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This paper investigates the theoretical underpinnings of two fundamental
statistical inference problems, the construction of confidence sets and large-
scale simultaneous hypothesis testing, in the presence of heavy-tailed data.
With heavy-tailed observation noise, finite sample properties of the least
squares-based methods, typified by the sample mean, are suboptimal both
theoretically and empirically. In this paper, we demonstrate that the adaptive
Huber regression, integrated with the multiplier bootstrap procedure, pro-
vides a useful robust alternative to the method of least squares. Our theo-
retical and empirical results reveal the effectiveness of the proposed method,
and highlight the importance of having inference methods that are robust to
heavy tailedness.

1. Introduction. In classical statistical analysis, it is typically assumed that data are
drawn from a Gaussian distribution. Although the normality assumption has been widely
adopted to facilitate methodological development and theoretical analysis, Gaussian models
could be an idealization of the complex random world. The non-Gaussian, or even heavy-
tailed, character of the distribution of empirical data has been repeatedly observed in various
domains, ranging from genomics, medical imaging to economics and finance. New chal-
lenges are thus brought to classical statistical methods. For linear models, regression estima-
tors based on the least squares loss are suboptimal, both theoretically and empirically, in the
presence of heavy-tailed errors. The necessity of robust alternatives to least squares was first
noticed by Peter Huber in his seminal work “Robust Estimation of a Location Parameter”
(Huber (1964)). Due to the growing complexity of modern data, the notion of robustness is
becoming increasingly important in statistical analysis and finds its use in a wide range of
applications. We refer to Huber and Ronchetti (2009) for an overview of robust statistics.

Although the past a few decades have witnessed the active development of rich statistical
theory on robust estimation, robust statistical inference for heavy-tailed data has always been
a challenging problem on which the extant literature has been somewhat silent. Fan, Hall
and Yao (2007), Delaigle, Hall and Jin (2011) and Liu and Shao (2014) investigated robust
inference that is confined to the Student’s t-statistic. However, as pointed out by Devroye
et al. (2016) (see Section 8 therein), sharp confidence estimation for heavy-tailed data in
the finite sample set-up remains an open problem and a general methodology is still lack-
ing. To that end, this paper makes a further step in studying confidence estimation from a
robust perspective. In particular, under linear model with heavy-tailed errors, we address
two fundamental problems: (1) confidence set construction for regression coefficients, and
(2) large-scale multiple testing with the guarantee of false discovery rate control. The devel-
oped techniques provide mathematical underpinnings for a class of robust statistical inference
problems. Moreover, sharp exponential-type bounds for the coverage probability of bootstrap
confidence set are derived under weak moment assumptions.
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1.1. Confidence sets. Consider the linear model Y = Xᵀθ∗ + ε, where Y ∈ R is the re-
sponse variable, X ∈ R

d is the (random) vector of covariates, θ∗ = (θ∗
1 , . . . , θ∗

d )ᵀ ∈ R
d is the

vector of regression coefficients and ε represents the regression error satisfying E(ε|X) = 0
and σ 2 = E(ε2|X) < ∞. Assume that we observe a random sample (Y1,X1), . . . , (Yn,Xn)

from (Y,X):

Yi = X
ᵀ
i θ

∗ + εi, i = 1, . . . , n.(1.1)

The intercept term is implicitly assumed in model (1.1) by taking the first element of Xi to
be one so that the first element of θ∗ becomes the intercept. The least squares estimator and
its variations have been widely adopted to estimate θ∗, which on many occasions achieve the
minimax rate in terms of the mean squared error (MSE).

Although the MSE plays an important role in estimation, an estimator that is optimal in
MSE might be suboptimal in terms of nonasymptotic deviation, which often relates to the
construction of confidence intervals. For example, in the mean estimation problem, although
the sample mean has an optimal minimax mean squared error among all mean estimators,
its deviation is worse for non-Gaussian samples than for Gaussian ones, and the worst-case
deviation is suboptimal when the sampling distribution has heavy tails (Catoni (2012)). More
specifically, let X1, . . . ,Xn be independent random variables from X with mean μ and vari-
ance σ 2 > 0. Consider the empirical mean μ̂n = (1/n)

∑n
i=1 Xi , applying Chebyshev’s in-

equality delivers a polynomial-type deviation bound

P

(
|μ̂n − μ| ≥ σ

√
1

δn

)
≤ δ for any δ ∈ (0,1).

In addition, if the distribution of X is sub-Gaussian, that is, E exp(λX) ≤ exp(σ 2λ2/2) for
all λ, then following the terminology in Devroye et al. (2016), μ̂n becomes a sub-Gaussian
estimator in the sense that

P

{
|μ̂n − μ| ≥ σ

√
2 log(2/δ)

n

}
≤ δ.

Catoni (2012) established a lower bound for the deviations of μ̂n when the sampling distri-
bution is the least favorable in the class of all distributions with bounded variance: for any
δ ∈ (0, e−1), there is some distribution with mean μ and variance σ 2 such that an independent
sample of size n drawn from it satisfies

P

{
|μ̂n − μ| ≥ σ

√
1

δn

(
1 − eδ

n

)(n−1)/2}
≥ δ.

This shows that the deviation bound obtained from Chebyshev’s inequality is essentially
sharp under finite variance condition. The limitation of least squares method arises also in the
regression setting, which triggers an outpouring of interest in developing sub-Gaussian esti-
mators, from univariate mean estimation to multivariate or even high dimensional problems,
for heavy-tailed data to achieve sharp deviation bounds from a nonasymptotic viewpoint. See,
for example, Brownlees, Joly and Lugosi (2015), Minsker (2015), Minsker (2018), Hsu and
Sabato (2016), Devroye et al. (2016), Catoni and Giulini (2017), Giulini (2017), Fan, Li and
Wang (2017), Sun, Zhou and Fan (2019) and Lugosi and Mendelson (2019), among others. In
particular, Fan, Li and Wang (2017) and Sun, Zhou and Fan (2019) proposed adaptive (reg-
ularized) Huber estimators with diverging robustification parameters (see Definition 2.1 in
Section 2.1), and derived exponential-type deviation bounds when the error distribution only
has finite variance. The key observation is that the robustification parameter should adapt to
the sample size, dimensionality and noise level for optimal tradeoff between bias and robust-
ness.
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All the aforementioned work studies robust estimation through concentration properties,
that is, the robust estimator is tightly concentrated around the true parameter with high prob-
ability even when the sampling distribution has only a small number of finite moments. In
general, concentration inequalities loose constant factors and may result in confidence inter-
vals too wide to be informative. Therefore, an interesting and challenging open problem is
how to construct tight confidence sets for θ∗ with finite samples of heavy-tailed data (Devroye
et al. (2016)).

This paper addresses this open problem by developing a robust inference framework with
nonasymptotic guarantees. To illustrate the key idea, we focus on the classical setting where
the parameter dimension d is smaller than but is allowed to increase with the number of obser-
vations n. Our approach integrates concentration properties of the adaptive Huber estimator
(see Theorems 2.1 and 2.2) and the multiplier bootstrap method. The multiplier bootstrap,
also known as the weighted bootstrap, is one of the most widely used resampling methods
for constructing a confidence interval/set or for measuring the significance of a test. Its theo-
retical validity is typically guaranteed by the multiplier central limit theorem (van der Vaart
and Wellner (1996)). We refer to Chatterjee and Bose (2005), Arlot, Blanchard and Roquain
(2010), Chernozhukov, Chetverikov and Kato (2013, 2014), Spokoiny and Zhilova (2015)
and Zhilova (2016) for the most recent progress in the theory and applications of the multi-
plier bootstrap. In particular, Spokoiny and Zhilova (2015) considered a multiplier bootstrap
procedure for constructing likelihood-based confidence sets under a possible model misspec-
ification. For a linear model with sub-Gaussian errors, their results validate the bootstrap
procedure when applied to the ordinary least squares (OLS). With heavy-tailed errors in the
regression model (1.1), we demonstrate how the adaptive Huber regression and the multiplier
bootstrap can be integrated to construct robust and sharp confidence sets for the true parame-
ter θ∗ with a given coverage probability. The validity of the bootstrap procedure in situations
with a limited sample size, growing dimensionality and heavy-tailed errors is established.
In all these theoretical results, we provide nonasymptotic bounds for the errors of bootstrap
approximation. See Theorems 2.3 and 2.4 for finite sample properties of the bootstrap adap-
tive Huber estimator, including the deviation inequality, Bahadur representation and Wilks’
expansion.

An alternative robust inference method is based on the asymptotic theory developed in
Zhou et al. (2018); see, for example, Theorems 2.2 and 2.3 therein. Since the asymptotic
distribution of either the proposed robust estimator itself or the excess risk depends on σ 2,
a direct approach is to replace σ 2 by some sub-Gaussian variance estimator using Catoni’s
method (Catoni (2012)) or the median-of-means technique (Minsker (2015)), with the advan-
tage of being computationally fast. The disadvantage, however, is two-fold: first, construct-
ing sub-Gaussian variance estimator involves another tuning parameter (for the problem of
simultaneously testing m regression models as discussed in the next section, variance es-
timation brings m additional tuning parameters); second, because the squared heavy-tailed
data is highly right-skewed, using the method in Catoni (2012) or Fan, Li and Wang (2017)
tends to underestimate the variance, and the median-of-means method is numerically unsta-
ble for small or moderate samples. Both methods were examined numerically in Zhou et al.
(2018), while the multiplier bootstrap procedure, albeit being more computationally inten-
sive, demonstrates the most desirable finite sample performance.

1.2. Simultaneous inference. In addition to building confidence sets for an individual
parameter vector, multiple hypothesis testing is another important statistical problem with
applications to many scientific fields, where thousands of tests are performed simultaneously
(Dudoit and van der Laan (2008), Efron (2010)). Gene microarrays comprise a prototypi-
cal example; there, each subject is automatically measured on tens of thousands of features.



1668 X. CHEN AND W.-X. ZHOU

Together, the large number of tests together with heavy tailedness bring new challenges to
conventional statistical methods, which, in this scenario, often suffer from low power to
detect important features and poor reproducibility. Robust alternatives are thus needed for
conducting large-scale multiple inference for heavy-tailed data.

In this section, we consider the multiple response regression model

yik = μk + x
ᵀ
i βk + εik, i = 1, . . . , n, k = 1, . . . ,m,(1.2)

where μk is the intercept, xi = (xi1, . . . , xis)
ᵀ, βk = (βk1, . . . , βks)

ᵀ ∈ R
s are s-dimensional

vectors of random covariates and regression coefficients, respectively, and εik is the regres-
sion error. Since our main focus here is the inference for intercepts, we decompose the pa-
rameter vector θ∗ in (1.1) into two parts: the intercept μk and the slope βk . Moreover, we
use xi in (1.2) to distinguish from Xi in (1.1). Write yi = (yi1, . . . , yim)ᵀ ∈ R

m and let
μ = (μ1, . . . ,μm)ᵀ ∈ R

m be the vector of intercepts. Based on random samples {(yi ,xi )}ni=1
from model (1.2), our goal is to simultaneously test the hypotheses

H0k : μk = 0 versus H1k : μk �= 0, for k = 1, . . . ,m.(1.3)

An iconic example of model (1.2) is the linear pricing model, which subsumes the capital
asset pricing model (CAPM) (Sharpe (1964), Lintner (1965)) and the Fama-French three-
factor model (Fama and French (1993)). The key implication from the multi-factor pricing
theory is that for any asset k, the intercept μk should be zero. It is then important to inves-
tigate if such a pricing theory, also known as the “mean-variance efficiency” pricing, can be
validated by empirical data (Fan, Liao and Yao (2015)). According to the Berk and Green
equilibrium (Berk and Green (2004)), inefficient pricing by the market may occur to a small
proportion of exceptional assets, namely a very small fraction of the μk’s are nonzero. To
identify positive μk’s by testing a large number of hypotheses simultaneously, Barras, Scail-
let and Wermers (2010) and Lan and Du (2019) developed FDR controlling procedures for
data coming from model (1.2), which can be applied to mutual fund selection in empirical
finance. We refer to Friguet, Kloareg and Causeur (2009), Desai and Storey (2012), Fan,
Han and Gu (2012) and Wang et al. (2017) for more examples from gene expression studies,
where the goal is to identify features showing a biological signal of interest.

Despite the extensive research and wide application of this problem, existing least squares-
based methods with normal calibration could fail when applied to heavy-tailed data with a
small sample size. To address this challenge, we develop a robust bootstrap procedure for
large-scale simultaneous inference, which achieves good numerical performance for a small
or moderate sample size. Theoretically, we prove its validity on controlling the false discover
proportion (FDP) (see Theorem 4.1).

Finally, we briefly comment on the computation issue. Fast computation of Huber regres-
sion is critical to our procedure since the multiplier bootstrap requires solving Huber loss
minimization for at least hundreds of times. Ideally, a second order approach (e.g., Newton’s
method) is preferred. However, the second order derivative of Huber loss does not exist ev-
erywhere. To address this issue, we adopt the damped semismooth Netwon method (Qi and
Sun (1999)), which is a synergic integration of first and second order methods. The details
are provided in Appendix D of the supplemental material (Chen and Zhou (2019)).

1.3. Organization of the paper. The rest of the paper proceeds as follows. Section 2.1
presents a series of finite sample results for adaptive Huber regression. Sections 2.2 and 2.3
contain, respectively, the description of the bootstrap procedure for building confidence sets
and theoretical guarantees. Two data-driven schemes are proposed in Section 3 for choosing
the tuning parameter in the Huber loss. In Section 4, we propose a robust bootstrap calibration
method for multiple testing and investigate its theoretical property on controlling the FDP.
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The conclusions that are drawn in Sections 2 and 4 are illustrated numerically in Section 5.
We conclude with a discussion in Section 6. The supplementary material contains all the
proofs and additional simulation studies.

1.4. Notation. Let us summarize our notation. For every integer k ≥ 1, we use R
k to

denote the the k-dimensional Euclidean space. The inner product of any two vectors u =
(u1, . . . , uk)

ᵀ, v = (v1, . . . , vk)
ᵀ ∈ R

k is defined by uᵀv = 〈u,v〉 = ∑k
i=1 uivi . We use the

notation ‖ · ‖p,1 ≤ p ≤ ∞ for the �p-norms of vectors in R
k : ‖u‖p = (

∑k
i=1 |ui |p)1/p and

‖u‖∞ = max1≤i≤k |ui |. For k ≥ 2, Sk−1 = {u ∈ R
k : ‖u‖2 = 1} denotes the unit sphere in

R
k . Throughout this paper, we use bold capital letters to represent matrices. For k ≥ 2, Ik

represents the identity/unit matrix of size k. For any k × k symmetric matrix A ∈ R
k×k , ‖A‖2

is the operator norm of A. We use λA and λA to denote the largest and smallest eigenvalues of
A, respectively. For any two real numbers u and v, we write u ∨ v = max(u, v) and u ∧ v =
min(u, v). For two sequences of nonnegative numbers {an}n≥1 and {bn}n≥1, an � bn indicates
that there exists a constant C > 0 independent of n such that an ≥ Cbn; an � bn is equivalent
to bn � an; an  bn is equivalent to an � bn and bn � an. For two numbers C1 and C2, we
write C2 = C2(C1) if C2 depends only on C1. For any set S , we use card(S) and |S| to denote
its cardinality, that is, the number of elements in S .

2. Robust bootstrap confidence sets.

2.1. Preliminaries. First, we present some finite sample properties of the adaptive Huber
estimator, which are of independent interest and also sharpen the results in Sun, Zhou and
Fan (2019).

Let us recall the definition of the Huber loss.

DEFINITION 2.1. The Huber loss �τ (·) (Huber (1964)) is defined as

�τ (u) =
{
u2/2 if |u| ≤ τ,

τ |u| − τ 2/2 if |u| > τ,
(2.1)

where τ > 0 is a tuning parameter and will be referred to as the robustification parameter
that balances bias and robustness.

The Huber estimator is defined as

θ̂ τ ∈ argmin
θ∈Rd

Lτ (θ) with Lτ (θ) = Ln,τ (θ) :=
n∑

i=1

�τ

(
Yi − X

ᵀ
i θ

)
.(2.2)

The following theorem provides a sub-Gaussian-type deviation inequality and a nonasymp-
totic Bahadur representation for θ̂ τ . The proof is given in the supplement. We first impose
the moment conditions.

CONDITION 2.1. (i) There exists some constant A0 > 0 such that for any u ∈ R
d and t ∈

R, P(|〈u,Z〉| ≥ A0‖u‖2 · t) ≤ 2 exp(−t2), where Z = �−1/2X and � = E(XXᵀ) is positive
definite. (ii) The regression error ε satisfies E(ε|X) = 0, E(ε2|X) = σ 2 and E(|ε|2+δ|X) ≤
υ2+δ almost surely for some δ ≥ 0.

Part (i) of Condition 2.1 requires X to be a sub-Gaussian vector. Via one-dimensional
marginal, this generalizes the concept of sub-Gaussian random variables to higher dimen-
sions. Typical examples include: (i) Gaussian and Bernoulli random vectors, (ii) spherical
random vector,1 (iii) random vector that is uniformly distributed on the Euclidean ball cen-

1A random vector X ∈ R
d is said to have a spherical distribution if it is uniformly distributed on the Euclidean

sphere in R
d with center at the origin and radius

√
d .
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tered at the origin with radius
√

d , and (iv) random vector that is uniformly distributed on the
unit cube [−1,1]d . In all the above cases, the constant A0 represents a dimension-free con-
stant. We refer to Chapter 3.4 in Vershynin (2018) for detailed discussions of sub-Gaussian
distributions in higher dimensions. Technically, this assumption is needed in order to de-
rive an exponential-type concentration inequality for the quadratic form ‖∑n

i=1 �′
τ (εi)Zi‖2,

where

Zi = �−1/2Xi , i = 1, . . . , n.(2.3)

To avoid notational clutter, we focus on the homoscedastic model (1.1). The finite sample
techniques developed for the results in this section and Section 2.3 can be extended to analyze
heteroscedastic models of the form

Yi = X
ᵀ
i θ

∗ + σ(Xi )εi, i = 1, . . . , n,

provided that the variance function σ : Rd → (0,∞) is such that E{σ 2(Xi )} is bounded away
from zero. The advantage of bootstrapping over the limiting distribution calibration method
is more pronounced in the heteroscedastic model than in the homoscedastic model.

THEOREM 2.1. Assume Condition 2.1 holds. For any t > 0 and v ≥ υ
1/(2+δ)
2+δ , the esti-

mator θ̂ τ given in (2.2) with τ = v( n
d+t

)1/(2+δ) satisfies

P

{∥∥�1/2(̂
θ τ − θ∗)∥∥

2 ≥ c1v

√
d + t

n

}
≤ 2e−t and(2.4)

P

{∥∥∥∥∥�1/2(̂
θ τ − θ∗) − 1

n

n∑
i=1

�′
τ (εi)Zi

∥∥∥∥∥
2

≥ c2v
d + t

n

}
≤ 3e−t(2.5)

as long as n ≥ c3(d + t), where c1–c3 are constants depending only on A0.

The nonasymptotic results in Theorem 2.1 reveal a new perspective for Huber’s method:
to construct sub-Gaussian estimators for linear regression with heavy-tailed errors, the tuning
parameter in the Huber loss should adapt to the sample size, dimension and moments for op-
timal tradeoff between bias and robustness. The resulting estimator is therefore referred to as
the adaptive Huber estimator. Specifically, Theorem 2.1 provides the concentration property
of the adaptive Huber estimator θ̂ τ and the Fisher expansion for the difference θ̂ τ − θ∗. It
improves Theorem 2.1 in Zhou et al. (2018) by sharpening the sample size scaling. The clas-
sical asymptotic results can be easily derived from the obtained nonasymptotic expansions.
In the following theorem, we further study the concentration property of the Wilks’ expan-
sion for the excess Lτ (θ

∗)−Lτ (̂θ τ ). This new result is directly related to the construction of
confidence sets. See Theorem 2.3 below for its counterpart in the bootstrap world.

THEOREM 2.2. Assume Condition 2.1 holds. Then for any t > 0 and v ≥ υ
1/(2+δ)
2+δ , the

estimator θ̂ τ with τ = v( n
d+t

)1/(2+δ) satisfies that with probability at least 1 − 3e−t ,∣∣∣∣∣Lτ

(
θ∗) −Lτ (̂θ τ ) − 1

2

∥∥∥∥∥ 1√
n

n∑
i=1

�′
τ (εi)Zi

∥∥∥∥∥
2

2

∣∣∣∣∣ ≤ c4v
2 (d + t)3/2

√
n

and(2.6)

∣∣∣∣∣
√

2
{
Lτ

(
θ∗) −Lτ (̂θ τ )

} −
∥∥∥∥∥ 1√

n

n∑
i=1

�′
τ (εi)Zi

∥∥∥∥∥
2

∣∣∣∣∣ ≤ c5v
d + t√

n
(2.7)

as long as n ≥ c3(d + t), where c4, c5 > 0 are constants depending on A0.
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REMARK 2.1 (On the robustification parameter τ ). Going through the proofs of Theo-
rems 2.1 and 2.2, we see that the robustification parameter τ can be chosen as

τ = v
{
n/(d + t)

}η for any η ∈ [
1/(2 + δ),1/2

]
and v ≥ υ

1/(2+δ)
2+δ ,(2.8)

such that the conclusions (2.4)–(2.7) hold as long as n � d + t . This implies that the exis-
tence of higher moments of ε increases the flexibility of choosing τ , whose order ranges from
( n
d+t

)1/(2+δ) to ( n
d+t

)1/2. In practice, υ2+δ is unknown and thus brings difficulty in calibrat-
ing τ . Guided by the theoretical results, in Section 3 we propose a data-dependent procedure
to choose τ .

REMARK 2.2 (Sample size scaling). The deviation inequalities in Theorems 2.1 and 2.2
hold under the scaling condition n � d + t , indicating that as many as d + t samples are
required to guarantee the finite sample properties of the estimator. Similar conditions are also
imposed for Proposition 2.4 in Catoni (2012) and Theorem 3.1 in Audibert and Catoni (2011).
In particular if E(ε2) < ∞, taking t = logn and τ  ( n

d+t
)1/2, the corresponding estimator

θ̂ τ satisfies

θ̂ τ = θ∗ + 1

n

n∑
i=1

�′
τ (εi)�

−1Xi + O
{
n−1(d + logn)

}
with probability at least 1 −O(n−1) under the scaling n� d . From an asymptotic viewpoint,
this implies that if the dimension d , as a function of n, satisfies d = o(n) as n → ∞, then for
any deterministic vector u ∈ R

d , the distribution of the linear contrast uᵀ(̂θ τ − θ∗) coincides
with that of (1/n)

∑n
i=1 �′

τ (εi)u
ᵀ�−1Xi asymptotically.

REMARK 2.3. To achieve sub-Gaussian behavior, the choice of loss function is not
unique. An alternative loss function, which is obtained from the influence function proposed
by Catoni and Giulini (2017), is

ρτ (u) =
⎧⎪⎨⎪⎩

u2/2 − u4/
(
24τ 2)

if |u| ≤ √
2τ,

2
√

2

3
τ |u| − τ 2/2 if |u| > √

2τ.
(2.9)

The function ρτ is convex, twice differentiable everywhere and has bounded derivative that
|ρ′

τ (u)| ≤ (2
√

2/3)τ for all u. By modifying the proofs of Theorems 2.1 and 2.2, it can
be shown that the theoretical properties of the adaptive Huber estimator remain valid for
the estimator that minimizes the empirical ρτ -loss. Computationally, it can be solved via
Newton’s method.

2.2. Multiplier bootstrap. In this section, we go beyond estimation and focus on ro-
bust inference. According to (2.7), the distribution of 2{Lτ (θ

∗) − Lτ (̂θ τ )} is close to that
of (1/n)‖∑n

i=1 ξiZi‖2
2 provided that d2/n is small, where ξi = �′

τ (εi). As we will see in
the proof of Theorem 2.5 that, the truncated random variable ξi has mean and variance ap-
proximately equal to 0 and σ 2, respectively. Heuristically, the multivariate central limit the-
orem allows us to approximate the distribution of the normalized sum n−1/2 ∑n

i=1 ξiZi by
N (0, σ 2Id). If this were true, then the distribution of 2{Lτ (θ

∗) − Lτ (̂θ τ )} is close to the
scaled chi-squared distribution σ 2χ2

d with d degrees of freedom. This is in line with the
asymptotic behavior of the likelihood ratio statistic that was studied in Wilks (1938). With
sample size sufficiently large, this result allows to construct confidence sets for θ∗ using
quantiles of χ2

d : for any α ∈ (0,1),

C∗
α(σ ) := {

θ ∈R
d : Lτ (θ) −Lτ (̂θ τ ) ≤ σ 2χ2

d,α/2
}
,(2.10)
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where χ2
d,α denotes the upper α-quantile of χ2

d . Estimating the residual variance σ 2 in the
construction of C∗

α(σ ) is even more challenging when the errors are heavy-tailed. Moreover,
as argued in Spokoiny and Zhilova (2015), a possibly low speed of convergence of the likeli-
hood ratio statistic makes the asymptotic Wilks’ result hardly applicable to the case of small
or moderate samples. Motivated by these two concerns, we have the following goal:

propose a new method to construct confidence sets for θ∗ that is robust

against heavy-tailed error distributions and performs well for a small or

moderate sample.

The results in Section 2.1 show that the adaptive Huber estimator provides a robust esti-
mate of θ∗ in the sense that it admits sub-Gaussian-type deviations when the error distribu-
tion only has finite variance. To estimate the quantiles of the adaptive Huber estimator and
to construct confidence set, we consider the use of multiplier bootstrap. Let U1, . . . ,Un be
independent and identically distributed (IID) random variables that are independent of the
observed data Dn := {(Yi,Xi )}ni=1 and satisfy

E(Ui) = 0, E
(
U2

i

) = 1, i = 1, . . . , n.(2.11)

With Wi := 1 + Ui denoting the random weights, the bootstrap Huber loss and bootstrap
Huber estimator are defined, respectively, as

L�
τ (θ) =

n∑
i=1

Wi�τ

(
Yi − X

ᵀ
i θ

)
, θ ∈R

d and(2.12)

θ̂
�

τ ∈ argmin
θ∈Rd :‖θ−θ̂τ ‖2≤R

L�
τ (θ),

where R > 0 is a prespecified radius parameter. A simple observation is that E∗{L�
τ (θ)} =

Lτ (θ), where E
∗(·) := E(·|Dn) is the conditional expectation given the observed data Dn.

Therefore, θ̂ τ ∈ argminθ∈Rd E
∗{L�

τ (θ)} and the difference L�
τ (̂θ τ )−L�

τ (̂θ
�

τ ) mimics Lτ (θ
∗)−

Lτ (̂θ τ ).
Based on this idea, we propose a Huber regression based inference procedure in Algo-

rithm 1, where the bootstrap threshold z
�
α = z

�
α(Dn) approximates

zα := inf
{
z ≥ 0 : P{

Lτ

(
θ∗) −Lτ (̂θ τ ) > z

} ≤ α
}
.(2.13)

Here P is the probability measure with respect to the underlying data generating process.

2.3. Theoretical results. In this section, we present detailed theoretical results for the
bootstrap adaptive Huber estimator, including the deviation inequality, nonasymptotic Ba-
hadur representation (Theorem 2.3), and Wilks’ expansions (Theorem 2.4). Moreover, The-
orems 2.5 and 2.6 establish the validity of the multiplier bootstrap for estimating quantiles
of Lτ (θ

∗) − Lτ (̂θ τ ) when the variance σ 2 is unknown. Proofs of the finite sample proper-
ties of the bootstrap estimator require new techniques and are more involved than those of
Theorems 2.1 and 2.2. We leave them to the supplemental material.

CONDITION 2.2. U1, . . . ,Un are IID from a random variable U satisfying E(U) = 0,
var(U) = 1 and P(|U | ≥ t) ≤ 2 exp(−t2/A2

U) for all t ≥ 0.

THEOREM 2.3. Assume Condition 2.1 with δ = 2 and Condition 2.2 hold. For any t > 0
and v ≥ υ

1/4
4 , the estimator θ̂

�

τ with τ = v( n
d+t

)1/4 and R  v satisfies:
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Algorithm 1 Huber Robust Confidence Set
Input: Data {(Yi,Xi )}ni=1, number of bootstrap samples B , Huber threshold τ , radius param-
eter R, confidence level 1 − α

1: Solve the Huber regression in (2.2) and obtain θ̂ τ .
2: for b = 1,2, . . . ,B do
3: Generate IID random weights {Wi}ni=1 satisfying E(Wi) = 1 and var(Wi) = 1.
4: Solve the weighted Huber regression in (2.12) and obtain the “bootstrap” Huber esti-

mator.
5: end for
6: Define P

∗ be the conditional probability over the random multipliers given the observed
data Dn = {(Yi,Xi )}ni=1, that is, P∗(·) = P(· |Dn).

7: Compute the upper α-quantile of L�
τ (̂θ τ ) −L�

τ (̂θ
�

τ ):

z�
α = inf

{
z ≥ 0 : P∗{

L�
τ (̂θ τ ) −L�

τ (̂θ
�

τ ) > z
} ≤ α

}
.

Output: A confidence set of θ∗ given by Cα := {θ ∈ R
d : Lτ (θ) −Lτ (̂θ τ ) ≤ z

�
α}.

1. with probability (over Dn) at least 1 − 5e−t ,

P
∗{∥∥�1/2(̂

θ
�

τ − θ∗)∥∥
2 ≥ c1v(d + t)1/2n−1/2} ≤ 3e−t ,(2.14)

2. with probability (over Dn) at least 1 − 6e−t ,

P
∗
{∥∥∥∥∥�1/2(̂

θ
�

τ − θ̂ τ

) − 1

n

n∑
i=1

�′
τ (εi)UiZi

∥∥∥∥∥
2

≥ c2v
d + t

n

}
≤ 4e−t(2.15)

as long as n ≥ max{c3κ�(d + t), c4(d + t)2}, where c1–c3 are positive constants depending
on (A0,AU), c4 = c4(A0) > 0 and κ� = λ�/λ� is the condition number of �.

The following theorem is a bootstrap version of Theorem 2.2. Define the random process

ξ �(θ) = �−1/2{∇L�
τ (θ) − ∇E

∗L�
τ (θ)

}
, θ ∈ R

d .(2.16)

From (2.3) and (2.11) we see that

ξ �(θ) = �−1/2{∇L�
τ (θ) − ∇Lτ (θ)

} = −
n∑

i=1

�′
τ

(
Yi − X

ᵀ
i θ

)
UiZi , θ ∈R

d .

In particular, write ξ � = ξ �(θ∗) = −∑n
i=1 �′

τ (εi)UiZi .

THEOREM 2.4. Assume Condition 2.1 with δ = 2 and Condition 2.2 hold. For any t > 0
and v ≥ υ

1/4
4 , the bootstrap estimator θ̂

�

τ with τ = v( n
d+t

)1/4 and R  v satisfies that, with
probability (over Dn) at least 1 − 5e−t ,

P
∗
{∣∣∣∣L�

τ (̂θ τ ) −L�
τ

(̂
θ

�

τ

) − ‖ξ �‖2
2

2n

∣∣∣∣ ≥ c5v
2 (d + t)3/2

√
n

}
≤ 4e−t(2.17)

and

P
∗
{∣∣∣∣√2

(
L�

τ (̂θ τ ) −L�
τ

(̂
θ

�

τ

)) − ‖ξ �‖2√
n

∣∣∣∣ ≥ c6v
d + t√

n

}
≤ 4e−t(2.18)

as long as n ≥ max{c3κ�(d + t), c4(d + t)2}, where c5, c6 > 0 are constants depending only
on (A0,AU).
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The results (2.17) and (2.18) are nonasymptotic bootstrap versions of the Wilks’ and
square-root Wilks’ phenomena. In particular, the latter indicates that the square-root excess√

2{L�
τ (̂θ τ ) −L�

τ (̂θ
�

τ )} is close to n−1/2‖ξ �‖2 with high probability as long as the dimension
d of the parameter space satisfies the condition that d2/n is small.

REMARK 2.4 (Order of robustification parameter). Similar to Remark 2.8, now with
finite fourth moment υ4, the robustification parameter in Theorems 2.3 and 2.4 can be chosen
as

τ = v
{
n/(d + t)

}η for any η ∈ [1/4,1/2) and v ≥ υ
1/4
4 ,(2.19)

such that the same conclusions remain valid. Due to Lemma A.2 in the supplemental material,
here we require η to be strictly less than 1/2.

The next result validates the approximation of the distribution of Lτ (θ
∗) −Lτ (̂θ τ ) by that

of L�
τ (̂θ τ ) − L�

τ (̂θ
�

τ ) in the Kolmogorov distance. Recall that P∗(·) = P(·|Dn) denotes the
conditional probability given Dn = {(Yi,Xi)}ni=1.

THEOREM 2.5. Suppose Assumption 2.1 holds with δ = 2 and Condition 2.2 holds with
U ∼ N (0,1). For any t > 0 and v ≥ υ

1/4
4 , let τ = v( n

d+t
)η for some η ∈ [1/4,1/2). Then,

with probability (over Dn) at least 1 − 6e−t , it holds for any z ≥ 0 that∣∣P{
Lτ

(
θ∗) −Lτ (̂θ τ ) ≤ z

} − P
∗{
L�

τ (̂θ τ ) −L�
τ

(̂
θ

�

τ

) ≤ z
}∣∣

≤ �1(n, d, t),
(2.20)

where

�1(n, d, t) = C
{
d3/2n−1/2 + d1/2{

(d + t)/n
}1−2η + (d + t)3ηn1/2−3η} + 7e−t

with C = C(A0, σ, υ4, v) > 0.

Theorem 2.5 is in parallel with and can be viewed as a partial extension of Theorem 2.1
in Spokoiny and Zhilova (2015) to the case of heavy-tailed errors. In particular, taking η =
1/4 in Theorem 2.5 we see that the error term scales as (d3/n)1/4, while in Spokoiny and
Zhilova (2015) it is of order (d3/n)1/8. The difference is due to the fact that the latter allows
misspecified models as discussed in Remark A.2 therein. In some way, allowing asymmetric
and heavy-tailed errors can be regarded as a particular form of misspecification, considering
that the OLS is the maximum likelihood estimator at the normal model.

REMARK 2.5 (Asymptotic result). To make asymptotic statements, we assume n → ∞
with an understanding that d = d(n) depends on n and possibly d → ∞ as n → ∞. The-
orem 2.5 can be used to show the bootstrap consistency, where the notion of consistency is
the one that guarantees asymptotically valid inference. Specifically, it shows that when the
dimension d , as a function of n, satisfies d = o(n1/3), then with τ  ( n

d+logn
)η for some

η ∈ [1/4,1/2), it holds

sup
z≥0

∣∣P{
Lτ

(
θ∗) −Lτ (̂θ τ ) ≤ z

} − P
∗{
L�

τ (̂θ τ ) −L�
τ

(̂
θ

�

τ

) ≤ z
}∣∣ = oP(1)

as n → ∞.
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For any α ∈ (0,1), let

z�
α := inf

{
z ≥ 0 : P∗{

L�
τ (̂θ τ ) −L�

τ

(̂
θ

�

τ

)
> z

} ≤ α
}

(2.21)

be the upper α-quantile of L�
τ (̂θ τ )−L�

τ (̂θ
�

τ ) under P∗, which serves as an approximate to the
target value zα given in (2.13). As a direct consequence of Theorem 2.5, the following result
formally establishes the validity of the multiplier bootstrap for adaptive Huber regression
with heavy-tailed error.

THEOREM 2.6 (Validity of multiplier bootstrap). Assume the conditions of Theorem 2.5
hold and take η = 1/4. Then, for any α ∈ (0,1),∣∣P{

Lτ

(
θ∗) −Lτ (̂θ τ ) > z�

α

} − α
∣∣ ≤ �2(n, d, t),(2.22)

where �2(n, d, t) = C{(d + t)3/n}1/4 +16e−t , where C = C(A0, σ, υ4, v) > 0. In particular,
taking τ  ( n

d+logn
)1/4, it holds

sup
α∈(0,1)

∣∣P{
Lτ

(
θ∗) −Lτ (̂θ τ ) > z�

α

} − α
∣∣ = o(1)

provided that d = d(n) satisfies d = o(n1/3) as n → ∞.

3. Data-driven procedures for choosing τ . The theoretical results in Sections 2.1
and 2.3 reveal the performance of Huber-type estimators under various idealized scenarios,
as such providing guidance on the choice of the key tuning parameter, which is referred to as
the robustification parameter that balances bias and robustness. For estimation purpose, we
take τ = v( n

d+t
)1/2 with v ≥ σ ; and for bootstrap inference, we choose τ = v( n

d+t
)1/4 with

v ≥ υ
1/4
4 . Since both σ 2 = var(ε) and υ4 ≥ E(ε4) are typically unknown in practice, an intu-

itive approach is to replace them by the empirical second and fourth moments of the residuals
from the ordinary least squares (OLS) estimator, that is, σ̂ 2 := (n−d)−1 ∑n

i=1(Yi −X
ᵀ
i θ̂ols)

2

and υ̂4 := (n − d)−1 ∑n
i=1(Yi − X

ᵀ
i θ̂ols)

4. This simple approach performs reasonably well
empirically (see Section 5). However, when heavy tails may be a concern, σ̂ 2 and υ̂4 are
not good estimates of σ 2 and υ4. In this section, we discuss two data-dependent methods
for choosing the tuning parameter τ : the first one uses an adaptive technique based on Lep-
ski’s method (Lepskiı̆ (1991)), and the second method is inspired by the censored equation
approach in Hahn, Kuelbs and Weiner (1990) which was originally introduced in pursing a
more robust weak convergence theory for self-normalized sums.

3.1. Lepski-type method. Borrowing an idea from Minsker (2018), we first consider a
simple adaptive procedure based on Lepski’s method. Let vmin and vmax be some crude pre-
liminary lower and upper bounds for the residual standard deviation, that is, vmin ≤ σ ≤ vmax.
For some prespecified a > 1, let vj = vmina

j for j = 0,1, . . . and define

J = {j ∈ Z : vmin ≤ vj < avmax}.
It is easy to see that the set J has its cardinality bounded by |J | ≤ 1 + loga(vmax/vmin).
Accordingly, we define a sequence of candidate parameters {τj = vj (

n
d+t

)1/2, j ∈ J } and let

θ̂
(j)

be the Huber estimator with τ = τj . Set

ĵL := min
{
j ∈ J : ∥∥θ̂ (k) − θ̂

(j)∥∥
2

≤ c0vk

√
d + t

n
for all k ∈ J and k > j

}(3.1)

for some constant c0 > 0. The resulting adaptive estimator is then defined as θ̂L = θ̂
(ĵL)

.
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THEOREM 3.1. Assume that c0 ≥ 2c1λ
−1/2
� for c1 > 0 as in Theorem 2.1. Then for any

t > 0,

∥∥θ̂L − θ∗∥∥
2 ≤ 3a

2
c0σ

√
d + t

n

with probability at least 1 − 3 loga(avmax/vmin)e
−t , provided n � d + t .

Lepski’s adaptation method serves a general technique to select the “best” estimator from
a collection of certified candidates. The selected estimator adapts to the unknown noise level
and satisfies near-optimal probabilistic bounds, while the associated parameter is not neces-
sarily the theoretically optimal one. When applied with the bootstrap, Theorem 2.6 suggests
that the dependence on d/n should be slightly adjusted. Since the reuse of the sample brings
a big challenge mathematically, we shall prove a theoretical result for the data-driven multi-
plier bootstrap procedure with sample splitting. However, to avoid notational clutter, we state
a two-step procedure without sample splitting, but with the assumption that the second step
is carried out on an independent sample.

A Two-Step Data-Driven Multiplier Bootstrap.

STEP 1. Given independent observations {(Y (1)
i ,X

(1)
i )}ni=1 from linear model (1.1), first

we produce a robust pilot estimator using Lepski’s method. Recall that Lepski’s method
requires initial crude upper and lower bounds for υ4 ≥ E(ε4). Let μY = E(Y ) and note
that υY := E(Y − μY )4 > υ4. We shall use the median-of-means (MOM) estimator of
υY as a proxy, which is tuning-free in the sense that the construction does not depend
on the noise level (Minsker (2015)). Specifically, we divide the index set {1, . . . , n} into
m ≥ 2 disjoint, equal-length groups G1, . . . ,Gm, assuming n is divisible by m. For j =
1, . . . ,m, compute the empirical 4th moment evaluated over observations in group j : υ̂Y,j =
(1/|Gj |)∑

i∈Gj
{Y (1)

i − Ȳ
(1)
Gj

}4 with Ȳ
(1)
Gj

= (1/|Gj |)∑
i∈Gj

Y
(1)
i . The MOM estimator of υY

is then defined by υ̂Y,mom = median{υ̂Y,1, . . . , υ̂Y,m}.
Take vmax = (2υ̂Y,mom)1/4 and vmin = a−Kvmax for some integer K ≥ 1 and a >

1. Denote vj = ajvmin for j = 0,1, . . . , so that J = {j ∈ Z : vmin ≤ vj < avmax} =
{0,1, . . . ,K}. Slightly different from above, now we consider a sequence of parameters

{τj = vj (
n

d+logn
)1/4}j∈J and let θ̃

(j)
be the Huber estimator with τ = τj . Set

j̃ := min
{
j ∈ J : ∥∥θ̃ (k) − θ̃

(j)∥∥
2

≤ c0vk

√
d + logn

n
for all k ∈ J and k > j

}(3.2)

for some constant c0 > 0. Denote by θ̂
(1) = θ̃

(j̃ )
the corresponding estimator and put τ̂ = τ

j̃
.

STEP 2. Taking θ̂
(1)

and τ̂ from Step 1, next we apply the multiplier bootstrap procedure
to a new sample (Y

(2)
i ,X

(2)
i )}ni=1 that is independent from the previous one. Similarly to (2.2)

and (2.12), define

θ̂ ∈ argmin
θ∈Rd

L̂(θ) and θ̂
� ∈ argmin

θ∈Rd :‖θ−θ̂
(1)‖2≤R̂

L̂�(θ),(3.3)

where L̂(θ) = ∑n
i=1 �τ̂ (Y

(2)
i − 〈X(2)

i , θ〉), L̂�(θ) = ∑n
i=1 Wi�τ̂ (Y

(2)
i − 〈X(2)

i , θ〉) and R̂ =
τ̂ (

d+logn
n

)1/4. With the above preparations, we apply Algorithm 1 to construct the confidence
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set Ĉα = {θ ∈ R
d : L̂(θ) − L̂(̂θ) ≤ ẑ

�
α}, where

ẑ�
α = inf

{
z ≥ 0 : P{

L̂�(̂θ) −L�(̂θ �)
> z|D̄n

} ≤ α
}

with D̄n = {(Y (1)
i ,X

(1)
i ), (Y

(2)
i ,X

(2)
i )}ni=1.

THEOREM 3.2. Assume D̄n is an independent sample from (Y,X) satisfying Condi-
tion 2.1 and moreover, E(|ε|4+δ) ≤ υ4+δ for some δ > 0. Let W1, . . . ,Wn be IID N (1,1) ran-
dom variables that are independent of D̄n. Assume further that d = d(n) satisfies d = o(n1/3)

as n → ∞. Then, for any α ∈ (0,1), the confidence set Ĉα obtained by the two-step multi-
plier bootstrap procedure with m = �8 logn + 1� and K = �loga(3υY /υ4)

1/4� + 1 satisfies
P(θ∗ ∈ Ĉα) → 1 − α as n → ∞.

The proof of Theorem 3.2 will be provided in Section C.2 in the supplementary material.

3.2. Huber-type method. In Huber’s original proposal, robust location estimation with
desirable efficiency also depends on the scale parameter σ . For example, in Huber’s Proposal
2 (Huber (1964)), the location μ and scale σ are estimated simultaneously by solving a
system of “likelihood equations”. Similarly in spirit, we propose a new data-driven tuning
scheme to calibrate τ by solving a so-called censored equation (Hahn, Kuelbs and Weiner
(1990)) instead of a likelihood equation. We first consider mean estimation to illustrate the
main idea, and then move forward to the regression problem. Due to space limitations, we
leave some discussions and proofs of the theoretical results to Appendix E in the supplemental
material (Chen and Zhou (2019)).

3.2.1. Motivation: Truncated mean. Let X1, . . . ,Xn be IID random variables from X

with mean μ and variance σ 2 > 0. Without loss of generality, we first assume μ = 0. Catoni
(2012) proved that the worst case deviations of the sample mean X̄n are suboptimal for heavy-
tailed distributions (see Appendix E.2). To attenuate the erratic fluctuations in X̄n, it is natural
to consider the truncated sample mean

m̂τ = 1

n

n∑
i=1

ψτ (Xi) for some τ > 0,(3.4)

where

(3.5) ψτ (u) := �′
τ (u) = sgn(u)min

(|u|, τ )
, u ∈ R,

and τ is a tuning parameter that balances between bias and robustness. To see this, let μτ =
E(m̂τ ) be the truncated mean. By Markov’s inequality, the bias term can be controlled by

|μτ | =
∣∣E{

X − sgn(X)τ
}
I
(|X| > τ

)∣∣
≤ E

(|X| − τ
)
I
(|X| > τ

)
(3.6)

≤ E(X2 − τ 2)I (|X| > τ)

τ
≤ σ 2 −Eψ2

τ (X)

τ
.

The robustness of m̂τ , on the other hand, can be characterized via the deviation

|m̂τ − μτ | =
∣∣∣∣∣1

n

n∑
i=1

ψτ (Xi) − μτ

∣∣∣∣∣.
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The following result shows that with a properly chosen τ , the truncated sample mean achieves
a sub-Gaussian performance under the finite variance condition. Moreover, uniform conver-
gence over a neighborhood of the optimal tuning scale requires an additional log(n)-factor.
For every τ > 0, define the truncated second moment

σ 2
τ = E

{
ψ2

τ (X)
} = E

{
min

(
X2, τ 2)}

.(3.7)

PROPOSITION 3.1. For any 1 ≤ t < nP(|X| > 0), let τt > 0 be the solution to

E{ψ2
τ (X)}
τ 2 = t

n
, τ > 0.(3.8)

(i) With probability at least 1 − 2e−t , m̂τt satisfies

|m̂τt − μτt | ≤ 1.75στt

√
t

n
and |m̂τt | ≤

(
0.75στt + σ 2

στt

)√
t

n
.(3.9)

(ii) With probability at least 1 − 2elogn−t ,

max
τt /2≤τ≤3τt /2

|m̂τ | ≤ Ct

√
t

n
+ στt√

n
,(3.10)

where Ct := supστt /2≤c≤3στt /2{σc(n/t)1/2

√
2 − c−1σ 2

c(n/t)1/2 + c/3 + c−1σ 2} ≤ √
2σ + 2σ 2/

στt + στt /6.

The next result establishes existence and uniqueness of the solution to equation (3.8).

PROPOSITION 3.2. (i) Provided 0 < t < nP(|X| > 0), equation (3.8) has a unique solu-
tion, denoted by τt , which satisfies{

E
(
X2 ∧ q2

t/n

)}1/2
√

n

t
≤ τt ≤ σ

√
n

t
,

where qα := inf{z : P(|X| > z) ≤ α} is the upper α-quantile of |X|. (ii) Let t = tn > 0 satisfy
tn → ∞ and t = o(n). Then τt → ∞, στt → σ and τt ∼ σ

√
n/t as n → ∞.

According to Proposition 3.1, an ideal τ is such that the sample mean of truncated data
ψτ (X1), . . . ,ψτ (Xn) is tightly concentrated around the true mean. At the same time, it is
reasonable to expect that the empirical second moment of ψτ (Xi)’s provides an adequate es-
timate of σ 2

τ = E{ψ2
τ (X)}. Motivated by this observation, we propose to choose τ by solving

the equation

τ =
{

1

n

n∑
i=1

ψ2
τ (Xi)

}1/2√
n

t
, τ > 0,

or equivalently, solving

1

n

n∑
i=1

ψ2
τ (Xi)

τ 2 = t

n
, τ > 0.(3.11)

Equation (3.11) is the sample version of (3.8). Provided the solution exists and is unique,
denoted by τ̂t , we obtain a data-driven estimator

m̂τ̂t = 1

n

n∑
i=1

sgn(Xi)min
(|Xi |, τ̂t

)
.(3.12)

As a direct consequence of Proposition 3.2, the following result ensures existence and
uniqueness of the solution to equation (3.11).
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PROPOSITION 3.3. Provided 0 < t <
∑n

i=1 I (|Xi | > 0), equation (3.11) has a unique
solution.

Throughout, we use τ̂t to denote the solution to equation (3.11), which is unique and
positive when t <

∑n
i=1 I (|Xi | > 0). For completeness, we set τ̂t = 0 if t ≥ ∑n

i=1 I (|Xi | >

0). If P(X = 0) = 0, then τ̂t > 0 with probability one as long as 0 < z < n. In the special case
of t = 1, since ψτ̂1(Xi) = Xi for all i = 1, . . . , n, equation (3.11) has a unique solution τ̂1 =
(
∑n

i=1 X2
i )

1/2. With both τt and τ̂t well defined, next we investigate the statistical property of
τ̂t .

THEOREM 3.3. Assume that var(X) < ∞ and P(X = 0) = 0. For any 1 ≤ t < n and
0 < r < 1, we have

P
(|τ̂t /τt − 1| ≥ r

)
≤ e−a2

1r2t2/(2t+2a1rt/3) + e−a2
2r2t/2 + 2e−(a1∧a2)

2t/8,
(3.13)

where

a1 = a1(t, r) = P(τt )

2Q(τt )

2 + r

(1 + r)2 ,

a2 = a2(t, r) = P(τt − τt r)

2Q(τt )

2 − r

1 − r
,

(3.14)

where P(z) = E{X2I (|X| ≤ z)} and Q(z) = E{ψ2
z (X)} for z ≥ 0.

More properties of functions P(z) and Q(z) can be found in Appendix E.1 in the supple-
ment.

REMARK 3.1. We discuss some direct implications of Theorem 3.3.

(i) Let t = tn ≥ 1 satisfy t → ∞ and t = o(n) as n → ∞. By Proposition 3.2, τt → ∞,
στt → σ and τt ∼ σ

√
n/t , which further implies P(τt ) → σ and Q(τt ) → σ as n → ∞.

(ii) With r = 1/2 and t = (logn)1+κ for some κ > 0 in (3.13), the constants a1 =
a1(t,1/2) and a2 = a2(t,1/2) satisfy a1 → 5/9 and a2 → 3/2 as n → ∞. The resulting
τ̂t satisfies that with probability approaching one, τt/2 ≤ τ̂t ≤ 3τt/2.

The following result, which is a direct consequence of (3.10), Theorem 3.3 and Re-
mark 3.1, shows that the data-driven estimator m̂τ̂t with t = (logn)1+κ (κ > 0) is tightly
concentrated around the mean with high probability.

COROLLARY 3.1. Assume the conditions of Theorem 3.3 hold. Then, the truncated mean

m̂ = m̂τ̂t with t = (logn)1+κ for some κ > 0 satisfies |m̂| ≤ c1

√
(logn)1+κ/n with probability

greater than 1 − c2n
−1 as n → ∞, where c1, c2 > 0 are constants independent of n.

3.2.2. Huber’s mean estimator. For the truncated sample mean, even with the theoreti-
cally optimal tuning parameter, the deviation of the estimator only scales with the second mo-
ment rather than the ideal scale σ . Indeed, the truncation method described above primarily
serves as a heuristic device and paves the way for developing data-driven Huber estimators.

Given IID samples X1, . . . ,Xn with mean μ and variance σ 2, recall the Huber estimator
μ̂τ = argminθ

∑n
i=1 �τ (Xi − θ), which is also the unique solution to

1

n

n∑
i=1

ψτ (Xi − θ) = 0, θ ∈R.(3.15)



1680 X. CHEN AND W.-X. ZHOU

The nonasymptotic property of μ̂τ is characterized by a Bahadur-type representation result
developed in Zhou et al. (2018): for any t > 0, μ̂τ with τ = σ

√
n/t satisfies the bound

|μ̂τ − μ − (1/n)
∑n

i=1 ψτ (εi)| ≤ c1σ t/
√

n with probability at least 1 − 3e−t provided n ≥
c2t , where c1, c2 > 0 are absolute constants and εi = Xi − μ are noise variables. In other
words, a properly chosen τ is such that the truncated average (1/n)

∑n
i=1 ψτ (εi) is resistant

to outliers caused by a heavy-tailed ‘noise’. Similar to (3.11), now we would like to choose
the robustification parameter by solving

1

n

n∑
i=1

ψ2
τ (εi)

τ 2 = t

n
,(3.16)

which is practically impossible as εi’s are unobserved realized noise. In light of (3.15) and
(3.16), and motivated by Huber’s Proposal 2 [page 96 in Huber (1964)] for the simultaneous
estimation of location and scale, we propose to estimate μ and calibrate τ by solving the
following system of equations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

n∑
i=1

ψτ (Xi − θ) = 0,

1

n

n∑
i=1

ψ2
τ (Xi − θ)

τ 2 − t

n
= 0,

θ ∈R, τ > 0.

This method of simultaneous estimation can be naturally extended to the regression setting,
as discussed in the next section.

A different while comparable proposal is a two-step method, namely M-estimation of μ

with auxiliary robustification parameter computed separately by solving

1(
n

2

) ∑
1≤i<j≤n

min{(Xi − Xj)
2/2, τ 2}

τ 2 = t

n
.

It is, however, less clear how this method can be generalized to the regression problem. There-
fore, our focus will be on the previous approach.

3.2.3. Data-driven Huber regression. Consider the linear model Yi = X
ᵀ
i θ

∗ + εi as in
(1.1) and the Huber estimator θ̂ τ = argminθ∈Rd Lτ (θ), where Lτ (θ) = ∑n

i=1 �τ (Yi − X
ᵀ
i θ).

From the deviation analysis in (2.1) we see that to achieve the sub-Gaussian performance
bound, the theoretically desirable tuning parameter for θ̂ τ is τ ∼ σ

√
n/(d + t) with σ 2 =

var(εi). Further, by the Bahadur representation (2.5),

θ̂ τ − θ∗ = 1

n

n∑
i=1

ψτ (εi)�
−1Xi +Rτ ,

where the remainder Rτ is of the order σ(d + t)/n with exponentially high probability.
This result demonstrates that the robustness is essentially gained from truncating the errors.
Motivated by this representation and our discussions in Section 3.2.1, a robust tuning scheme
is to find τ such that

τ =
{

1

n

n∑
i=1

ψ2
τ (εi)

}1/2√
n

d + t
, τ > 0.(3.17)

Unlike the mean estimation problem, the realized noises εi are unobserved. It is therefore
natural to calibrate τ using fitted residuals. On the other hand, for a given τ > 0, the Huber
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loss minimization is equivalent to the following least squares problem with variable weights:

(3.18) min
wi≥0,θ

n∑
i=1

{
(Yi − X

ᵀ
i θ)2

wi + 1
+ τ 2wi

}
,

where the minimization is over wi ≥ 0 and θ ∈ R
d . This equivalence can be derived by

writing down the KKT conditions of (3.18). Details will be provided in Remark 3.2 below.
By (3.18), this problem can be solved via the iteratively reweighted least squares method.

To summarize, we propose an iteratively reweighted least squares algorithm, which starts
at iteration 0 with an initial estimate θ (0) = θ̂ols (the least squares estimator) and involves
three steps at each iteration.

Calibration: Using the current estimate θ (k), we compute the vector of residuals R(k) =
(R

(k)
1 , . . . ,R

(k)
n )ᵀ, where R

(k)
i = Yi − X

ᵀ
i θ

(k). Then we take τ (k) as the solution to

1

n

n∑
i=1

min{R(k)2
i , τ 2}
τ 2 = d + t

n
, τ > 0.(3.19)

By Proposition 3.3, this equation has a unique positive solution provided d + t <∑n
i=1 I (|R(k)

i | > 0).

Weighting: Compute the vector of weights w(k) = (w
(k)
1 , . . . ,w

(k)
n )ᵀ, where w

(k)
i =

|R(k)
i |/τ (k) − 1 if |R(k)

i | > τ(k) and w
(k)
i = 0 if |R(k)

i | ≤ τ (k). Then define the diagonal matrix

W(k) = diag((1 + w
(k)
1 )−1, . . . , (1 + w

(k)
n )−1).

Weighted least squares: Solve the weighted least squares problem (3.18) with wi = w
(k)
i

and τ = τ (k) to obtain

θ (k+1) = (
XᵀW(k)X

)−1XᵀY ,

where X = (X1, . . . ,Xn)
ᵀ ∈ R

n×d and Y = (Y1, . . . , Yn)
ᵀ.

Repeat the above three steps until convergence or until the maximum number of iterations
is reached.

In addition, from Theorems 2.3–2.5 we see that the validity of the multiplier bootstrap
procedure requires a finite fourth moment condition, under which the ideal choice of τ is
{υ4n/(d + t)}1/4. To construct data-dependent robust bootstrap confidence set, we adjust
equation (3.19) by replacing R

(k)2
i and τ 2 therein with R

(k)4
i and τ 4, and solve instead

1

n

n∑
i=1

min{R(k)4
i , τ 4}
τ 4 = d + t

n
, τ > 0.(3.20)

Keep the other two steps and repeat until convergence or the maximum number of iterations
is reached. Let θ̂ τ̂ and τ̂ be the obtained solutions. Then, we apply Algorithm 1 with τ = τ̂

to construct confidence sets.
Finally we discuss the choice of t . Since t appears in both the deviation bound and con-

fidence level, we let t = tn slowly grow with the sample size to gain robustness without
compromising unbiasedness. We take t = logn, a typical slowly growing function of n, in all
the numerical experiments carried out in this paper.

REMARK 3.2 (Equivalence between (3.18) and Huber regression). For a given θ in
(3.18), define Ri = Yi − X

ᵀ
i θ , i = 1, . . . , n. The KKT condition of the program (3.18) with

respect to each wi under the constraint wi ≥ 0 now reads:

− R2
i

(wi + 1)2 + τ 2 − λi = 0; wi ≥ 0, λi ≥ 0;λiwi = 0,



1682 X. CHEN AND W.-X. ZHOU

where λi is the Lagrangian multiplier. The solution to the KKT condition takes the form:

wi = |Ri |
τ

− 1, λi = 0 if |Ri | ≥ τ,

wi = 0, λi = τ 2 − R2
i if |Ri | < τ.

This gives the optimal solution of wi . By plugging the optimal solution of wi back into (3.18),
we obtain the following optimization with respect to θ :

min
θ

n∑
i=1

(
2τ

∣∣Yi − X
ᵀ
i θ

∣∣ − τ 2)
I
(∣∣Yi − X

ᵀ
i θ

∣∣ ≥ τ
)

+ ∣∣Yi − X
ᵀ
i θ

∣∣2I (∣∣Yi − X
ᵀ
i θ

∣∣ < τ
)
,

which is equivalent to Huber regression.

4. Multiple inference with multiplier bootstrap calibration. In this section, we apply
the adaptive Huber regression with multiplier bootstrap to simultaneously test the hypotheses
in (1.3). Given a random sample (y1,x1), . . . , (yn,xn) from the multiple response regression
model (1.2), we define robust estimators

(μ̂k, β̂k) ∈ argmin
μ∈R,β∈Rs

n∑
i=1

�τk

(
yik − μ − x

ᵀ
i β

)
, k = 1, . . . ,m,(4.1)

where τk’s are robustification parameters.
To conduct simultaneous inference for μk’s, we use the multiplier bootstrap to approxi-

mate the distribution of μ̂k − μk . Let W be a random variable with unit mean and variance.
Independent of {(yi ,xi )}ni=1, let {Wik,1 ≤ i ≤ n,1 ≤ k ≤ m} be IID from W . Define the
multiplier bootstrap estimators

(
μ̂

�
k, β̂

�

k

) ∈ argmin
θ=(μ,βᵀ)ᵀ:
‖θ−θ̂k‖2≤Rk

n∑
i=1

Wik�τk

(
yik − μ − x

ᵀ
i β

)
, k = 1, . . . ,m,(4.2)

where θ̂k = (μ̂k, β̂
ᵀ
k )

ᵀ and Rk’s are radius parameters. We will show that the unknown distri-
bution of

√
n(μ̂k − μk) can be approximated by the conditional distribution of

√
n(μ̂

�
k − μ̂k)

given Dkn := {(yik,xi )}ni=1.
The main result of this section establishes validity of the multiplier bootstrap on control-

ling the FDP in multiple testing. For k = 1, . . . ,m, define test statistics T̂k = √
nμ̂k and the

corresponding bootstrap p-values p
�
k = G

�
k(|T̂k|), where G

�
k(z) := P(

√
n|μ̂�

k − μ̂k| ≥ z|Dkn),
z ≥ 0. For any given threshold t ∈ (0,1), the false discovery proportion is defined as

FDP(t) = V (t)/max
{
R(t),1

}
,(4.3)

where V (t) = ∑
k∈H0

I (p
�
k ≤ t) is the number of false discoveries, R(t) = ∑m

k=1 I (p
�
k ≤ t)

is the number of total discoveries and H0 := {k : 1 ≤ k ≤ m,μk = 0} is the set of true null
hypotheses. For any prespecified α ∈ (0,1), applying the the Benjamini and Hochberg (BH)
method (Benjamini and Hochberg (1995)) to the bootstrap p-values p

�
1, . . . , p

�
m induces a

data-dependent threshold

t
�
BH = p

�

(k�)
with k� = max

{
k : 1 ≤ k ≤ m,p

�
(k) ≤ αk/m

}
.(4.4)

We reject the null hypotheses for which p
�
k ≤ t

�
BH.
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CONDITION 4.1. (y1,x1), . . . , (yn,xn) are IID observations from (y,x) that satisfies
y = μ + �x + ε, where y = (y1, . . . , ym)ᵀ, μ = (μ1, . . . ,μm)ᵀ, � = (β1, . . . ,βm)ᵀ ∈ R

m×s

and ε = (ε1, . . . , εm)ᵀ. The random vector x ∈ R
s satisfies E(x) = 0, E(xxᵀ) = � and

P(|〈u,�−1/2x〉| ≥ t) ≤ 2 exp(−t2‖u‖2
2/A

2
0) for all u ∈ R

s , t ∈R and some constant A0 > 0.
Independent of x, the noise vector ε has independent elements and satisfies E(ε) = 0 and
cl ≤ min1≤k≤m σk ≤ max1≤k≤m υ

1/4
k,4 ≤ cu for some constants cl, cu > 0, where σ 2

k = E(ε2
k)

and υk,4 = E(ε4
k).

THEOREM 4.1. Assume Condition 4.1 holds and m = m(n) satisfies m → ∞ and
logm = o(n1/3). Moreover, as (n,m) → ∞,

card
{
k : 1 ≤ k ≤ m, |μk|/σk ≥ λ0

√
(2 logm)/n

} → ∞(4.5)

for some λ0 > 2. Then, with

τk = vk

{
n

s + 2 log(nm)

}1/3
and Rk = vk ≥ υ

1/4
k,4 , k = 1, . . . ,m,

in (4.1) and (4.2), it holds

FDP(t
�
BH)

(m0/m)
→ α in probability as (n,m) → ∞,(4.6)

where m0 = card(H0).

In practice, conditional quantiles of
√

n(μ̂
�
k − μ̂k) can be computed with arbitrary preci-

sion by using the Monte Carlo simulations: Independent of the observed data, generate IID
random weights {Wik,b,1 ≤ i ≤ n,1 ≤ k ≤ m,1 ≤ b ≤ B} from W , where B is the number

of bootstrap replications. For each k, the bootstrap samples of (μ̂
�
k, β̂

�

k) are given by

(4.7)
(
μ̂

�
k,b, β̂

�

k,b

) ∈ argmin
μ∈R,β∈Rs

n∑
i=1

Wik,b�τk

(
yik − μ − x

ᵀ
i β

)
, b = 1, . . . ,B.

For k = 1, . . . ,m, define empirical tail distributions

G
�
k,B(z) = 1

B + 1

B∑
b=1

I
(√

n
∣∣μ̂�

k,b − μ̂k

∣∣ ≥ z
)
, z ≥ 0.

The bootstrap p-values are thus given by {p�
k,B = G

�
k,B(

√
n|μ̂k|)}mk=1, to which either the

BH procedure or Storey’s procedure can be applied. For the former, we reject H0k if and
only if p

�
k,B ≤ p

�

(k
�
B),B

, where k
�
B = max{k : 1 ≤ k ≤ m,p

�
(k),B ≤ kα/m} for a predetermined

0 < α < 1 and p
�
(1),B ≤ · · · ≤ p

�
(m),B are the ordered bootstrap p-values. See Algorithm 2 for

detailed implementations.

5. Numerical studies.

5.1. Confidence sets. We first provide simulation studies to illustrate the performance
of the robust bootstrap procedure for constructing confidence sets with various heavy-tailed
errors. Recall the linear model Yi = X

ᵀ
i θ

∗ + εi in (1.1). We simulate {Xi}ni=1 from N (0, Id).
The true regression coefficient θ∗ is a vector equally spaced between [0,1]. The errors εi are
IID from one of the following distributions, standardized to have mean 0 and variance 1.

1. Standard Gaussian distribution N (0,1);
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Algorithm 2 Huber Robust Multiple Testing
Input: Data {(yi ,xi )}ni=1, number of bootstrap replications B , thresholding

parameters {τk}mk=1, nominal level α ∈ (0,1).

1: Solve m Huber regressions in (4.1) and obtain {(μ̂k, β̂k)}mk=1.
2: for b = 1,2, . . . ,B do
3: Generate IID random weights {Wik,b}i∈[n],k∈[m] satisfying E(Wik,b) = 1 and

var(Wik,b) = 1.

4: Solve m weighted Huber regressions in (4.7) and obtain {(μ̂�
k,b, β̂

�

k,b)}mk=1.
5: end for
6: for k = 1, . . . ,m do
7: Compute the bootstrap p-value:

p
�
k,B = 1

B + 1

B∑
b=1

I
(∣∣μ̂�

k,b − μ̂k

∣∣ ≥ |μ̂k|).
8: end for
9: Sort the bootstrap p-values: p

�
(1),B ≤ · · · ≤ p

�
(m),B .

10: Compute the BH threshold: k
�
m = max{1 ≤ k ≤ m : p�

(k),B ≤ kα/m}.
Output: Set {1 ≤ k ≤ m : p�

k,B ≤ p
�

(k
�
m),B

} of rejections, i.e., reject H0k if

p
�
k,B ≤ p

�

(k
�
m),B

.

2. tν -distribution with degrees of freedom ν = 3.5;
3. Gamma distribution with shape parameter 3 and scale parameter 1;
4. t-Weibull mixture (Wbl mix) model: ε = 0.5ut +0.5uW, where ut follows a standard-

ized t4-distribution and uW follows a standardized Weibull distribution with shape parameter
0.75 and scale parameter 0.75;

5. Pareto–Gaussian mixture (Par mix) model: ε = 0.5uP + 0.5uG, where uP follows a
Pareto distribution with shape parameter 4 and scale parameter 1 and uG ∼ N (0,1);

6. Lognormal–Gaussian mixture (Logn mix) model: ε = 0.5uLN + 0.5uG, where uLN =
exp(1.25Z) with Z ∼ N (0,1) and uG ∼N (0,1).

Moreover, we consider three types of random weights as follows:

• Gaussian weights: Wi ∼ N (0,1) + 1;
• Bernoulli weights (rescaled to have mean 1): Wi ∼ 2 Ber(0.5);
• A mixture of Bernoulli and Gaussian weights considered by Zhilova (2016): Wi = zi +

ui + 1, with ui ∼ (Ber(b) − b)σu, b = 0.276, σu = 0.235, and zi ∼N (0, σ 2
z ), σ 2

z = 0.038.

All three weights considered are such that E(Wi) = var(Wi) = 1. Using nonnegative random
weights has the advantage that the weighted objective function is guaranteed to be convex.
Numerical results reveal that Gaussian and Bernoulli weights demonstrate almost the same
coverage performance.

The number of bootstrap replications is set to be B = 2000. Nominal coverage probabili-
ties 1 −α are given in the columns, where we consider 1 −α ∈ {0.95,0.90,0.85,0.80,0.75}.
We report the empirical coverage probabilities from 1000 simulations. We first consider a
simple approach for choosing τ , which is set to be 1.2{̂ν4n/(d + logn)}1/4. Here, ν̂4 is the
empirical fourth moment of the residuals from the OLS and the constant 1.2 (which is slightly
larger than 1) is chosen in accordance with Theorem 2.5 which requires v ≥ υ

1/4
4 . This simple

ad hoc approach leads to adequate results in most cases. In Section 5.2, we further investigate
the empirical performance of the fully data-dependent procedure proposed in Section 3.
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TABLE 1
Average coverage probabilities with n = 100 and d = 5 for different nominal coverage levels

1 − α = [0.95,0.9,0.85,0.8,0.75]. The weights Wi are generated from N (1,1)

Noise Approach 0.95 0.9 0.85 0.8 0.75

Gaussian
boot-Huber 0.954 0.908 0.842 0.783 0.734
boot-OLS 0.952 0.908 0.837 0.785 0.735

tν
boot-Huber 0.966 0.904 0.848 0.801 0.748
boot-OLS 0.954 0.887 0.798 0.710 0.630

Gamma
boot-Huber 0.962 0.918 0.860 0.798 0.747
boot-OLS 0.955 0.910 0.843 0.775 0.700

Wbl mix
boot-Huber 0.962 0.907 0.851 0.797 0.758
boot-OLS 0.944 0.899 0.808 0.775 0.680

Par mix
boot-Huber 0.955 0.907 0.856 0.802 0.761
boot-OLS 0.948 0.900 0.843 0.785 0.738

Logn mix
boot-Huber 0.958 0.912 0.860 0.782 0.744
boot-OLS 0.954 0.912 0.796 0.682 0.616

We compare our method with an OLS-based bootstrap procedure studied in Spokoiny
and Zhilova (2015), namely, replacing the weighted Huber loss in (2.12) by the weighted
quadratic loss L�

ols(θ) = ∑n
i=1 Wi(Yi − X

ᵀ
i θ)2.

Consider the sample size n = 100 and dimension d = 5. Table 1 and Table 2 display the
coverage probabilities of the proposed bootstrap Huber method (boot-Huber) and the boot-
strap OLS method (boot-OLS). At the normal model, our approach achieves a similar perfor-
mance as the boot-OLS, which demonstrates the efficiency of adaptive Huber regression. For
heavy-tailed errors, our method significantly outperforms the boot-OLS using all three types
of random weights. Also, we observe that the Gaussian and Bernoulli weights demonstrate
nearly the same desirable performance. For simplicity, we focus on the Gaussian weights
throughout the remaining simulation studies.

In Table 3, we increase the sample size to n = 200 and retain all the other settings. For
most cases of heavy-tailed errors, the coverage probability of the boot-OLS method is lower
than the nominal level, sometimes to a large extent. In Table 4, we generate errors from a
t-Weilbull mixture distribution and consider different combinations of n (n ∈ {50,100,200})
and d (d ∈ {2,5,10}). The robust procedure outperforms the least squares method across
most of the settings. Similar phenomena are also observed in other cases of heavy-tailed
errors.

We also report the standard deviations of the estimated quantiles of boot-Huber and boot-
OLS; see Appendix F.1 in the supplement. The experimental results show that the boot-
Huber leads to uniformly smaller standard deviations. Furthermore, we consider more chal-
lenging settings with correlated or non-Gaussian designs and nonequally spaced θ∗. The
average coverage probabilities of the boot-Huber method are in general close to nominal
level, while the boot-OLS leads to severe under-coverage in many heavy-tailed noise set-
tings. More details are presented in Appendix F.2 in the supplementary material (Chen and
Zhou (2019)).
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TABLE 2
Average coverage probabilities with n = 100 and d = 5 for different nominal coverage levels

1 − α = [0.95,0.9,0.85,0.8,0.75]

Noise Approach 0.95 0.9 0.85 0.8 0.75

Bernoulli weights Wi ∼ 2 Ber(0.5)

Gaussian
boot-Huber 0.947 0.895 0.847 0.792 0.740
boot-OLS 0.926 0.865 0.824 0.783 0.726

tν
boot-Huber 0.930 0.897 0.841 0.786 0.755
boot-OLS 0.884 0.815 0.757 0.703 0.646

Gamma
boot-Huber 0.943 0.900 0.861 0.805 0.756
boot-OLS 0.935 0.882 0.831 0.774 0.720

Wbl mix
boot-Huber 0.948 0.894 0.842 0.793 0.739
boot-OLS 0.931 0.859 0.779 0.721 0.664

Par mix
boot-Huber 0.932 0.875 0.832 0.780 0.741
boot-OLS 0.927 0.871 0.817 0.765 0.716

Logn mix
boot-Huber 0.944 0.892 0.846 0.807 0.758
boot-OLS 0.915 0.838 0.792 0.720 0.674

Mixture weights Wi = zi + ui + 1, with ui ∼ (Ber(b) − b)σu, b = 0.276, σu = 0.235, and
zi ∼N (0, σ 2

z ), σ 2
z = 0.038

Gaussian
boot-Huber 0.930 0.864 0.812 0.763 0.698
boot-OLS 0.920 0.842 0.772 0.695 0.640

tν
boot-Huber 0.942 0.893 0.844 0.788 0.733
boot-OLS 0.894 0.792 0.695 0.605 0.528

Gamma
boot-Huber 0.930 0.873 0.831 0.782 0.731
boot-OLS 0.911 0.832 0.754 0.686 0.625

Wbl mix
boot-Huber 0.963 0.919 0.874 0.812 0.754
boot-OLS 0.924 0.759 0.656 0.545 0.459

Par mix
boot-Huber 0.942 0.884 0.818 0.750 0.702
boot-OLS 0.924 0.830 0.736 0.664 0.614

Logn mix
boot-Huber 0.940 0.876 0.829 0.796 0.751
boot-OLS 0.903 0.812 0.736 0.637 0.579

5.2. Performance of the data-driven tuning approach. We further investigate the empir-
ical performance of the data-driven procedure proposed in Section 3. We consider lognormal
distributions Logn(μ,σ ) with location parameter μ = 0 and varying shape parameters σ .
The larger the value of σ is, the heavier the tail is. Moreover, we take n = 200, d = 5 and
1−α ∈ [0.85,0.99] and compare three methods: (1) Huber-based bootstrap procedure with τ

calibrated by solving (3.20) (adaptive boot-Huber), (2) Huber-based bootstrap procedure with
τ = 1.2{̂ν4n/(d + logn)}1/4 (boot-Huber), and (3) OLS-based bootstrap method (boot-OLS).
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TABLE 3
Average coverage probabilities with n = 200, d = 5 for different nominal coverage levels

1 − α = [0.95,0.9,0.85,0.8,0.75]. The weights Wi are generated from N (1,1)

Noise Approach 0.95 0.9 0.85 0.8 0.75

Gaussian
boot-Huber 0.957 0.910 0.850 0.790 0.736
boot-OLS 0.955 0.907 0.850 0.789 0.736

tν
boot-Huber 0.958 0.906 0.848 0.798 0.749
boot-OLS 0.940 0.863 0.772 0.684 0.599

Gamma
boot-Huber 0.948 0.899 0.845 0.780 0.726
boot-OLS 0.944 0.889 0.822 0.751 0.685

Wbl mix
boot-Huber 0.954 0.889 0.837 0.775 0.713
boot-OLS 0.939 0.865 0.784 0.695 0.621

Par mix
boot-Huber 0.945 0.898 0.847 0.789 0.738
boot-OLS 0.941 0.886 0.820 0.757 0.700

Logn mix
boot-Huber 0.958 0.916 0.864 0.812 0.748
boot-OLS 0.938 0.886 0.812 0.718 0.590

TABLE 4
Average coverage probabilities for the Wbl mix error and for different nominal coverage levels

1 − α = [0.95,0.9,0.85,0.8,0.75]. The weights Wi are generated from N (1,1)

Approach d n 0.95 0.9 0.85 0.8 0.75

boot-Huber
50 0.951 0.904 0.848 0.789 0.725

2 100 0.959 0.914 0.866 0.827 0.771
200 0.954 0.917 0.856 0.814 0.756
50 0.982 0.945 0.876 0.826 0.752

5 100 0.966 0.917 0.855 0.802 0.760
200 0.950 0.894 0.835 0.777 0.721
50 0.990 0.972 0.955 0.915 0.881

10 100 0.980 0.949 0.897 0.850 0.799
200 0.970 0.922 0.864 0.826 0.777

boot-OLS
50 0.942 0.887 0.827 0.758 0.672

2 100 0.956 0.901 0.849 0.785 0.714
200 0.947 0.898 0.822 0.763 0.685
50 0.976 0.911 0.836 0.754 0.688

5 100 0.954 0.896 0.824 0.751 0.674
200 0.940 0.868 0.790 0.698 0.622
50 0.997 0.970 0.919 0.844 0.761

10 100 0.975 0.921 0.850 0.784 0.719
200 0.954 0.879 0.816 0.731 0.650
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FIG. 1. Comparison of coverage probabilities for different error distributions when the nominal coverage level
1 − α ranges from 0.85 to 0.99. Here, x-axis represents 1 − α and y-axis represents the average coverage rates
over 1000 simulations. The red line represents the nominal coverage probability.

From Figure 1 and Table 5 we see that, under lognormal models, the coverage probabilities
of the adaptive boot-Huber method are closest to nominal levels, while the boot-OLS suffers
from distorted empirical coverage: it tends to overestimate the real quantiles at high levels and

TABLE 5
Average coverage probabilities for different nominal coverage levels 1 − α ∈ {0.99,0.97,0.95,0.9,0.87}. The

weights Wi are generated from N (1,1)

Noise Approach 0.99 0.97 0.95 0.90 0.87

N (0,1)

adaptive boot-Huber 0.993 0.970 0.942 0.896 0.868
boot-Huber 0.991 0.971 0.946 0.899 0.868
boot-OLS 0.993 0.970 0.948 0.895 0.868

Logn(0,1)

adaptive boot-Huber 0.994 0.978 0.961 0.919 0.880
boot-Huber 0.997 0.983 0.969 0.935 0.895
boot-OLS 0.997 0.978 0.955 0.848 0.750

Logn(0,1.5)

adaptive boot-Huber 0.994 0.980 0.961 0.916 0.882
boot-Huber 1.000 0.992 0.978 0.948 0.921
boot-OLS 0.999 0.989 0.972 0.864 0.710

Logn(0,2)

adaptive boot-Huber 0.995 0.979 0.961 0.904 0.881
boot-Huber 1.000 0.996 0.989 0.958 0.939
boot-OLS 1.000 0.996 0.980 0.879 0.692
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severely underestimate the real quantiles at relatively lower levels. In addition, Figure 1(a)
shows that the proposed Huber-based procedure almost loses no efficiency under a normal
model.

6. Discussion. In this paper, we have proposed and analyzed robust inference methods
for linear models with heavy-tailed errors. Specifically, we use a multiplier bootstrap pro-
cedure for constructing sharp confidence sets for adaptive Huber estimators and conducting
large-scale simultaneous inference with heavy-tailed panel data. Our theoretical results pro-
vide explicit bounds for the bootstrap approximation errors and justify the bootstrap validity;
the error of coverage probability is small as long as d3/n is small. For multiple testing, we
show that when the error distributions have finite 4th moments and the dimension m and
sample size n satisfy logm = o(n1/3), the bootstrap Huber procedure asymptotically controls
the overall false discovery proportion at the nominal level.

The multiplier bootstrap can also be used to construct confidence intervals for the regres-
sion coefficients. Let W1, . . . ,Wn be independent random variables from 2 Ber(0.5), and de-
fine the multiplier bootstrap estimator θ̂

�

τ = (θ̂
�
1, . . . , θ̂

�
d)ᵀ ∈ argminθ∈Rd L�

τ (θ), where L�
τ (·)

is given in (2.12). To reduce computational cost (comparing with the nonparametric paired
bootstrap), here we recommend using nonnegative weights so that the weighed Huber loss
L�

τ (·) is still convex. Since each Wi takes the values {0,2} equiprobably, nearly half of the
weights are zero, thus reducing the computational complexity of solving weighted Huber re-
gression. Let θ̂ τ = (θ̂1, . . . , θ̂d)ᵀ be the Huber estimator given in (2.2). For every 1 ≤ j ≤ d

and q ∈ (0,1), define the conditional upper q-quantile of θ̂
�
j − θ̂j given Dn as

c
�
j (q) = inf

{
z ∈ R : P∗(

θ̂
�
j − θ̂j > z

) ≤ q
}
.

At a prescribed confidence level 1 − α ∈ (0,1), the corresponding multiplier bootstrap confi-
dence intervals for θ∗

j ’s are

I�
j = [

θ̂j − c
�
j (α/2), θ̂j − c

�
j (1 − α/2)

]
, j = 1, . . . , d.

The Matlab code that implements this procedure and further comparisons are available from
https://www.math.ucsd.edu/~wez243/Huber_CI.zip.
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SUPPLEMENTARY MATERIAL

Supplement to “Robust inference via multiplier bootstrap” (DOI: 10.1214/19-
AOS1863SUPP; .pdf). This supplement material contains (1) the proofs of Theorems 2.2–
2.6 and Theorem 3.1 in the main text, (2) implementations of the proposed methods, and
(3) additional simulation studies.
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