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RELAXING THE ASSUMPTIONS OF KNOCKOFFS BY CONDITIONING
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The recent paper Candès et al. (J. R. Stat. Soc. Ser. B. Stat. Methodol.
80 (2018) 551–577) introduced model-X knockoffs, a method for variable
selection that provably and nonasymptotically controls the false discovery
rate with no restrictions or assumptions on the dimensionality of the data
or the conditional distribution of the response given the covariates. The one
requirement for the procedure is that the covariate samples are drawn inde-
pendently and identically from a precisely-known (but arbitrary) distribution.
The present paper shows that the exact same guarantees can be made with-
out knowing the covariate distribution fully, but instead knowing it only up
to a parametric model with as many as �(n∗p) parameters, where p is the
dimension and n∗ is the number of covariate samples (which may exceed
the usual sample size n of labeled samples when unlabeled samples are also
available). The key is to treat the covariates as if they are drawn conditionally
on their observed value for a sufficient statistic of the model. Although this
idea is simple, even in Gaussian models conditioning on a sufficient statistic
leads to a distribution supported on a set of zero Lebesgue measure, requir-
ing techniques from topological measure theory to establish valid algorithms.
We demonstrate how to do this for three models of interest, with simulations
showing the new approach remains powerful under the weaker assumptions.

1. Introduction.

1.1. Problem statement. In this paper, we consider random variables (Y,X1, . . . ,Xp)

where Y is a response or outcome variable, each Xj is a potential explanatory variable (also
known as a covariate or feature) and p is the dimensionality, or number of covariates. For
instance, Y could be the binary indicator of whether a patient has a disease or not, and Xj

could be the number of minor alleles at a specific location (indexed by j ) on the genome, also
known as a single nucleotide polymorphism (SNP). A common question of interest is which
of the Xj are important for determining Y , with importance defined in terms of conditional
independence. That is, Xj is considered unimportant (or null) if

Y ⊥⊥ Xj | X-j ,

where X-j = {X1, . . . ,Xp} \ {Xj }; stated another way, Xj is unimportant exactly when Y ’s
conditional distribution does not depend on Xj . Denote by H0 the set of all j such that Xj

is unimportant. As discussed in Candès et al. [10], under very mild conditions the comple-
ment of the set of unimportant variables, that is, the important (or nonnull) variables, consti-
tutes the Markov blanket S of Y , namely, the unique smallest set S such that Y ⊥⊥ XS | X-S .
Note that when Y | X1, . . . ,Xp follows a generalized linear model (GLM) with no redun-
dant covariates, the set of important variables exactly equals the set of variables with nonzero
coefficients, as usual [10].

In our search for the Markov blanket, we usually cannot possibly hope for perfect recov-
ery, so we instead attempt to maximize the number of important variables discovered while
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probabilistically controlling the number of false discoveries. In this paper, as with most oth-
ers in the knockoffs literature, we consider the false discovery rate (FDR) [6], although other
error rates can also be controlled [21]. The FDR is defined for a (random) selected subset of
variables Ŝ as

FDR := E

[ |Ŝ ∩H0|
|Ŝ|

]
,

that is, the expected fraction of discoveries that are not in the Markov blanket (false discover-
ies), where we use the convention that 0/0 = 0. Controlling the FDR at, say, 10% is powerful
as compared to controlling more classical error rates like the familywise error rate, while
still being interpretable, allowing a statistician to report a conclusion such as “here is a set of
covariates Ŝ, 90% of which I expect to be important.”

1.2. Our contribution. In our discussion of approaches to this problem, we will draw
on a fundamental decomposition of the joint distribution FY,X of (Y,X1, . . . ,Xp) into the
product of the conditional distribution FY |X of Y | X1, . . . ,Xp and the joint distribution FX

of X1, . . . ,Xp . The canonical approach to inference, which we refer to as the “fixed-X”
approach, assumes FY |X is a member of a parametric family of conditional distributions (e.g.,
a GLM), while placing weak or no assumptions on FX . In fact, the fixed-X approach usually
treats the observed values of Xi,1, . . . ,Xi,p for i = 1, . . . , n as fixed; that is, it performs
inference conditionally on the observed values of X1, . . . ,Xp in the data, which also allows
the covariate rows to be drawn from different distributions or even be deterministic (fixed).
The approach proposed in Candès et al. [10], referred to therein as the “model-X” approach,
assumes the observations (Yi,Xi,1, . . . ,Xi,p)

i.i.d.∼ FY,X and places no restrictions on FX but
assumes it is known exactly, while assuming nothing about FY |X . So, to summarize slightly
imprecisely, the canonical, fixed-X approach to inference places all assumptions on FY |X and
none on FX , while the model-X approach does the opposite by placing all assumptions on
FX and none on FY |X .

Note that both FY |X and FX are exponentially complex in p: in the simple case where
each element of (Y,X1, . . . ,Xp) is categorical with k categories, that is, (Y,X1, . . . ,Xp) ∈
{1, . . . , k}p+1, it is easily seen that a fully general model for FY |X has (k − 1)kp free pa-
rameters while FX has only slightly fewer with kp − 1. So both fixed-X and model-X ap-
proaches astronomically reduce an exponentially large (in p) space of distributions in order
to make inference feasible, highlighting the importance of robustness, assumption-checking
and domain knowledge for justifying the resulting inference; see Janson [20], Chapter 1, for
a detailed discussion of the role of fixed-X and model-X assumptions in high-dimensional
inference. With that said, one apparent advantage of the fixed-X approach is that it does not
require exact knowledge of FY |X , while the model-X approach of [10] does require FX be
known exactly.

The present paper removes this apparent advantage by showing that model-X knockoffs
can still provide powerful and exact, finite-sample inference even when the covariate distri-
bution is only known up to a parameterized family of distributions (also known as a model),
as opposed to known exactly. In fact, in Section 3 we will show three examples in which the
number of parameters we allow for FX’s model is �(n∗p), where n∗ is the total number of
samples of X (including unlabeled samples), which is always at least as large as the number
of labeled samples n, and can be much larger in some applications. This is much greater
than the number of parameters allowed in the model for FY |X in fixed-X inference (see Sec-
tion 1.3). Table 1 provides a summarized comparison of the model flexibility allowed in the
fixed-X and model-X approaches.
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TABLE 1
Maximum complexity of models allowed by existing methods (see
Section 1.3) and our proposal (see the list in Section 2.2 and also

Section 2.3 for the explanation for �(n∗p)) for controlled
variable selection. Note that without assuming a model, FY |X

and FX are of exponentially complex in p. Note also that fixed-X
inferential guarantees are generally asymptotic in nature. The

exception to this and the o(n) scaling stated in the table is
Gaussian linear regression, which allows n = O(n) parameters

and is nonasymptotic

Model for FY |X Model for FX

Fixed-X o(n) parameters arbitrary
Model-X [10] arbitrary 0 parameters
Model-X (this paper) arbitrary �(n∗p) parameters

Of course the above discussion and table refer only to the mathematical complexity of
models allowed by the fixed-X and model-X approaches. An analyst’s decision between them
should depend on how well domain knowledge and/or auxiliary data support their (very dif-
ferent) assumptions. But in light of Table 1, it seems the conditional model-X approach is
easiest to justify unless substantially more is known about FY |X than FX .

1.3. Related work. By far the most common fixed-X approaches to inference rely on
GLMs with p parameters, reducing model complexity from exponential to linear in p. When
p is smaller than the number of observations n, inference for GLMs other than Gaussian
linear models relies on large-sample approximation by assuming at least p/n → 0 [19, 30].
Note that the commonly studied problem of inference for a single parameter can generally
be translated to FDR control using the Benjamini–Hochberg [6] or Benjamini–Yekutieli [7]
procedures (see, e.g., Javanmard and Javadi [22]), so that it makes sense to compare such
inference with our paper that is focused on multiple testing. In high dimensions, that is, when
p > n, even reducing the complexity of FY |X to p parameters with a GLM is insufficient for
fixed-X inference, as GLMs become unidentifiable in this regime due to the design matrix
columns being linearly dependent. Early solutions for fixed-X inference in high-dimensional
GLMs relied on β-min conditions that lower-bound the magnitude of nonzero coefficients to
obtain asymptotically-valid p-values for individual variables (see, e.g., Chatterjee and Lahiri
[11]). More recent work removes the β-min condition in favor of strong sparsity assumptions
on the coefficient vector, usually o(

√
n/ log(p)) nonzeros, with notable examples includ-

ing the debiased Lasso (see, e.g., Zhang and Zhang [35], Javanmard and Montanari [23],
van de Geer et al. [34]) and the extended score statistic (see, e.g., Belloni et al. [4, 5], Cher-
nozhukov et al. [12], Ning and Liu [29]), both of which provide asymptotically-valid p-values
for GLMs with some additional assumptions on the “compatibility” of the design matrix. In
recent work that seems to straddle the fixed-X and model-X paradigms, Bradic [36] and Zhu
et al. [37] compute asymptotically-valid p-values for the Gaussian linear model without any
extra restrictions like sparsity or β-min on FY |X , but with added assumptions on FX about
the sparsity of conditional linear dependence among covariates.

Another branch of recent research called post-selection inference can be viewed as a dif-
ferent approach to high-dimensional inference: it aims to test random hypotheses selected by
a high-dimensional regression and provide valid p-values by conditioning on the selection
event (see, e.g., Fithian et al. [15], Lee et al. [25] for foundational contributions and Candès
et al. [10], Appendix A, for more about the difference between post-selection inference and
our approach).
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The method of knockoffs was first introduced by Barber and Candès [1] for low-
dimensional homoscedastic linear regression with fixed design. The model-X knockoffs
framework proposed by Candès et al. [10] read this idea from a different perspective, provid-
ing valid finite-sample inference with no assumptions on FY |X but assuming full knowledge
of FX . Exact knockoff generation methods have been found for FX following a multivari-
ate Gaussian [10], a Markov chain or hidden Markov model [33], a graphical model [3] and
certain latent variable models [17]. In the case that FX is only known approximately, the
robustness of model-X knockoffs is studied by Barber et al. [2]. When FX is completely un-
known some recent works have proposed methods to generate approximate knockoffs [24, 27,
31] which have shown promising empirical results, particularly in low-dimensional problems,
but come with no theoretical guarantees. In contrast, the current paper proposes to construct
valid knockoffs that provide exact finite sample error control.

This paper is based on the idea of performing inference conditional on a sufficient statistic
for FX’s model so as to make that inference parameter-free. In low-dimensional inference,
likely the simplest example of such an idea is a permutation test for independence, which
can be thought of as a randomization test performed conditional on the order statistics of
an observed i.i.d. vector of scalar X with unknown distribution (the order statistics are suf-
ficient for the family of all one-dimensional distributions). Although permutation tests can
only test marginal independence, not conditional independence as addressed in the present
paper, Rosenbaum [32] constructs a conditional permutation test that does test conditional
independence assuming a logistic regression model for Xj | X-j , and allows the parameters
of the logistic regression model to be unknown by conditioning on that model’s sufficient
statistic. However, that sufficient statistic is composed of inner products between the vector
of observed Xj ’s and each of the vectors of observed values of the other covariates X-j , pre-
cluding inference except in the case of covariates with a very small set of discrete values,
and almost entirely precluding inference in a high-dimensional setting. A different condi-
tional permutation test was recently proposed by [8] to test conditional independence in the
model-X framework, but while their conditioning improves robustness, they still require the
same assumptions as the original conditional randomization test [10], namely, that Xj | X-j is
known exactly. To our knowledge, the present paper is the first to use the idea of conditioning
on sufficient statistics for high-dimensional inference, enabling powerful and exact FDR-
controlled variable selection under arguably weaker assumptions than any existing work.

1.4. Outline. The rest of the paper is structured as follows: Section 2 describes the main
result and the proposed method of conditional knockoffs to generalize model-X knockoffs
to the case when FX is known only up to a distributional family, as opposed to exactly.
Section 3 applies conditional knockoffs to three different models for FX , and provides explicit
algorithms for constructing valid knockoffs. Simulations are also presented, showing that
conditional knockoffs often loses almost no power in exchange for its increased generality
over model-X knockoffs with exactly-known FX . Finally, Section 4 provides some synthesis
of the ideas in this paper and directions for future work.

2. Main idea and general principles. Before going into more detail, we introduce some
notation. Suppose we are given i.i.d. row vectors (Yi,Xi,1, . . . ,Xi,p) ∈ R

p+1 for i = 1, . . . , n.
We then stack these vectors into a design matrix X ∈ R

n×p whose ith row is denoted by
x	

i = (Xi,1, . . . ,Xi,p) ∈ R
p , and a column vector y ∈ R

n whose ith entry is Yi . We are about
to define model-X knockoffs (X̃i,1, . . . , X̃i,p), and X̃ ∈ R

n×p will analogously denote these
row vectors stacked to form a knockoff matrix. A square bracket around matrices, such as
[X, X̃], denotes the horizontal concatenation of these matrices. We use [p] for {1,2, . . . , p},
and i : j for {i, i + 1, . . . , j} for any i ≤ j ; for a set A ⊆ [p], let XA denote the matrix
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with columns given by the columns of X whose indices are in A, and for singleton sets we
streamline notation by writing Xj instead of X{j}. For sets A1, . . . ,Am, denote by

∏m
j=1 Aj

their Cartesian product. For two disjoint sets A and B , we denote their union by A � B . We
will denote by N the set of strictly positive integers.

2.1. Model-X knockoffs. We begin with a short review of model-X knockoffs [10]. The
authors define model-X knockoffs for a random vector X ∈ R

p of covariates as being a ran-
dom vector X̃ ∈R

p such that for any set A ⊆ [p]
(2.1) X̃ ⊥⊥ Y | X and (X, X̃)swap(A)

D= (X, X̃),

where the swap(A) subscript on a 2p-dimensional vector (or matrix with 2p columns) de-
notes that vector (matrix) with the j th and (j + p)th entries (columns) swapped, for all
j ∈ A. To use knockoffs for variable selection, suppose some statistics Zj and Z̃j are
used to measure the importance of Xj and X̃j , respectively, in the conditional distribution
Y | X1, . . . ,Xp, X̃1, . . . , X̃p , with

(Z1, . . . ,Zp, Z̃1, . . . , Z̃p) = z
([X, X̃],y)

,

for some function z such that swapping Xj and X̃j swaps the components Zj and Z̃j , that
is, for any A ⊆ [p],

z
([X, X̃]swap(A),y

) = z
([X, X̃],y)

swap(A).

For example, z([X, X̃],y) could perform a cross-validated Lasso regression of y on [X, X̃]
and return the absolute values of the 2p-dimensional fitted coefficient vector. More gener-
ally, the Zj can be almost any measure of variable importance one can think of, including
measures derived from arbitrarily-complex machine learning methods or from Bayesian in-
ference, and this flexibility allows model-X knockoffs to be powerful even when FY |X is quite
complex.

The pairs (Zj , Z̃j ) of variable importance measures are then plugged into scalar-valued
antisymmetric functions fj to produce Wj = fj (Zj , Z̃j ), which measures the relative impor-
tance of Xj to X̃j . Viewed as a function of all the data, Wj = wj([X, X̃],y) can be shown
to satisfy the flip-sign property, which dictates that for any A ⊆ [p],

wj

([X, X̃]swap(A),y
) =

{
wj([X, X̃],y) if j /∈ A,

−wj([X, X̃],y) if j ∈ A.

Taking Zj and Z̃j as the absolute values of Lasso coefficients as in the above example,
one might choose Wj = Zj − Z̃j , referred to in Candès et al. [10] as the Lasso coefficient-
difference (LCD) statistic. Finally, given a target FDR level q , the knockoff filter selects
the variables Ŝ = {j : Wj ≥ T } where T is either the knockoff threshold T0 or the knockoff+
threshold T+:

T0 = min
{
t > 0 : #{j : Wj ≤ −t}

#{j : Wj ≥ t} ≤ q

}
,

T+ = min
{
t > 0 : 1 + #{j : Wj ≤ −t}

#{j : Wj ≥ t} ≤ q

}
.

Candès et al. [10], Theorem 3.4, prove that Ŝ with T+ exactly (nonasymptotically) controls

the FDR at level q , and that Ŝ with T0 exactly controls a modified FDR, E[ |Ŝ∩H0|
|Ŝ|+1/q

], at level

q . The key to the proof of exact control is the aforementioned flip-sign property of the Wj ,
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and that property follows from the following crucial property of model-X knockoffs: for any
subset A ⊆ H0, ([X, X̃]swap(A),y

) D= ([X, X̃],y)
,

which is proved in Candès et al. [10], Lemma 3.2, to hold for knockoffs satisfying equa-
tion (2.1).

The proofs of exact control required just one assumption, that one could construct knock-
offs satisfying equation (2.1). To satisfy that assumption, Candès et al. [10] assumes through-
out that FX is known exactly. We will relax this assumption, but first slightly generalize the
definition of valid knockoffs.

DEFINITION 2.1 (Model-X knockoff matrix). The random matrix X̃ ∈ R
n×p is a model-

X knockoff matrix for the random matrix X ∈ R
n×p if for any subset A ⊆ [p],

(2.2) X̃ ⊥⊥ y | X and [X, X̃]swap(A)
D= [X, X̃].

Note that equation (2.2) is more general than equation (2.1), and indeed (2.1) implies
(2.2) as long as the rows of [X, X̃] are independent. However, the proof of Candès et al.’s
[10] crucial Lemma 3.2 and, ultimately, FDR control in the form of their Theorem 3.4 used
only equation (2.2). Therefore, Definition 2.1 is the “correct” definition, since the ability to
generate knockoffs satisfying Definition 2.1 is all that is needed for the theoretical guarantees
of knockoffs in Candès et al. [10] to hold, and it is well defined for any matrix X, even
when the rows are not independent. We will use this general definition because although
we also assume samples are drawn i.i.d. from a distribution, those samples will no longer
be independent when we condition on a sufficient statistic for the model for FX . Hereafter,
model-X knockoffs and knockoffs will always refer to model-X knockoff matrices as defined
by Definition 2.1 unless otherwise specified.

For completeness, we restate the FDR control theorem in Candès et al. [10].

THEOREM 2.1. Suppose X̃ is a knockoff matrix for X and the statistics Wj ’s satisfy the
flip-sign property. For any q ∈ [0,1], if Ŝ is selected by the knockoff method with threshold T

being either T+ or T0, then

E

[ |Ŝ ∩H0|
max(|Ŝ|,1)

]
≤ q for T+; E

[ |Ŝ ∩H0|
|Ŝ| + 1/q

]
≤ q for T0.

It is worth mentioning that if X̃j is identical to Xj , then Wj = 0 and j cannot be selected
by the knockoff filter. Formally, we call such a column in the knockoff matrix trivial.

2.2. Conditional knockoffs. The main idea of this paper is that if FX is known only up to
a parametric model, and that parametric model has sufficient statistic (for n i.i.d. observations
drawn from FX) given by T (X), then by definition of sufficiency the distribution of X | T (X)

does not depend on the model parameters and is thus known exactly a priori. To leverage this
for knockoffs, consider the following definition.

DEFINITION 2.2 (Conditional model-X knockoff matrix). The random matrix X̃ ∈ R
n×p

is a conditional model-X knockoff matrix for the random matrix X ∈ R
n×p if there is a statistic

T (X) such that for any subset A ⊆ [p],
(2.3) X̃ ⊥⊥ y | X and [X, X̃]swap(A)

D= [X, X̃] ∣∣ T (X).
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By the law of total probability, (2.3) implies (2.2), thus conditional model-X knockoffs are
also model-X knockoffs.

PROPOSITION 2.2. If X̃ is a conditional model-X knockoff matrix for X, then it is also
a model-X knockoff matrix.

Proposition 2.2 says that all the guarantees of model-X knockoffs (i.e., Theorem 2.1), such
as exact FDR control and the flexibility in measuring variable importance, immediately hold
when X̃ is a conditional model-X knockoff matrix. Definition 2.2 is especially useful when
the distribution of X is known to be in a model G� = {gθ : θ ∈ �} with parameter space
�, and T (X) is a sufficient statistic for G�, because then the distribution of X | T (X) is
known exactly even though the unconditional distribution of X is not. Exact knowledge of
the distribution of X | T (X) in principle allows us to construct knockoffs, similar to how
exact knowledge of the unconditional distribution of X has enabled all previous knockoff
construction algorithms. As a simple example, when G� is the set of all p-dimensional dis-
tributions with mutually-independent entries, the set of order statistics for each column of
X constitutes a sufficient statistic T (X), and a conditional knockoff matrix X̃ can be gener-
ated by randomly and independently permuting each column of X. Unfortunately, for more
interesting models that allow for dependence among the covariates, even for canonical G�

like multivariate Gaussian, the distribution of X | T (X) is often much more complex than
those for which knockoff constructions already exist. Using novel methodological and theo-
retical tools, in Section 3 we provide efficient and exact algorithms for constructing nontrivial
conditional knockoffs when FX comes from each of the following three models:

1. Low-dimensional Gaussian:

FX ∈ {
N (μ,�) : μ ∈ R

p,� ∈ R
p×p,� � 0

}
,

when n > 2p. In this case, the number of model parameters is p + p(p+1)
2 = �(p2), and also

�(np) in the most challenging case when p = �(n).
2. Gaussian graphical model:

FX ∈ {
N (μ,�) : μ ∈ R

p,� ∈ R
p×p,� � 0,(

�−1)
j,k = 0 for all (j, k) /∈ E

}
for some known sparsity pattern E. For example, �−1 could be banded with bandwidth as
large as n/8 − 1, provided n/8 ≤ p, allowing a number of parameters as large as p + (

np
8 −

n(n−8)
128 ) = �(np). Note that p is not explicitly constrained, so this model allows both low-

and high-dimensional data sets.
3. Discrete graphical model:

FX ∈
{

distribution on
p∏

j=1

[Kj ] : Xj ⊥⊥ X[p]\NE(j)

∣∣∣ XNE(j)\{j}

for all (j, k) /∈ E

}

for some known positive integers K1, . . . ,Kp and known sparsity pattern E, where NE(j)

is the closed neighborhood of j . For example, X could be a K-state (nonstationary) Markov
chain whose K − 1 + (p − 1)K(K − 1) parameters are the probability mass function of X1
and the transition matrices P(Xj | Xj−1) for each j ∈ {2, . . . , p}, where K can be as large as
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n−2

2 , allowing a number of parameters as large as
√

n−2
2 −1+ (p−1)(

√
n−2

2 )(
√

n−2
2 −1) =

�(np). Again, p is not explicitly constrained, so this model allows both low- and high-
dimensional data sets.

REMARK 1. It is worth mentioning that conditioning may shrink the set of nonnull hy-
potheses. For instance, if H0 = ∅ and T (X) is chosen to be X, then all variables are auto-
matically null conditional on T (X), and thus conditional knockoffs cannot select any nonnull
variables. For a detailed discussion, see the Supplementary Material Appendix C [18].

REMARK 2. Any algorithm that generates conditional knockoffs given one sufficient
statistic T (X) (i.e., satisfying equation (2.3) for T (X)) by definition is also a valid algorithm
for generating conditional knockoffs given any sufficient statistic S(X) that is a function of
T (X). This means that any valid conditional knockoff algorithm satisfies equation (2.3) for
the minimal sufficient statistic, since by definition a minimal sufficient statistic is a function
of any other sufficient statistic. So we could say that the minimal sufficient statistic is in some
sense the optimal one to condition on, in that the choice to condition on the minimal sufficient
statistic allows for the most general set of conditional knockoff algorithms of any sufficient
statistic one could choose to condition on for a given model.

2.3. Integrating unlabeled data. In addition to the n labeled pairs {(Yi,xi )}ni=1, we might
also have unlabeled data {x(u)

i }n(u)

i=1, that is, covariate samples without corresponding re-
sponses/labels. This extra data can be integrated seamlessly into the construction of con-
ditional knockoffs: stack the labeled covariate matrix X on top of the unlabeled covariate
matrix X(u) to get X∗ ∈ R

n∗×p , where n∗ = n + n(u), then construct conditional knockoffs
X̃

∗
for X∗, and finally take X̃ to be the first n rows of X̃

∗
.

PROPOSITION 2.3. Suppose the rows of X∗ are i.i.d. covariate vectors and X is the
matrix composed of the first n rows of X∗. Let y be the response vector for X. If for some
statistic T (X∗) and any set A ⊆ [p],

X̃
∗ ⊥⊥ y | X∗ and

[
X∗, X̃∗]

swap(A)

D= [
X∗, X̃∗] ∣∣ T

(
X∗)

,

then if X̃ is the matrix composed of the first n rows of X̃
∗
, then X̃ is a model-X knockoff

matrix for X.

Note that by taking T (X∗) to be constant, the same result holds unconditionally: if
X̃

∗ ⊥⊥ y | X∗ and [X∗, X̃∗]swap(A)
D= [X∗, X̃∗] for any A ⊆ [p], then X̃ is a valid knockoff

matrix for X. Thus constructing knockoffs for X∗, conditional or otherwise, produces valid
knockoffs for X automatically. Of course, if FX is known and the rows of X∗ are i.i.d., it
is natural to construct each row of X̃

∗
independently, in which case the presence of X(u)

changes nothing about the construction of the relevant knockoffs X̃. But as seen in Sec-
tion 2.2, when FX is not known exactly the flexibility with which we can model it depends
on the sample size, with the number of parameters allowed to be as large as �(np) in all the
models in this paper. What Proposition 2.3 shows is that n can be replaced with n∗, which can
dramatically increase the modeling flexibility allowed by conditional knockoffs, especially in
high dimensions. For example, our conditional knockoffs construction in Section 3.1 for arbi-
trary multivariate Gaussian distributions naively requires n > 2p, but we now see it actually
just requires n∗ > 2p, which is much easier to satisfy when n(u) is large, as it often is in,
for instance, genomics or economics applications. Even when n alone is large enough to
construct nontrivial knockoffs for a desired model, constructing conditional knockoffs with
unlabeled data as described in this section will tend to increase power.
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3. Conditional knockoffs for three models of interest. In this section, we provide effi-
cient algorithms to generate exact conditional model-X knockoffs under three different mod-
els for FX , as well as numerical simulations comparing the variable selection power of the
knockoffs thus constructed with those constructed by existing algorithms that require FX be
known exactly.

All proofs are deferred to the Supplementary Material Appendix A [18]. Any sampling
described in the algorithms is conducted independently of all previous sampling in the same
algorithm, unless stated otherwise. All simulations use a Gaussian linear model for the re-
sponse: Yi | xi ∼ N ( 1√

n
x	

i β,1) where β has 60 nonzero entries with random signs and equal
amplitudes. Note the sparsity and magnitude equalities are simply chosen for convenience—
we present additional simulations varying these choices in the Supplementary Material Ap-
pendix D.2 [18]. We remind the reader that, although we use linear regression as an illus-
trative example in the simulations, our methods apply to more general regressions, and all
the same simulations are also rerun with a nonlinear model (logistic regression) with sim-
ilar results, presented in the Supplementary Material Appendix D.1 [18]. We use the LCD
knockoff statistic with tuning parameter chosen by 10-fold cross-validation and the knock-
off+ threshold with target FDR q = 20%; see Section 2.1 for details. Only power curves

(power = E[ |S∩Ŝ|
|S| ]) are shown because the FDR is always controlled (both theoretically

and empirically). The procedure we compare to, unconditional knockoffs, refers to model-
X knockoffs where FX is taken to be known exactly (knockoff statistics and thresholds are
chosen identically).

3.1. Low-dimensional multivariate Gaussian model. Despite the focus in variable selec-
tion on high-dimensional problems, we start with a low-dimensional example as it represents
an interesting and instructive case. Suppose that

(3.1) xi
i.i.d.∼ N (μ,�)

for some unknown μ and positive definite �. Let μ̂ := X	1n/n denote the vector of column
means of X, and let �̂ := (X − 1nμ̂

	
)	(X − 1nμ̂

	
)/n be the empirical covariance matrix of

X. Then T (X) = (μ̂, �̂) constitutes a (minimal, complete) sufficient statistic for the model
(3.1) for X.

3.1.1. Generating conditional knockoffs. When n > 2p, we can construct knockoffs for
X conditional on μ̂ and �̂ via Algorithm 3.1.

Algorithm 3.1 Conditional knockoffs for low-dimensional Gaussian models

Input: X ∈ R
n×p .

Require: n > 2p.
1: Find s ∈ R

p such that 0p×p ≺ diag{s} ≺ 2�̂.

2: Compute the Cholesky decomposition of n(2diag{s} − diag{s}�̂−1
diag{s}) as L	L.

3: Generate W a n × p matrix whose entries are i.i.d. N (0,1) and independent of X
and compute the Gram–Schmidt orthonormalization [ Q︸︷︷︸

n×(p+1)

, U︸︷︷︸
n×p

] of the columns of

[1n,X,W ].
4: Set X̃ = 1nμ̂

	 + (X − 1nμ̂
	
)(Ip − �̂

−1
diag{s}) + UL. (3.2)

5: return X̃.
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In Algorithm 3.1, n > 2p is needed because in Line 3 the n × (2p + 1) matrix [1n,X,W ]
must have at least as many rows as columns to be a valid input to the Gram–Schmidt or-
thonormalization algorithm. The astute reader may notice a strong similarity between equa-
tion (3.2) and the fixed-X knockoff construction in Barber and Candès [1], equation (1.4).
Indeed nearly the same tools can be used to find a suitable s; in the Supplementary Material
Appendix B.1 [18] we slightly adapt three methods from Barber and Candès [1] and Candès
et al. [10] for computing suitable s. The computational complexity of Algorithm 3.1 depends
on the method used to find s, with the fastest option requiring O(np2) time.

The differences between equation (3.2) and the fixed-X knockoff construction are the ad-
ditional accounting for the mean by adding/subtracting μ̂, the lack of requiring that X have
normalized columns, the “≺” relationships (as opposed to “�”), and most importantly the re-
quirement that U be random. Indeed, as can be seen in the proof of Theorem 3.1, the precise
uniform distribution of U is crucial. And it bears repeating that unlike fixed-X knockoffs,
Algorithm 3.1 produces valid model-X knockoffs, and hence permits importance statistics
without the “sufficiency property” and applies to any FY |X , not just homoscedastic linear
regression.

THEOREM 3.1. Algorithm 3.1 generates valid knockoffs for model (3.1).

The challenge in proving Theorem 3.1 is that the conditional distribution of [X, X̃] | T (X)

is supported on an uncountable subset of zero Lebesgue measure, and its distribution is only
defined through the distribution of X | T (X) and the conditional distribution of X̃ | X. Al-
though X | T (X) and X̃ | X are both conditionally uniform on their respective supports, and
the latter’s normalizing constant does not depend on X, these facts alone are not sufficient to
conclude that [X, X̃] | T (X) is uniform on its support (see Appendix A.2.1 in the Supplemen-
tary Material [18] for a simple counterexample), which is what we need to prove. Although
these distributions on zero-Lebesgue-measure manifolds can be characterized using geomet-
ric measure theory (as in, e.g., Diaconis et al. [13]), we bypass this approach by directly using
the concept of invariant measures from topological measure theory. Since these tools are new
to the knockoffs literature and their use may be of independent interest, we include below a
brief sketch of the proof of Theorem 3.1, deferring the full proof to Appendix A.2.2 in the
Supplementary Material [18].

The proof of Theorem 3.1 follows three steps: we first show that the conditional distribu-
tion of [X, X̃] | T (X) is invariant on its support to multiplication by elements of the topo-
logical group of orthonormal matrices that have 1n as a fixed point, and then show that the
conditional distribution remains invariant (on the same support) after swapping Xj and X̃j .
Finally, we show that the invariant measure on the support of [X, X̃] | T (X) is unique. These
three steps combined show that the distributions before and after swapping are the same, and
hence X̃ is a valid conditional knockoff matrix for X.

A useful consequence of Theorem 3.1 is the double robustness property that if knockoffs
are constructed by Algorithm 3.1 and knockoff statistics are used which obey the sufficiency
property of Barber and Candès [1] (i.e., the knockoff statistics only depend on y and [X, X̃]
through [1n,X, X̃]	y and [1n,X, X̃]	[1n,X, X̃]), then the resulting variable selection con-
trols the FDR exactly as long as at least one of the following holds:

• xi
i.i.d.∼ N (μ,�) for some μ and �, both unknown (regardless of FY |X), or

• yi | xi
i.i.d.∼ N (x	

i β, σ 2) for some β and σ 2, both unknown (regardless of FX).

In the Supplementary Material Appendix B.1 [18] we extend Algorithm 3.1 to the case
when the mean is known (Algorithm B.1) or a subset of columns of X are additionally condi-
tioned on (Algorithm B.2). Both extensions may be of independent interest, but will also be
used as subroutines when generating knockoffs for Gaussian graphical models in Section 3.2.
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FIG. 1. Power curves of conditional and unconditional knockoffs for an AR(1) model with p = 1000 (a) as n/p

varies for various coefficient amplitudes and (b) as the coefficient amplitude varies for various values of n(u), with
n = 300 fixed. Standard errors are all below 0.008.

3.1.2. Numerical examples. We present two simulations comparing the power of condi-
tional knockoffs to the analogous unconditional construction that uses the exactly-known FX .
We remind the reader that the simulation setting is at the beginning of Section 3. The vector s
in Algorithm 3.1 is computed using the SDP method of equation (B.1) in the Supplementary
Material [18], and the analogous vector for the unconditional construction is chosen by the
analogous SDP method [10]. Although in both examples n∗ > 2p, the number of unknown
parameters in the Gaussian model for FX is p + p(p+1)

2 > 500,000, vastly larger than any of
the sample sizes.

Figure 1(a) fixes p = 1000 and plots the difference in power between unconditional and
conditional knockoffs as n > 2p increases for a few different signal amplitudes. The power
of the conditional and unconditional constructions is quite close except when n = 2.5p is
just above its threshold of 2p, and even then the power of the conditional construction is
respectable.

Figure 1(b) shows how unlabeled samples improve the power of conditional knockoffs.
The model is the same as the first example but the labeled sample size is fixed at n = 300 and
we vary the number of unlabeled samples. Again, the power of the conditional and uncondi-
tional constructions is extremely close except when n∗ = 2.3p is just above its threshold, and
again even in that setting the power of the conditional construction is respectable. Note that
unlabeled samples here have enabled the low-dimensional Gaussian construction to apply in
a high-dimensional setting with n < p, since n∗ > 2p.

3.2. Gaussian graphical model. Ignoring unlabeled data, the method of the previous sub-
section is constrained to low-dimensional (or perhaps more accurately, medium-dimensional,
since it allows p = �(n)) settings and cannot be immediately extended to high dimensions.
In many applications, however, particularly in high dimensions, the covariates are modeled
as multivariate Gaussian with sparse precision matrix �−1, and when the sparsity pattern is
known a priori, we can condition on much less. For instance, time series models such as au-
toregressive models assume a banded precision matrix with known bandwidth, and the model
used in this subsection would also allow for nonstationarity. Spatial models often assume a
(known) neighborhood structure such that the only nonzero precision matrix entries are index
pairs corresponding to spatial neighbors.

Precisely, suppose X’s rows x	
i are i.i.d. draws from a distribution known to be in the

model

(3.3)
{
N (μ,�) : μ ∈ R

p,� � 0,
(
�−1)

j,k = 0 for all j �= k and (j, k) /∈ E
}
,
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where E ⊆ [p] × [p] is some symmetric set of integer pairs (i.e., (j, k) ∈ E ⇒ (k, j) ∈ E)
with no self-loops. Then the undirected graph G := ([p],E) defines a Gaussian graphical
model with vertex set [p] and edge set E. For any j ∈ [p], define Ij = {k : (j, k) ∈ E} for the
vertices that are adjacent to j . We will use the terms “vertex” (j ∈ [p]) and “variable” (Xj )
interchangeably. μ̂ and �̂E together constitute a sufficient statistic, where �̂E := {�̂j,k : j =
k or (j, k) ∈ E}. We will show in this section how to generate conditional knockoffs, and we
will characterize the sparsity patterns E for which we can generate knockoffs with X̃j �= Xj

for all j ∈ [p].

REMARK 3. More generally, sparsity in the precision matrix, but with unknown sparsity
pattern, is a common assumption in Gaussian graphical models which are used to model
many types of data in high dimensions such as gene expressions. Although the construction
in this section no longer holds exactly when the sparsity pattern is unknown, approximate
knockoffs could still be constructed by first using a method for estimating the sparsity pattern
[9], Chapter 13, and then treating it as known. Note that we only require the edge set E to
contain all non-zero entries of �−1, which is no harder than the exact identification of the
nonzero entries.

3.2.1. Generating conditional knockoffs by blocking. First, consider the ideal case when
the graph G separates into disjoint connected components whose respective vertex sets are
V1, . . . , V�. Then X can be divided into independent subvectors, XV1, . . . ,XV�

, and if each
|Vk| < n/2, we can construct low-dimensional conditional knockoffs separately and indepen-
dently for each XVk

as in Section 3.1. Moving to the general case when G is connected, we
can do something intuitively similar by conditioning on a subset of variables in addition to
μ̂ and �̂E . If there is a subset of vertices B such that the subgraph GB induced by deleting
B separates into small disjoint connected components, then we should be able to construct
conditional knockoffs as above for XBc by conditioning on XB . We think of the variables in
B as being blocked to separate the graph into small disjoint parts, hence we refer to this B as
a blocking set.

The following definition formalizes when we can apply the above procedure, and Algo-
rithm 3.2 states that procedure precisely.

DEFINITION 3.1. A graph G is n-separated by a set B ⊂ [p] if the subgraph GB induced
by deleting all vertices in B has connected components whose respective vertex sets we
denote by V1, . . . , V� such that for all k ∈ [�],

2|Vk| + |IVk
∩ B| < n,

where IVk
:= ⋃

j∈Vk
Ij is the neighborhood of Vk in G.

Algorithm 3.2 Conditional knockoffs for Gaussian graphical models

Input: X ∈ R
n×p , G = ([p],E), B ∈ [p].

Require: For some n′ ≤ n, G is n′-separated by B into connected component vertex sets
V1, . . . , V�.

1: for k = 1, . . . , � do
2: Construct partial low-dimensional knockoffs X̃Vk

for XVk
conditional on XIVk

∩B via
Algorithm B.2 (a slight modification of Algorithm 3.1).

3: end for
4: Set X̃B = XB .
5: return X̃.
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Note that when the Vk separated X into independent subvectors, we only needed 2|Vk| < n;
now that they only represent conditionally independent subvectors, we must also account
for Vk’s neighbors in B that we condition on, resulting in the requirement that 2|Vk| +
|IVk

∩ B| < n.
Algorithm 3.2 constructs knockoffs for the model (3.3) by first conditioning on XB and

then running a slight modification of Algorithm 3.1 (Algorithm B.2 in the Supplementary
Material Appendix B.1.3 [18]) on the variables/columns Vk corresponding to the induced
subgraphs. The computational complexity of Algorithm 3.2 is O(n

∑�
k=1(|IVk

∩ B|2|Vk| +
|Vk|2)), which is upper bounded by the simpler expression O(np(n′ + maxk∈[�] |IVk

∩ B|2))
(both complexities assume the most efficient construction of s is used as a primitive in Algo-
rithm B.2).

THEOREM 3.2. Algorithm 3.2 generates valid knockoffs for model (3.3).

Algorithm 3.2 raises two key issues: how to find a suitable blocking set B , and how to
address the fact that X̃B = XB are trivial knockoffs, so using conditional knockoffs from
Algorithm 3.2 will have no power to select any of the variables in B .

Algorithm 3.3 provides a simple greedy way to find a suitable B or, given an initial block-
ing set B , can also be used to shrink B (see Proposition B.3). The algorithm visits every
vertex in G once in the order π and decides whether each vertex it visits is blocked or free
(not blocked). Meanwhile, it constructs a graph Ḡ from G, which gets expanded every time a
vertex j is determined to be free: all pairs of j ’s neighbors in Ḡ get connected (if not already)
and a new vertex j̃ that has the same neighborhood as j in Ḡ is added to the graph. A vertex
is blocked if, when it is visited, its degree in Ḡ is greater than n′ − 3.

PROPOSITION 3.3. If B is the blocking set determined by Algorithm 3.3 with input
(π,n′), then G is n-separated by B for any n ≥ n′.

Algorithm 3.3 is meant to be intuitive but a more efficient implementation is given in the
Supplementary Material Appendix B.2 [18]. Algorithm 3.3 can also be made even greedier
by choosing the next j at each step as the unvisited vertex in [p] with the smallest degree in
Ḡ (breaking ties at random), instead of following the ordering π . The algorithm also takes
an input n′, which one may prefer to choose smaller than n for computational or statistical
efficiency, as we investigate in Section 3.2.2 (smaller n′ will mean smaller Vk to generate
knockoffs for in Line 2 of Algorithm 3.2). The flexibility in both π and n′ is mainly motivated
by the second aforementioned issue of trivial knockoffs X̃B = XB , addressed next.

Algorithm 3.3 Greedy search for a blocking set
Input: π a permutation of [p], G = ([p],E), n′.

1: Initialize a graph Ḡ = G, and B = ∅.
2: for t = 1, . . . , p do
3: Let j = πt , and Īj be the neighborhood of j in the graph Ḡ.
4: if n′ ≥ 3 + |Īj | then
5: Add edges between all pairs of vertices in Īj .
6: Add a vertex j̃ to Ḡ and add edges between j̃ and all vertices in Īj .
7: else
8: B ← B ∪ {j}.
9: end if

10: end for
11: return B .
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Algorithm 3.4 Conditional knockoffs for Gaussian graphical models with data splitting

Input: X ∈ R
n×p , G = ([p],E), B1, . . . ,Bm ⊂ [p], n1, . . . , nm ∈ N

Require:
⋃m

i=1 Bc
i = [p], G is ni -separated by Bi for all i = 1, . . . ,m, and

∑m
i=1 ni = n.

1: Partition the rows of X into submatrices X(1), . . . ,X(m) with each X(i) ∈ R
ni×p .

2: for i = 1, . . . ,m do
3: Run Algorithm 3.2 on X(i) with blocking set Bi to obtain X̃

(i)
.

4: end for
5: return X̃ = [X̃(1); . . . ; X̃(m)] (the row-concatenation of the X̃

(i)
’s).

An intuitive solution to prevent the trivial knockoffs X̃B in Algorithm 3.2 is to split the
rows of X in half and run Algorithm 3.2 on each half with disjoint blocking sets B1 and B2
such that G is n/2-separated by both blocking sets. Then the knockoffs for variables in B1
will be trivial for half the rows of X̃ and those for variables in B2 will be trivial for the other
half of the rows of X̃, but since B1 and B2 are disjoint, no variables will have entirely trivial
knockoffs. Even though some knockoff variables are trivial for half their rows, we find the
power loss for these variables to be surprisingly small, see the simulations in Section 3.2.2.

This data-splitting idea is generalized in Algorithm 3.4 to splitting the rows of X into m

folds and running Algorithm 3.2 on each fold with a different input B .
In Algorithm 3.4, since

⋃m
i=1 Bc

i = [p], for each j ∈ [p] there is at least one i such that
j /∈ Bi , and thus X̃j �= Xj . Before characterizing when it is possible to find such Bi , we
formalize the requirements of Algorithm 3.4 into a definition.

DEFINITION 3.2. G = ([p],E) is (m,n)-coverable if there exist B1, . . . ,Bm subsets of
[p] and integers n1 . . . , nm such that

⋃m
i=1 Bc

i = [p], G is ni-separated by Bi for all i =
1, . . . ,m, and

∑m
i=1 ni ≤ n.

The following common graph structures are (m,n)-coverable:

• If the largest connected component of G is not larger than (n−1)/2, G is (1, n)-coverable.
• If G is a Markov chain of order r (making the model a time-inhomogeneous AR(r) model),

that is, E = {(i, j) : 1 ≤ |i − j | ≤ r}, and n ≥ 2 + 8r , then G is (2, n)-coverable.
• If G is a m-colorable (also known as m-partite), that is, the vertices can be divided

into m disjoint sets such that the vertices in each subset are not adjacent, and n ≥
m(3 + maxj |Ij |), then G is (m,n)-coverable. For example,
– A tree (m = 2) in which the maximal number of children of any vertex is no more than

(n − 8)/2,
– A circle with p even (m = 2) and n ≥ 10, or with p odd (m = 3) and n ≥ 15,
– A finite subset of the d-dimensional lattice Z

d where vertices separated by distance 1
are adjacent (m = 2) and n ≥ 6 + 4d .

For simple graphs such as those listed above, finding appropriate blocking sets Bi can be
done by inspection; see the Supplementary Material Appendix B.2.3 [18]. More generally,
determining (m,n)-coverability for an arbitrary graph or, given an (m,n)-coverable graph,
determining blocking sets Bi ’s that are optimal in some sense (e.g., minimizing |⋃i≤m Bi |)
are beyond the scope of this work. However, in Algorithm B.5 in the Supplementary Material
Appendix B.2 [18], we provide a randomized greedy search for suitable Bi ’s that be applied
in practice when the graph structure is too complex to find such Bi’s by inspection.

3.2.2. Numerical examples. We present two simulations comparing the power of Algo-
rithm 3.4 with its unconditional counterpart, one a time-varying AR(1) model and the other
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FIG. 2. Power curves of conditional and unconditional knockoffs for p = 2000 and a range of n for (a) an
AR(1) model and (b) an AR(10) model. Standard errors are all below 0.008.

a time-varying AR(10). Line 2 of Algorithm 3.2 uses Algorithm 3.1 with the vector s com-
puted using the SDP method of equation (B.1), and the unconditional construction also uses
the SDP method [10]. Algorithm 3.4 was run with m = 2 and B1 and B2 chosen by fixing n′
(specified in the following paragraphs) and running Algorithm 3.3 twice with two different
π ’s. The first run used the original variable ordering for π , and the second run used ordered
B1 followed by the ordered remaining variables. This is a nonrandomized version of Algo-
rithm B.5, which works well for AR models because of their graph structure. We remind the
reader that the simulation setting is at the beginning of Section 3.

In Figure 2(a), the xi ∈ R
2000 are i.i.d. AR(1) with autocorrelation coefficient 0.3 (al-

though the autocorrelation coefficient does not vary with time, this is not assumed by Algo-
rithm 3.4). We chose n′ = 40, resulting in 210 variables that are each blocked in half the sam-
ples. The number of unknown parameters is 3p − 1 = 5999 while the sample sizes simulated
are much smaller, n ≤ 350, yet the power of conditional knockoffs is nearly indistinguishable
from that of unconditional knockoffs which uses the exactly-known distribution of X.

In Figure 2(b), the xi ∈ R
2000 are time-varying AR(10); specifically, xi

i.i.d.∼ N (0,�)

where � is the renormalization of �0 to have 1’s on the diagonal, and (�0)−1
j,k = 1{j=k} −

0.05 · 1{1≤|j−k|≤10}. We chose n′ = 50, resulting in 1660 variables that are each blocked in
half the samples. The number of unknown parameters is 2p + 10p − 10 × 11/2 = 23,945
while the sample sizes are again much smaller, n ≤ 500, and the power difference between
conditional and unconditional knockoffs remains very slight.

Note that the simulation in Figure 2(a) blocked on just roughly 10% of its variables (i.e.,
|B1 ∪ B2|/p ≈ 10%), and since the signals are uniformly distributed, one might worry that
in specific applications where the blocked variables and signals happened to align, the power
loss might be much worse. But Figure 2(b)’s simulation blocked on over 80% of its variables
and still suffered very little power loss compared to unconditional knockoffs, suggesting that
even the blocking of signal variables has only a small effect on power thanks to the data
splitting in Algorithm 3.4.

Finally, we examine the sensitivity of the power of conditional knockoffs to the choice
of n′ in Algorithm 3.3 for choosing the Bi . In the case of AR(1) with n = 300 and
p = 2000, Figure 3(a) shows the averaged density of original-knockoff correlations ρ̃j =
X	

j X̃j /(‖Xj‖‖X̃j‖) for three different choices of n′, and Figure 3(b) shows the correspond-
ing power curves. Recall that smaller n′ means blocking on more variables but generating
better knockoffs for the non-blocked variables in each step i of Algorithm 3.4. Figure 3(a)
shows quite different correlation profiles for different n′, with n′ = 40 seeming to provide the
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FIG. 3. Sensitivity of conditional knockoffs to the choice of n′ for an AR(1) model with n = 300 and p = 2000.
(a) Histograms of the original-knockoff correlations and (b) power curves. Standard errors in (b) are all below
0.004.

density with mass most concentrated to the left. Indeed Figure 3(b) shows n′ = 40 is most
powerful, but only by a small margin—the power is quite insensitive to the choice of n′. In
applications, the choice of n′ may rely on an approximate version of Figure 3(a) obtained by
simulating X from an estimated model.

In the Supplementary Material [18], we provide additional experiments that compare the
performance of conditional knockoffs that are generated using different sufficient statistics
(Appendix D.3) and examine the scenario where a superset of the edge set E is unknown and
is instead estimated using the data (Appendix D.4).

3.3. Discrete graphical model. We now turn to applying conditional knockoffs to dis-
crete models for X. Such models are used, for example, for survey responses, general binary
covariates and single nucleotide polymorphisms (mutation counts at loci along the genome)
in genomics. Many discrete models assume some form of local dependence, for instance in
time or space. We will show how to construct conditional knockoffs when that local depen-
dence is modeled by (undirected) graphical models (see, e.g., Edwards [14], Chapter 2), for
example, Ising models, Potts models and Markov chains.

A random vector X is Markov with respect to a graph G = ([p],E) if for any two disjoint
subsets A,A′ ⊂ [p] and a cut set B ⊂ [p] such that every path from A to A′ passes through
B , it holds that XA ⊥⊥ XA′ | XB . Denote by Ij the vertices adjacent to j in G (excluding j

itself). X being Markov implies the local Markov property that Xj ⊥⊥ X({j}∪Ij )c | XIj
.

In this section, we assume X is locally Markov with respect to a known graph G and
each variable Xj takes Kj ≥ 2 discrete values (for simplicity label these values [Kj ] =
{1, . . . ,Kj }). Although the algorithms in this section can be applied when Kj is infinite,
we assume for simplicity that Kj is finite. Formally, we assume

(3.4) FX ∈
{

distribution on
p∏

j=1

[Kj ] satisfying the local Markov property w.r.t. G

}
.

3.3.1. Generating conditional knockoffs by blocking. Our algorithm for generating con-
ditional knockoffs for discrete graphical models uses again the ideas of blocking and data
splitting in Section 3.2. However, unlike Section 3.2 which built upon the low-dimensional
construction of Section 3.1, there is no known efficient algorithm for constructing conditional
knockoffs for general discrete models in low dimensions. As such, instead of blocking to iso-
late small graph components, we now block to isolate individual vertices, and as such need
to be more careful with data splitting to ensure the resulting knockoffs remain powerful.
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Suppose B is a cut set such that every path connecting any two different vertices in Bc

passes through B; call such a set a global cut set with respect to G. The local Markov property
implies the elements of XBc are conditionally independent given XB :

P(XBc | XB) = ∏
j∈Bc

P(Xj | XB) = ∏
j∈Bc

P(Xj | XIj
),

where we used the fact that for any j ∈ Bc, Ij ⊆ B and Xj ⊥⊥ XB\Ij
| XIj

. For any A ⊆ [p]
and k1, . . . , kp , denote by kA the vector of kj ’s for j ∈ A and by [KA] the Cartesian product∏

j∈A[Kj ]. Then the conditional probability P(Xj | XIj
) can be written as∏

kj∈[Kj ],kIj
∈[KIj

]
θj (kj ,kIj

)
1{Xj =kj ,XIj

=kIj
}
,

with parameters θj (kj ,kIj
) ∈ [0,1] for all kj , kIj

, with the convention that 00 := 1. Let
ψB(XB) be the probability mass function for XB , the joint distribution for n i.i.d. samples
from the graphical model is then

n∏
i=1

ψB(Xi,B)
∏

j∈Bc

( ∏
kj∈[Kj ],kIj

∈[KIj
]
θj (kj ,kIj

)
Nj (kj ,kIj

)
)
,

where Nj(kj ,kIj
) = ∑n

i=1 1{Xi,j=kj ,Xi,Ij
=kIj

}. Let TB(X) be the statistic that includes XB

and the counts Nj(kj ,kIj
) for all j ∈ Bc and all possible (kj ,kIj

). Then TB(X) is a
sufficient statistic for model (3.4). Conditional on TB(X), the random vectors {Xj , j ∈
Bc} are independent and each Xj is uniformly distributed on all w ∈ [Kj ]n such that∑n

i=1 1{wi=kj ,Xi,Ij
=kIj

} = Nj(kj ,kIj
) for any (kj ,kIj

). Algorithm 3.5 generates knockoffs
conditional on TB(X) by, for each j , uniformly permuting subsets of entries of Xj to pro-
duce X̃j . The subsets of entries are defined by blocks of identical rows of XIj

so that∑n
i=1 1{X̃i,j=kj ,Xi,Ij

=kIj
} = Nj(kj ,kIj

), as required.

The computational complexity of Algorithm 3.5 is (shown in the Supplementary Mate-
rial Appendix B.3 [18]) O(

∑
j∈Bc(n + min(

∏
�∈Ij

K�, n|Ij |))). If n > maxj∈Bc
∏

�∈Ij
K�, as

needed to guarantee nontrivial knockoffs for all j ∈ Bc are generated with positive proba-
bility, then the complexity can be simplified to O(n(p − |B|)). In general, Algorithm 3.5’s
computational complexity is bounded by the simple expression O(npd̄), where d̄ is the av-
erage degree in Bc.

THEOREM 3.4. Algorithm 3.5 generates valid knockoffs for model (3.4).

Algorithm 3.5 Conditional knockoffs for discrete graphical models

Input: X ∈ N
n×p , G = ([p],E), B ∈ [p].

Require: B is a global cut set of G.
1: for j in [p] \ B do
2: Initialize X̃j to Xj .
3: for kIj

∈ [KIj
] do

4: Uniformly randomly permute the entries of X̃j whose corresponding rows of XIj

equal kIj
.

5: end for
6: end for
7: Set X̃B = XB .
8: return X̃ = [X̃1, . . . , X̃p].
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Algorithm 3.6 Conditional knockoffs for discrete graphical models with data splitting

Input: X ∈ N
n×p , G = ([p],E), B1, . . . ,Bm ⊂ [p], n1, . . . , nm ∈ N.

Require: [p] = ⋃m
i=1 Bc

i and each Bi is a global cut set.
1: Partition the rows of X into submatrices X(1), . . . ,X(m) with each X(i) ∈ N

ni×p .
2: for i = 1, . . . ,m do
3: Run Algorithm 3.5 or B.6 on X(i) with Bi to obtain X̃

(i)
.

4: end for
5: return X̃ = [X̃(1); . . . ; X̃(m)] (row-concatenation of X̃

(i)
’s).

As with Algorithm 3.2, in Algorithm 3.5 variables in B are blocked and their knockoffs
are trivial: X̃B = XB . One way to mitigate this drawback is to, after running Algorithm 3.5,
expand the graph to include the generated knockoff variables and then conduct a second
knockoff generation with the expanded graph. We elaborate on this idea and present Algo-
rithm B.6, a modified version of Algorithm 3.5, in the Supplementary Material Appendix B.4
[18].

Another systematic way to address this issue is to take the same approach as Algorithm 3.4
by splitting the data and running Algorithm 3.5 (or Algorithm B.6) on each split with different
B’s; see Algorithm 3.6.

If ni > maxj∈Bc
i

∏
�∈Ij

K� for all i ≤ m and all the model parameters θj (kj ,kIj
) are pos-

itive, then Algorithm 3.6 produces nontrivial knockoffs for all j with positive probability.
Note that in the continuous case, similar mild conditions guarantee that Algorithm 3.4 pro-
duces nontrivial knockoffs for all j with probability 1. This is unachievable in general in
the discrete case no matter how the sufficient statistic is chosen, as there is always a posi-
tive probability (for every j ) that the sufficient statistic takes a value such that X̃j = Xj is
uniquely determined given that sufficient statistic (e.g., if Xi,j = 1 for all i).

One way to ensure B1, . . . ,Bm satisfy the requirements of Algorithm 3.6 is if assigning
each Bc

i a different color produces a proper coloring of G, that is, no adjacent vertices have
the same color. The end of Section 3.2.1 listed some common graph structures with known
chromatic numbers (the chromatic number of a graph G is the minimal m such that G is m-
colorable), which subsume many common models including Ising models and Potts models.
Although not specified in Section 3.2.1, a Markov chain of order m − 1 is m-colorable and
a planar graph (map) is 4-colorable. Also, for any graph of maximal degree d , a (d + 1)-
coloring can be found in O(dp) time by greedy coloring [26], Chapter 2. In general, both
finding the chromatic number and finding a corresponding coloring of a graph G are NP-
hard [16], but there exist efficient algorithms that in practice are able to color graphs with a
near-optimal number of colors (see Malaguti and Toth [28] for a survey).

3.3.2. Refined constructions for Markov chains. For Markov chains, we develop two al-
ternative conditional knockoff constructions that take advantage of the Markovian structure.
Let N

(j)
kj−1,kj

= ∑n
i=1 1{Xi,j−1=kj−1,Xi,j=kj }. Then all the N

(j)
kj−1,kj

’s together form a sufficient
statistic, which we denote by T (X). As opposed to the statistics Nj(kj ,k{j−1,j+1})’s used in
Section 3.3.1, T (X) is minimal, and thus we expect that generating knockoffs conditional on
it will be more powerful than knockoffs generated conditional on a non-minimal statistic and
will dominate Algorithm 3.6 when G is a Markov chain. However, we found the difference
in power to be negligible in every simulation we tried, and so we defer these algorithms to
the Supplementary Material Appendix B.4 [18].

3.3.3. Numerical examples. We present two simulations, comparing the power of Algo-
rithm 3.6 with its unconditional counterpart for discrete Markov chains [33] and for Ising
models [3]. We remind the reader that the simulation setting is at the beginning of Section 3.
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FIG. 4. Power curves of conditional and unconditional knockoffs with a range of n for (a) a Markov chain of
length p = 1000 and (b) an Ising model of size 32 × 32. Standard errors are all below 0.008.

In Figure 4(a), the xi ∈ {0,1}1000 are i.i.d. from an inhomogeneous binary Markov
chain. The initial distribution is P(X1 = 0) = P(X1 = 1) = 0.5, and the transition proba-
bilities P(Xj = 0 | Xj−1 = 1) = Q

(j)
10 , P(Xj = 1 | Xj−1 = 0) = Q

(j)
01 are randomly gen-

erated as Q
(j)
10 = U

(j)
1 /(0.4 + U

(j)
1 + U

(j)
2 ) and Q

(j)
01 = U

(j)
3 /(0.4 + U

(j)
3 + U

(j)
4 ), where

U
(j)
i

i.i.d.∼ Unif([0,1]) but held fixed across all replications. We implemented Algorithm 3.6
with B1 as the even variables and B2 as the odds, with n1 = n2 = n/2, and used Algo-
rithm B.6 (with Q = 2) in Line 3. The number of unknown parameters in the model is
2p − 1 = 1999 and all plotted power curves have n ≤ 350. Despite the high-dimensionality,
conditional knockoffs are nearly as powerful as the unconditional SCIP procedure of Sesia et
al. [33] which requires knowing the exact distribution of X.

In Figure 4(b), the xi ∈ {−1,+1}32×32 are i.i.d. draws from an Ising model given by (see
the Supplementary Material Appendix B.3 [18] for the sampling details):

(3.5) P(X = x) ∝ exp
( ∑

(s,t)∈E

θs,txsxt + ∑
s∈V

hsxs

)
, x ∈ {−1,+1}V ,

where the vertex set V = [32] × [32] and the edge set E is all the pairs (s, t) such that
‖s − t‖1 = 1. We take θs,t = 0.2 and hs = 0. Model (3.5) has 2 × 32 × 31 + 322 = 3008
parameters, again far larger than any of the sample sizes simulated, yet conditional knockoffs
are still nearly as powerful as their unconditional counterparts. The conditional knockoffs are
generated by Algorithm 3.6 with two-fold data-splitting (m = 2, vertices are colored by the
parity of the sum of their coordinates) and no graph-expanding. Although it is possible to use
graph-expanding, the power improvement is negligible because the sample size is quite small
relative to the size of the neighborhoods in the expanded graph, resulting in the second round
of knockoffs being nearly identical to their original counterparts.

4. Discussion. This paper introduced a way to use knockoffs to perform variable selec-
tion with exact FDR control under much weaker assumptions than made in Candès et al.
[10], while retaining nearly as high power in simulations. In fact, our method controls the
FDR under arguably weaker assumptions than any existing method (see Section 1.2). The
key idea is simple, to generate knockoffs conditional on a sufficient statistic, but finding and
proving valid algorithms for doing so required surprisingly sophisticated tools. One particu-
larly appealing property of conditional knockoffs is how it directly leverages unlabeled data
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for improved power. We conclude with a number of open research questions raised by this
paper.

Algorithmic: Perhaps the most obvious question is how to construct conditional knockoffs
for models not addressed in this paper. Even for the models in this paper, what is the best way
to choose the tuning parameters (e.g., s in Algorithm 3.1, or the blocks Bi in Algorithms 3.4
and 3.6)?

Robustness: Can techniques like those in Barber et al. [2] be used to quantify the robustness
of conditional knockoffs to model misspecification? Empirical evidence for such robustness
is provided in the Supplementary Material Appendix D.2 [18]. Also, it is worth pointing out
that there are models for which no “small” sufficient statistic exists, that is, every sufficient
statistic T (X) has the property that Xj | X-j , T (X) is a point mass at Xj , which forces
the conditional knockoffs X̃j to be trivial. In such models where the proposal of this paper
can only produce trivial knockoffs, could postulating a distribution and generating knockoffs
conditional on some (not-sufficient) statistic still improve robustness to the parameter values
in the model, relative to generating knockoffs for the same distribution but unconditionally?
See Sesia et al. [8] for a positive example for the related conditional randomization test.

Power: In this paper, we always used unconditional knockoffs as a power benchmark for
conditional knockoffs, as it seems intuitive that conditioning on less should result in higher
power. Can this be formalized, and/or can the cost of conditioning in terms of power be
quantified? Combining this with the previous paragraph, we expect there to be a power–
robustness tradeoff that can be navigated by conditioning on more or less when generating
knockoffs.

Conditioning: There are reasons other than robustness that one might wish to generate
knockoffs conditional on a statistic. For instance, if a model for X needs to be checked by
observing a statistic of X, generating knockoffs conditional on that statistic would guarantee
a form of post-selection inference after model selection. Or when data contains variables that
confound the variables of interest, it may be desirable to generate knockoffs conditional on
those confounders (e.g., by Algorithm B.2) in order to control for them. Also, can the con-
ditioning tools and ideas in this paper be used to relax the assumptions of the conditional
randomization test, generalizing Rosenbaum [32]?

Acknowledgments. D. H. would like to thank Yu Zhao for advice on topological mea-
sure theory. L. J. would like to thank Emmanuel Candès, Rina Barber, Natesh Pillai, Pierre
Jacob and Joe Blitzstein for helpful discussions regarding this project. The authors also thank
the Editors and the three referees for their constructive comments and suggestions.

SUPPLEMENTARY MATERIAL

Supplement to “Relaxing the assumptions of knockoffs by conditioning” (DOI:
10.1214/19-AOS1920SUPP; .pdf). Appendix A proves the theoretical results in the paper.
Appendix B provides the algorithmic details. Appendix C discusses the hypotheses being
tested and Appendix D provides additional simulations.
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