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We consider nonparametric regression in high dimensions where only a
relatively small subset of a large number of variables are relevant and may
have nonlinear effects on the response. We develop methods for variable se-
lection, structure discovery and estimation of the true low-dimensional re-
gression function, allowing any degree of interactions among the relevant
variables that need not be specified a-priori. The proposed method, called
the GRID, combines empirical likelihood based marginal testing with the lo-
cal linear estimation machinery in a novel way to select the relevant vari-
ables. Further, it provides a simple graphical tool for identifying the low di-
mensional nonlinear structure of the regression function. Theoretical results
establish consistency of variable selection and structure discovery, and also
Oracle risk property of the GRID estimator of the regression function, allow-
ing the dimension d of the covariates to grow with the sample size n at the
rate d = O(na) for any a ∈ (0,∞) and the number of relevant covariates r

to grow at a rate r = O(nγ ) for some γ ∈ (0,1) under some regularity con-
ditions that, in particular, require finiteness of certain absolute moments of
the error variables depending on a. Finite sample properties of the GRID are
investigated in a moderately large simulation study.

1. Introduction. Extraction of low dimensional structures in high dimensional data is
a challenging task. It requires selection of relevant variables as well as the estimation of
the resulting low dimensional structure. For high dimensional sparse linear regression mod-
els, important methodological advancement has been made in recent years where different
variable selection and screening methods have been proposed and accurate estimation of the
nonzero regression coefficients is accomplished. Some of the most popular methods include
the LASSO and its variants (cf. Tibshirani (1996), GLASSO in Friedman, Hastie and Tib-
shirani (2007) and Meinshausen and Bühlmann (2006), COSSO in Lin and Zhang (2006),
DASSO in James, Radchenko and Lv (2009)), the SCAD (cf. Fan and Li (2001)), the Adap-
tive LASSO of Zou (2006) and the MCP (cf. Zhang (2010)), among others. Variable selection
and screening in the high dimensional linear model context include the SIS method of Fan
and Lv (2008) and the marginal test based method of Chang, Tang and Wu (2013).

A more challenging and often a more realistic problem is to select the relevant variables
that possibly have nonlinear interactions with the response. For nonlinear variables, the meth-
ods developed for the linear case do not perform satisfactorily. The literature on nonlinear
variable selection and estimation is relatively sparse. Hall and Miller (2009) developed a
nonlinear variable selection method based on a generalized correlation measure. Simultane-
ous selection and estimation of the nonlinear effects of covariates on the response variable
is a significantly more difficult problem. Even when the exact set of relevant variables are
given, estimation of the nonlinear mean structure is notoriously difficult in high dimensions,
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primarily due to the curse of dimensionality (cf. Stone (1982), Stone et al. (1997)): For a
nonparametric regression model,

Yt = m(Xt) + εt , t = 1, . . . , n,

with d-dimensional covariates Xt and independent and identically distributed (i.i.d.) error
variables εt ∼ N(0, σ 2), the minimax rate of estimation of the regression function m(·) un-
der the L2-loss function over an order-2 Sobolev ball in R

d is only O(n4/[4+d]). Also, results
of Fan et al. (1997) show that the conditional minimax rate (given the Xt s) has a similar
order, namely, Op(n4/[4+d]). As a result, the accuracy of the estimated nonparametric regres-
sion function deteriorates quite rapidly as d increases. In an important paper, Lafferty and
Wasserman (2008) developed a method, called the RODEO, for simultaneous variable selec-
tion and sparse nonparametric regression function estimation, allowing the dimension d to
grow with the sample size n. The RODEO is based on multiple testing with a Studentized
pivot (which, in particular, requires estimation of the error variance σ 2 = Eε2

1). Some of the
main advantages of this approach are its flexibility and simplicity of computation, as well as
the full structural generality of the regression function m(·). However, because of the latter, it
also suffers from the curse of dimensionality that makes it unsuitable for the analysis of high
dimensional regressions beyond d = O(logn/ log logn).

An alternative approach is based on penalized regression methods, albeit under some sim-
plifying structural restrictions on the regression function, for example, an additive structure;
see Radchenko and James (2010), Zhang, Cheng and Liu (2011), Storlie et al. (2011) and the
references therein. For the case of additive models, where the regression function m(·) can be
represented as m(x1, . . . , xd) = m1(x1) + · · · + md(xd) for some functions m1(·), . . . ,md(·)
on R and a given estimation point x = (x1, . . . , xd), Lin and Zhang (2006), Ravikumar et al.
(2009) and Meier, van de Geer and Bühlmann (2009) consider estimation of m(·) under suit-
able sparsity conditions on the component functions mj(·). Zhang, Cheng and Liu (2011)
consider a semiparametric formulation where the regression function has a parametric linear
regression component and an additive nonlinear component (but NO interactions among the
covariates). They develop the LAND method of penalized regression based on basis expan-
sions which, in addition to selecting the relevant variables, can successfully identify the set of
linear and nonlinear variables, and thus, provide important information about the structure of
the regression function m(·). Extensions to models that allow for two-way interactions among
the d covariates in m(·), that is, m(x1, . . . , xd) = ∑d

j=1 mj(xj )+∑
j>k mjk(xj , xk) for func-

tions mj(·), mjk(·), have been considered by Choi, Li and Zhu (2010) and Radchenko and
James (2010). Both of these papers require the user to prespecify the order of interaction
(2-way, 3-way, . . . ), essentially scaling up the effective dimension to O(dk) for the kth order
interaction terms among d covariates (for k ≥ 2), which quickly makes them unfeasible for
applications in practice, even for a moderately large d .

Building on the work of Lafferty and Wasserman (2008), in this paper we develop a new
method, called the Gradient relevant identification of derivatives (or the GRID) method, for
simultaneous nonlinear variable selection and estimation of the low dimensional structure of
the regression function under sparsity. The type of sparsity we consider allows for interactions
of arbitrarily high (but bounded) order that need not be specified a priori. To briefly describe
the methodology and the findings of the paper, consider the nonparametric regression model

(1.1) Yt = m(Xt) + εt , t = 1, . . . , n,

where the Xt represents the R
d -valued covariates and the errors εt are i.i.d. with zero mean

and variance σ 2. The errors εt are independent of Xt , and are not assumed to be Gaussian.
Here, m(Xt) = E(Yt |Xt) : Rd → R is the conditional mean function. We use the notation
Xt = (Xt1, . . . ,Xtd) to refer to the vector of covariates (but sometimes Xj will also denote
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the j th covariate; the difference will be clear from the context). We assume that the num-
ber of covariates d → ∞ but only r of these covariates are relevant for model (1.1), where
r � d can be bounded or unbounded. For structure discovery, we call a relevant covariate j

(non)linear if m(·) is a (non)linear function of the j th component of Xt . The same issue of
linear and nonlinear covariates has also been addressed by Zhang, Cheng and Liu (2011), but
in a somewhat simpler setup of partially linear models. To be precise, here we say that Xtj is
an irrelevant covariate if the j th partial derivative ∂m/∂xj is equal to zero everywhere on the
support of the function; otherwise it is a relevant covariate. And among the relevant covari-
ates, we consider Xtj as a linear covariate if the second-order partial derivative ∂2m/∂x2

j is
zero everywhere on the support; otherwise it is a nonlinear covariate. See (1.2) below for an
illustrative example. Next, denote the sets of nonlinear, linear, relevant and irrelevant covari-
ates in (1.1) by C, A, R and U , respectively. Thus, R = C ∪ A and U = {1, . . . , d} \ R. The
proposed GRID method has the following features:

(a) It automatically identifies the set R of relevant covariates of model (1.1), also distin-
guishing the nonlinear ones from the linear ones, with probability tending to 1. The number
of either type of covariates can be either bounded or unbounded.

(b) It can automatically identify the interaction terms of any order (two way, three way,
. . . ) without increasing the computational complexity of the algorithm.

(c) It is completely data-driven and is easy to implement in practice. In particular, it nei-
ther requires selection of regularization parameters nor the estimation of the nuisance param-
eter σ 2.

(d) It is based on a marginal test based selection procedure and under appropriate moment
assumptions, it can be applied to high dimensions of order d = O(na) for any a ∈ (0,∞),
with r = O(nγ ) for some suitable γ ∈ (0,1).

The GRID method combines two well-developed nonparametric tools in an effective way:
(1) the local linear estimation (LLE) technique of Fan (1992), and (2) the empirical likelihood
(EL) method of Owen (1988), and it can be seen as a nontrivial extension of the RODEO of
Lafferty and Wasserman (2008). The GRID makes use of the same framework and some
of the ideas of RODEO, but differs from it by the use of EL methodology and by careful
construction of some new estimating functions that help to elicit the structural properties of
the relevant variables (e.g., linear versus nonlinear and their interaction patterns). In contrast
to the RODEO, the GRID employs the EL technique to conduct a series of hypotheses tests
to identify the relevant variables and the model structure. An important advantage derived
from the use of the EL methodology is that the GRID completely avoids the difficult issue
of estimating the variance parameter σ 2 in the high dimensional nonlinear model (1.1). In
addition, it does not require the Gaussian assumption on the error variables.

The acronym GRID has a two-fold meaning: First, it derives from Gradient Relevant
Identification of Derivatives, meaning that the procedure is based on testing the significance
of partial derivative estimators (motivated by the LLE methodology); Second, it refers to a
graphical tool which can help in identifying the structure of model (1.1). We now illustrate
the latter using Figure 1 with the following example: Let d = 10 and let the true model be
given by

(1.2) Yt = 2Xt1 + X2
t2Xt3 + 10Xt4Xt5Xt6 + exp(Xt7)Xt2 + εt .

The first stage of the GRID procedure identifies (the indices of) the following sets of
covariates:

C = {2,7}, A = {1,3,4,5,6}, U = {8,9,10},
which are given by the first row (marked with row-label 0) in Figure 1. The selected vari-
ables are automatically classified as linear (denoted by ◦) and nonlinear (denoted by 
). The
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FIG. 1. The GRID representation of model (1.2). The first row represents the selected linear (denoted by ◦) and
nonlinear (denoted by 
) variables. The entries in the rest of the grid represent interactions among the selected
variables.

unmarked variables constitute the set U of irrelevant variables. This step requires applying
the EL testing O(d)-many times with specific choices of estimating functions derived from a
modified LLE method (cf. Section 2 below).

In the second stage of the procedure, a different set of estimating functions are employed
which help to identify the following sets of interactions:

I 1 = {1}, I 2 = {2,3,7}, I 3 = {3,2}, I 4 = {4,5,6}, I 5 = {5,4,6},
I 6 = {6,4,5}, I 7 = {7,2},

where I j includes the interactions of variable j with other covariates, for j ∈ R. By default,
each set I j (for j ∈ R) automatically includes the index j (self-interaction). Therefore, if
the set I j has the only component j , then Xtj appears in the model as an isolated additive
covariate, like Xt1 in model (1.2). These index sets can be determined by successive scans
of the columns of the GRID plot. This step requires applying the EL testing O(r2)-times,
where r is the number of relevant covariates, that is, r = |A ∪ C|, the size of A ∪ C. Thus,
the entire GRID procedure requires O(d + r2)-many multiple tests based on the EL, which
scales linearly in the total number of covariates and as a quadratic function of the number
of relevant variables that is typically of a much smaller order than d . Further, unlike existing
methods, it identifies the interaction terms of any order among the relevant variables without
having to prespecify the highest order a priori.

Next, note that using the sets A, C and I j from Figure 1, we can identify the actual low
dimensional structure of the regression function m(·) as

m(x1, . . . , x10) = β1x1 + m1(x2, x7) + m2(x2)x3 + �1(x4, x5, x6)

for some (nonzero) constants β1, some nonlinear functions m1(·) and m2(·) and some
(multi)linear function �1(·) of x4, x5, x6. To see this, it is sufficient to scan the GRID plot of
Figure 1 by columns, reading each column from the top to the bottom. For example, in the
first column (position j = 1), we can note a circle at the top (in row 0), showing that Xt1 is a
linear covariate, and no symbols in the column below, indicating that x1 appears in m(·) as a
linear term by itself, with no interaction. Next, consider the second column (position j = 2),
which shows a triangle at the top row and two symbols in the column below it. This means
that covariate Xt2 is nonlinear and interacts with other two covariates. The two symbols in
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the column below are in positions 3 and 7, which correspond to a linear and a nonlinear co-
variate, respectively (the two different symbols, circle-triangle and triangle-triangle, show the
kind of interactions). Thus, the interaction term involving variable Xt2 must be of the form
m1(x2, x7) + m2(x2)x3, as Xt7 does not interact with Xt3. Columns j = 3 and j = 7 of the
plot reaffirm the interaction term involving the linear variable Xt3 and the nonlinear variables
Xt2 and Xt7. Similarly, the columns 4, 5 and 6 jointly yield the second (linear interaction)
term of m(·) above. Note that the maximum order of the interaction terms corresponds to the
maximum number of symbols appearing in the columns of the GRID plot (including position
zero on the top). It is three for the case shown in Figure 1 for model (1.2).

Once the low dimensional structure of the high dimensional regression function m(·) has
been identified, estimation of m(·) reduces to a relatively simple task of estimating the addi-
tive components of the low dimensional regression function. This can be done using any of
the standard nonparametric function estimation methods (cf. Fan and Gijbels (1996), Prakasa
Rao (1983), Tsybakov (2009)) with better accuracy than estimating the high dimensional re-
gression function in full generality. Indeed, known mean squared error (MSE) results show
that MSE-consistent estimation of the d-dimensional regression function itself breaks down

whenever the dimension d � logn (so that n− 4
d+4 � 0) while the low dimensional function

is consistently estimable through the GRID method for d = O(na) for any a > 0, provided
suitable moment conditions on ε1 and growth conditions on r are satisfied. The growth rate
of d in our work may also be compared with the existing methods for high dimensional non-
parametric regression. As pointed out earlier, the RODEO has a natural limit of d = O(logn)

on the growth rate of d . For the linear and additive case with two-way interactions, Choi, Li
and Zhu (2010) allow d = o(n1/10). For nonlinear additive models with two-way interactions
and Gaussian errors, Radchenko and James (2010) establish sparsistency results for VAN-
ISH, allowing d to grow at a subexponential rate. In comparison, GRID considers a general
nonlinear nonparametric regression model with an arbitrary (but fixed) order of interaction
among the relevant variables, allowing non-Gaussian error distribution and allowing the di-
mension to grow at the rate d = O(na) for any a ∈ (0,∞). It also allows the number r of
relevant variables to grow at the rate r = O(nγ ) with some suitable 0 ≤ γ < 1 (depending
on the moment condition; see Theorem 3). This rate of r is comparable with the cases of
additive models (cf. Ravikumar et al. (2009)) while significantly superior to available rates
for nonadditive and nonparametric models, namely, r = O(1) in Lafferty and Wasserman
(2008) and Bertin and Lecué (2008)) and r = O(logn) in Comminges and Dalalyan (2012).
The higher rates of d and r in GRID for nonadditive and nonparametric model result from its
construction which completely separates out the selection procedure from the estimation task.
In addition, the computational cost associated with the implementation of the GRID scales
linearly in d and as a quadratic of r , making it viable in practice for a large d; see Section 6.4
for more details on the computational times for the GRID. In summary, the GRID seems to
provide a significant advancement over existing methods of simultaneous nonlinear variable
selection and sparse nonparametric regression function estimation in presence of any given
order (not depending on n) of complex interactions among the relevant covariates in high
dimensions d that may grow as an arbitrary polynomial power of the sample size.

The rest of the paper is organized as follows. In Section 2, we review some background
concepts that are useful for describing the GRID method. In Section 3, we construct new
estimating functions that are needed in the formulation of the GRID for nonlinear variable
selection and structure identification. We also describe the GRID method and the GRID plot
in Section 3. In Section 4, we report theoretical properties of the proposed method for variable
selection and estimation for covariates X1 ∈ R

d having the uniform distribution on (0,1)d .
An extension to the case of correlated covariates having nonuniform distributions on (0,1)d

is given in Section 5. Results from a moderately large simulation study are presented in
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Section 6. Additional simulation results, proofs of the theoretical results and an algorithmic
representation of the GRID method are relegated to a supplementary materials file, hereafter
referred to as Giordano, Lahiri and Parrella (2020).

2. Background and motivation. Let Dg(x) denote the gradient and Hg(x) the Hes-
sian matrix of a d-variate function g, evaluated at the point x. We shall use the notation
δ(A,B, . . .) to denote a generic real valued function, depending on one or more arguments
where the arguments are matrices. Depending on the context, the operator | · | may denote
the determinant of a matrix, the absolute value of a number, or the cardinality of a set. Given
a set A, the set Ac is the complement of A. We also use cj , Cj to denote generic constants
with values in (0,∞) that do not depend on n and d . Finally, let (·)T denote the transpose
operator.

2.1. Empirical likelihood based tests. The EL method of Owen (1988) is a nonparamet-
ric method that defines a likelihood function for certain parameters of the underlying distri-
bution, albeit without a parametric model. Qin and Lawless (1994) extended the scope of the
EL to parameters that are specified through estimating equations (again, without the specifi-
cation of a parametric model). To describe it briefly, let T1, T2, . . . be iid random vectors with
common distribution G and let θ = θ(G) be a d-dimensional parameter of interest specified
by

(2.1) Eψj(T1; θ) = 0, j = 1, . . . , d

for some functions ψj(·; ·). The EL for θ , for j = 1, . . . , d , is defined as

(2.2) Ln(θ) = sup

{
n∏

t=1

pt : pt ∈ [0,1],
n∑

t=1

pt = 1,

n∑
t=1

ptψj (Tt ; θ) = 0

}
.

The EL ratio test statistic for testing H0 : θ = θ0 against H0 : θ 
= θ0 is given by Rn(θ0) =
nnLn(θ0). It is known (cf. Owen (1988, 2001), Qin and Lawless (1994)) that under some
regularity conditions (in particular, with d fixed),

(2.3) −2 logRn(θ0)
d−→ χ2

d as n → ∞,

where
d−→ denotes convergence in distribution. Thus, a version of Wilk’s theorem (cf. Wilks

(1938)) holds just as in the case of the likelihood ratio test in classical parametric models.
Note that the limit distribution of −2 logRn(θ0) is free of any unknown parameters and,
hence, it can be readily used to calibrate the EL ratio test statistic. For developing the GRID
method, we shall use the EL with a suitable choice of the estimating functions ψj ’s for
variable selection and structure discovery through marginal testing. In the next section, we
describe the background and motivation behind the construction of these special estimating
functions.

2.2. Multivariate local linear estimation. Local linear estimation (LLE) is a nonparamet-
ric method for estimating the regression function m(·) in (1.1) (cf. Fan (1992), Ruppert and
Wand (1994)). To estimate m(·) at x = (x1, . . . , xd), the LLE performs a locally weighted
least squares fit of a linear function. Let

(2.4) β̂(x;H) ≡ arg min
β0,β1

n∑
t=1

{
Yt − β0 − βT

1 (Xt − x)
}2

KH(Xt − x),

where the function KH(u) = |H |−1K(H−1u) gives the local weights with a d-variate prod-
uct Kernel function K(u) = ∏d

j=1 K1(uj ). The bandwidth matrix H controls the bias and
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the variance of the resulting LLE of m(x). For simplicity, we shall suppose that H =
diag(h1, . . . , hd) is a diagonal matrix with strictly positive entries. The estimator β̂(x;H)

can be written in a closed form as

(2.5) β̂(x;H) = (
�T W�

)−1
�T Wϒ,

where ϒ = (Y1, . . . , Yn)
T and

� =

⎛⎜⎜⎝
1 (X1 − x)T

...
...

1 (Xn − x)T

⎞⎟⎟⎠ , W =
⎛⎜⎝KH(X1 − x) . . . 0

...
. . .

...

0 . . . KH (Xn − x)

⎞⎟⎠ .

Note from (2.4) that β̂(x;H) gives estimators of the function m(x) and its gradient Dm(x):

(2.6) β̂(x;H) =
(

β̂0(x;H)

β̂1(x;H)

)
≡

(
m̂(x;H)

D̂m(x;H)

)
.

Despite its conceptual and computational simplicity, accurate estimation of m(·) by the
LLE in the multivariate case requires choosing a suitable bandwidth matrix H . Although
asymptotically optimal bandwidth can be derived taking account of the bias-variance trade-
off, like many other nonparametric methods, the LLE is also strongly affected by the curse
of dimensionality problem. As a result, the LLE of m(·), considered in the construction of
RODEO in Lafferty and Wasserman (2008), is impractical for d � logn. However, here
we adopt a somewhat different approach and do not aim to estimate the function m(·) as a
function of all d covariates. Instead, we focus on low dimensional structure discovery, which
no longer requires explicit estimation of the function itself, by using a large bandwidth (that
does not go to zero with the sample size) at a suitable point x∗ ∈ (0,1)d . This is a very
nonstandard point of view, and is a salient feature of our approach that plays a critical role in
scaling up the proposed GRID method to d = O(na), for any a ∈ (0,∞).

2.3. Motivation and main ideas behind model structure discovery. To identify the model
structure of the sparse nonparametric regression function m(·), we shall use the EL methodol-
ogy with some “suitable” estimating functions based on a variant of LLE with a nonstandard
choice of the bandwidth. Recall that A, C, R and U , respectively, denote the sets of linear,
nonlinear, relevant and irrelevant covariates and that |R| = r , where |B| denotes the size of a
finite set B . Thus, R = A ∪C and U = {1, . . . , d} \R. Set |C| = k and without loss of gener-
ality (w.l.g.), suppose that C = {1, . . . , k}, A = {k + 1, . . . , r} and U = {r + 1, . . . , d}. Next,
partition A = Ac ∪ Al , where Ac = {k + 1, . . . , k + s} consists of those linear covariates
which interact with nonlinear covariates, leading to nonlinear mixed effects, like covariate
X3 of model (1.2), and where Al = {k + s + 1, . . . , r} corresponds to isolated or mixed lin-
ear covariates, like covariates X1, X4, X5 and X6 of model (1.2). The GRID procedure will
automatically identify such sets of indices.

Next, for D1,D2 ∈ {C,Ac,Al,U}, let xD1 denote the subvector (xj : j ∈ D1) of a vector
x = (x1, . . . , xd)T ∈ R

d and similarly, FD1,D2 denote the submatrix of a d × d matrix F

with row indices in D1 and column indices in D2. For example, with this notation, using
x = (xT

C , xT
Ac

, xT
Al

, xT
U)T , the gradient and the Hessian matrix of the function m(·) become

(2.7) Dm(x) =

⎛⎜⎜⎜⎜⎝
D

C
m(x)

D
Ac
m (x)

D
Al
m (x)

0

⎞⎟⎟⎟⎟⎠ , Hm(x) =

⎛⎜⎜⎜⎜⎝
H

CC
m (x) H

CAc
m (x) 0 0

H
AcC
m (x) H

AcAc
m (x) H

AcAl
m (x) 0

0 H
AlAc
m (x) H

AlAl
m (x) 0

0 0 0 0

⎞⎟⎟⎟⎟⎠ ,
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where 0 is a matrix of suitable dimensions with all elements equal to zero. Similarly, let 1
denote a vector of ones. Note that the diagonal submatrices HCC

m (x), HAcAc
m (x) and H

AlAl
m (x)

are symmetric, but the off-diagonal matrices are not. Finally, define the d × d matrix of

third-order partial derivatives Gm = ( ∂3m(x)

∂xi∂x2
j

) and consider the diagonal bandwidth matrix

H = diag(HC,HAc,HAl
,HU). Using the definitions of the sets C, Al , etc., it is easy to verify

that the only possible nonzero submatrices of Gm are G
CC
m and G

AcC
m ; all the remaining

submatrices are 0.
While the function m(·) is unknown, a key observation we make in here is that such struc-

tural information about m(·) can also be similarly identified from the bias of β̂0(x;H) of
(2.6) with an asymptotically nonvanishing bandwidth. Further, estimators of the bias and its
derivatives can also be generated through the LLE technology itself. We make these connec-
tions precise in the following result. Let Xn = {Xt : t = 1, . . . , n} and define the moments of
the univariate Kernel K1(·) as

(2.8) μl =
∫

ul
1K1(u1) du1, νl =

∫
ul

1K
2
1 (u1) du1 l = 0,1, . . . ,4.

PROPOSITION 1. Suppose that model (1.1) holds and that Assumptions A1–A4 of Sec-
tion 4 hold for some x∗ ∈ (0,1)d . Then, for the local linear estimator (2.6), its conditional
bias at the point x∗ is given by

(2.9) E

{(
m̂
(
x∗;H )

D̂m

(
x∗;H ))−

(
m
(
x∗)

Dm

(
x∗)) ∣∣∣∣Xn

}
=

(
bm

(
x∗;HC

)
BD

(
x∗,HC

))+ Op

(
n− 1

2
)
,

where the order symbol is valid componentwise, and where bm(x∗;HC) = 1
2μ2 tr{HCC

m (x∗) ×
H 2

C} + δ(HC), BD(x∗,HC)T = ([BC
D

]T , [BAc

D
]T , [BAl

D
]T , [BU

D
]T ) with BU

D
= 0 = B

Al

D
,

B
Ac

D
= 1

2μ2G
AcC
m (x∗)H 2

C1 + δ(HC) and BC
D

= 1
2μ2[GCC

m (x∗)H 2
C1 + (3−1μ4μ

−2
2 − 1) ×

diag{GCC
m (x∗)H 2

C}1 + δ(HC)].

Proposition 1 gives biases of the estimators m̂(x;H) and D̂m(x;H). The leading terms are
similar to those in Theorem 2.1 of Ruppert and Wand (1994) (but note that our bandwidth
matrix H corresponds to theirs H 1/2). However, there are substantial differences in the proofs
due to the nonstandard assumption that the bandwidths are fixed as a function of n and do
not go to zero. As a consequence of this, the residual term δ(HC) does not vanish as n → ∞;
The important fact that we shall make use of herein is that the term δ(HC) depends only on
the bandwidths hj , j ∈ C, so that ∂

∂hj
δ(HC) = 0 for all j /∈ C.

Proposition 1 reveals some interesting relationships between the bias of β̂(x∗;H) (cf.
(2.6)) and the bandwidth matrix H = diag(HC,HAc,HAl

,HU). Generalizing the ideas pro-
posed in Lafferty and Wasserman (2008) (which considers the LLE under the standard as-
sumption that bandwidths go to zero suitably with the sample size), we can make these rela-
tionships emerge through the derivatives of β̂(x∗;H) with respect to H . Note that

∂

∂H
E
{
m̂
(
x∗;H )|Xn

} = ∂

∂H
E
{(

m̂
(
x∗;H )− m(x)

)|Xn

} ≈ ∂

∂H
bm

(
x∗;HC

)
,(2.10)
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where ∂
∂H

bm(x∗;HC) = ( ∂bm(x∗;HC)
∂HC

, ∂bm(x∗;HC)
∂HAc

, ∂bm(x∗;HC)
∂HAl

, ∂bm(x∗;HC)
∂HU

) = (δ(HC),0,0,0).

Similarly,

∂

∂H
E
{
D̂m

(
x∗;H )|Xn

} ≈ ∂

∂H
BD

(
x∗,HC

)

=

⎛⎜⎜⎜⎝
∂BC

D
/∂H

∂B
Ac

D
/∂H

∂B
Al

D
/∂H

∂BU
D

/∂H

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎝
δ(HC) 0 0 0
δ(HC) 0 0 0

0 0 0 0
0 0 0 0

⎞⎟⎟⎠ .

(2.11)

The quantities in (2.10) and (2.11) have a sparse structure that can be exploited to extract
useful information about the covariates and their interactions. For example, the derivatives in
(2.10) can be used for nonlinear variable selection (as considered in the RODEO method) and
the elements of the matrix (2.11) can be used for model structure exploration (not considered
in RODEO). Specifically, for i 
= j , the (i, j)th element equals

(2.12)
∂B

(i)
D

(x∗,HC)

∂hj

= hjμ2
∂3m(x)

∂xi∂x2
j

∣∣∣∣
x=x∗

+ δ(HC)

which is different from zero if there are mixed effects in model (1.1) between two nonlinear
covariates or between a linear covariate Xti and a nonlinear covariate Xtj (see the proof of
Proposition 1 in the supplement Giordano, Lahiri and Parrella (2020) for more details). So,
these derivatives can help to identify the nonlinear covariates in C, the linear covariates in
Ac and the nonlinear mixed effect terms in C and Ac. Using these observations as motivation,
we will describe the construction of the GRID method next (which will use a new set of
estimating equations that are different from those described above).

3. The GRID method. In this section, we will build on insights from the last section and
develop the GRID method in high dimensions. It turns out that the LLE itself is not suitable
for this purpose. Indeed, in its construction, the RODEO used the LLE with a vanishing
bandwidth, allowing d = dn = O(logn/ log logn) where n is the sample size. In order to
allow for growth rates d � n, here we need to modify the basic LLE estimator and base our
identification procedure on a variant of (2.5). In Section 3.1 below, we develop a new set of
estimating equations for this purpose. Using these, we formulate the GRID algorithm and
describe the GRID plot, respectively, in Section 1 of Giordano, Lahiri and Parrella (2020)
and in Section 3.2 below.

3.1. Construction of new estimating functions.

3.1.1. Estimating functions for identifying the nonlinear effects. Note that for d > n,
the estimator (2.5) is not well-defined because �T W� is a singular matrix. To avoid this
constraint and also to reduce the computational burden associated with inverting the (d +
1) × (d + 1) matrix (�T W�) in (2.5), we consider the following statistic:

(3.1) M(x;H) = 1

n
diag

(
1,H−2)�T Wϒ ≡

(
M0(x;H)

M1(x;H)

)
,

where H is the diagonal bandwidth matrix. The estimator (3.1) is a modified version of (2.6).
Note that

∂M(x;H)

∂hj

= 1

n
Oj�

T Wϒ + 1

n

(
1 0
0 H−2

)
�T ∂

∂hj

Wϒ,
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where Oj is a (d + 1) × (d + 1) matrix, with all zeros except the (j + 1, j + 1) el-
ement, which is equal to − 2

h3
j

. Further, it is easy to check that ∂
∂hj

W = WLj where

Lj = diag(
∂ logK1((X1j−xj )/hj )

∂hj
− 1

hj
, . . . ,

∂ logK1((Xnj−xj )/hj )

∂hj
− 1

hj
) and K1(·) is the univariate

kernel function. Hence,

(3.2)
∂M(x;H)

∂hj

= 1

n

[
Oj�

T W +
(

1 0
0 H−2

)
�T WLj

]
ϒ ≡

(
Ṁ0j

Ṁ1j

)
(say),

where Ṁ0j = ∂M0(x;H)
∂hj

and Ṁ1j = ∂M1(x;H)
∂hj

≡ {Ṁ(i)
1j }i=1,...,d . With this, we have the follow-

ing result.

THEOREM 1. Suppose that model (1.1) holds and that Assumptions A1–A4 of Section 4
hold for some x∗ ∈ (0,1)d . Then the following results hold with x = x∗:

E{Ṁ0j } =
{
θm

0j if j ∈ C,

0 otherwise,
(3.3)

E
{
Ṁ

(i)
1j , i 
= j

} =
{
θm
ij if i ∈ I j , j ∈ C,

0 otherwise,
(3.4)

where the exact expressions for θm
ij , 0 ≤ i ≤ d and 1 ≤ j ≤ d , i 
= j are given in (S.9) and

(S.10) of the Giordano, Lahiri and Parrella (2020).

Theorem 1 can be used to detect the nonlinear effects in model (1.1). In fact, by (3.3)
and (3.4), the derivatives ∂M0(x

∗;H)/∂hj and ∂M1(x
∗;H)/∂hj can be used to identify the

nonlinear covariates (obtaining the set C) and the interactions for the nonlinear covariates.
An important difference between the two estimators in (2.6) and (3.1) is that the second can
be analyzed without conditioning on the set of observed values, so that the Op(n−1/2) term
does not appear in the bias. Further, as pointed out before, the modified statistic does not
require inversion of a high dimensional matrix and is computationally much simpler. Both of
these factors are crucial for validity of our method in very high dimensions where d � n.

REMARK 3.1. In contrast to the critical effects of the bandwidth choice on the perfor-
mance of the LLE in nonparametric regression, the value of the bandwidth is not very crucial
in our procedure, because we are not interested in the estimation of the function at this stage.
As specified in Assumption A1 below, we do not even require the bandwidths to vanish
asymptotically. In fact, given that the identification of the covariates is based on evaluating
the bias of the modified LLE, we need a bandwidth matrix which produces a very high bias.
This suggests using relatively large bandwidths in practice. See Sections 4 and 6 for more
details.

3.1.2. Estimating functions for identifying the linear effects. Note that the estimating
functions suggested by Theorem 1 are effective in identifying only the nonlinear covari-
ates and their interactions, but not the linear covariates. A similar problem exists with the
RODEO which considers the derivatives ∂E{m̂(x;H)}/∂H of the LLE in (2.10) and can
only identify the nonlinear covariates in C (but not those in the sets A or U ). To overcome
this, Lafferty and Wasserman (2008) suggest identifying first the linear variables through
LASSO or to change the degree of the local polynomial estimator to zero (i.e., to use the
Nadaraya–Watson estimator). Both of these solutions make use of extraneous methods and
require further attention to the choice of critical tuning parameters (the choice of the regu-
larization parameter in the case of LASSO and the choice of the bandwidth matrix for the
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Nadaraya–Watson estimator) which are not well studied in the present framework. In com-
parison, here we propose a simple solution to the problem that allows the user to apply the
same algorithm, but to a modified regression problem. Specifically, we consider an auxiliary
regression where all those covariates that have not been selected in the first pass, are to be
transformed, so that the linear covariates of the original model become nonlinear in the aux-
iliary model. Note that the model (1.1) under the partition {C,Ac,Al,U} must necessarily be
of the form: m(x) = m1(xC, xAc)+m2(xAc, xAl

). Define the transformation z = φ(x) and its
inverse x = φ−1(z) as follows:

(3.5) z = φ(x) = (
xC, x

1/2
Ac

, x
1/2
Al

, x
1/2
U

)
, x = φ−1(z) = (

xC, z2
Ac

, z2
Al

, z2
U

)
,

and let Zt = φ(Xt) be the transformed random variables. Next, consider the following auxil-
iary regression:

Yt = m
(
φ−1(Zt )

)+ εt ≡ g(Zt) + εt , t = 1, . . . , n,

where the new regression function can be written as g(z) = g1(xC, zAc) + g2(zAc, zAl
). Note

once again that we use the same index partition as in the first regression. By (3.5), the function
g2(·) depends only on the covariates in A and these covariates have a nonlinear effect in the
auxiliary regression model g(z). In fact, zj = φ(xj ) = x

1/2
j =⇒ xj = φ−1(zj ) = z2

j for all
j ∈ A ∪ U , so the partial derivatives are

∂g(z)

∂zj

=
{

2cj zj 
= 0 for j ∈ A,

0 for j ∈ U
and

∂2g(z)

∂zj ∂zj

=
{

2cj 
= 0 for j ∈ A,

0 for j ∈ U,

where cj = ∂m(x)/∂xj is constant with respect to xj , for all j ∈ A. Therefore, the linear
covariates in A behave nonlinearly in the auxiliary regression, while the irrelevant covariates
still remain so.

To select the transformed variables in A through EL testing, we need a result similar to
Theorem 1 under the auxiliary regression model. However, this can no longer be obtained
directly from Theorem 1, as the density fZ of the transformed covariates Zt = φ(Xt) is
nonuniform. The following result gives the required estimating functions in this new case.

THEOREM 2. Suppose that Assumptions A1–A4 of Section 4 hold for some x∗ ∈ (0,1)d .
Then, at the transformed point z∗ = φ(x∗), (cf. (3.5)), the following results hold for the esti-
mator (3.1):

E

{
∂M0(z

∗;H)

∂hj

}
=

{
θ

g
0j if j ∈ A,

0 otherwise,
(3.6)

E

{
∂M

(i)
1 (z∗;H)

∂hj

, i 
= j

}
=

{
θ

g
ij if i ∈ I j , j ∈ A,

0 if j ∈ U,
(3.7)

where the exact expressions for θ
g
ij are reported in (S.16) and (S.17) in Giordano, Lahiri and

Parrella (2020). Moreover, with the transformation z−i = {xC} ∪ {xi} ∪ {x1/2
s , s ∈ Cc, s 
=

i} ≡ φ−i (x) (where the ith covariate is NOT transformed),

(3.8) E

{
∂M

(i)
1 (z∗−i;H)

∂hj

, i 
= j

}
=

{
θ∗
ij if i ∈ I j , j ∈ A,

0 otherwise,

where θ∗
ij is defined in (S.18) in Giordano, Lahiri and Parrella (2020) and z∗−i = φ−i (x

∗).
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REMARK 3.2. Note that by using the (3.6), the derivatives ∂M0(z
∗;H)/∂hj can be used

for identifying the linear covariates, obtaining the set A. However, we cannot identify the
linear mixed effects in I j , for j ∈ A, using (3.7) alone, as θ

g
ij can be nonzero also for i /∈ I j ,

j ∈ A. The problem is resolved by using (3.8) which is derived by taking the φ-transformation
for all the covariates in the complement set Cc except for the ith, which allows us to correctly
identify such effects using the (3.8).

REMARK 3.3. There are theoretical reasons that justify the choice of the square root
transformation in the (3.5). In fact, the square root transformation allows one to obtain a linear
density function of the transformed covariates Zt , which is fZ(z) = 2z. The linearity of the
density function fZ makes the higher order terms in the Taylor expansion of the estimator
equal to zero, resulting in simpler expressions for θ

g
0j , θ

g
ij and θ∗

ij .

3.2. The GRID plot. We now describe the details of the GRID plot, a graphical tool repre-
senting the model structure discovery part of the GRID algorithm, as illustrated in Section 1.
Using the values θm

ij of Theorem 1, define the (d + 1) × d Boolean matrix

(3.9) �m =

⎛⎜⎜⎜⎜⎜⎜⎝

θm
01 
= 0 θm

02 
= 0 . . . θm
0d 
= 0

1 . . . . . . θm
1d 
= 0

θm
21 
= 0 1 . . . θm

2d 
= 0
...

...
. . .

...

θm
d1 
= 0 θm

d2 
= 0 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where the first row considers the θ0j ’s from (3.3) and the subsequent rows with i = 1, . . . , d

consider the θij ’s from (3.4). We can also derive the matrix �g in a similar way, using the
values θ

g
0j and θ∗

ij from Theorem 2. The elements θij in these matrices are estimated by

Ṁij through (3.2). The diagonal positions in the lower part of the matrix, where i = j , are
excluded from the analysis because they correspond to self-interactions.

Tests are done using the EL procedure with the corresponding estimating function for one
parameter at a time, for the null hypothesis H0 : θij = 0, for i = 0, . . . , d and j = 1, . . . , d ,
with i 
= j , as explained in Section 2.1, in a multiple testing fashion. A point in the (i, j)th po-
sition of the GRID plot indicates a positive test result (i.e., rejecting H0) for the (i, j)th entry
value of matrix �m to identify nonlinearities (or �g to identify linearities). (See Giordano,
Lahiri and Parrella (2020) for more details of the individual steps and for a flow-chart de-
scription of the GRID algorithm.) Thus, positive tests in matrix �m identify nonlinearities
(= triangles), and the first row gives Ĉ. Positive tests in matrix �g\�m identify linearities
(= circles), and the first row gives Â. Finally, the nonzero values in the j th column of the ma-
trix �m ∪�g identify the set Î j , for j = 1, . . . , r . A schematic representation of the estimated
and tested matrix � is made through the GRID-plot as in Figure 1.

In Section 4 below, we describe the theoretical properties of the proposed GRID method.
For brevity, we will often drop the index g or m from θ0j and θij when there is no chance of
confusion.

4. Theoretical properties of the GRID.

4.1. Assumptions. We shall use the following assumptions:

A1 The bandwidth H is a diagonal matrix with strictly positive diagonal entries: H =
diag(h1, . . . , hd), with c1 ≤ hj for j = 1, . . . , d for some c1 ∈ (0,∞).

A2 The d-variate kernel function K is a product kernel, based on a nonnegative and sym-
metric univariate kernel density function K1 ∈ C1[−c2, c2] for some c2 > 0 such that for
some x∗ = (x∗

1 , . . . , x∗
d )′ ∈ (0,1)d , 0 < x∗

j − c2hj < x∗
j + c2hj < 1 for all j = 1, . . . , d .
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A3 All the partial derivatives of the function m(x) up to and including order five are
bounded.

A4 X1 is uniformly distributed on the unit cube (0,1)d .

We now briefly comment on the assumptions. Assumption A1 requires the bandwidth
matrix to be a diagonal matrix, which simplifies the development of the GRID method and
is adequate for our purpose. The major difference between A1 and the typical assumption
made on the bandwidth matrix H is that here the componentwise bandwidths hj do not go to
zero with the sample size. As a consequence, all the large sample theorems available in the
statistical literature concerning the properties of the multivariate LLE can not be applied to
our framework (but see Bertin and Lecué (2008)). The conditions on the d-variate kernel K

in Assumption A2 and on the uniform distribution of the design points in Assumption A4 are
the same as in Lafferty and Wasserman (2008). We shall relax Assumption A4 in Section 5
to allow for nonuniform and dependent covariates. Assumption A3 on the existence of the
derivatives of m(·) is crucial for developing the estimating functions for identifying patterns
of nonlinear interactions. For the other parts of Assumption A2, a typical choice of the point
x∗ is x∗ = (1/2, . . . ,1/2)′. Also note that Assumption A2 implies that all the moments of the
kernel K exist and that the odd-ordered moments of K and (K)2 are zero: For l = 1,2,

(4.1)
∫

u
i1
1 u

i2
2 · · ·uid

d (K)l(u) d(u) = 0 if ij is odd, for some j.

4.2. Consistency of variable selection and model discovery. As described earlier, for
variable selection and model structure discovery under GRID, here we propose to use the EL
method of Owen (1988). The main advantage of this choice is that we do not need to estimate
the nuisance parameter σ 2, which is itself a difficult problem in the high dimensional con-
text. The EL methodology has been used earlier in the LLE literature in the low dimensional
setting in different inference problems (cf. Chen and Van Keilegom (2009), Chen and Qin
(2000) and Zhang and Liu (2003)), again using varying degrees of smoothing. In contrast,
here we employ the EL method for testing an unbounded number of marginal hypotheses
using the specially constructed unbiased estimating functions of Section 3, under the non-
standard condition that the bandwidths in H are fixed (and do not tend to zero as n → ∞).

To describe the details of the EL step, first we rewrite the univariate estimators in (3.2) as

Ṁ0j = 1

n

n∑
t=1

q1,j (Xt )Yt ,(4.2)

Ṁ
(i)
1j = 1

n

n∑
t=1

qi+1,j (Xt )Yt ,(4.3)

where, for 1 ≤ i, j ≤ d and 1 ≤ t ≤ n, q1,j (Xt) ≡ q1,j (x
∗,Xt ;K,H) is the first row of matrix

in (3.2), qi+1,j (Xt ) ≡ qi+1,j (x
∗,Xt ;K,H) is the row i + 1 of matrix in (3.2) (with the x∗

given by Assumption A2), Xt is the d-dimensional vector of covariates, and Yt is the depen-
dent variable. (For brevity, we suppress the dependence on the point x∗, the Kernel function K

and the bandwidth matrix H ). Note that by Theorem 1, E(Ṁ0j ) = θ0j and E(Ṁ
(i)
1j ) = θij for

all i, j . We define the EL for θij as L
(ij)
n (θij ) = sup{∏n

t=1 p
(ij)
t : 0 ≤ p

(ij)
t ≤ 1,

∑n
t=1 p

(ij)
t =

1,
∑n

t=1 p
(ij)
t [qi+1,j (Xt )Yt − θij ] = 0}, 0 ≤ i ≤ d and 1 ≤ j ≤ d . The EL ratio statistic for

testing H0 : θij = 0 is then given by R
(ij)
n (θij ) = nnL

(ij)
n (θij ) for all i, j . Standard arguments

using Lagrange multipliers show (cf. Owen (2001)) that

(4.4) −2 logR(ij)
n (θij ) = −2

n∑
t=1

lognp
(ij)
t ,
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with p
(ij)
t = [n{1 + λijZ

(ij)
t }]−1 where

∑n
t=1 p

(ij)
t = 1,

∑n
t=1 p

(ij)
t Z

(ij)
t = 0, Z

(ij)
t :=

qi+1,j (Xt)Yt − θij , 0 ≤ i ≤ d and 1 ≤ j ≤ d . For consistency of variable selection and
structure discovery, we carry out the marginal EL tests that reject H0 : θij = 0 when

−2 logR
(ij)
n (0) > ηn for some suitable cut-off point ηn. Here, ηn controls the probability

of a wrong decision, for both θij = 0 (e.g., for irrelevant variables) and θij 
= 0 (e.g., for
identifying non/linear variables). The choice of ηn is specified in the theorem below.

THEOREM 3. Suppose that Assumptions A1–A4 hold, d = O(na) and |R| = r = O(nγ )

for some a ∈ (0,∞) and γ ∈ [0,1). Let ηn = 2a(logn)2, E|ε1|2ω < ∞ for some ω > a + 1
and

(4.5) EK2ω
H

(
X1 − x∗)/[EK2

H

(
X1 − x∗)]ω = O(1).

(a) (VARIABLE SELECTION CONSISTENCY): If minj∈C |θm
0j | ≥ C1n

−k1 and

minj∈A |θg
0j | ≥ C1n

−k1 for some C1 > 0, k1 ∈ [0,1/2) and γ < a, then P(R̂ = R) → 1
as n → ∞.

(b) (CONSISTENCY OF MODEL STRUCTURE DISCOVERY): If minj∈C,i∈I j |θm
ij | ≥ C2n

−k2

and minj∈A,i∈I j |θ∗
ij | ≥ C2n

−k2 for some C2 > 0, k2 ∈ [0,1/2) and γ < a/2, then

P
(
Ĉ = C, Â = A,and Î j = I j for all j = 1, . . . , r

) → 1 as n → ∞.

Thus, Theorem 3 shows that the GRID has the consistency of variable selection property
in very high dimensions, with d = O(na), provided the 2ωth order absolute moment of the
error variables is finite for some ω ∈ (a + 1,∞]. It is also able to identify the correct model
structure (cf. part (b)) with probability tending to one under the same moment condition,
provided the number r of relevant covariates grow at a suitable rate, among other conditions.
For the validity of either part of Theorem 3, the error variables εi need not be Gaussian.
Further, from the proof of Theorem 3, it also follows that the variable selection consistency
and consistency of the model structure parts hold in ultrahigh dimensions with logd = o(n),
provided ε1 has a finite moment generating function in some neighborhood of the origin.
However, the bounds on r are primarily determined by the strength of the signal condition on
θij ’s and do not improve beyond the hard threshold γ < 1 with the finiteness of higher order
moments of ε1.

REMARK 4.1. The minimal signal strength assumptions, for example, minj∈C |θ0j | ≥
C1n

−k1 , with C1 > 0 and k1 ∈ [0,1/2) is important to control the overall false positive rate
in the multiple testing done as a part of the GRID. It is worth noting that by virtue of using
an asymptotically nonvanishing bandwidth, the componentwise convergence rates of the es-
timating functions satisfy the bound |Ṁ0j − θ0j | = Op(n−1/2), just as in the parametric case.
As a result, it is adequate to require the minimum signal strength to satisfy the (parametric)
lower bounds min{|θm

0j | : j ∈ C} ≥ C1n
−k1 and min{|θg

0j | : j ∈ A} ≥ C1n
−k1 for some C1 > 0

and k1 ∈ [0,1/2). The same is true for the minimum signal strength assumption for model
selection.

REMARK 4.2. Note that the choice of the asymptotically nonvanishing common band-
width h must also satisfy the condition (4.5) when d = O(na). This is required to ensure that
the moments of (normalized) q1,j (Xt ) and qi+1,j (Xt ) appearing in the estimating functions
of the marginal EL tests are finite for all i, j . This condition is always satisfied with any h for
the case where the kernel K1(·) is the probability density function of a uniform distribution.
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Further, as in the proof of Theorem 3, it also follows that for a nonuniform kernel, a choice
of h is also permissible. A simple sufficient condition is given in Lemma 1 in the Giordano,
Lahiri and Parrella (2020).

Once the model structure discovery is done, it is possible to write down a low dimensional
representation of the regression function m(·) using the GRID plot. In the next section, we
consider post-model selection estimation of the true regression function.

4.3. Estimation of the low dimensional regression function. Note that the true regression
function m(·) can be expressed as

(4.6) m(x) = m0 + ∑
Ji∈J

mJi
(xJi

),

where J is the collection of disjoint index sets Ji that are subsets of {1, . . . , r} having size
one (for isolated covariates) or more (for mixed covariates) such that Ji ∩ Jj = ∅ for i 
= j ,⋃

i Ji = R. In other words, a set Ji derives from the union of all the “linked” sets I j , that
is, those which share (directly or indirectly) some common units. For example, for model
(1.2), we have J1 = I 1, J2 = I 2 ∪ I 3 ∪ I 7 and J3 = I 4 ∪ I 5 ∪ I 6. For identifiability purposes,
we shall assume that E(mJi

) = 0, for all Ji , so that m0 = E(Yt ). For simplicity, we assume
that the Yt have been centered around their mean and will ignore the intercept m0 in the
estimation task. We shall suppose that the maximum order of the interaction terms, that is,
d1 ≡ max{|Ji | : Ji ∈ J }, is fixed and does not change with the sample size n. This restriction
gives a sparse additive structure of the regression function m(·) where the number d2 (say)
of the component functions may be unbounded but the maximum order of interactions is a
possibly arbitrarily large but bounded number. The formulation here also generalizes the stan-
dard additive function formulation (cf. Opsomer (2000), Fan and Jiang (2005) and references
therein) by allowing interactions among the relevant variables. This class of functions also
appears in a recent work on estimation of sparse high dimensional nonparametric regression
(cf. Yang and Tokdar (2015)) and seems to be the natural extension to consider beyond the
additive models in high dimensional regressions. In fact, the last paper derives the minimax
optimal rate for the estimators in nonparametric regression as in (4.6). In particular, if the
unknown function is completely nonadditive then r = o(logn), where r is the number of rel-
evant covariates. Instead, if one knows the low-dimensional additive structure of the unknown
function, then r = O(nγ ), for some 0 ≤ γ < 1 (cf. Remark 3.4 of Yang and Tokdar (2015)).
In this section, we establish the error of estimation of the true (unknown) additive structure
in the (4.6) following the structure discovery step of the GRID.

Note that the GRID procedure gives an estimate of the set J which is obtained by con-
sidering the columns of the GRID plot that summarizes the isolated terms and the interaction
terms. Note also that the GRID procedure gives estimates of the sets A and C directly, which
we shall denote by Â and Ĉ, respectively. Using this structural information from the GRID
plot, the estimation of m(x) can be done using any suitable nonparametric additive function
estimation technique. For example, basing on the LLE methodology, we can generalize the
backfitting method of Opsomer (2000) and define a GRID-based (preliminary) estimator of
the regression function in (4.6) as

(4.7) m̂(x) = ∑
Ji∈Ĵ

m̂Ji
(xJi

;HJi
),

where the estimated additive components m̂Ji
(xJi

;HJi
) ≡ eT

1 m̂Ji
derive from the solution to

the following system of equations:

m̂J1 = S1

(
ϒ −∑

i 
=1

m̂Ji

)
,
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m̂J2 = S2

(
ϒ −∑

i 
=2

m̂Ji

)
,

(4.8)
...

...
...

m̂Jd2
= Sd2

(
ϒ − ∑

i 
=d2

m̂Ji

)
,

where ϒ = (Y1, . . . , Yn)
T , m̂Ji

= (m̂Ji
(X1Ji

;HJi
), . . . , m̂Ji

(XnJi
;HJi

))T , Si = (sJi,X1Ji
, . . . ,

sJi ,XnJi
)T , sT

Ji,XnJi
= eT

1 (�T
Ji

WJi
�Ji

+ n−1
IJi

)−1�T
Ji

WJi
. Here, Ik is the identity matrix of or-

der k ≥ 1 and ei is a vector with a one in position i and zeros elsewhere. The |Ji |-dimensional
quantities �Ji

, WJi
and XtJi

are defined as in Section 2.2, with respect to the subset Ji of co-
variates, but with new choices of the bandwidths HJi

as indicated below. The inclusion of n−1

in the normalizing matrix Si does not change the order of the bias and the variance terms, but
makes the estimator stable when �T

Ji
WJi

�Ji
is (nearly) singular (cf. Fan (1993)). Lemma 2.1

of Opsomer (2000) gives the assumptions under which system (4.8) has a unique solution.
For better clarity, we now highlight the key considerations in the choices of the bandwidths

for the variable selection and model structure discovery tasks of the GRID and for its esti-
mation task. For estimating the regression function m(x), we first apply the identification
step of Section 4.2 where all the bandwidths (denoted by hj ) are bounded away from zero
as in Assumption A1. In the second step, we carry out the low-dimensional estimation pro-
cedure in which the bandwidths are chosen according to identification of linear or nonlinear
covariates from the first step. More specifically, in the second step, we choose bandwidths,
h�

j , such that they go to zero when n goes to infinity only for the nonlinear covariates but

not for the linear ones. Thus, in (4.7), for j ∈ Â (i.e., for linear covariates), we shall use a
bandwidth h�

j that remains bounded away from zero to ensure root-n consistency, while we

require the other h�
j , j ∈ Ĉ to die out at a suitable rate with the sample size to ensure consis-

tency. In fact, recall from Proposition 1 that the LLE is unbiased for linear functions (even
using asymptotically nonvanishing bandwidths) and, therefore, the only bandwidths which
asymptotically contribute to the leading term of the MSE of the GRID regression function
estimator are those associated with the nonlinear covariates (i.e., those included in H �

Ji∩C ,

for Ji ∈ J ). Accordingly, for the preliminary estimator m̂(x0) at a point x0 ∈ (0,1)d , we set
h�

j = c1 for all j ∈ Â for some c1 > 0 and pick vanishing bandwidths h�
j for j ∈ Ji ∩ Ĉ such

that

(4.9)
∑

Ji∈Ĵ

[
1

n|H �
Ji

| + tr
((

H �)2
Ji∩Ĉ

)] ≤ C1n
−δ0

for some δ0 ∈ (0,1), C1 ∈ (0,∞) (not depending on j , n). To define the GRID estimator
m†(x0) of the regression function m(x) at x = x0, note that m(x) = O(1) for all x ∈ (0,1)d .
Hence, we truncate the preliminary estimator m̂(x0) at a suitable threshold and define the
GRID estimator as

m†(x0) =
⎧⎪⎨⎪⎩

m̂
(
x0) if

∣∣m̂(
x0)∣∣ ≤ tn,

m̂(x0)

|m̂(x0)| tn if
∣∣m̂(

x0)∣∣ > tn,

where tn is a positive constant. Conditions on tn will be specified in the statement of
Theorem 4 below. For stating Theorem 4, define d∗i = |Ji | − |Ji ∩ C| and Bn(x) =∑

Ji∈J ,Ji∩C 
=∅

∑
j∈Ji∩C(h�

j )
2 ∂2m(xJi

)

∂x2
j

. Also, recall that Xn = {X1, . . . ,Xn} and that μ2 and
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ν0 are as defined in (2.8). For x1 ∈ (0,1) and c > 0, set ν0(x1, c) = ∫ (1−x1)/c−x1/c
K2

1 (v) dv and

ν̃(c) = ∫ 1
0 ν0(x1, c) dx1. Then, we have the following result:

THEOREM 4. Suppose that the assumptions and the conditions of Theorem 3 hold. Fur-
ther, let E|ε1|2ω < ∞ with ω = a + 2 for some a ∈ [1,∞), d2 = |J | = O(r) and r = O(nγ )

with 0 ≤ γ < 1/2 − δ0, with δ0 of (4.9), and tn � logn.

(a) (LOCAL RATE). For any x0 ∈ (0,1)d ,

E
[(

m†(x0)− m
(
x0))2|Xn

]
=

[ ∑
Ji∈J

Ji∩C=∅

σ 2 ∏
j∈Ji

ν0(x
0
j , c1)

nc
|Ji |
1

+ ∑
Ji∈J

Ji∩C 
=∅

σ 2ν
|Ji∩C|
0

∏
j∈Ji∩Cc ν0(x

0
j , c1)

nc
d∗i

1 |H �
Ji∩C |

+ d2(d2 − 1) · O(
n−1)+

(
μ2

2

4
· B2

n

(
x0))](1 + op(1)

)
.

(4.10)

(b) (GLOBAL RATE).

E

[∫ (
m†(x) − m(x)

)2
dx

∣∣∣Xn

]

=
[ ∑

Ji∈J
Ji∩C=∅

σ 2ν̃(c1)
|Ji |

nc
|Ji |
1

+ ∑
Ji∈J

Ji∩C 
=∅

σ 2ν
|Ji∩C|
0 ν̃(c1)

d∗i

nc
d∗i

1 |H �
Ji∩C |

+ d2(d2 − 1) · O(
n−1)+

(
μ2

2

4

∫
B2

n(x) dx

)](
1 + op(1)

)
.

(4.11)

Thus, it follows that the GRID based estimator of the true regression function is
MSE/MISE consistent if we choose asymptotically vanishing bandwidths h�

j for j ∈ Ĉ, sat-
isfying the hypotheses of Theorem 4. As explained earlier, for the linear covariates, the band-
widths are chosen to be bounded away from zero. Further, the number of additive components
is allowed to grow at a rate that is given by a fractional power of the sample size n.

REMARK 4.3 (Optimal bandwidth matrix). It is possible to determine the optimal band-
widths for estimating the function m(·) using the expansion result (4.10) and (4.11), and
following the marginalized approach suggested in Giordano and Parrella (2016).

REMARK 4.4 (NP-Oracle property). Suppose that the number of additive components
d2 = O(1) and that each nonlinear function in (4.6) is k-times continuously differentiable
with a α-Hölder continuous k-th derivative; Note that, by Assumption A3, k ≥ 4. Next, write
αm = k + α which specifies the common smoothness coefficient for the nonlinear unknown

functions in (4.6). Then, the rates for the optimal bandwidths are h�
j = O(n

− 1
2αm+ri ) for j ∈

C ∩ Ji for where ri = |Ji ∩ C|. Then, using the arguments in the proof of Theorem 4, it can
be shown that

E
[(

m†(x0)− m
(
x0))2|Xn

] = Op

(
n

− 2αm
2αm+r∗

J
)
,

where r∗
J = max1≤i≤d2 |Ji ∩ C|. Note that this rate matches the optimal rate of estimating

the nonparametric regression function m(x) by an Oracle that has the knowledge of the true
low dimensional structure (4.6) of the regression function a priori. As a result, the GRID
with optimal bandwidths has the NP-Oracle property (i.e., nonparametric Oracle property) as
defined in Storlie et al. (2011).
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REMARK 4.5 (Advantages of model structure discovery). For the task of variable se-
lection (part (a) of Theorem 3) only, we require the number of relevant covariates to sat-
isfy r = O(nγ ), with 0 ≤ γ < min{1, a} ≡ γ ∗. For the model structure discovery (cf. part
(b) of Theorem 3), we need r = O(nγ ) with 0 ≤ γ < min{1, a/2} ≡ γ ∗∗. And we require
0 ≤ γ < 1/2 − δ0 for the estimation property (Theorem 4). In comparison, for a general non-
additive regression function, existing methods that only have the variable selection property
(but not the structure discovery capabilities) can only estimate a single nonlinear component
of r = o(logn) covariates (cf. Comminges and Dalalyan (2012), Yang and Tokdar (2015)).

To summarize, the GRID based estimator can be used for consistent estimation of the non-
parametric regression function m(·) in very high dimensions, provided the regularity condi-
tions of Theorem 4 hold. In comparison to existing methods where the dimension d is at the
best restricted to a logarithmic rate of growth as a function of the sample size n, the GRID can
identify the correct set of linear and nonlinear variables and their interactions and it can si-
multaneously provide a consistent estimator of the true regression function without any need
to specify the maximum order of interactions a priori, allowing the dimension d to grow at
the rate d = O(na) for any a ∈ (0,∞).

5. An extension of GRID to dependent and nonuniform covariates. In this section,
we present an extension of the GRID method allowing for nonuniform and dependent co-
variates taking values in (0,1)d . From the proof of Theorem 3, it follows that the vari-
able selection consistency and consistency of model structure discovery properties of the
GRID critically depend on the behavior of certain “moments” involving the covariate vector
X1 ∈R

d and the Kernel function K(·). For the case of nonuniform and dependent covariates
X1 ∈R

d , the GRID continues to have these properties, provided the corresponding moments
are close to their values in the uniform case. To state these, let f (·) denote the joint pdf of
X1 = (X11, . . . ,X1d)′ and let f (j) denote the j th partial derivative of f , j = 1, . . . , d . Also,
for any p ≥ 1 and 1 ≤ j , i1, . . . , ip ≤ d , define the product moments

μ∗
p(i1, . . . , ip) =

∫ ( p∏
l=1

uil

)
K(u)f

(
x∗ + Hu

)
du,

μ∗
pj (i1, . . . , ip) =

∫ ( p∏
l=1

uil

)
K(u)f (j)(x∗ + Hu

)
du,

where x∗ is as in Assumption A2. Also, define the analogs {μ̃∗
p(·), μ̃∗

pj (·)} and {μ̃∗
p,−i (·),

μ̃∗
pj,−i(·)}, obtained by replacing f (·) in above with the pdfs of the transformed variables

φ(x) and φ−i (x) from Theorem 2, respectively. To prove the variable selection consistency
and consistency of model structure discovery properties of the GRID under dependence and
nonuniformity, instead of Assumption A4, we shall use the following assumption on the Xi :

A4′: There exist constants k3,C2 ∈ (0,∞) such that for all i ∈ R, j ∈ {1, . . . , d} and for
all i1, . . . , ip, j1, . . . , jq−1 ∈ R with 1 ≤ p,q − 1 ≤ 4,∣∣μp(i1, . . . , ip)

∣∣+ ∣∣μqj (j, j1, . . . , jq−1)
∣∣ ≤ C2n

−k3,

for μp ∈ {μ∗
p, μ̃∗

p, μ̃p,−i} and μqj ∈ {μ∗
qj , μ̃qj , μ̃qj,−i}.

The moment conditions and their orders (namely, p and q above) are directly determined
by the Taylor’s expansions of the biases of the modified LLEs given in Section 3. It is easy
to check that under Assumption A2, the left hand side of the inequality above is identically
zero when X1 has the uniform distribution on (0,1)d . Thus, Assumption A4′ essentially puts
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a bound on potential deviations of the distribution of X1 from the uniform distribution. To
appreciate the extent of nonuniformity and dependence among the covariates that is allowed
by Assumption A4′, consider the following example:

EXAMPLE 5.1. Suppose that the pdf of X1 ∈R
d is given by

f (x) = 1 +
d∏

j=1

ξj (xj ), x = (x1, . . . , xd)′ ∈ (0,1)d,

where ξj : (0,1) → R are integrable functions such that f (x) ≥ 0 for all x. Note that f (·)
is a proper pdf if

∫ 1
0 ξj0(xj0) dxj0 = 0 for some j0 ∈ {1, . . . , d}. Assuming that this condition

holds and that
∫ 1

0 |ξj (xj )|dxj 
= 0 for all j = 1, . . . , d (i.e., none of the functions ξj (·) are
identically equal to zero, a.e.), it follows that under f (·), the d covariates in X1 are neither
independent nor uniformly distributed over (0,1)d . Next suppose that x∗ = (1/2, . . . ,1/2)′
and the functions ξj (·) are differentiable on (0,1) for all j . Then, Assumption A4′ is satisfied
if at least one of the marginal moments under individual ξj (·) is zero for each of the moments
in A4′. A simple sufficient condition for this holds if a small number of the functions ξj (·)
satisfy some symmetry property. Specifically, suppose that there exist j1, j2 ∈ C such that
ξj1(·) is symmetric about 1/2 and ξj2(·) is antisymmetric about 1/2. Then it is not difficult
to verify that all the moments in Assumption A4′ are zero and hence, Assumption A4′ holds.
The upper bound C2n

−k3 on the moments leaves additional room for allowing further devia-
tions of the joint distribution of the covariates from uniformity and independence.

We next point out that for the validity of the GRID in the dependent case, k3 need not
depend on d , the dimension of the regression model, which is allowed to have the same
growth rate d = O(na) with a ∈ (0,∞) as in the independent (covariates) case, under the
same moment conditions on the error variable ε1. However, we do require k3 to depend on
the order of r , the number of relevant variables. We also require a stronger condition on
the signal strength. More precisely, we have the following result on consistency of variable
selection and model structure discovery in the dependent and nonuniform case.

THEOREM 5. Suppose that Assumptions A1–A3, A4′ and (4.5) hold, d = O(na), and
|R| = r = O(nγ ) for some a ∈ (0,∞) and γ ∈ [0,1). Let ηn = η�

n ≡ 2a
√

n/(logn) and let
E|ε1|2ω < ∞ for some ω > a + 1.

(a) (VARIABLE SELECTION CONSISTENCY): Suppose that minj∈C |θ0j | ≥ c1 and
minj∈A |θg

0j | ≥ c1 for some c1 ∈ (0,∞) and 2γ < k3 − 1/4. Then,

P(R̂ = R) → 1 as n → ∞.

(b) (CONSISTENCY OF MODEL STRUCTURE DISCOVERY): If minj∈C,i∈I j |θij | ≥ c2 and
minj∈A,i∈I j |θ∗

ij | ≥ c2 with c2 ∈ (0,∞) and 3γ < k3 − 1/4, then

P
(
Ĉ = C, Â = A,and Î j = I j for all j = 1, . . . , r

) → 1 as n → ∞.

Thus, under the conditions of Theorem 5, the GRID method continues to perform consis-
tent variable selection and model structure discovery even when the covariates are possibly
nonuniform and dependent. For either of the tasks, the conditions on the strength of depen-
dence are not affected by model dimension d = Cna . However, the dependence must be
suitably smaller when r , the number of relevant variables, is larger. Further, the requirements
on the level of dependence is weaker for variable selection consistency of the GRID as com-
pared to consistency of model structure discovery. The difference in requirements on k3 in
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parts (a) and (b) of Theorem 5 arises from the forms of the structural parameters θij where
under part (a), the effect of dependence on the values of θ0j comes from O(r2) many interac-
tion terms while under part (b), it comes from O(r3) many terms. See the proof of Theorem 5
for more details.

In Theorem 5, the condition on the minimum nonzero signal strength can be weakened. It
is straightforward to modify the proof of Theorem 5 to allow the minimum signal strengths to
go to zero at a certain rate depending on k3 and γ , but we do not pursue such refinements here
in order to keep the statement of Theorem 5 simple. In the same vein, an analog of Theorem 4
on estimation of the true low dimensional regression function holds under dependence of the
covariates, where the variance part, given by the first two terms of the MSE/ MISE expansions
in Theorem 4, now involves cross product moments of KHJ

(x0
J − X1,J )εi , J ∈ J (where the

subscript J denotes the sub-vectors/matrices corresponding to row/column indices in J ), and
the term ‘d2(d2 − 1)O(n−1)’ is replaced by ‘d2(d2 − 1)O(n−k3)’, requiring k3 to be suitably
small.

In the next section, we consider finite sample performance of the GRID method for both
independent and dependent covariates and also compare the performance of GRID with the
existing methods.

6. Simulation. The Monte Carlo simulation is based on 200 iterations. To begin with,
we shall consider uniformly distributed covariates. For each model, the additive components
are standardized so that they all have variance equal to one, to make them comparable each
other. We consider 8 different models, summarized in the following table.

Model m(x) Error density

1 X3
6X3

7 + X10 ε ∼ N(0,1)

2 sin(10X2) + X3X4 + X5 ε ∼ N(0,1)

3 X1 + X2 + X3 + X4 + X5 ε ∼ N(0,1)

4 exp(10X1X6X8) ε ∼ N(0,0.52)

5 X1X2 + X1X3
7 ε ∼ N(0,1)

6 (X1 + 1)3 + sin(10X2) ε ∼ N(0,1)

7 X1 + 1
1+X2

+ sin(X3) + exp(X4) + X2
5 ε ∼ N(0,1)

8 5X2
1X2

2 ε ∼ N(0,0.52)

For all simulation results, the kernel is K1(u) = 1/C1(5 − u2)I{|u|≤√
5}, as in Lafferty and

Wasserman (2008), where C1 is a scale factor to make the integral equal to one.
The results of the simulations are shown in the following Tables 1–2, and in Tables 9–11

given in the supplementary material Giordano, Lahiri and Parrella (2020), for different values
of dimensions d and sample sizes n. For each model, we report the proportion of times that
a given covariate Xi is classified as a relevant covariate (i.e., it is classified in the set R) or
as a nonlinear covariate (i.e., it is classified in the set C), and as part of an interaction term
(i.e., it is classified in the set I ). Note that the dimension d varies from a minimum value
20 to a maximum value 2000, and note also that in the right-hand columns of the tables
the dimension is such that d > n. The performance of GRID is satisfying. Of course, the
performance deteriorates for very high dimensions, but it always improves as long as the
sample size increases, showing the consistency.

In order to analyze the effects of the selection on function estimation, for each run of the
simulation study we estimate the structure of the model by GRID and then we pass it to a
generalized additive model nonparametric estimator to have the estimated function (we use
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TABLE 1
Simulation results for model 1 and different dimensions d and sample sizes n. The values show the proportion of
times that a given covariate Xi is classified as a relevant covariate (R), as a nonlinear covariate (C), and as part

of an interaction term (I ). The symbol (*) denotes a value ≤ 0.025 while the symbol (–) means zero

Model 1

d = 20 d = n/2 d = 2n

n R C I (6,7) R C I (6,7) R C I (6,7)

X6 300 0.975 0.330 0.900 0.855 0.335 0.720 0.630 0.330 0.365
500 1.000 0.610 1.000 0.990 0.595 0.985 0.810 0.480 0.620

1000 1.000 0.910 1.000 1.000 0.915 1.000 0.910 0.835 0.815

X7 300 0.940 0.325 0.900 0.875 0.335 0.720 0.580 0.250 0.365
500 1.000 0.370 1.000 0.995 0.635 0.985 0.765 0.515 0.620

1000 1.000 0.935 1.000 1.000 0.890 1.000 0.835 0.815 0.815

X10 300 1.000 * – 1.000 * – 0.995 0.035 –
500 1.000 * – 1.000 * – 1.000 * –

1000 1.000 * – 1.000 * – 1.000 * –

the function gam of the R package mgcv). In Table 3, we report the average of the ratio of
the MSEs for the estimated model by GRID and for the true model. The values in brackets
are the standard deviations. We consider three different distributions for the errors, that is,
Normal, Exponential and Pareto, whose parameters are set so that the variances are the same
(cf. Tables 1, 2, 9 and 10).

6.1. Results for additive models. First, we analyze two additive models, named 6 and 7
in the previous table. In particular, model 6 has been taken from Lafferty and Wasserman
(2008), while model 7 has been used by Radchenko and James (2010). As in Radchenko and
James (2010), we standardize the components in order to make them of equivalent magnitude.

TABLE 2
Simulation results for model 2 with different dimensions d and sample sizes n. The values show the proportion of
times that a given covariate Xi is classified as a relevant covariate (R), as a nonlinear covariate (C), and as part

of an interaction term (I ). The symbol (*) denotes a value ≤ 0.025 while the symbol (–) means zero

Model 2

d = 20 d = n/2 d = 2n

n R C I (3,4) R C I (3,4) R C I (3,4)

X2 300 0.805 0.805 – 0.530 0.530 – 0.300 0.303 –
500 0.970 0.970 – 0.835 0.835 – 0.520 0.520 –

1000 1.000 1.000 – 0.990 0.990 – 0.715 0.715 –

X3 300 0.920 * 0.275 0.710 * 0.170 0.450 * 0.050
500 0.990 * 0.535 0.950 * 0.505 0.690 * 0.240

1000 1.000 * 0.920 1.000 * 0.920 0.795 * 0.590

X4 300 0.915 * 0.275 0.790 * 0.170 0.430 * 0.050
500 0.990 * 0.535 0.950 * 0.505 0.610 * 0.240

1000 1.000 * 0.920 1.000 0.035 0.920 0.815 * 0.590

X5 300 1.000 * – 1.000 * – 0.990 * –
500 1.000 * – 1.000 * – 1.000 * –

1000 1.000 * – 1.000 0.030 – 0.990 * –
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TABLE 3
Average ratios of the MSEs of the estimated function by the GRID and the Oracle estimator, with different error

densities and n = 500. The values in brackets are the standard deviations

Error density d = 20 d = n/2 d = 2n

Model 1 N(0,1) 0.976 (0.05) 0.977 (0.07) 0.850 (0.17)
Exp(1) 0.973 (0.07) 0.977 (0.06) 0.873 (0.17)
Pa(11.04;13) 0.975 (0.06) 0.967 (0.08) 0.875 (0.17)

Model 2 N(0,1) 0.964 (0.07) 0.909 (0.13) 0.707 (0.20)
Exp(1) 0.965 (0.07) 0.901 (0.14) 0.733 (0.21)
Pa(11.04;13) 0.968 (0.07) 0.907 (0.14) 0.712 (0.19)

Model 3 N(0,0.25) 0.729 (0.37) 0.534 (0.39) 0.308 (0.32)
Exp(2) 0.768 (0.36) 0.579 (0.40) 0.289 (0.33)
Pa(5.52;13) 0.822 (0.32) 0.553 (0.41) 0.279 (0.32)

Model 4 N(0,1) 0.958 (0.06) 0.956 (0.06) 0.906 (0.11)
Exp(1) 0.964 (0.05) 0.958 (0.06) 0.918 (0.10)
Pa(11.04;13) 0.963 (0.05) 0.957 (0.06) 0.913 (0.11)

Note that models 6 and 7 have no interaction terms. Anyway, to make comparisons among
the three methods fair (remember that RODEO and GRID use a non additive structure, so
they take always into account the interaction terms), we add in VANISH only the two-order
interaction terms.

In Table 4, FP is the false positive rate, FN is the false negative rate and LS is the ratio
between the estimated variance of residuals for different methods w.r.t. the same variance
using the true model (both are estimated with generalized additive nonparametric estimator,
GAM). Moreover, the dash (–) means that the method cannot be applied or is unfeasible, for
the given dimensionality.

The results in Table 4 confirm the simulation results in Table 2 of Radchenko and James
(2010). For case d = 20, the most efficient procedure is VANISH because Models 6 and 7
satisfy the additivity assumption. Remember that GRID is more general, so it loses efficiency
since it is not based on the additivity assumption. Anyway, we can note from the tables that

TABLE 4
Simulation results for the additive models 6 and 7, with sample size n = 500 and different dimensions d . The

values show the FP = False Positive and the FN = False Negative rates. The value LS is the ratio between the
estimated variance of residuals for different methods w.r.t. the same variance using the true model (both are

estimated through a Generalized Additive Model nonparametric estimator). The symbol (–) means the method is
unfeasible

Model 6 Model 7

d GRID RODEO VANISH GRID RODEO VANISH

20 FP 0.077 0.118 0.036 0.090 0.005 0
FN 0.015 0.814 0 0 1.000 0.005
LS 1.030 1.890 1.000 1.112 5.757 1.001

250 FP 0.086 0.096 – 0.095 0 –
FN 0.071 0.990 – 0.005 1.000 –
LS 1.082 2.677 – 1.112 6.046 –

1000 FP 0.130 – – 0.155 – –
FN 0.285 – – 0.315 – –
LS 1.303 – – 1.404 – –
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TABLE 5
Simulation results for the non additive model 8, with sample

size n = 500 and dimension d = 10. Here, FP, FN LS are as in
table 4

Model 8

GRID RODEO VANISH

FP 0.075 0.0165 0.075
FN 0 0.550 0.015
LS 1.047 2.247 1.326

GRID is comparable with VANISH and works better than RODEO, which also does not
assume an additive model. As the dimension d increases, the results for the GRID method
are confirmed, while the other two methods become unfeasible. In particular, RODEO cannot
be applied for d > n while VANISH would require adding 31,125 interaction terms when
d = 250 and even more when d > 250, which is impossible.

Besides, there are further considerations to make in favor of the GRID method. First of all,
it also takes into account the type of covariate (linear or nonlinear) and the interaction terms
of any order, contrary to what the other two methods do. Secondly, it is important to note that
the results reported for the RODEO and VANISH methods have been produced after a deep
search for the best setting values of their tuning/nuisance parameters (when available, we use
the true values, otherwise we search for the best values numerically). Note that this cannot be
done in the real data applications. GRID, instead, has no tuning parameters to initialize.

6.2. Results for non additive models. We consider now model 8, a non additive model
used in Lafferty and Wasserman (2008). In this case we do not standardize because we have
only one component. We choose the same parameters used in their paper, so n = 500, d = 10
and σ = 0.5.

For this example, the ORACLE model is f (X1,X2). Therefore, the variance of residuals
is very similar w.r.t. the ORACLE model, f (X1,X2), if the identification works correctly.
But note that VANISH always assume a model with the main effects, f1(X1) + f2(X2) +
f12(X1,X2), which is different from the true one. So, this is a case in which the VANISH
method performs poorly.

The results are reported in Table 5. We consider the same indicators as before: FP is
the false positive rate, FN is the false negative rate and LS is the ratio between the estimated
variance of residuals for different methods w.r.t. the same variance using the true model (both
are estimated with GAM, a generalized additive model). For VANISH, we compute FP and
FN on the main effects.

6.3. Results for dependent covariates. In this section, we report the results of a simu-
lation study when the covariates are not independent. First, we consider the case when the
irrelevant covariates have some correlation structure but the relevant ones are independent.
We define the following:

Model 9: Y = X2
6 + X10 + ε.

The covariates have this structure: Xi = Ui , i = 1, . . . ,10, Xi = Ui+cW
1+c

, i = 11, . . . , d where
Ui ∼ U(0;1), i = 1, . . . , d , are i.i.d. variables and W ∼ U(0;1) is independent of Ui . For
c = 1, the correlation is 0.5 and all the irrelevant covariates are correlated but the relevant
ones are not. We report the results for this case in Table 6. As one expects, the results confirm
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TABLE 6
Simulation results for Model 9 with different dimensions d and sample sizes n. The covariates follows the

structure above with c = 1. The values show the proportion of times that a given covariate Xi is classified as a
relevant covariate (R), as a nonlinear covariate (C). The symbol (*) denotes a value ≤ 0.05

Model 9

d = 20 d = n/2 d = 2n

n R C R C R C

X6 300 1.000 0.920 1.000 0.920 0.955 0.900
500 1.000 0.990 1.000 1.000 0.895 0.895

1000 1.000 1.000 1.000 1.000 0.985 0.985

X10 300 1.000 * 1.000 * 0.795 *
500 1.000 * 0.995 * 0.630 *

1000 1.000 * 1.000 * 0.850 *

a good performance for the variable selection (nonlinear, linear and irrelevant covariates).
The second case we analyze refers to a nonlinear screening selection, that is a screening

selection procedure only for the nonlinear covariates, in much larger dimensions. The co-
variates have the structure: Xi = Ui + cW , i = 1, . . . , d where W is independent of Ui . For
c = 0.65 the correlation is 0.3 and for c = 1 the correlation is 0.5. Note that this correlation
structure satisfies the condition 2 of Fan and Lv (2008). The model we consider is

Model 10: Y = 2X2
6 + X10 + ε,

where the nonlinear component is two times the noise variability. We fix a length of {8,12}
for relevant nonlinear covariates according to n ∈ {300,500}. The results in Table 7 confirm
that the GRID procedure can detect the true nonlinear covariates. For another example where
all covariates are correlated, see Giordano, Lahiri and Parrella (2020).

6.4. Computational time. In this section, we report the time for the GRID procedure.
As pointed out earlier, there are two built-in features of the GRID algorithm that makes
the computation fast. First, the estimating functions Ṁ0j and Ṁ1j derived from the LLEs are
always available in closed form and are easy to compute. Second, the EL procedure is applied
to 1-dimensional parameters, one at a time, for which very fast computational algorithms are
available (cf. Owen (2001)). Table 8 shows the computational times to perform the GRID
procedure, using a PC with Intel Core i7, Quad-Core and 3.40 GHz. We perform both variable

TABLE 7
Simulation results for Model 10 with different sample sizes n,

dimensions d and c. The covariates follow the dependence
structure above with c = 0.65 and c = 1. The table shows the

proportions for the True nonlinear covariate in the sets of
lengths {8,12} for n ∈ {300,500}, respectively

Model 10

c = 0.65 c = 1

n d = 4n d = 10n d = 4n d = 10n

300 1 1 0.99 0.91
500 1 0.99 1 0.96
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TABLE 8
Average computational time (seconds) for one iteration of the
GRID procedure for Model 1 with different sample sizes n and

different dimensions d

d

n 20 n/2 2n

300 0.10 0.13 0.33
500 0.14 0.28 0.74

1000 0.47 0.97 2.52

and model selection steps and also estimate the “reduced” regression function using the gam
function in the R package mgcv. The times are in seconds and refer to the average values over
50 iterations of GRID procedure on a simulated data from Model 1 with Uniform covariates
and Normal errors. Computational times are found to be significantly shorter than those of
the competing methods considered in Section 6.1. See Giordano, Lahiri and Parrella (2020)
for more details.
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