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Let X be a centered random vector taking values in R
d and let � =

E(X ⊗ X) be its covariance matrix. We show that if X satisfies an L4 − L2
norm equivalence (sometimes referred to as the bounded kurtosis assump-
tion), there is a covariance estimator �̂ that exhibits almost the same per-
formance one would expect had X been a Gaussian vector. The procedure
also improves the current state-of-the-art regarding high probability bounds
in the sub-Gaussian case (sharp results were only known in expectation or
with constant probability).

In both scenarios the new bounds do not depend explicitly on the dimen-
sion d, but rather on the effective rank of the covariance matrix �.

1. Introduction. The question of estimating the covariance of a random vector has been
studied extensively in recent years (see, e.g., [2, 5, 11–13] and references therein). To formu-
late the problem, let X be a zero mean random vector taking its values in R

d and denote the
covariance matrix by � = E(X ⊗ X). Given a sample X1, . . . ,XN consisting of independent
random vectors that are distributed according to X, the goal is to select a matrix �̂ that ap-
proximates �. While there are various notions of approximation, the focus of this note is on
approximation with respect to the (�2 → �2) operator norm, which from here on is denoted
by ‖ ‖.

One way of viewing the question of covariance estimation (with respect to any norm), is
as a vector mean estimation problem. Indeed, if one sets W = X ⊗ X, then EW = �, and
since one is given a sample X1, . . . ,XN , the vectors (Xi ⊗ Xi)

N
i=1 are N independent copies

of W . Thus, a matrix Ŵ that is a good approximation of the mean EW with respect to the
underlying norm is a solution to the problem of estimating the covariance of X with respect
to that norm.

An immediate outcome of this simple observation is that the empirical mean

�̂ = 1

N

N∑
i=1

Wi = 1

N

N∑
i=1

Xi ⊗ Xi,

which is the trivial choice for estimating the true mean, is a poor estimator unless the random
vector W has a “nice” tail behaviour (see, e.g., the discussion in [6]). An example of a positive
result of that flavour is Theorem 9 in [2], and to formulate it we need some definitions.

DEFINITION 1.1. The effective rank of a positive semidefinite square matrix A ∈ R
d×d

is given by

(1) r(A) = Tr(A)

‖A‖ .
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Clearly, r(A) ≤ d but the gap between r(A) and d may be substantial. Recall that the
ψ2-norm of a centred real-valued random variable Y is defined by

‖Y‖ψ2 = inf
{
c > 0 : E exp

(
Y 2/c2) ≤ 2

}
,

and that there are absolute constants c and C such that

c‖Y‖ψ2 ≤ sup
p≥2

‖Y‖Lp√
p

≤ C‖Y‖ψ2 .

DEFINITION 1.2. A random vector X with values in R
d and with the mean μ is L-sub-

Gaussian if for every t ∈ R
d and every p ≥ 2,

(2)
(
E

∣∣〈X − μ, t〉∣∣p) 1
p ≤ L

√
p

(
E〈X − μ, t〉2) 1

2 .

It is standard to verify that a centred random vector is L-sub-Gaussian if and only if its one-
dimensional marginals Xt = 〈X, t〉 satisfy that ‖Xt‖ψ2 ≤ cL‖Xt‖L2 where c is an absolute
constant.

Among the class of L-sub-Gaussian random vectors are vectors whose distribution is mul-
tivariate normal (denoted by N (μ,�)) and in which case L is an absolute constant. Another
simple example are vectors X whose components are independent copies of a zero mean
random variable Y that satisfies ‖Y‖ψ2 < ∞. Indeed, it is standard to show that for such a
random vector and any t ∈R

d

sup
p≥2

(E|〈X, t〉|p)
1
p

√
p

≤ c

(
d∑

i=1

t2
i ‖Yi‖2

ψ2

) 1
2

= L
(
E

∣∣〈X, t〉∣∣2)1/2
,

where c is an absolute constant and L = c‖Y‖ψ2/‖Y‖L2 .

REMARK 1.3. Observe that a different notion of sub-Gaussian random vectors some-
times appears in literature: that a centred vector X is called sub-Gaussian if

(3) sup
t∈Sd−1

sup
p≥2

(E|〈X, t〉|p)
1
p

√
p

= C < ∞,

where Sd−1 is the Euclidean unit sphere in R
d . In other words, according to this notion, a

centred random vector is sub-Gaussian if all its one-dimensional marginals have a finite ψ2
norm, and those norms are all bounded by C. Unlike the notion in Definition 1.2, this does
not imply a ψ2 − L2 norm equivalence of one-dimensional marginals of the random vector.
As a result, the constant C in (3) may change dramatically under linear transformations of X,
while the factor L in (2) does not.

Throughout this note the notion of a sub-Gaussian random vector that is used is the one
from Definition 1.2.

With all the required definitions in place, one may formulate the covariance estimate from
[2].

THEOREM 1.4. For every L ≥ 1 there exists a constant c(L) for which the following
holds. Let X be an L-sub-Gaussian random vector. Then with probability at least 1 − δ

(4)

∥∥∥∥∥ 1

N

N∑
i=1

Xi ⊗ Xi − �

∥∥∥∥∥
≤ c(L)‖�‖

(√
r(�)

N
+ r(�)

N
+

√
log(2/δ)

N
+ log(2/δ)

N

)
.



1650 S. MENDELSON AND N. ZHIVOTOVSKIY

It was also shown in [2] that if G is a zero mean Gaussian vector (and in particular it
satisfies the conditions of Theorem 1.4) with covariance � then

E

∥∥∥∥∥ 1

N

N∑
i=1

Gi ⊗ Gi − �

∥∥∥∥∥ � ‖�‖max
{√

r(�)

N
,

r(�)

N

}
.

Hence, there is no room for improvement in the deviation estimate of the empirical mean
from the true one at the constant confidence level. Of course, that does not imply that the
empirical mean is an optimal covariance estimator—even for a Gaussian vector, let alone for
a general sub-Gaussian random vector. In fact, as we explain in what follows, there are far
better covariance estimators than (4) when the confidence parameter δ is small.

Just as in the one-dimensional mean-estimation problem, once the problem is more
“heavy-tailed” the performance of the empirical mean deteriorates quickly and a different
procedure has to be used. And that is also the case for covariance estimation. The current
state-of-the-art for covariance estimation in heavy-tailed situations is [13] (see Corollary 4.1
there and similar results in [11, 12]), in which X is assumed to satisfy an L4 − L2 norm
equivalence.

DEFINITION 1.5. A random vector X with mean μ satisfies the L4 − L2 norm equiva-
lence with a constant L ≥ 1 if for every t ∈R

d ,(
E〈X − μ, t〉4) 1

4 ≤ L
(
E〈X − μ, t〉2) 1

2 .

Note that if X is L-sub-Gaussian then it satisfies an L4 − L2 norm equivalence with con-
stant 2L. At the same time, for an L4 − L2 equivalence the linear forms 〈X, t〉 need not have
higher moments that the fourth one; in particular, X need not be L-sub-Gaussian. Another
formulation of the same condition is that for any direction, the kurtosis1 of the corresponding
one-dimensional marginal is bounded by L.

REMARK 1.6. In the Appendix one can find two examples that demonstrate the differ-
ence between a random vector X being L-sub-Gaussian (which implies an ψ2 − L2 norm
equivalence of the centred marginals of X) and X satisfying an L4 − L2 norm equivalence.

The current state of the art estimate for random vectors that satisfy Definition 1.5 is as
follows:

THEOREM 1.7 ([13]). For every L ≥ 1 there are constants c(L) and c′(L) that depend
only on L and for which the following holds. Let X satisfy an L4 −L2 norm equivalence with
constant L. For 0 < δ < 1 there is an estimator �̃δ that satisfies

(5) ‖�̃δ − �‖ ≤ c(L)‖�‖
√

r(�)

N
· (

logd + log(1/δ)
)

with probability at least 1 − δ, provided that N ≥ c′(L)r(�)(logd + log(1/δ)).

REMARK 1.8. Let us mention that the procedure from [13] requires prior information on
the values of ‖�‖ and r(�) up to some absolute multiplicative constant—an assumption we
shall return to in what follows. In fact, a significant part of our analysis is devoted to obtaining
estimates on these parameters, and our approach is an alternative to Lepski’s method used in
[12, 13].

1The kurtosis of the random variable Y is equal to E(Y−EY)4

(E(Y−EY)2)2 .
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Observe that if δ is smaller than 1/d , the error guaranteed by Theorem 1.7 is of the order
of

(6) ‖�‖
√

r(�)

N

√
log(1/δ),

which turns out to be far from optimal as we now explain.
To put (6) in some perspective, let us examine possible benchmarks for general mean esti-

mation problems and see how those compare with (4), (5) and (6) when applied to covariance
estimation.

1.1. Optimality in mean estimation. Let W be a random vector with mean μ and set ||| |||
to be an arbitrary norm. Let B◦ be the unit ball of the dual norm to ||| |||, and denote by μ̂

a mean-estimator constructed using an independent sample W1, . . . ,WN . As it happens, a
lower bound on the performance of μ̂ is

(7)
R√
N

√
log(1/δ),

where

(8) R = sup
x∗∈B◦

(
E

(
x∗(W − μ)

)2) 1
2 .

Indeed, for every x∗ ∈ B◦

|||μ̂ − μ||| ≥ ∣∣x∗(μ̂ − μ)
∣∣ = ∣∣x∗(μ̂) − x∗(μ)

∣∣;
therefore, if there is a procedure for which |||μ̂ − μ||| ≤ ε with probability 1 − δ, then on the
same event the procedure automatically performs with accuracy ε and confidence 1 − δ for
each one of the real-valued mean-estimation problems associated with the random variables
x∗(W), x∗ ∈ B◦. By a lower bound (Proposition 6.1 from [1]) on real-valued mean estimation
problems when W is a Gaussian vector, the best possible mean-estimation error for each
x∗(W) is √

var(x∗(W))

N

√
log(1/δ),

and taking the “worst” x∗ ∈ B◦ leads to (7).
Although (7) is part of the story, it is unlikely it is the whole story. Intuitively, (7) takes

into account the effect of one-dimensional marginals of W rather than the entire geometry of
the distribution. It stands to reason that an additional “global” parameter is called for—one
that reflects the entire structure of W and the geometry of the norm. Moreover, that parameter
should reflect the difficulty of the estimation problem at the constant confidence level.

To give an example of such a result, a (sharp) lower bound from [6] on the mean estima-
tion problem when W is a Gaussian random vector is the following: if |||μ̂ − μ||| ≤ ε with
probability at least 1 − δ then

(9) ε ≥ c√
N

(
E|||W − μ||| + R

√
log(1/δ)

);
hence, the “global parameter” in the Gaussian case is just the mean E|||W − μ|||.

Let us examine (9) more carefully, in the hope that it would lead us towards the right
answer for general random vectors. Note that by setting δ = exp(−p), the Gaussian random
variable W satisfies that√

log(1/δ)
(
E(x∗(W − μ)

)2
)

1
2 ∼ √

p
(
E(x∗(W − μ)

)2
)

1
2 ∼ (

E
∣∣x∗(W − μ)

∣∣p) 1
p .
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At the same time, the strong-weak norm inequality2 for Gaussian vectors (see, e.g., [4]) im-
plies that

(
E

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ 1

N

N∑
i=1

Wi − μ

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
p) 1

p

≤ E

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ 1

N

N∑
i=1

Wi − μ

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ + c sup

x∗∈B◦

(
E

∣∣∣∣∣x∗
(

1

N

N∑
i=1

Wi − μ

)∣∣∣∣∣
p) 1

p

= 1√
N

(
E|||W − μ||| + c sup

x∗∈B◦

(
E

∣∣x∗(W − μ)
∣∣p) 1

p

)
,

= 1√
N

(
E|||W − μ||| + c′√p sup

x∗∈B◦

(
E

∣∣x∗(W − μ)
∣∣2) 1

2
)
,

where c and c′ are absolute constants. Thus, the lower bound of (9) implies that the best
possible performance of a mean estimator of a Gaussian vector matches a strong-weak norm
inequality. To see that these bounds are of the same order, one needs to use Markov’s inequal-
ity and optimize with respect to p, where the right choice is indeed p ∼ log(1/δ).

This leads to a natural conjecture: that the best possible performance in a general mean
estimation problem is given by a Gaussian-like strong-weak norm inequality, and that there
is a procedure that performs with that accuracy/confidence tradeoff.

Recently, a general mean estimation procedure was introduced in [6] that exhibits this type
of a “strong-weak” behaviour. To formulate the result, let W be an arbitrary random vector
taking values in R

d and with mean μ, let G be the zero mean Gaussian random vector with
the same covariance as W and set

YN = 1

N

N∑
i=1

(Wi − μ),

where W1, . . . ,WN are independent copies of W . Let ||| ||| be a norm, set B◦ to be the unit
ball of the dual norm, and put

R = sup
x∗∈B◦

(
E

(
x∗(W − μ)

)2) 1
2 .

THEOREM 1.9 ([6]). For 0 < δ < 1 there is a procedure μ̃δ such that

|||μ̃δ − μ||| ≤ c max
{
E|||YN |||, E|||G|||√

N
+ R√

N

√
log(1/δ)

}
.

The mean estimation procedure is defined as follows: let T = ext(B◦) to be the set of
extreme points in B◦.

• For the wanted confidence parameter 0 < δ < 1, let n = log(1/δ) and set m = N/n.
• Let (Ij )

n
j=1 be the natural partition of {1, . . . ,N} to blocks of cardinality m and given

a sample W1, . . . ,WN set Zj = 1
m

∑
i∈Ij

Wj .

2By “strong norm” we mean the L1 norm of |||W − μ|||, while the “weak norm” is just the largest Lp norm of
a marginal x∗(W − μ) for x∗ ∈ B◦.
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• For x∗ ∈ T and ε > 0, set

Sx∗(ε) = {
y ∈ R

d : ∣∣x∗(Y ) − x∗(Zj )
∣∣ ≤ ε for more than n/2 blocks

}
,

and define

S(ε) = ⋂
x∗∈T

Sx∗(ε).

• Set ε0 = inf{ε > 0 : S(ε) �= ∅}, and let μ̃δ be any vector in
⋂

ε>ε0
S(ε).

The main result of this note (which is formulated in the next section), is that the right
application of Theorem 1.9 leads to an (almost) optimal covariance estimator: the procedure
performs as if X were a Gaussian vector even if X only satisfies an L4 −L2 norm equivalence,
and the accuracy/confidence tradeoff obeys the strong-weak inequality one would expect.

1.2. From mean estimation to covariance estimation. In what follows, we assume with-
out loss of generality that X is symmetric and zero mean. We may do so because if X′ is an
independent copy of X then Z = (X − X′)/

√
2 is symmetric and has the same covariance

as X. It also satisfies an L4 − L2 norm equivalence if X does. Thus, given a random sample
X1, . . . ,XN sampled independently according to X one may consider the sample

1√
2
(X1 − X2), . . . ,

1√
2
(XN−1 − XN),

consisting of N/2 independent copies of Z, and perform the procedure with respect to that
sample.

The natural choice of a random vector in Theorem 1.9 is W = X ⊗ X, but as it happens, a
better alternative is to use a truncated version of X instead of the original one:

DEFINITION 1.10. Let

β =
(

Tr(�)‖�‖N
γ

) 1
4
,

and let

X̃ = X1{‖X‖2≤β}.

In the L-sub-Gaussian case set γ = 1 and when X only satisfies L4 − L2 norm equivalence,
let γ = log r(�). Also denote �̃ = E(X̃ ⊗ X̃).

DEFINITION 1.11. Given the random vector X taking its values in R
d define

(10) R2
X = sup

u,v∈Sd−1
E

(
vT (X ⊗ X −EX ⊗ X)u

)2
.

The quantity R2
X is sometimes referred to as the weak variance of a random matrix.

As was mentioned previously, the main result of this note is the existence of an estima-
tor whose performance improves both (4) and (5) and is an optimal (or very close to being
optimal) covariance estimation procedure.

The estimator is constructed in three stages: the first stage leads to a data-dependent esti-
mate on Tr(�); the second stage is based on the estimated value of Tr(�) established in the
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first stage and its outcome is a data-dependent estimate on the value of ‖�‖; the last stage
receives as input the results of two first stages and the third part of the sample and returns the
wanted estimator of �. A key point in the analysis of this procedure is that one only needs to
estimate Tr(�) and ‖�‖ up to absolute multiplicative constant factors and that simplifies the
problem considerably.

The performance of the procedure is summarized in this, our main result.

THEOREM 1.12. Let X be a zero mean random vector with (an unknown) covariance
matrix � and let ‖ ‖ be its operator norm. Using the notation of Definition 1.10 and Defini-
tion 1.11, for any 0 < δ < 1, there is a procedure that receives as data the sample X1, . . . ,XN ,
returns a matrix �̂δ and satisfies:

(1) If X is L-sub-Gaussian and N ≥ c′(L)(r(�) + log(1/δ)), then with probability at
least 1 − δ,

‖�̂δ − �‖ ≤ c(L)

(
‖�‖

√
r(�)

N
+ R

X̃√
N

√
log(1/δ)

)
;

(2) If X satisfies an L4 −L2 norm equivalence and N ≥ c′(L)(r(�) log r(�)+ log(1/δ))

then with probability at least 1 − δ,

(11) ‖�̂δ − �‖ ≤ c(L)

(
‖�‖

√
r(�) log(r(�))

N
+ R

X̃√
N

√
log(1/δ)

)
.

In both cases R
X̃

≤ c(L)‖�‖ and c(L), c′(L) are constants that depend only on L.

REMARK 1.13. Note that the estimates in Theorem 1.12 do not depend on the dimension
d; instead, they depend only on r(�) which may be small even if d tends to infinity. This is
important in view of the recent results on covariance estimation in Banach spaces [2].

The estimate in Theorem 1.12 is actually a strong-weak norm inequality—as if X were
Gaussian (up to the logarithmic term in (11)). To see that, let G be the zero mean Gaussian
random vector that has the same covariance as X and set N ≥ r(�). As noted previously,

‖�‖
√

r(�)

N
∼ E

∥∥∥∥∥ 1

N

N∑
i=1

Gi ⊗ Gi − �

∥∥∥∥∥,
with the left-hand side being the “strong term” from Theorem 1.12. Moreover, the term in-
volving RX is actually the natural weak term associated with the operator norm. Indeed, recall
the well-known fact that the dual norm to the operator norm is the nuclear norm. And, since a
linear functional z acts on the matrix x via trace duality—that is, z(x) = [z, x] := Tr(zT x)—it
follows, for example, from [15] that the extreme points of the dual unit ball B◦ are{

u ⊗ v : u, v ∈ Sd−1}
.

Thus,

R2
X̃

= sup
x∗∈B◦

E
(
x∗(X̃ ⊗ X̃ − �̃)

)2 = sup
u,v∈Sd−1

E
(
vT (X̃ ⊗ X̃ − �̃)u

)2
,

and in particular, by (7) the weak term (R
X̃
/
√

N)
√

log(1/δ) appearing in Theorem 1.12 is
sharp.

As a result, and up to the logarithmic factor in (2), Theorem 1.12 implies that the estimator
�̂δ performs as if X were Gaussian, even though it can be very far from Gaussian.
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Let us compare the outcome of Theorem 1.12 to the current state of the art that was men-
tioned previously. In the sub-Gaussian setup Theorem 1.12 improves Theorem 1.4 because
there are situations in which R

X̃
is significantly smaller than ‖�‖ (see such an example in

what follows). And, under an L4 − L2 norm equivalence scenario the improvement is more
dramatic: on top of an improvement in the logarithmic factor appearing in the “strong” term,
the “weak” term, (R

X̃
/
√

N)
√

log(1/δ) is significantly smaller than the corresponding esti-
mate of ‖�‖√r(�)/N

√
log(1/δ) from Theorem 1.7.

The proof of Theorem 1.12 is presented in the following section.
We end this introduction with some notation. Throughout, absolute constants are denoted

by c, c1, . . . , c
′, . . . and their value may change from line to line. Constants that depend on

a parameter L are denoted by c(L), a � b means that there is an absolute constant c such
that a ≤ cb, and a ∼ b means that cb ≤ a ≤ c1b. When the constants depend on L we write
a �L b and a ∼L b respectively.

2. Proof of Theorem 1.12. Consider the truncated vector X̃ introduced in Defini-
tion 1.10 but for now for an arbitrary level of truncation. Let α ≥ 0 and with a minor abuse
of notation, redefine

(12) X̃ = X1{‖X‖2≤α} and �̃ = EX̃ ⊗ X̃.

First, note that by the symmetry of X, X̃ is symmetric as well. Second, for every p ≥ 2 and
any u ∈ R

d , ∥∥〈X̃, u〉∥∥Lp
= (

E
∣∣〈X̃, u〉∣∣p) 1

p ≤ (
E

∣∣〈X,u〉∣∣p) 1
p .

Hence, if X is L-sub-Gaussian then ‖〈X̃, u〉‖Lp ≤ L
√

p‖〈X,u〉‖L2 , and if X satisfies L4 −L2

norm equivalence with constant L then ‖〈X̃, u〉‖L4 ≤ L‖〈X,u〉‖L2 .
More important features of X̃ have to do with its covariance matrix �̃ and trace Tr(�):

LEMMA 2.1. If X is zero mean and satisfies an L4 −L2 norm equivalence with constant
L, then

(13) ‖�̃ − �‖ ≤ c(L)
‖�‖Tr(�)

α2 ,

and

(14)
∣∣Tr(�̃) − Tr(�)

∣∣ ≤ c(L)
Tr2(�)

α2 ,

where c(L) is a constant that depends only on L.

PROOF. Observe that

‖�̃ − �‖ = sup
u,v∈Sd−1

∣∣uT (
E(X ⊗ X) −E(X̃ ⊗ X̃)

)
v
∣∣

= sup
u,v∈Sd−1

∣∣E〈X,u〉〈X,v〉1{‖X‖2>α}
∣∣

≤ sup
u,v∈Sd−1

(
E〈X,u〉4) 1

4 · (
E〈X,v〉4) 1

4 · Pr
1
2
(‖X‖2 ≥ α

)
.

By the L4 − L2 norm equivalence,

sup
u∈Sd−1

(
E〈X,u〉4) 1

4 ≤ L sup
u∈Sd−1

(
E〈X,u〉2) 1

2 = L‖�‖ 1
2
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and

(15)

E‖X‖4
2 = E

(
d∑

i=1

〈X,ei〉2

)2

≤ E

∑
i,j

〈X,ei〉2〈X,ej 〉2

≤ ∑
i,j

(
E〈X,ei〉4) 1

2
(
E〈X,ej 〉4) 1

2

≤ L2
∑
i,j

E〈X,ei〉2 ·E〈X,ej 〉2

= L2
∑
i,j

�ii�jj = L2(
Tr(�)

)2
.

Clearly,

(16) Pr
1
2
(‖X‖2 ≥ α

) ≤
(
E‖X‖4

2

α4

) 1
2 ≤ L

(Tr(�))

α2

and combining the two observations,

(17) ‖�̃ − �‖ ≤ c(L)
‖�‖Tr(�)

α2 ,

as claimed. Turning to the second part of the lemma, note that

Tr(�) =
d∑

i=1

E〈X,ei〉2 and Tr(�̃) =
d∑

i=1

E〈X,ei〉21{‖X‖2≤α}.

Therefore, by the L4 − L2 norm equivalence and (16),

∣∣Tr(�̃) − Tr(�)
∣∣ =

d∑
i=1

E〈X,ei〉21{‖X‖2>α} ≤
d∑

i=1

E
(〈X,ei〉4) 1

2 Pr
1
2
(‖X‖2 > α

)

≤L2

(
d∑

i=1

E〈X,ei〉2

)
Pr

1
2
(‖X‖2 > α

) ≤ c(L)
Tr2(�)

α2 .
�

The core component in the estimation procedure is denoted by �̂δ,α , and its definition for
a truncation parameter α > 0 is as follows:

The estimator �̂δ,α

Let α > 0,0 < δ < 1 and consider the given sample X1, . . . ,XN . Set X̃i =
Xi1{‖Xi‖2≤α}.

• Let n = log(1/δ) and split the sample to n blocks Ij , each one of cardinality m = N/n;
set Mj = 1

m

∑
i∈Ij

X̃i ⊗ X̃i .

• Let T = {(u, v) : u, v ∈ Sd−1} and for ε > 0 and a pair (u, v) let

Su,v(ε) = {
Y ∈ R

d×d : ∣∣vT (Mj − Y)u
∣∣ ≤ ε for more than n/2 blocks

}
.

• Set

S(ε) = ⋂
(u,v)∈T

Su,v(ε).
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• Let ε0 = inf{ε > 0 : S(ε) �=∅} and choose �̂δ,α to be any matrix that satisfies

(18) �̂δ,α ∈ ⋂
ε>ε0

S(ε).

While the right truncation level is given in Definition 1.10, namely

β =
(

Tr(�)‖�‖N
γ

) 1
4
,

its definition depends on the identities of Tr(�) and ‖�‖, which are unknown. To address
this issue one first invokes a median-of-means estimator, denoted by ϕ̂1, and show that with
high probability,

1

2
Tr(�) ≤ ϕ̂1 ≤ 2 Tr(�).

Then �̂δ,α is performed on an independent part of the sample and at a truncation level of
α ∼ ϕ̂1, that is, of the order of Tr(�). The outcome in an estimator ϕ̂2 that satisfies

‖�‖
2

≤ ϕ̂2 ≤ 2‖�‖
with high probability.

The combination of ϕ̂1 and ϕ̂2 allows one to identify β up to an absolute constant. With
that information, �̂δ,α is preformed again, this time at the “correct level”, resulting in a matrix
that is a fine approximation of �.

With that in mind, the core of the proof of Theorem 1.12 is the next lemma.

LEMMA 2.2. Using the notation introduced previously, the following holds for �̂δ,α :

(1) If X is L-sub-Gaussian, then with probability at least 1 − δ,

‖�̂δ,α − �̃‖ ≤ c(L)

(
‖�‖

(√
r(�)

N
+ r(�)

N

)
+ R

X̃√
N

√
log(1/δ)

)
.

(2) If X satisfies an L4 − L2 norm equivalence, N ≥ c′(L)r(�) log r(�) and

c1(L)
√

Tr(�) ≤ α ≤ c2(L)

(
Tr(�)‖�‖N

log r(�)

) 1
4

then with probability at least 1 − δ,

‖�̂δ,α − �̃‖ ≤ c(L)

(
‖�‖

√
r(�) log r(�)

N
+ R

X̃√
N

√
log(1/δ)

)
,

where R
X̃

is as in (10).
In both cases R

X̃
≤ c(L)‖�‖ and c(L), c′(L), c1(L), c2(L) are constants that depend only

on L.

The proof of the lemma is presented in Section 3. Assuming its validity let us complete
the proof of Theorem 1.12. From this point on and without the loss of generality, assume that
the given sample is of cardinality 3N , as that only affects the constant factors appearing in
the bounds.
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Stage 1. Estimation of Tr(�). The goal is to use the first N observations X1, . . . ,XN to
construct the estimator ϕ̂1, for which, with high probability ϕ̂1 ∼ Tr(�). Since

Tr(�) = E

d∑
i=1

〈X,ei〉2,

a standard median-of-means estimator ϕ̂1 of E
∑d

i=1〈X,ei〉2 (see [14] for what is by now a
standard argument) satisfies that with probability at least 1 − δ,

∣∣ϕ̂1 − Tr(�)
∣∣ ≤ c

√√√√Var

(
d∑

i=1

〈X,ei〉2

)
log(1/δ)

N
.

Using (15),

Var

(
d∑

i=1

〈X,ei〉2

)
≤ (L2 − 1)Tr(�)2,

and therefore,

∣∣ϕ̂1 − Tr(�)
∣∣ ≤ c(L)Tr(�)

√
log(1/δ)

N
.

Hence, if N ≥ c′(L) log(1/δ), then with probability at least 1 − δ one has

(19)
1

2
Tr(�) ≤ ϕ̂1 ≤ 2 Tr(�).

Stage 2. Estimation of ‖�‖. In this stage, the second part of the sample XN+1, . . . ,X2N

is utilized, and the procedure receives as an additional input ϕ̂1 that satisfies (19). To ease
notation, one may assume that Tr(�) is known and set α = κ(L)

√
Tr(�), where κ(L) is a

constant that depends only on L.
Using the notation from (12) and by Lemma 2.1 it follows that

‖�̃ − �‖ ≤ c(L)
‖�‖
κ2(L)

,

and

∣∣Tr(�̃) − Tr(�)
∣∣ ≤ c(L)

Tr(�)

κ2(L)
.

In the L-sub-Gaussian case, invoking Lemma 2.2 and the triangle inequality,

‖�̂δ,α − �‖ ≤ ‖�̃ − �‖ + ‖�̂δ,α − �̃‖

≤ ‖�‖
10

+ c(L)‖�‖
(√

r(�)

N
+ r(�)

N
+

√
log(1/δ)

N

)

≤ ‖�‖
2

,

provided that N ≥ c′(L)(r(�) + log(1/δ)) for a large enough constant c′(L) and c(L)/

κ2(L) ≤ 1
10 . In that case, setting ϕ̂2 = ‖�̂δ,α‖, it follows that

(20)
‖�‖

2
≤ ϕ̂2 ≤ 2‖�‖.
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Finally, in the case of L4 − L2 norm equivalence, and again by Lemma 2.2, one has that (20)
holds as long as N ≥ c′(L)(r(�) log r(�) + log(1/δ)). Indeed, since R

X̃
≤ c(L)‖�‖, one

has

‖�̂δ,α − �‖ ≤ 1

10
‖�‖ + c(L)‖�‖

(√
r(�) log(r(�))

N
+

√
log(1/δ)

N

)
≤ ‖�‖

2
,

as required.

Stage 3. Estimation of �. The final step uses the sample X2N+1, . . . ,X3N . Consider a
truncation level β as in Definition 1.10, and which, thanks to the first two stages, can be
estimated by β̂ up to an absolute multiplicative factor. Therefore, to ease notation again,
simplicity, assume that β itself is known.

For that choice of truncation parameter consider X̃ and �̃ as in (12) and let �̂δ = �̂δ,β .
By the triangle inequality,

‖�̂δ − �‖ ≤ ‖�̂δ − �̃‖ + ‖�̃ − �‖,
and by Lemma 2.1 the quantity ‖�̃ − �‖ is smaller than the wanted accuracy for the chosen
level β . The required bound on ‖�̂δ − �‖ follows immediately from Lemma 2.2, and The-
orem 1.12 follows by taking the union bound over the events analyzed in three stages and
combining the conditions on N .

3. Proof of Lemma 2.2. Thanks to Theorem 1.9, the proof of Lemma 2.2 follows once
one establishes sufficient control on E‖YN‖, E‖G‖ and R

X̃
.

Controlling R
X̃

. The required estimate on R
X̃

for an arbitrary truncation level α is pre-
sented in the next Lemma.

LEMMA 3.1. Assume that X is zero mean and satisfies an L4 − L2 norm equivalence
with constant L. Setting v2(X) = supv∈Sd−1 E〈X,v〉4 one has that

R
X̃

≤ v(X) �L ‖�‖.
PROOF. For every u, v ∈ Sd−1, E〈X̃, v〉〈X̃, u〉 = vT �̃u; therefore,

E
(
vT (X̃ ⊗ X̃ − �̃)u

)2 = E〈X̃, v〉2〈X̃, u〉2 − (
vT �̃u

)2 ≤ E〈X̃, v〉2〈X̃, u〉2

≤ (
E〈X̃, v〉4) 1

2 · (
E〈X̃, u〉4) 1

2 ,

implying that R
X̃

≤ v(X).
Also, recalling that X satisfies and L4 − L2 norm equivalence,

E〈X,v〉4 ≤ L4(
E〈X,v〉2)2 ≤ L4‖�‖2

implying that v(X) ≤ L2‖�‖, as claimed. �

Controlling E‖G‖ and E‖YN‖. In the context of Theorem 1.9, G is the zero mean Gaus-
sian vector on R

d×d whose covariance coincides with that of W = X̃ ⊗ X̃. Instead of dealing
with that vector directly, note that

(21) E‖G‖ ≤ lim inf
N→∞

√
NE‖YN‖.

Indeed, for every finite set T ′,
E‖G‖ = sup

T ′⊂B◦,T ′ is finite
E max

x∗∈T ′ x
∗(G),

and by the multivariate CLT, for every finite set T ′, {N−1/2 ∑N
i=1 x∗(Wi − EW) : x∗ ∈ T ′}

converges weakly to {x∗(G) : x∗ ∈ T ′}. Hence, (21) follows from tail integration.
Thanks to (21), all that remains is to bound E‖YN‖.
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The sub-Gaussian case. Fix an integer N and note that

(22)

∥∥∥∥∥ 1

N

N∑
i=1

X̃i ⊗ X̃i − �̃

∥∥∥∥∥ = sup
u∈Sd−1

∣∣∣∣∣ 1

N

N∑
i=1

〈X̃i, u〉2 −E〈X̃i, u〉2

∣∣∣∣∣,
which is the supremum of a quadratic empirical process indexed by Sd−1. Such empirical
processes have been studied extensively (see, e.g., [7–9]), mainly using chaining methods. As
it happens, quadratic sub-Gaussian processes may be controlled in terms of a natural metric
invariant of the indexing class—the so-called γ2 functional.3 In the case of (22), the indexing
class is Sd−1 whose elements are viewed as linear functionals on R

d , and the underlying
metric is the ψ2 norm endowed by the random vector X̃. By Corollary 1.9 from [9] it follows
that

(23)

E sup
u∈Sd−1

∣∣∣∣∣ 1

N

N∑
i=1

〈X̃i, u〉2 −E〈X̃i, u〉2

∣∣∣∣∣
≤ c

(
Dγ2(S

d−1,ψ2(X̃))√
N

+ γ 2
2 (Sd−1,ψ2(X̃))

N

)
,

where c is an absolute constant and

D = D(Sd−1,ψ2) = sup
u∈Sd−1

∥∥〈X̃, u〉∥∥ψ2
∼ sup

u∈Sd−1
sup
p≥2

(E|〈X̃, u〉|p)
1
p

√
p

.

To estimate (23) one requires two facts (see, e.g., [16] for more details). Firstly, a general
property of the γ2 functional is monotonicity in d: if (T , d) is a metric space and d ′ is another
metric on T which satisfies that for every t1, t2 ∈ T , d(t1, t2) ≤ κd ′(t1, t2), then

γ2(T , d) ≤ κγ2
(
T ,d ′).

Here, for every p ≥ 2 and u ∈R
d ,(

E
∣∣〈X̃, u〉∣∣p) 1

p ≤ (
E

∣∣〈X,u〉∣∣p) 1
p ≤ L

√
p

(
E

∣∣〈X,u〉∣∣2) 1
2 ,

implying that ∥∥〈X̃, u〉∥∥ψ2
≤ L

∥∥〈X,u〉∥∥L2
;

hence, γ2(S
d−1,ψ2(X̃)) ≤ Lγ2(S

d−1,L2(X)).
Secondly, by Talagrand’s majorizing measures theorem, if G is a zero mean Gaussian

random vector with the same covariance as X then

γ2
(
Sd−1,L2(X)

) ≤ cE sup
u∈Sd−1

〈G,u〉 ≤ c
(
E‖G‖2

2
) 1

2 = c
√

Tr(�),

for a some absolute constant c.
Finally, again thanks to the fact that X is L-sub-Gaussian,

D ≤ L sup
u∈Sd−1

∥∥〈X,u〉∥∥L2
= L‖�‖ 1

2 .

Therefore, by (23), for every N ,

E‖YN‖ ≤ c(L)

(
‖�‖1/2

√
Tr(�)

N
+ Tr(�)

N

)
,

and in particular, lim infN→∞
√

NE‖YN‖ ≤ c(L)‖�‖1/2√Tr(�).
This completes the proof of the first part of Lemma 2.2.

3Rather than defining the γ2 functional, we refer the reader to [16] for a detailed exposition on the topic, and to
[7–9] for the study of the quadratic empirical process in this and more general situations.
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L4 − L2 norm equivalence. Just as in the sub-Gaussian case, the key issue is finding a
suitable estimate on E‖YN‖. Thanks to the fact that X̃ is a truncated random vector, one may
apply a version of the matrix Bernstein inequality.

We invoke Corollary 7.3.2 from the survey [17] (which is a slightly modified version of the
original result from [10]): if Z is a random vector which satisfies that ‖Z ⊗ Z‖ ≤ β almost
surely, and B = E(Z ⊗ Z)2, then

(24) E

∥∥∥∥∥ 1

N

N∑
i=1

Zi ⊗ Zi −E(Z ⊗ Z)

∥∥∥∥∥ ≤ c

(√
‖B‖ log(r(B))

N
+ β log(r(B))

N

)
.

Here, Z = X1{‖X‖≤α} for α as in Definition 1.10, and all that remains is to estimate ‖B‖ and
r(B).

It is straightforward to verify that

c‖�̃‖Tr(�̃) ≤ ‖B‖ ≤ c1(L)‖�‖Tr(�) and Tr(B) ≤ c1(L)(Tr(�))2 :
the upper estimates on ‖B‖ and Tr(B) follow from a direct computation and the fact that X

satisfies an L4 − L2 norm equivalence (see, e.g., Lemma 4.1 in [13]); the lower estimate is
an outcome of the FKG inequality (see Corollary 5.1 in the supplementary material to [12]).

Turning to the upper bound on r(B), by Lemma 2.1 and using its notation, both ‖�̃‖ and
Tr(�̃) are equivalent up to multiplicative constant factors to ‖�‖ and Tr(�) respectively, as
long as α ≥ c2(L)

√
Tr(�); hence, r(B) �L r(�).

Finally, observe that ‖Z⊗Z‖ = ‖Z‖2
2 ≤ α2. By (24) and the fact that N �L r(�) log r(�),

(25)

E‖YN‖ ≤ c(L)

(
‖�‖1/2

√
Tr(�) log r(�)

N
+ α2 log r(�)

N

)

= c(L)‖�‖
(√

r(�) log r(�)

N
+ α2r(�) log r(�)

Tr(�)N

)
.

In particular,

lim inf
N→∞

√
NE‖YN‖ ≤ c′(L)‖�‖

√
r(�) log r(�),

provided that α = α(N) satisfies

lim inf
N→∞

α2r(�) log r(�)

Tr(�)
√

N
≤ c′′(L)

√
r(�) log r(�).

That is the case if

(26) α ≤ c2(L)

(
Tr(�)‖�‖N

log r(�)

) 1
4
.

Finally, observe that when (26) holds,

α2r(�) log r(�)

Tr(�)N
≤ c2

2(L)

√
r(�) log r(�)

N
,

and combined with (25) this completes the proof of second part of the lemma. �

Concluding remarks. We start this section with an alternative way of estimating ‖�‖
that does not require the knowledge of either Tr(�) or L, and does not have the extra factor
log r(�) appearing in the condition on N when X satisfies an L4 − L2 norm equivalence.
The drawback of this approach is that the bound depends on the dimension d , rather than on
r(�).
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Sketch of the argument. Let N be a minimal 1/4 cover of Sd−1 with respect to the Eu-
clidean norm. Thus, ‖�‖ ∼ supu∈N uT �u. For any fixed u, the median of means estimator
ϕ̂2,u of EuT X ⊗ Xu satisfies that with probability at least 1 − δ,

∣∣ϕ̂2,u − uT �u
∣∣ ≤ c(L)‖�‖

√
log(1/δ)

N
,

because Var(uT X ⊗Xu) ≤ L4‖�‖2. Finally, recalling that |N | ≤ 9d , the union bound shows
that with probability at least 1 − δ

sup
u∈N

∣∣ϕ̂2,u − uT �u
∣∣ ≤ c1(L)‖�‖

√
d + log(1/δ)

N
.

Therefore, when N ≥ c′
1(L)(d + log(1/δ)), one has that supu∈N ϕ̂2,u ∼ ‖�‖ with probability

at least 1 − δ.

We end this note with an example showing that there could be a substantial gap between
RX and ‖�‖ (and in a similar way, between RX and v(X)), which is a reason for the sub-
optimality of Theorem 1.4 (Theorem 9 in [2]).

EXAMPLE 3.2. Let (εi)
d
i=1 be independent, symmetric, {−1,1}-valued random vari-

ables, and set α1 > · · · > αd ≥ 0. Let X(i) = αiεi and consider X = (X(1), . . . ,X(d)). Since
the X(i)’s are centered, independent and sub-Gaussian with a constant sub-Gaussian param-
eter, then X is a centered, L-sub-Gaussian random vector for some absolute constant L.

Let � = E(X ⊗ X) and note that ‖�‖ = α2
1 , r(�) = ∑d

i=1 α2
i /α

2
1 and

E
(
vT (X ⊗ X − �)u

)2 = E

(∑
i �=j

viujX
(i)X(j)

)2

= ∑
i �=j

α2
i α

2
j

(
v2
i u

2
j + vivjuiuj

)

≤ (α1α2)
2
(∑

i,j

(viuj )
2 + |vivjuiuj |

)

≤ (α1α2)
2(‖v‖2‖u‖2 + 〈|v|, |u|〉2) ≤ 2(α1α2)

2.

Hence,

(27) RX ≤ √
2α1α2 ≤ α2

1 = ‖�‖,
and the gap between RX and ‖�‖ may be arbitrary large.

Inequality (27) is the best one can hope for in general. Indeed, let Y be a centered random
vector taking its values in R

d , set � = E(Y ⊗ Y) and consider RY . It follows that

∥∥E(Y ⊗ Y − �)2∥∥ =
∥∥∥∥∥E(Y ⊗ Y − �)

d∑
i=1

eie
T
i (Y ⊗ Y − �)

∥∥∥∥∥
≤

d∑
i=1

sup
v∈Sd−1

E
(
eT
i (Y ⊗ Y − �)v

)2 ≤ dR2
Y .

As before, Corollary 5.1 in [12] implies that ‖E(Y ⊗ Y)2‖ ≥ Tr(�)‖�‖. Therefore,

dR2
Y ≥ ∥∥E(Y ⊗ Y − �)2∥∥ ≥ ∥∥E(Y ⊗ Y)2∥∥ − ∥∥�2∥∥ ≥ (

Tr(�)
)‖�‖ − ‖�‖2
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and

(28) RY ≥
√

r(�) − 1

d
‖�‖,

which is optimal when r(�) ∼ d .

APPENDIX: SUB-GAUSSIAN VS. NORM EQUIVALENCE

The first example we present is the class of L-subexponential random vectors. These vec-
tors satisfy

(
E

∣∣〈X − μ, t〉∣∣p) 1
p ≤ Lp

(
E〈X − μ, t〉2) 1

2

for every p ≥ 2; in particular, X satisfies an L4 − L2 norm equivalence with constant 4L.
On the other hand, there are obvious examples in which some marginals of X need not be
sub-Gaussian. For example, if X has independent components that are distributed according
to an exponential random variable y, then for every 1 ≤ i ≤ d , ‖〈X,ei〉‖ψ2 = ‖y‖ψ2 = ∞.

Another simple example are of random vectors with a multivariate t-distribution,4 which,
in some cases, satisfy an L4 − L2 norm equivalence but are not L-sub-Gaussian for any L.
The bad sub-Gaussian behaviour is an immediate consequence of the observation that when
d = 1 and the random variable has ν degrees of freedom, its νth moment does not exist.

EXAMPLE A.1. Assume that Z has a multivariate normal distribution N (0,�′) and V

is a random variable independent of Z that has a χ2
ν distribution for some ν ≥ 1. Consider

the random vector X = Z√
V/ν

, which is centred and has a multivariate t-distribution with

parameters (ν,�′). Fix t ∈ R
d \ {0} and consider the random variable 〈X, t〉 = 〈Z,t〉√

V/ν
. Ob-

serve that 〈Z, t〉 is normal with mean zero and variance tT �′t and is independent of V , and
therefore has a t distribution with ν degrees of freedom. A straightforward calculation shows
that its kurtosis is 3ν−6

ν−4 for ν > 4 [3]. Hence, X satisfies an L4 − L2 norm equivalence with

L = (3ν−6
ν−4 )

1
4 provided that ν > 4, but clearly X is not sub-Gaussian.
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