· (

1 + o(1)
)

+ ∑
j∈J∗,

jk=0,1≤k≤κ∗−1

∂jf0(x0)

(j + 1)!
s∏

k=κ∗

(h2)
jk+1
k − (−h1)

jk+1
k

(h2)k + (h1)k

]
+ o(1).

Here, the last equality follows from Lemma C.1: for c−γ∗1 ≤ h1, h2 ≤ c1,∑
i:x0−h1rn≤Xi≤x0+h2rn

(f0(Xi) − f0(x0))∏d
k=κ∗(�(h1rn)knβk� + �(h2rn)knβk� + 1)

= o(ωn) + ωn

∑
j∈J∗,

jk=0,1≤k≤κ∗−1

∂jf0(x0)

(j + 1)!
s∏

k=κ∗

(h2)
jk+1
k − (−h1)

jk+1
k

(h2)k + (h1)k
.

Since the map maxc−γ∗1≤h1≤c1 minc−γ∗1≤h2≤c1 :R[c−γ∗1,c1]×[c−γ∗1,c1] →R is continuous with
respect to ‖·‖∞ on [c−γ∗1, c1] × [c−γ∗1, c1], the claim of the proposition for the fixed lattice
design case follows by Lemma 3 and the continuous mapping theorem. The random design
case follows from similar arguments by using Lemma C.2. �

6.4. Localizing the limit. In this subsection, we establish that the limit W can be local-
ized through Wc in the sense described in Section 4.1.

PROPOSITION 7. Let 1 ≤ κ∗ < s + 1. For c > 1, let Wc be as in Proposition 6, and
W ≡ W∞. Then limc→∞ P(Wc �= W) = 0.

To prove Proposition 7, we need the following.

LEMMA 4. Let W be defined as in Proposition 7, then ‖W‖ψ2 < ∞. Here, ‖·‖ψ2 is the
sub-Gaussian Orcliz norm (definition; see, e.g., [63]).
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LEMMA 5. Let G be defined as in Theorem 1. Then for any u ≥ 1,

P

(
max
h1>0

|G(h1,1)|∏d
k=κ∗((h1)k + 1)

> u

)
≤ Cd exp

(−u2/Cd

)
.

Here, Cd > 0 is a constant depending only on d .

PROOFS. See Appendix B in [44]. �

PROOF OF PROPOSITION 7. For simplicity of notation, we assume σ = 1 without loss
of generality and set aj ≡ ∂jf0(x0)/(j + 1)!. The strategy of the proof largely follows that
of Proposition 5, but with some simplifications. Let

(6.15) U(h1, h2) ≡ G(h1, h2)∏d
k=κ∗((h1)k + (h2)k)

+ ∑
j∈J∗,

jk=0,1≤k≤κ∗−1

aj

s∏
k=κ∗

(h2)
jk+1
k − (−h1)

jk+1
k

(h2)k + (h1)k
.

Let h∗
1, h

∗
2 ∈ R

d≥0 be such that W = U(h∗
1, h

∗
2). Since the Gaussian process G only depends

on the last d∗ coordinates of its arguments, we may assume that (h∗
i )� = 0 for 1 ≤ � ≤ κ∗ − 1

and i = 1,2.
(Step 1.) We will first show that

lim
c→∞P

(
h∗

1 /∈ H ∗
c

) ∨ P
(
h∗

2 /∈ H ∗
c

) = 0,(6.16)

where H ∗
c is defined in (6.4). We only need to prove that {maxκ∗≤k≤s(h

∗
2)k ≤ c} holds with

large probability for c large. Using a similar argument for the inequality as in the proof of
Lemma C.1, on the event {maxκ∗≤k≤s(h

∗
2)k > c},

W ≥U
(
1, h∗

2
) = G(1, h∗

2)∏d
k=κ∗((h

∗
2)k + 1)

+ ∑
j∈J∗,

jk=0,1≤k≤κ∗−1

aj

s∏
k=κ∗

(h∗
2)

jk+1
k − (−1)jk+1

(h∗
2)k + 1

≥ − sup
h2≥0

|G(1, h2)|∏d
k=κ∗((h2)k + 1)

+O
(

max
κ∗≤k≤s

(
1 ∨ (

h∗
2
)αk

k

))

≥ −∣∣OP(1)
∣∣ +O(c).

The last inequality follows from Lemma 5. On the other hand, by Lemma 4 we know that
W = OP(1), this means that necessarily limc→∞ P(h∗

2 /∈ H ∗
c ) = 0. Similarly, we can show

that limc→∞ P(h∗
1 /∈ H ∗

c ) = 0, thereby proving the claim (6.16).
(Step 2.) Next, we handle the small deviation problem. Using similar arguments as in the

proof of Proposition 5, on the intersection of the event {(h∗
2)d < c−γ∗} and an event with

probability at least 1 − 4ε, it holds that

W ≥ max
0≤(h1)k≤ca1κ∗≤k≤d

0≤(h1)d≤c−b

min
0≤(h2)k≤c1κ∗≤k≤d

0≤(h2)d≤c−γ∗

G(h1, h2)∏d
k=κ∗(h1 + h2)k

− C4 · ca maxκ∗≤k≤s αk

≥ ca maxκ∗≤k≤s αk
(
C3 · c(b−as∗)/2−a maxκ∗≤k≤s αk − C4

) → ∞
as c → ∞ by choosing a ≥ 3, b ≥ 2(1 + a maxκ∗≤k≤s αk) + as∗ and γ∗ = b + 1. The claim
follows from Lemma 4. �
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6.5. Completion of the proof of Theorem 1 for 1 ≤ κ∗ < s + 1. PROOF OF THEOREM 1.
By Proposition 2 combined with Propositions 5-7, it follows that ω−1

n (f̂n(x0) − f0(x0))

converges in distribution to the desired random variable (up to a scaling factor of σ ).
Hence we only need to verify the distributional equality in the statement of the theorem,
when all mixed derivatives of f0 vanish at x0 in J∗. To this end, let U be defined as in
the proof of Proposition 7 in (6.15) (with all mixed derivative terms vanishing). Then for
γ0, γ1 = · · · = γκ∗−1 = 0, γκ∗ . . . , γs, γs+1 = · · · = γd = 1 such that

γ0

(
d∏

k=κ∗
γk

)−1/2

= σ, γ0γ
αk

k = ∂
αk

k f0(x0)

(αk + 1)! , κ∗ ≤ k ≤ s.(6.17)

We have

γ0 ·U((
γk(h1)k

)d
k=1,

(
γk(h2)k

)d
k=1

)
= γ0 · G((γk(h1)k)

d
k=1, (γk(h2)k)

d
k=1)∏d

k=κ∗ γk · ∏d
k=κ∗((h1)k + (h2)k)

+ γ0

s∑
k=κ∗

γ
αk

k

(h2)
αk+1
k − (h1)

αk+1
k

(h2)k + (h1)k

=d

[
γ0

(
d∏

k=κ∗
γk

)−1/2]
· G(h1, h2)∏d

k=κ∗((h1)k + (h2)k)
+

s∑
k=κ∗

(
γ0γ

αk

k

)(h2)
αk+1
k − (h1)

αk+1
k

(h2)k + (h1)k

= σ ·G(h1, h2)∏d
k=κ∗((h1)k + (h2)k)

+
s∑

k=κ∗

∂
αk

k f0(x0)

(αk + 1)!
(h2)

αk+1
k − (h1)

αk+1
k

(h2)k + (h1)k
.

This shows that under the choice (6.17),

ω−1
n

(
f̂n(x0) − f0(x0)

)
� sup

h1>0,
(h1)k≤(x0)k,
s+1≤k≤d

inf
h2>0,

(h2)k≤(1−x0)k,
s+1≤k≤d

γ0 ·U((
γk(h1)k

)d
k=1,

(
γk(h2)k

)d
k=1

)

= sup
h1>0,

(h1)k≤(x0)k,
s+1≤k≤d

inf
h2>0,

(h2)k≤(1−x0)k,
s+1≤k≤d

γ0 ·U(h1, h2).

Finally, we only need to note that solving (6.17) yields that

γ0 =
(
σ 2

s∏
k=κ∗

(
∂

αk

k f0(x0)

(αk + 1)!
)1/αk

) 1

2+∑s
k=κ∗ α

−1
k

.

This completes the proof. �

6.6. Proof of Theorem 1 for κ∗ = s + 1. PROOF OF THEOREM 1. The strategy of the
proof follows the general principle developed for the case κ∗ < s + 1, so we only provide a
sketch for the fixed lattice design case.

First, by similar arguments as in the proof of Proposition 4, we can establish a local rate
of convergence

n1/2∗
(
f̂n(x0) − f0(x0)

) = OP(1).(6.18)

Second, note that (h∗
1)k ≤ (x0)k, (h

∗
2)k ≤ (1 − x0)k for s + 1 ≤ k ≤ d so there is no large

deviation problem. For the small deviation problem, let 2 < b < γ∗ be some fixed constants,
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and consider the event �
(1)
c ≡ {(h∗

2)d < c−γ∗}. We may show, similar to Lemma C.6, that
there exists some C1 = C1(σ, d) such that for c > 0, n ∈ N large enough, the event

�(2)
ε ≡

{
sup

0≤(h1)k≤(x0)k1s+1≤k≤d

0≤(h1)d≤c−b

0≤(h2)k≤(1−x0)k1s+1≤k≤d

(h2)d≤c−γ∗

∣∣Gn(h1, h2) −Gn(h1, h21[1:d−1])
∣∣ ≤ (C1/ε)

√
c−γ∗ log c

}

holds with probability at least 1 − ε for n large enough. By Lemma C.8, there exists some
C2 = C2(ε) > 0 such that the event �

(3)
ε ≡ {for any 0 ≤ (h2)k ≤ (1 − x0)k1s+1≤k≤d, (h2)d =

0, there exists 0 ≤ (h1)k ≤ (x0)k1s+1≤k≤d, (h1)d ≤ c−b such that Gn(h1, h21[1:d−1]) ≥
C2

√
c−b} holds with probability 1 − ε for n large enough. On the event �

(1)
c ∩ �

(2)
ε ∩ �

(3)
ε ,

we have

n1/2∗
(
f̂n(x0) − f0(x0)

)
≥ n1/2∗ max

0≤(h1)k≤(x0)k1s+1≤k≤d

0≤(h1)d≤c−b

ξ̄ |[x0−h11[s+1:d],x0+h∗
21[s+1:d]]

≥ max
0≤(h1)k≤(x0)k1s+1≤k≤d

0≤(h1)d≤c−b

Gn(h1, h
∗
21[1:d−1]) − (C1/ε)

√
c−γ∗ log c

n−1∗ · ∏d
k=s+1(�(h1rn)knβk� + �(h∗

2rn)kn
βk� + 1)

≥ C2
√

c−b − (C1/ε)
√

c−γ∗ log c

(c−b + c−γ∗)(1 + o(1))
.

Hence for c > 0, n ∈N large enough, on the intersection of �
(1)
c and an event with probability

at least 1 − 2ε,

n1/2∗
(
f̂n(x0) − f0(x0)

) ≥ C3 · cb/2,

where C3 = C3(C1,C2, ε). However, by (6.18), this cannot occur with high probability for
large c > 0. This concludes the small deviation problem. The rest of the proofs parallels that
in the case κ∗ < s + 1 so we omit details. �
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mentary Material [44], we provide detailed proofs for Theorem 2 and all supporting lemmas.

REFERENCES

[1] ALEXANDER, K. S. (1987). Central limit theorems for stochastic processes under random entropy condi-
tions. Probab. Theory Related Fields 75 351–378. MR0890284 https://doi.org/10.1007/BF00318707

[2] ANEVSKI, D. and HÖSSJER, O. (2006). A general asymptotic scheme for inference under order restrictions.
Ann. Statist. 34 1874–1930. MR2283721 https://doi.org/10.1214/009053606000000443

[3] ANEVSKI, D. and PASTUKHOV, V. (2018). The asymptotic distribution of the isotonic regression es-
timator over a general countable pre-ordered set. Electron. J. Stat. 12 4180–4208. MR3890765
https://doi.org/10.1214/18-EJS1507

[4] ANEVSKI, D. and SOULIER, P. (2011). Monotone spectral density estimation. Ann. Statist. 39 418–438.
MR2797852 https://doi.org/10.1214/10-AOS804

https://doi.org/10.1214/19-AOS1928SUPP
http://www.ams.org/mathscinet-getitem?mr=0890284
https://doi.org/10.1007/BF00318707
http://www.ams.org/mathscinet-getitem?mr=2283721
https://doi.org/10.1214/009053606000000443
http://www.ams.org/mathscinet-getitem?mr=3890765
https://doi.org/10.1214/18-EJS1507
http://www.ams.org/mathscinet-getitem?mr=2797852
https://doi.org/10.1214/10-AOS804


3280 Q. HAN AND C.-H. ZHANG

[5] BAGCHI, P., BANERJEE, M. and STOEV, S. A. (2016). Inference for monotone functions under short- and
long-range dependence: Confidence intervals and new universal limits. J. Amer. Statist. Assoc. 111
1634–1647. MR3601723 https://doi.org/10.1080/01621459.2015.1100622

[6] BALABDAOUI, F., DUROT, C. and KOLADJO, F. (2017). On asymptotics of the discrete convex LSE of a
p.m.f. Bernoulli 23 1449–1480. MR3624867 https://doi.org/10.3150/15-BEJ754

[7] BALABDAOUI, F. and JANKOWSKI, H. (2016). Maximum likelihood estimation of a unimodal probability
mass function. Statist. Sinica 26 1061–1086. MR3559943

[8] BALABDAOUI, F., JANKOWSKI, H., RUFIBACH, K. and PAVLIDES, M. (2013). Asymptotics of the dis-
crete log-concave maximum likelihood estimator and related applications. J. R. Stat. Soc. Ser. B. Stat.
Methodol. 75 769–790. MR3091658 https://doi.org/10.1111/rssb.12011

[9] BALABDAOUI, F., RUFIBACH, K. and WELLNER, J. A. (2009). Limit distribution theory for maximum like-
lihood estimation of a log-concave density. Ann. Statist. 37 1299–1331. MR2509075 https://doi.org/10.
1214/08-AOS609

[10] BALABDAOUI, F. and WELLNER, J. A. (2007). Estimation of a k-monotone density: Limit distribution
theory and the spline connection. Ann. Statist. 35 2536–2564. MR2382657 https://doi.org/10.1214/
009053607000000262

[11] BANERJEE, M. (2007). Likelihood based inference for monotone response models. Ann. Statist. 35 931–
956. MR2341693 https://doi.org/10.1214/009053606000001578

[12] BANERJEE, M. and MCKEAGUE, I. W. (2007). Confidence sets for split points in decision trees. Ann.
Statist. 35 543–574. MR2336859 https://doi.org/10.1214/009053606000001415

[13] BANERJEE, M. and WELLNER, J. A. (2001). Likelihood ratio tests for monotone functions. Ann. Statist.
29 1699–1731. MR1891743 https://doi.org/10.1214/aos/1015345959

[14] BELLEC, P. C. (2018). Sharp oracle inequalities for least squares estimators in shape restricted regression.
Ann. Statist. 46 745–780. MR3782383 https://doi.org/10.1214/17-AOS1566

[15] BIAU, G. and DEVROYE, L. (2003). On the risk of estimates for block decreasing densities. J. Multivariate
Anal. 86 143–165. MR1994726 https://doi.org/10.1016/S0047-259X(02)00028-3

[16] BRUNK, H. D. (1970). Estimation of isotonic regression. In Nonparametric Techniques in Statistical In-
ference (Proc. Sympos., Indiana Univ., Bloomington, Ind., 1969) 177–197. Cambridge Univ. Press,
London. MR0277070

[17] BÜHLMANN, P. and YU, B. (2002). Analyzing bagging. Ann. Statist. 30 927–961. MR1926165
https://doi.org/10.1214/aos/1031689014

[18] CAROLAN, C. and DYKSTRA, R. (1999). Asymptotic behavior of the Grenander estimator at density flat
regions. Canad. J. Statist. 27 557–566. MR1745821 https://doi.org/10.2307/3316111

[19] CHATTERJEE, S., GUNTUBOYINA, A. and SEN, B. (2015). On risk bounds in isotonic and other shape
restricted regression problems. Ann. Statist. 43 1774–1800. MR3357878 https://doi.org/10.1214/
15-AOS1324

[20] CHATTERJEE, S., GUNTUBOYINA, A. and SEN, B. (2018). On matrix estimation under monotonicity con-
straints. Bernoulli 24 1072–1100. MR3706788 https://doi.org/10.3150/16-BEJ865

[21] CHEN, Y. and WELLNER, J. A. (2016). On convex least squares estimation when the truth is linear. Elec-
tron. J. Stat. 10 171–209. MR3466180 https://doi.org/10.1214/15-EJS1098

[22] DENG, H. and ZHANG, C.-H. (2018). Isotonic regression in multi-dimensional spaces and graphs. Preprint.
Available at arXiv:1812.08944.

[23] DOSS, C. R. and WELLNER, J. A. (2019). Inference for the mode of a log-concave density. Ann. Statist. 47
2950–2976. MR3988778 https://doi.org/10.1214/18-AOS1770

[24] DUDLEY, R. M. (2014). Uniform Central Limit Theorems, 2nd ed. Cambridge Studies in Advanced Mathe-
matics 142. Cambridge Univ. Press, New York. MR3445285

[25] DUROT, C. (2007). On the Lp-error of monotonicity constrained estimators. Ann. Statist. 35 1080–1104.
MR2341699 https://doi.org/10.1214/009053606000001497

[26] DUROT, C., KULIKOV, V. N. and LOPUHAÄ, H. P. (2012). The limit distribution of the L∞-error
of Grenander-type estimators. Ann. Statist. 40 1578–1608. MR3015036 https://doi.org/10.1214/
12-AOS1015

[27] DUROT, C. and LOPUHAÄ, H. P. (2018). Limit theory in monotone function estimation. Statist. Sci. 33
547–567. MR3881208 https://doi.org/10.1214/18-STS664

[28] FOKIANOS, K., LEUCHT, A. and NEUMANN, M. H. (2017). On integrated L1 convergence rate of an
isotonic regression estimator for multivariate observations. Preprint. Available at arXiv:1710.04813.

[29] GROENEBOOM, P. (1983). The concave majorant of Brownian motion. Ann. Probab. 11 1016–1027.
MR0714964

[30] GROENEBOOM, P. (1985). Estimating a monotone density. In Proceedings of the Berkeley Conference in
Honor of Jerzy Neyman and Jack Kiefer, Vol. II (Berkeley, Calif., 1983). Wadsworth Statist./Probab.
Ser. 539–555. Wadsworth, Belmont, CA. MR0822052

http://www.ams.org/mathscinet-getitem?mr=3601723
https://doi.org/10.1080/01621459.2015.1100622
http://www.ams.org/mathscinet-getitem?mr=3624867
https://doi.org/10.3150/15-BEJ754
http://www.ams.org/mathscinet-getitem?mr=3559943
http://www.ams.org/mathscinet-getitem?mr=3091658
https://doi.org/10.1111/rssb.12011
http://www.ams.org/mathscinet-getitem?mr=2509075
https://doi.org/10.1214/08-AOS609
http://www.ams.org/mathscinet-getitem?mr=2382657
https://doi.org/10.1214/009053607000000262
http://www.ams.org/mathscinet-getitem?mr=2341693
https://doi.org/10.1214/009053606000001578
http://www.ams.org/mathscinet-getitem?mr=2336859
https://doi.org/10.1214/009053606000001415
http://www.ams.org/mathscinet-getitem?mr=1891743
https://doi.org/10.1214/aos/1015345959
http://www.ams.org/mathscinet-getitem?mr=3782383
https://doi.org/10.1214/17-AOS1566
http://www.ams.org/mathscinet-getitem?mr=1994726
https://doi.org/10.1016/S0047-259X(02)00028-3
http://www.ams.org/mathscinet-getitem?mr=0277070
http://www.ams.org/mathscinet-getitem?mr=1926165
https://doi.org/10.1214/aos/1031689014
http://www.ams.org/mathscinet-getitem?mr=1745821
https://doi.org/10.2307/3316111
http://www.ams.org/mathscinet-getitem?mr=3357878
https://doi.org/10.1214/15-AOS1324
http://www.ams.org/mathscinet-getitem?mr=3706788
https://doi.org/10.3150/16-BEJ865
http://www.ams.org/mathscinet-getitem?mr=3466180
https://doi.org/10.1214/15-EJS1098
http://arxiv.org/abs/arXiv:1812.08944
http://www.ams.org/mathscinet-getitem?mr=3988778
https://doi.org/10.1214/18-AOS1770
http://www.ams.org/mathscinet-getitem?mr=3445285
http://www.ams.org/mathscinet-getitem?mr=2341699
https://doi.org/10.1214/009053606000001497
http://www.ams.org/mathscinet-getitem?mr=3015036
https://doi.org/10.1214/12-AOS1015
http://www.ams.org/mathscinet-getitem?mr=3881208
https://doi.org/10.1214/18-STS664
http://arxiv.org/abs/arXiv:1710.04813
http://www.ams.org/mathscinet-getitem?mr=0714964
http://www.ams.org/mathscinet-getitem?mr=0822052
https://doi.org/10.1214/08-AOS609
https://doi.org/10.1214/009053607000000262
https://doi.org/10.1214/15-AOS1324
https://doi.org/10.1214/12-AOS1015


LIMIT DISTRIBUTION THEORY 3281

[31] GROENEBOOM, P. (1989). Brownian motion with a parabolic drift and Airy functions. Probab. Theory
Related Fields 81 79–109. MR0981568 https://doi.org/10.1007/BF00343738

[32] GROENEBOOM, P. (1996). Lectures on inverse problems. In Lectures on Probability Theory and Statis-
tics (Saint-Flour, 1994). Lecture Notes in Math. 1648 67–164. Springer, Berlin. MR1600884
https://doi.org/10.1007/BFb0095675

[33] GROENEBOOM, P., HOOGHIEMSTRA, G. and LOPUHAÄ, H. P. (1999). Asymptotic normality of the L1
error of the Grenander estimator. Ann. Statist. 27 1316–1347. MR1740109 https://doi.org/10.1214/
aos/1017938928

[34] GROENEBOOM, P. and JONGBLOED, G. (1995). Isotonic estimation and rates of convergence in Wicksell’s
problem. Ann. Statist. 23 1518–1542. MR1370294 https://doi.org/10.1214/aos/1176324310

[35] GROENEBOOM, P. and JONGBLOED, G. (2014). Nonparametric Estimation Under Shape Constraints: Es-
timators, Algorithms and Asymptotics. Cambridge Series in Statistical and Probabilistic Mathematics
38. Cambridge Univ. Press, New York. MR3445293 https://doi.org/10.1017/CBO9781139020893

[36] GROENEBOOM, P. and JONGBLOED, G. (2015). Nonparametric confidence intervals for monotone func-
tions. Ann. Statist. 43 2019–2054. MR3375875 https://doi.org/10.1214/15-AOS1335

[37] GROENEBOOM, P., JONGBLOED, G. and WELLNER, J. A. (2001). A canonical process for estimation of
convex functions: The “invelope” of integrated Brownian motion +t4. Ann. Statist. 29 1620–1652.
MR1891741 https://doi.org/10.1214/aos/1015345957

[38] GROENEBOOM, P., JONGBLOED, G. and WELLNER, J. A. (2001). Estimation of a convex function: Char-
acterizations and asymptotic theory. Ann. Statist. 29 1653–1698. MR1891742 https://doi.org/10.1214/
aos/1015345958

[39] GROENEBOOM, P. and WELLNER, J. A. (1992). Information Bounds and Nonparametric Maximum
Likelihood Estimation. DMV Seminar 19. Birkhäuser, Basel. MR1180321 https://doi.org/10.1007/
978-3-0348-8621-5

[40] GUNTUBOYINA, A. and SEN, B. (2015). Global risk bounds and adaptation in univariate convex regression.
Probab. Theory Related Fields 163 379–411. MR3405621 https://doi.org/10.1007/s00440-014-0595-3

[41] HAN, Q. (2019). Global empirical risk minimizers with “shape constraints” are rate optimal in general
dimensions. Preprint. Available at arXiv:1905.12823.

[42] HAN, Q., WANG, T., CHATTERJEE, S. and SAMWORTH, R. J. (2019). Isotonic regression in general di-
mensions. Ann. Statist. 47 2440–2471. MR3988762 https://doi.org/10.1214/18-AOS1753

[43] HAN, Q. and WELLNER, J. A. (2016). Approximation and estimation of s-concave densities via Rényi
divergences. Ann. Statist. 44 1332–1359. MR3485962 https://doi.org/10.1214/15-AOS1408

[44] HAN, Q. and ZHANG, C.-H. (2020). Supplement to “Limit distribution theory for multiple isotonic regres-
sion.” https://doi.org/10.1214/19-AOS1928SUPP

[45] HUANG, J. and WELLNER, J. A. (1995). Estimation of a monotone density or monotone hazard under
random censoring. Scand. J. Stat. 22 3–33. MR1334065

[46] HUANG, Y. and ZHANG, C.-H. (1994). Estimating a monotone density from censored observations. Ann.
Statist. 22 1256–1274. MR1311975 https://doi.org/10.1214/aos/1176325628

[47] JANKOWSKI, H. (2014). Convergence of linear functionals of the Grenander estimator under misspecifica-
tion. Ann. Statist. 42 625–653. MR3210981 https://doi.org/10.1214/13-AOS1196

[48] JANKOWSKI, H. K. and WELLNER, J. A. (2009). Estimation of a discrete monotone distribution. Electron.
J. Stat. 3 1567–1605. MR2578839 https://doi.org/10.1214/09-EJS526

[49] JANKOWSKI, H. K. and WELLNER, J. A. (2009). Nonparametric estimation of a convex bathtub-shaped
hazard function. Bernoulli 15 1010–1035. MR2597581 https://doi.org/10.3150/09-BEJ202

[50] JONGBLOED, G. (2000). Minimax lower bounds and moduli of continuity. Statist. Probab. Lett. 50 279–284.
MR1792307 https://doi.org/10.1016/S0167-7152(00)00104-8

[51] KIM, A. K. H., GUNTUBOYINA, A. and SAMWORTH, R. J. (2018). Adaptation in log-concave density
estimation. Ann. Statist. 46 2279–2306. MR3845018 https://doi.org/10.1214/17-AOS1619

[52] KIM, J. and POLLARD, D. (1990). Cube root asymptotics. Ann. Statist. 18 191–219. MR1041391
https://doi.org/10.1214/aos/1176347498

[53] KOSOROK, M. R. (2008). Bootstrapping in Grenander estimator. In Beyond Parametrics in Interdisciplinary
Research: Festschrift in Honor of Professor Pranab K. Sen. Inst. Math. Stat. (IMS) Collect. 1 282–292.
IMS, Beachwood, OH. MR2462212 https://doi.org/10.1214/193940307000000202

[54] KULIKOV, V. N. and LOPUHAÄ, H. P. (2005). Asymptotic normality of the Lk -error of the Grenander
estimator. Ann. Statist. 33 2228–2255. MR2211085 https://doi.org/10.1214/009053605000000462

[55] PAVLIDES, M. G. (2012). Local asymptotic minimax theory for block-decreasing densities. J. Statist. Plann.
Inference 142 2322–2329. MR2911847 https://doi.org/10.1016/j.jspi.2012.03.003

[56] POLONIK, W. (1998). The silhouette, concentration functions and ML-density estimation under order re-
strictions. Ann. Statist. 26 1857–1877. MR1673281 https://doi.org/10.1214/aos/1024691360

http://www.ams.org/mathscinet-getitem?mr=0981568
https://doi.org/10.1007/BF00343738
http://www.ams.org/mathscinet-getitem?mr=1600884
https://doi.org/10.1007/BFb0095675
http://www.ams.org/mathscinet-getitem?mr=1740109
https://doi.org/10.1214/aos/1017938928
http://www.ams.org/mathscinet-getitem?mr=1370294
https://doi.org/10.1214/aos/1176324310
http://www.ams.org/mathscinet-getitem?mr=3445293
https://doi.org/10.1017/CBO9781139020893
http://www.ams.org/mathscinet-getitem?mr=3375875
https://doi.org/10.1214/15-AOS1335
http://www.ams.org/mathscinet-getitem?mr=1891741
https://doi.org/10.1214/aos/1015345957
http://www.ams.org/mathscinet-getitem?mr=1891742
https://doi.org/10.1214/aos/1015345958
http://www.ams.org/mathscinet-getitem?mr=1180321
https://doi.org/10.1007/978-3-0348-8621-5
http://www.ams.org/mathscinet-getitem?mr=3405621
https://doi.org/10.1007/s00440-014-0595-3
http://arxiv.org/abs/arXiv:1905.12823
http://www.ams.org/mathscinet-getitem?mr=3988762
https://doi.org/10.1214/18-AOS1753
http://www.ams.org/mathscinet-getitem?mr=3485962
https://doi.org/10.1214/15-AOS1408
https://doi.org/10.1214/19-AOS1928SUPP
http://www.ams.org/mathscinet-getitem?mr=1334065
http://www.ams.org/mathscinet-getitem?mr=1311975
https://doi.org/10.1214/aos/1176325628
http://www.ams.org/mathscinet-getitem?mr=3210981
https://doi.org/10.1214/13-AOS1196
http://www.ams.org/mathscinet-getitem?mr=2578839
https://doi.org/10.1214/09-EJS526
http://www.ams.org/mathscinet-getitem?mr=2597581
https://doi.org/10.3150/09-BEJ202
http://www.ams.org/mathscinet-getitem?mr=1792307
https://doi.org/10.1016/S0167-7152(00)00104-8
http://www.ams.org/mathscinet-getitem?mr=3845018
https://doi.org/10.1214/17-AOS1619
http://www.ams.org/mathscinet-getitem?mr=1041391
https://doi.org/10.1214/aos/1176347498
http://www.ams.org/mathscinet-getitem?mr=2462212
https://doi.org/10.1214/193940307000000202
http://www.ams.org/mathscinet-getitem?mr=2211085
https://doi.org/10.1214/009053605000000462
http://www.ams.org/mathscinet-getitem?mr=2911847
https://doi.org/10.1016/j.jspi.2012.03.003
http://www.ams.org/mathscinet-getitem?mr=1673281
https://doi.org/10.1214/aos/1024691360
https://doi.org/10.1214/aos/1017938928
https://doi.org/10.1214/aos/1015345958
https://doi.org/10.1007/978-3-0348-8621-5


3282 Q. HAN AND C.-H. ZHANG

[57] PRAKASA RAO, B. L. S. (1969). Estimation of a unimodal density. Sankhyā, Ser. A 31 23–36. MR0267677
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