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This paper investigates the fundamental limits for detecting a high-
dimensional sparse matrix contaminated by white Gaussian noise from both
the statistical and computational perspectives. We consider p × p matrices
whose rows and columns are individually k-sparse. We provide a tight char-
acterization of the statistical and computational limits for sparse matrix de-
tection, which precisely describe when achieving optimal detection is easy,
hard or impossible, respectively. Although the sparse matrices considered in
this paper have no apparent submatrix structure and the corresponding es-
timation problem has no computational issue at all, the detection problem
has a surprising computational barrier when the sparsity level k exceeds the
cubic root of the matrix size p: attaining the optimal detection boundary is
computationally at least as hard as solving the planted clique problem.

The same statistical and computational limits also hold in the sparse co-
variance matrix model, where each variable is correlated with at most k oth-
ers. A key step in the construction of the statistically optimal test is a struc-
tural property of sparse matrices, which can be of independent interest.

1. Introduction. The problem of detecting sparse signals arises frequently in a wide
range of fields and has been particularly well studied in the Gaussian sequence setting (cf. the
monograph [35]). For example, detection of unstructured sparse signals under the Gaussian
mixture model was studied in [25, 34] for the homoskedastic case and in [15] for the het-
eroscedastic case, where sharp detection boundaries were obtained and adaptive detection
procedures proposed. Optimal detection of structured signals in the Gaussian noise model
has also been investigated in [6, 7, 20]. One common feature of these vector detection prob-
lems is that the optimal statistical performance can always be achieved by computationally
efficient procedures such as thresholding or convex optimization.

Driven by contemporary applications, much recent attention has been devoted to inference
for high-dimensional matrices, including covariance matrix estimation, principal component
analysis (PCA), image denoising, and multitask learning, all of which rely on detecting or
estimating high-dimensional matrices with low-dimensional structures such as low-rankness
or sparsity. For a suite of matrix problems, including sparse PCA [10, 45], biclustering [9, 16,
39], sparse canonical correlation analysis (CCA) [30] and community detection [32], a new
phenomenon known as computational barriers has been recently discovered, which shows
that in certain regimes attaining the statistical optimum is computationally intractable, unless
the planted clique problem can be solved efficiently.1 In a nutshell, the source of computa-
tional difficulty in the aforementioned problems is their submatrix sparsity, where the signal
of interests is concentrated on a submatrix within a large noisy matrix. This combinatorial
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1The planted clique problem [2] refers to detecting or locating a clique of size o(
√

n) planted in the Erdős–
Rényi random graph G(n,1/2). Conjectured to be computationally intractable [29, 36], this problem has been
frequently used as a basis for quantifying hardness of average-case problems [1, 33].
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structure provides a direct connection to, and allows these matrix problems to be reduced in
polynomial time from, the planted clique problem, thereby creating computational gaps for
not only the detection but also support recovery and estimation.

In contrast, another sparsity structure for matrices postulates the rows and columns are
individually sparse, which has been well studied in covariance matrix estimation [12, 21,
26, 27]. The motivation is that in many real-data applications each variable is only corre-
lated with a few others. Consequently, each row and each column of the covariance matrix
are individually sparse but, unlike sparse PCA, biclustering, or group-sparse regression, their
support sets need not be aligned. Therefore, this sparsity model does not postulate any sub-
matrix structure of the signal; indeed, it has been shown for covariance matrix estimation that
entrywise thresholding of the sample covariance matrix proposed in [12] attains the minimax
estimation rate [21].

The focus of the present paper is to understand the fundamental limits of detecting sparse
matrices from both the statistical and computational perspectives. While achieving the opti-
mal estimation rate does not suffer from any computational barrier, it turns out the detection
counterpart does when and only when the sparsity level exceeds the cubic root of the matrix
size. This is perhaps surprising because the sparsity model itself does not explicitly enforce
any submatrix structure, which has been responsible for problems such as sparse PCA to be
reducible from the planted clique. Our main result is a tight characterization of the statistical
and computational limits of detecting sparse matrices in both the Gaussian noise model and
the covariance matrix model, which precisely describe when achieving optimal detection is
easy, hard and impossible, respectively.

1.1. Setup. We start by formally defining the sparse matrix model.

DEFINITION 1. We say a p × p matrix M is k-sparse if all of its rows and columns are
k-sparse vectors, that is, with no more than k nonzeros. Formally, denote the ith row of M by
Mi∗ and the ith column by M∗i . The following parameter set:

(1.1) M(p, k) = {
M ∈ R

p×p : ‖Mi∗‖0 ≤ k,‖M∗i‖0 ≤ k,∀i ∈ [p]}
denotes the collection of all k-spares p × p matrices, where ‖x‖0 � ∑

i∈[p] 1{xi �= 0} for
x ∈ R

p .

Consider the following “signal + noise” model, where we observe a sparse matrix con-
taminated with Gaussian noise:

(1.2) X = M + Z,

where M is a p×p unknown mean matrix, and Z consists of i.i.d. entries normally distributed
as N(0, σ 2). Without loss of generality, we shall assume that σ = 1 throughout the paper.

Given the noisy observation X, the goal is to test whether the mean matrix is zero or a
k-sparse nonzero matrix, measured in the spectral norm. Formally, we consider the following
hypothesis testing problem:

(1.3) H0 : M = 0 versus H1 : M ∈ �(p, k,λ),

where the mean matrix M belongs to the parameter space

(1.4) �(p, k,λ) = {
M ∈ R

p×p : M ∈ M(p, k),‖M‖2 ≥ λ
}
.

Here, we use the spectral norm ‖ · ‖2, namely, the largest singular value, to measure the
signal strength under the alternative hypothesis. It turns out that if we use the Frobenius
norm to define the alternative hypothesis, the sparsity structure does not help detection, in the
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sense that, the minimal λ required to detect 1-sparse matrices is within a constant factor of
that in the nonsparse case and the matrix problem collapses to the vectorized version (see the
supplementary material [19], Section 7, for details).

For covariance model, the counterpart of the detection problem (1.4) is the following.
Consider the Gaussian covariance model, where we observe n independent samples drawn
from the p-variate normal distribution N(0,�) with an unknown covariance matrix �. In
the sparse covariance matrix model, each coordinate is correlated with at most k others.
Therefore, each row of the covariance matrix � has at most k nonzero off-diagonal entries.
This motivates the following detection problem:

(1.5) H0 : � = I versus H1 : ‖� − I‖2 ≥ λ, � − I is k-sparse.

In the context of covariance matrix model, it is natural to use the spectral norm [12, 21] since
it measures the strength of the leading principal component. Under the null hypothesis, the
samples are pure noise; under the alternative, there exists at least one significant factor and
the entire covariance matrix is k-sparse. The goal is to determine the smallest λ so that the
factor can be detected from the samples.

1.2. Statistical and computational limits. For ease of exposition, let us focus on the addi-
tive Gaussian noise model and consider the following asymptotic regime, wherein the sparsity
and the signal level grow polynomially in the dimension as follows:

k = pα and λ = pβ

with α ∈ [0,1] and β > 0 held fixed and p → ∞. Theorem 1 in Section 2 implies that the
critical exponent of λ behaves according to the following piecewise linear function:

β∗ =

⎧⎪⎪⎨
⎪⎪⎩

α α ≤ 1

3
,

1 + α

4
α ≥ 1

3

in the sense that if β > β∗, there exists a test that achieves vanishing probability of error of
detection uniformly over all k-sparse matrices; conversely, if β < β∗, no test can outperform
random guessing asymptotically.

More precisely, as shown in Figure 1, the phase diagram of α versus β is divided into four
regimes:

(I) β > α: The test based on the largest singular value of the entrywise thresh-
olding estimator succeeds. In particular, we reject if ‖XTh‖2 � k

√
logp, where XTh

ij =
Xij 1{|Xij | = �(

√
logp)}.

(II) β > 1
2 : The test based on the large singular value of the direct observation succeeds.

In particular, we reject if ‖X‖2 � √
p.

(III) 1+α
4 < β < α ∧ 1

2 : detection is as hard as solving the planted clique problem.
(IV) β < α ∧ 1+α

4 : detection is information-theoretically impossible.

As mentioned earlier, the computational intractability in detecting sparse matrices is perhaps
surprising because

(a) achieving the optimal estimation rate does not present any computational difficulty;
(b) unlike problems such as sparse PCA, the sparse matrix model in Definition 1 does not

explicitly impose any submatrix sparsity pattern as the rows are individually sparse and need
not share a common support.
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FIG. 1. Statistical and computational limits in detecting sparse matrices.

The result in Figure 1 shows that in the moderately sparse regime of p1/3 
 k 
 p, out-
performing entrywise thresholding is at least as hard as solving planted clique. However, it
is possible to improve over entrywise thresholding using computationally inefficient tests.
Next, we briefly describe the construction of the optimal test which detects the signal when
λ � (kp logp)1/4 and improves over entrywise thresholding which requires λ � k

√
logp.

This test has two stages: The first stage is a standard χ2-test, which rejects the null hypothesis
if the mean matrix M has a large Frobenius norm, that is, ‖M‖F � √

p. Under the alternative
hypothesis that ‖M‖2 ≥ λ, if the data can survive the χ2-test, that is, ‖M‖F � √

p, then M

has small stable rank, that is, sr(M) � ‖M‖2
F/‖M‖2

2 � r � p

λ2 . The key observation is that if
a matrix M is both k-sparse (in the sense of Definition 1) and has stable rank at most r , then
its operator norm is concentrated on a small submatrix, in the sense that there exists subsets
I , J of cardinality m � kr logp such that ‖MIJ ‖2 ≥ ‖M‖2 for some constant c. Thus, in
the second stage we apply a scan test that rejects if the maximum spectral norm among all
m × m submatrices exceeds a constant multiple of λ. This succeeds provided that λ ≥ √

m,
which leads to the condition that λ � (kp logp)1/4. We emphasize that although scan test is
a well-known idea, here both the specification (i.e., what class to search over as well as how
large the submatrices need to be) and the proof of correctness are new. The crucial differ-
ence is the following: scan statistics typically correspond to generalized likelihood ratio test
and are defined by maximizing over the corresponding hypothesis class. For instance, in the
problem of submatrix detection [13], where the alternative hypothesis is that the mean matrix
has a k × k submatrix with elevated means, the scan test, naturally, searches over all possible
k × k submatrices. In contrast, the scan test described above does not search over all possible
support sets of k-sparse matrices (in the sense of both row and column sparsity), but over
submatrices of size m � kp logp

λ2 , which far exceeds the row/columnwise sparsity k. Such a
choice follows from the aforementioned structural property of matrices that are both sparse
and of low stable rank (see Theorem 3 for details).

The crucial structural property of sparse matrices used above is established using a cele-
brated result of Rudelson and Vershynin [43] in randomized numerical linear algebra which
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shows that the Gram matrix of any matrix M of low stable rank can be approximated by that
of a small submatrix of M . The existence of such small submatrix is shown by means of prob-
abilistic method but does not provide a constructive method to find it, which, as Figure 1 sug-
gests, is likely to be computationally intractable. We mention that the computational hardness
in the hard regime follows straightforwardly from the corresponding results from submatrix
detection and sparse PCA, although the sparsity is in fact much bigger than the row-wise
sparsity k. The underlying reason is that in the moderately sparse case (k = �(p1/3)), the
least-favorable (up to constant) prior has a submatrix structure of size approximately

√
kp.

To conclude this part, we note that, the same statistical and computational limits in Fig-
ure 1 also apply to detecting sparse covariance matrices when λ is replaced by λ

√
n, under

appropriate assumptions on the sample size; see Section 6 for details.

1.3. Related work. As opposed to the vector case, there exist various notions of sparsity
for matrices as motivated by specific applications, including:

• Vector sparsity: the total number of nonzeros in the matrix is constrained [22], for example,
in robust PCA.

• Row sparsity: each row of the matrix is sparse, for example, matrix denoising [37].
• Group sparsity: each row of the matrix is sparse and shares a common support, for example,

group-sparse regression [38].
• Submatrix sparsity: the matrix is zero except for a small submatrix, for example, sparse

PCA [10, 18], biclustering [9, 13, 39, 45], sparse SVD [46], sparse CCA [30] and commu-
nity detection [32].

The sparse matrix model (Definition 1) studied in this paper is stronger than the vector or row
sparsity and weaker than submatrix sparsity.

The statistical and computational aspects of detecting matrices with submatrix sparsity
has been investigated in the literature for the Gaussian mean, covariance and the Bernoulli
models. In particular, for the spiked covariance model where the leading singular vector is as-
sumed to be sparse, the optimal detection rate has been obtained in [10, 14]. Detecting subma-
trices in additive Gaussian noise was studied by Butucea and Ingster [13] who not only found
the optimal rate but also determined the sharp constants. In the random graph (Bernoulli)
setting, the problem of detecting the presence of a small denser community planted in an
Erdős–Rényi graph was studied in [8]; here the entry of the mean adjacency matrix is p on
a small submatrix and q < p everywhere else. The computational lower bounds in all three
models were established in [10, 32, 39] by means of reduction to the planted clique problem.

Another work that is closely related to the present paper is [3, 4], where the goal is to
detect covariance matrices with sparse correlation. Specifically, in the n-sample Gaussian co-
variance model, the null hypothesis is the identity covariance matrix and the alternative hy-
pothesis consists of covariances matrices whose off-diagonals are equal to a positive constant
on a submatrix and zero otherwise. Assuming various combinatorial structure of the support
set, the optimal tradeoff between the sample size, dimension, sparsity and the correlation
level has been studied. One can apply the results from [4] in the special case of k-subsets
to yield a lower bound for testing sparse covariance matrices, which turns out to be highly
suboptimal; see Section 2 for a detailed comparison. Other work on testing high-dimensional
covariance matrices that do not assume sparse alternatives include testing independence and
sphericity, with specific focus on asymptotic power analysis and the limiting distribution of
test statistics [17, 23, 41, 42]. Finally, we mention yet another two-dimensional detection
problem in Gaussian noise [5], where the sparse alternative corresponds to paths in a large
graph.
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1.4. Notation and organization. We introduce the main notation used in this paper: For
any sequences {an} and {bn} of positive numbers, we write an � bn if an ≥ cbn holds for all
n and some absolute constant c > 0, an � bn if an � bn, and an � bn if both an � bn and
an � bn hold. In addition, we use �k to indicate that the constant depends only on k.

For any q ∈ [1,∞], the 
q → 
q induced operator norm of an matrix M is defined as
‖M‖q � max‖x‖
q ≤1 ‖Mx‖
q . In particular, ‖M‖2 is the spectral norm, that is, the largest sin-
gular value of M , and ‖M‖1 (resp., ‖M‖∞) is the largest 
1-norm of the columns (resp., rows)
of M . For any p × p matrix M and I, J ⊂ [p], let MIJ denote the submatrix (Mij )i∈I,j∈J .
Let I and J denote the identity and the all-one matrix. Let 1 denote the all-one vector. Let Sp

denotes the set of p × p positive-semidefinite matrices.
The rest of the paper is organized as follows: Section 2 presents the main results of the

paper in terms of the minimax detection rates for both the Gaussian noise model and the
covariance matrix model. Minimax upper bounds together with the testing procedures for the
mean model are presented in Section 3, shown optimal by the lower bounds in Section 4; in
particular, Section 3.1 introduces a structural property of sparse matrices which underpins the
optimal tests in the moderately sparse regime. Results for the covariance model are given in
Section 5 together with additional proofs. Section 6 discusses the computational aspects and
explains how to deduce the computational limit in Figure 1 from that of submatrix detection
and sparse PCA.

2. Main results. We begin with the Gaussian noise model. To quantify the fundamental
limit of the hypothesis testing problem (1.3), we define ε∗(p, k, λ) as the optimal sum of
Type-I and Type-II probability of error:

(2.1) ε∗(p, k, λ) = inf
φ

{
P0(φ = 1) + sup

M∈�(p,k,λ)

PM(φ = 0)
}
,

where PM denotes the distribution of the observation X = M + Z conditioned on the mean
matrix M , and the infimum is taken over all decision rules φ :Rp×p → {0,1}.

Our main result is a tight characterization of the optimal detection threshold for λ. Define
the following upper bound:

(2.2) λ1(k,p) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k
√

logp k ≤
(

p

logp

) 1
3
,(

kp log
ep

k

) 1
4

k ≥
(

p

logp

) 1
3

and the lower bound

(2.3) λ0(k,p) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k

√
log

(
p logp

k3

)
k ≤ (p logp)

1
3 ,(

kp log
ep

k

) 1
4

k ≥ (p logp)
1
3 .

It can be verified that (2.2) and (2.3) differ by at most a factor of O(
√

logp
log logp

).

THEOREM 1 (Gaussian noise model). There exists absolute constant k0, c0, c1, such that
the following holds for all k0 ≤ k ≤ p:

1. For any c > c1, if

(2.4) λ ≥ cλ1(k,p),

then ε∗(k,p,λ) ≤ ε1(c), where ε1(c) → 0 as c → ∞.
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2. Conversely, for any c > c0, if

(2.5) λ ≤ cλ0(p, k),

then ε∗(k,p,λ) ≥ ε0(c) − op→∞(1), where ε0(c) → 1 as c → 0.

To parse the result of Theorem 1, let us denote by λ∗(p, k) the optimal detection threshold,
that is, the minimal value of λ so that the optimal probability of error ε∗(p, k, λ) is at most a
constant, say, 0.1. Then we have the following characterization:

• High sparsity: k ≤ p1/3−δ :

λ∗ �δ k
√

logp.

• Moderate sparsity: k � (p logp)1/3:

λ∗ �
(
kp log

ep

k

) 1
4
.

• Boundary case: (
p

logp
)1/3 � k � (p logp)1/3:

k

√
log

ep logp

k3 � λ∗ �
(
kp log

ep

k

) 1
4
,

where the upper and lower bounds are within a factor of O(
√

logp
log logp

).

Furthermore, two generalizations of Theorem 1 will be evident from the proof: (a) the upper
bound in Theorem 1 as well as the corresponding optimal tests apply as long as the noise
matrix consists of independent entries with sub-Gaussian distribution with constant proxy
variance; (b) the lower bound in Theorem 1 continues to hold up even if the mean matrix is
constrained to be symmetric. Thus, symmetry does not improve the minimax detection rate.

Next, we turn to the sparse covariance model: Given n independent samples drawn from
N(0,�), the goal is to test the following hypothesis:

(2.6) H0 : � = I versus H1 : � ∈ �(p, k,λ, τ ),

where the parameter space for sparse covariances matrices is

(2.7) �(p, k,λ, τ ) = {
� ∈ Sp : � ∈ M(p, k),‖� − I‖2 ≥ λ,‖�‖ ≤ τ

}
.

In other words, under the alternative, the covariance is equal to identity plus a sparse pertur-
bation. Throughout the paper, the parameter τ is assumed to be a constant.

Define the minimax probability of error as

(2.8) ε∗
n(p, k, λ) = inf

φ

{
PI(φ = 1) + sup

�∈�(p,k,λ,τ )

P�(φ = 0)
}
,

where φ ∈ {0,1} is a function of the samples (X1, . . . ,Xn)
i.i.d.∼ N(0,�).

Analogous to Theorem 1, the next result characterizes the optimal detection threshold for
sparse covariance matrices.

THEOREM 2 (Covariance model). There exists absolute constants k0, C, c0, c1, such that
the following holds for all k0 ≤ k ≤ p:

1. Assume that n ≥ C logp. For any c > c1, if

(2.9) λ ≥ c√
n
λ1(k,p),

then ε∗
n(k,p,λ) ≤ ε1(c), where ε1(c) → 0 as c → ∞.
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2. Assume that

(2.10) n ≥ Cλ0(p, k)2 logp

and

(2.11) n ≥ C ·
⎧⎪⎨
⎪⎩

k6

p

(
p

k3

)2δ

log2 p k ≤ p1/3,

p k ≥ p1/3,

where δ is any constant in (0, 2
3 ]. If

(2.12) λ ≤ c√
n
λ0(k,p),

then ε∗(k,p,λ) ≥ ε0(c) − op→∞(1), where ε0(c) → 1 as c → 0.

In comparison with Theorem 1, we note that the rate-optimal lower bound in Theorem 2
holds under the assumption that the sample size is sufficiently large. In particular, the condi-
tion (2.10) is very mild because, by the assumption that ‖�‖2 is at most a constant, in order
for the right-hand side of (2.12) to be bounded, it is necessary to have n ≥ λ0(p, k)2. The ex-
tra assumption (2.11), when k ≥ p1/4, does impose a nontrivial constraint on the sample size.
This assumption is due to the current lower bound technique based on the χ2-divergence.
In fact, the lower bound in [17] for testing covariance matrix without sparsity uses the same
method and also requires n � p.

The results of Theorems 1 and 2 also demonstrate the phenomenon of the separation of
detection and estimation, which is well known in the Gaussian sequence model. The minimax
estimation of sparse matrices has been systematically studied by Cai and Zhou [21] in the
covariance model, where it is shown that entrywise thresholding achieves the minimax rate

in the spectral norm loss of k

√
logp

n
provided that n � k2 log3 p and logn � logp; similar

rate of k
√

logp also holds for the Gaussian noise model. In view of this result, an interesting
question is whether a “plug-in” approach for testing, namely, using the spectral norm of
the minimax estimator as the test statistic, achieves the optimal detection rate. This method
is indeed optimal in the very sparse regime of k 
 p1/3, but fails to achieve the optimal
detection rate in the moderately sparse regime of k � p1/3, which, in turn, can be attained by
a computationally intensive test procedure. This observation should be also contrasted with
the behavior in the vector case. To detect the presence of a k-sparse p-dimensional vector in
Gaussian noise, entrywise thresholding, which is the optimal estimator for all sparsity levels,
achieves the minimax detection rate in 
2-norm when k 
 √

p, while the χ2-test, which
disregards sparsity, is optimal when k � √

p.
It is instructive to compare Theorem 2 with the results in [3, 4], who considered the fol-

lowing type of hypotheses testing problem with observation (X1, . . . ,Xn) = �:

(2.13) H0 : � = I versus H1 : � = (1 − ρ)I + ρ1S1�
S for some S ∈ C,

where ρ > 0, C is a collection of subsets of [p], and 1S is the indicator vector of S. In other
words, for i �= j , �ij = ρ if both i and j belong to some S ∈ C and zero otherwise. The
instantiation that is relevant to the present paper is the collection of k-sets, that is, C = ( p

[k]
)
,

which is a smaller subset of the class of sparse covariance matrix (2.7) considered in this
paper (with λ = ρk). Therefore, none of the upper bounds in [3, 4] applies. On the other hand,
the lower bound from [4] yield a valid lower bound here, which gives λ = �(

p

k
√

n
) if

√
p 


k 
 p and λ = �(
√

k
n

log p

k2 ) if k 
 √
p and k 
 n log p

k2 (cf. [4], equatios (4.3) and (4.6),
resp.). This is highly suboptimal compared to Theorem 2 in both the moderately sparse or
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TABLE 1
Rates of testing and estimation in various sparsity models

(modulo logarithmic factors)

Testing Estimation

k-sparse matrices k ∧ (kp)1/4 k

k × k submatrix √
k

k-sparse principal component

highly sparse regimes. In fact, since (2.13) in the case of k-sets is a special instance of sparse
PCA, one can consider the best lower bound that detecting sparse principal components gives,
in which case the eigenvector need not be binary-valued. The sharp detection rate was found

in [14], Proposition 2 (see also [11] for an earlier suboptimal result) to be
√

k
n

log ep
k

. Again,
this yields a suboptimal lower bound and, in turn, shows the fundamental difference between
the sparse PCA structure (submatrix sparsity) and that of sparse covariance matrices in this
paper. In terms of the support set of the matrix, the analogy is that the former corresponds to
k-cliques and the latter corresponds to k-regular graphs.

Finally, we compare the three models for sparse matrices of increasingly stronger struc-
tural assumptions, namely, (a) k-sparse matrices (Definition 1); (b) k × k submatrices; (c) k-
sparse principal component (rank-one). In the normal mean model, the minimax rate of test-
ing (against the zero null as in (1.3)) and estimation are summarized in Table 1, both with
respect to the spectral norm.2 Except for estimation in the k-sparse model where entrywise
thresholding is optimal, attaining the optimal rate in all other problems demonstrates compu-
tational hardness.

3. Test procedures and upper bounds. In this section, we consider the two sparsity
regimes separately and design the corresponding rate-optimal testing procedures. In the

highly sparse regime of k � (
p

logp
)

1
3 , tests based on componentwise thresholding turns out

to achieve the optimal rate of detection. In the moderately sparse regime of k � (
p

logp
)

1
3 ,

chi-squared test combined with the structural property in Section 3.1 is optimal.

3.1. A structural property of sparse matrices. Before we proceed to the construction of
the rate-optimal tests, we first present a structural property of sparse matrices, which may be
of independent interest. Recall that a matrix M is k-sparse in the sense of Definition 1 if its
rows and columns are sparse but need not to have a common support. If in addition M has
low rank, then the support sets of its rows must be highly aligned, and hence M has a sparse
eigenvector and M is in fact supported on a submatrix. The main result of this section is an
extension of this result to approximately low-rank matrices, in the sense of stable rank (also
known as numerical rank):

(3.1) sr(M) � ‖M‖2
F

‖M‖2
2

,

which is always a lower bound of rank(M).
The following lemma shows that for any sparse matrix of low stable rank, a constant

fraction of its operation norm is concentrated on a small submatrix. The key ingredient of

2For the estimation rate of k × k submatrices, see [40], Example 1.
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the proof is a celebrated result of Rudelson–Vershynin [43] in randomized numerical linear
algebra which shows that the Gram matrix of any matrix M of stable rank at most r can be
approximated by that of a submatrix of M formed by O(r log r) rows. The following is a
restatement of [43], Theorem 3.1, without the normalization.

LEMMA 1. There exists an absolute constant C0 such that the following holds. Let y ∈
R

n be a random vector with covariance matrix � = E[yy�]. Assume that ‖y‖2 ≤ K holds
almost surely. Let y1, . . . , yd be i.i.d. copies of y. Then

E

∥∥∥∥∥1

d

d∑
i=1

yiy
�
i − �

∥∥∥∥∥
2

≤ C0K

√
‖�‖2

logd

d
,

provided that the right-hand side is less than ‖�‖2.

THEOREM 3 (Concentration of operator norm on small submatrices). Let k ∈ [p]. Let
M be a p × p k-sparse matrix (not necessarily symmetric) in the sense that all rows and
columns are k-sparse. Let r = sr(M). Then there exist I, J ⊂ [p], such that

‖MIJ ‖2 ≥ 1

8
‖M‖2, |I | ≤ Ckr, |J | ≤ Ckr log r,

where C is an absolute constant.

REMARK 1. The intuition behind the above result is the following: consider the ideal
case where X is low-rank, say, rank(X) ≤ r . Then its right singular vector belongs to the
span of at most r rows and is hence kr-sparse; so is the left singular vector. Theorem 3
extends this simple observation to stable rank with an extra log factor. Furthermore, the result
in Theorem 3 cannot be improved beyond this log factor. To see this, consider a matrix M

consisting of a m×m submatrix with independent Bern(q) entries and zero elsewhere, where
q = k/(2m) 
 1. Then with high probability, M is k-sparse, ‖M‖2 ≈ qm and ‖M‖2

F ≈ qm2.
Although the rank of M is approximately m, its stable rank is much lower sr(M) ≈ 1

q
, and the

leading singular vector of M is m-sparse, with m = �(k sr(M)). In fact, this example plays
a key role in constructing the least favorable prior for proving the minimax lower bound in
Section 4.

PROOF. Denote the ith row of M by Mi∗. Denote the j th row of M by M∗j . Let

I0 �
{
i ∈ [p] : ‖Mi∗‖2 ≥ τ

}
,

J0 �
{
j ∈ [p] : ‖M∗j‖2 ≥ τ

}
,

where τ > 0 is to be chosen later. Then

(3.2) |I0| ∨ |J0| ≤ ‖M‖2
F

τ 2 .

Since the operator norm and Frobenius norm are invariant under permutation of rows and
columns, we may and will assume that I0, J0 corresponds to the first few rows or columns of
M . Write M = (

A C
D B

)
where B = MI c

0 J c
0
. Since each row of B is k-sparse, by the Cauchy–

Schwarz inequality its 
1-norm is at most
√

kτ . Consequently, its 
∞ → 
∞ operator norm
satisfies ‖B‖∞ = maxi ‖Bi∗‖1 ≤ √

kτ . Likewise, ‖B‖1 = maxj ‖B∗j‖1 ≤ √
kτ . By duality

(see, e.g., [31], Corollary 2.3.2),

‖B‖2 ≤ √‖B‖1‖B‖∞ ≤ √
kτ.(3.3)
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Let X = (A C) and Y = (
A
D

)
. By triangle inequality, we have ‖M‖2 ≤ ‖X‖2 +‖Y‖2 +‖B‖2.

Setting τ = ‖M‖2

2
√

k
, we have ‖B‖2 ≤ ‖M‖2/2 and hence ‖X‖2 ∨ ‖Y‖2 ≥ ‖M‖2

4 . Without loss

of generality, assume henceforth ‖X‖2 ≥ ‖M‖2
4 . Set I = I0.

Note that X ∈ R

×p , where 
 = |I | ≤ ‖M‖2

F
τ 2 = 4k‖M‖2

F
‖M‖2

2
= 4L. Furthermore, sr(X) = ‖X‖2

F
‖X‖2

2
≤

‖M‖2
F

‖M‖2
2/16

= 16r . Next, we show that X has a submatrix formed by a few columns whose

operator norm is large. We proceed as in the proof of [43], Theorem 1.1. Write

X =

⎡
⎢⎢⎣
x�

1
...

x�



⎤
⎥⎥⎦ , X̃ = 1√

d

⎡
⎢⎢⎣
y�

1
...

y�
d

⎤
⎥⎥⎦ .

Define the random vector y by P{y = ‖X‖F‖xi‖2
xi} = ‖xi‖2

2
‖X‖2

F
and let y1, . . . , yd which are i.i.d.

copies of y. Then X�X = E[yy�] and X̃�X̃ = 1
d

∑d
i=1 yiy

�
i . Furthermore, ‖y‖2 ≤ ‖X‖F

almost surely and ‖E[yy�]‖2 = ‖X‖2
2. By Lemma 1,

E
∥∥X̃�X̃ − X�X

∥∥
2 ≤ C0

√
logd

d
‖X‖F‖X‖2 ≤ 1

4
‖X‖2

2,

where the last inequality follows by choosing d = �Cr log r� with C being a sufficiently
large universal constant. Therefore, there exists a realization of X̃ so that the above inequality
holds. Let J be the column support of X̃. Since the rows of X̃ are scaled version of those of
X which are k-sparse, we have |J | ≤ dk. Let v denote a leading right singular vector of X̃,
that is, X̃�X̃v = ‖X̃‖2

2v and ‖v‖2 = 1. Then supp(v) ⊂ J . Note that

‖Xv‖2
2 = v�X�Xv = v�X̃�X̃v + v�(

X�X − X̃�X̃
)
v

≥ ‖X̃‖2
2 − ∥∥X�X − X̃�X̃

∥∥
2

≥ ‖X‖2
2 − 2

∥∥X�X − X̃�X̃
∥∥

2

≥ 1

2
‖X‖2

2.

Therefore, ‖X∗J ‖2 ≥ ‖Xv‖2 ≥ 1√
2
‖X‖2 ≥ 1

4
√

2
‖M‖2. The proof is completed by noting that

X∗J = MIJ . �

3.2. Highly sparse regime. It is has been shown that, in the covariance model, entrywise
thresholding is rate-optimal for estimating the matrix itself with respect to the spectral norm
[21]. It turns out that in the very sparse regime entrywise thresholding is optimal for testing
as well. Define

M̂ = (
Xij 1

{|Xij | ≥ τ
})

and the following test:

ψ(X) = 1
{‖M̂‖2 ≥ λ

}
.(3.4)

THEOREM 4. For any ε ∈ (0,1), if

(3.5) λ > 2k

√
2 log

4p2

ε
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then the test (3.4) with τ =
√

2 log 4p2

ε
satisfies

P0(ψ = 1) + sup
M∈�(p,k,λ)

PM(ψ = 0) ≤ ε

for all 1 ≤ k ≤ p.

PROOF. Denote the event E = {‖Z‖
∞ ≤ τ }. Conditioning on E, for any k-sparse matrix
M ∈ M(p, k), we have M̂ ∈ M(p, k) and

(3.6) ‖M̂ − M‖2 ≤ kτ.

To see this, note that for any i, j , M̂ij = 0 whenever Mij = 0. Therefore, ‖M̂i∗ − Mi∗‖
1 ≤
k‖Z‖
∞ ≤ kτ and, consequently, ‖M̂ − M‖1 = maxi ‖M̂i∗ − Mi∗‖
1 ≤ kτ . Similarly, ‖M̂ −
M‖∞ = maxj ‖M̂∗j − M∗j‖
1 ≤ kτ . Therefore, (3.6) follows from the fact that ‖ · ‖2

2 ≤
‖ · ‖1‖ · ‖∞ for matrix induced norms. Therefore, if λ > 2kτ , then

P0(ψ = 1) + sup
M∈�(p,k,λ)

PM(ψ = 0) ≤ 2P
{‖Z‖
∞ > τ

} ≤ 4p2e−τ 2/2.

This completes the proof. �

3.3. Moderately sparse regime. Our test in the moderately sparse regime relies on the
existence of sparse approximate eigenvectors established in Theorem 3. More precisely, the
test procedure is a combination of the matrix-wise χ2-test and the scan test based on the
largest spectral norm of m × m submatrices, which is detailed as follows: Let

m = C

√
kp

log ep
k

,

where C is the universal constant from Theorem 3. Define the following test statistic:

(3.7) Tm(X) = max
{‖XIJ ‖2 : I, J ⊂ [p], |I | = |J | = m

}
and the test

ψ(X) = 1
{‖X‖2

F ≥ p2 + s
} ∨ 1

{
Tm(X) ≥ t

}
,(3.8)

where

(3.9) s � 2 log
1

ε
+ 2p

√
log

1

ε
, t � 2

√
m + 4

√
m log

ep

m
.

THEOREM 5. There exists a universal constant C0 such that the following holds. For any
ε ∈ (0,1/2), if

(3.10) λ ≥ C0

{
kp log

1

ε
log

(
p

k
log

1

ε

)} 1
4
,

then the test (3.8) satisfies

P0(ψ = 1) + sup
M∈�(p,k,λ)

PM(ψ = 0) ≤ ε

holds for all 1 ≤ k ≤ p.
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PROOF. First, consider the null hypothesis, where M = 0 and X = Z has i.i.d. standard
normal entries so that ‖Z‖2

F − p2 = OP (p). By standard concentration equality for χ2 dis-
tribution, we have

P
{∣∣‖Z‖2

F − p2∣∣ > s
} ≤ ε,

where

s � 2 log
1

ε
+ 2p

√
log

1

ε
.

Consequently, the false alarm probability satisfies

P0(ψ = 1) ≤ P
{‖Z‖2

F − p2 > C0p
}︸ ︷︷ ︸

≤ε

+
(

p

m

)2

P
{‖W‖2 ≥ t

}
,

where t = 2
√

m + 4
√

m log ep
m

and W � Z[m],[m]. By the Davidson–Szarek inequality [24],

Theorem II.7, ‖W‖2
s.t.≤ N(2

√
m,1). Then P{‖W‖2 ≥ t} ≤ ( em

p
)m. Hence the false alarm

probability vanishes.
Next, consider the alternative hypothesis, where, by assumption, M is row/column k-

sparse and ‖M‖2 ≥ λ. To begin, suppose that ‖M‖F ≥ 2
√

s. Then since ‖X‖2
F − p2 =

‖M‖2
F + 2〈M,Z〉 + ‖Z‖2

F − p2, we have

P
{‖M + Z‖2

F − p2 < s
} ≤ P

{‖M‖2
F + 2〈M,Z〉 < 2s

} + P
{‖Z‖2

F − p2 < −s
}

≤ exp
(−s2/8

) + ε.

Therefore, as usual, if ‖M‖F is large, the χ2-test will succeeds with high probability. Next,
assume that ‖M‖F < 2

√
s. Therefore, M is approximately low-rank, in the sense that

sr(M) ≤ r � 4s

λ2 .

By Theorem 3, there exists an absolute constant C and I, J ⊂ [p] of cardinality at most

m = Ckr log r = Ck
4s

λ2 log
4s

λ2 ,

such that ‖MIJ ‖2 ≥ 1
8λ. Therefore, the statistic defined in (3.7) satisfies Tm(X) ≥ ‖XIJ ‖2 ≥

λ
8 − ‖ZIJ ‖2. Therefore, Tm(X) ≥ λ

8 − 3
√

m with probability at least 1 − exp(−�(m)).

Choose λ so that λ
8 − 3

√
m ≥ t . Since t + 3

√
m = 5

√
m + 4

√
m log ep

m
≤ 9

√
m log ep

m
, it suf-

fices to ensure that λ ≥ c0

√
m log ep

m
for some absolute constant c0. Plugging the expression

of m, we found a sufficient condition is λ ≥ C0(ks log es
k
)

1
4 for some absolute constant C0.

The proof is completed by noting that s ≤ 2p(log 1
ε

+ log 1
ε
) and s �→ s log es

k
is increasing.

�

4. Minimax lower bound. In this section, we prove the lower bound part of Theorem 1.
The key step is to specify a prior π1 under which the matrix is k-sparse with high probability
and bound the χ2-divergence between the null distribution and the mixture of the alternatives.
Strictly speaking, π1 does not directly qualify as a prior for the alternative hypothesis since it
is not exactly supported on the alternative parameter set; nevertheless, by conditioning it can
be modified to be a valid prior (cf. [44], Theorem 2.15(i), or Lemma 5 in the supplementary
material [19], Section 8).
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4.1. Least favorable prior. Let I be chosen uniformly at random from all subsets of [p]
of cardinality m. Let u = (u1, . . . , up) be independent Rademacher random variables. Let B

be a p × p matrix with i.i.d. Bern( k
m

) entries and let (u, I,B) be independent. Let UI denote
the diagonal matrix defined by (UI )ii = ui1{i ∈ I }. Let t > 0 be specified later. Let the prior
π1 be the distribution of the following random sparse matrix:

(4.1) M = tUIBUI ,

that is, Mij = t1{i ∈ I }1{j ∈ I }uiujbij . Therefore, the nonzero pattern of M has the desired
marginal distribution Bern( k

p
), but the entries of M are dependent. Alternatively, M can be

generated as follows: First, choose an m × m principal submatrix with a uniformly chosen
support I , fill it with i.i.d. Bern( k

m
) entries, then pre- and post-multiply by a diagonal matrix

consisting of independent Rademacher variables, which used to randomize the sign of the
leading eigenvector. By construction, with high probability, the matrix M is O(k)-sparse
and, furthermore, its operator norm satisfies ‖M‖2 ≥ kt . Furthermore, the corresponding
eigenvector is approximately 1J , which is m-sparse.

The construction of this prior is based on the following intuition. The operator norm of
a matrix highly depends on the correlation of the rows. Given the 
2-norm of the rows, the
largest spectral norm is achieved when all rows are aligned (rank-one), while the smallest
spectral norm is achieved when all rows are orthogonal. In the sparse case, aligned support
results in large spectral norm while disjoint support in small spectral norm. However, if all
rows are aligned, then the signal is prominent enough to be distinguished from noise. Note
that a submatrix structure strikes a precise balance between the extremal cases of completely
aligned and disjoint support, which enforces that the row support sets are contained in a
set of cardinality m, which is much larger than the row sparsity k but much smaller than the
matrix size p. In fact, the optimal choice of the submatrix size given by m � k2 ∧√

kp, which
matches the structural property given in Theorem 3. The structure of the least favorable prior,
in a way, shows that the optimality of tests based on concentration on small submatrices is
not a coincidence.

Another perspective is that the sparsity constraint on the matrix forces the marginal distri-
bution of each entry in the nonzero pattern (1{Mij �= 0}) to be Bern( k

p
). However, if all the

entries were independent, then it would be very easy to test from noise. Indeed, perhaps the

most straightforward choice of prior is Mij
i.i.d.∼ t · Bern( k

p
), where t � k

p
. However, the linear

test statistic based on
∑

ij Mij succeeds unless λ � 1. We can improve the prior by randomize

the eigenvector, that is, Mij
i.i.d.∼ tuiuj Bern( k

p
), but the χ2-test in Theorem 5 succeeds unless

λ �
√

k, which still falls short of the desired λ � (kp)1/4. Thus, we see that the coupling
between the entries is useful to make the mixture distribution closer to the null hypothesis.

4.2. Key lemmas. The main tool for our lower bound is the χ2-divergence, defined by
χ2(P ‖ Q) �

∫
( dP

dQ
− 1)2 dQ if P 
 Q and +∞ otherwise. The χ2-divergence is related to

the total variation via the following inequality [28], p. 1496:

(4.2) χ2 ≥ TV log
1 + TV

1 − TV
.

Therefore, the total variation distance cannot goes to one unless the χ2-divergence diverges.
Furthermore, if χ2-divergence vanishes, then the total variation also vanishes, which is equiv-
alently to, in view of (8.2), that P cannot be distinguished from Q better than random guess-
ing.

The following lemma due to Ingster and Suslina (see, e.g., [35], p. 97) gives a formula for
the χ2-divergence of a normal location mixture with respect to the standard normal distribu-
tion.
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LEMMA 2. Let P be an arbitrary distribution on R
m. Then

χ2(N(0, Im) ∗ P ‖ N(0, Im)
) = E

[
exp

(〈X, X̃〉)] − 1,

where ∗ denotes convolution and X and X̃ are independently drawn from P .

The proof of the lower bound in Theorem 1 relies on the following lemmas. These re-
sults give nonasymptotic both necessary and sufficient conditions for certain moment gener-
ating functions involving hypergeometric distributions to be bounded, which show up in the

χ2-divergence calculation. Let H ∼ Hypergeometric(p,m,m), with P{H = i} =
(
m
i

)(p−m

m−i

)(
p
m

) ,

i = 0, . . . ,m.

LEMMA 3 ([14], Lemma 1). Let p ∈ N and m ∈ [p]. Let B1, . . . ,Bm be independently
Rademacher distributed. Denote by

Gm �
m∑

i=1

Bi

the position of a symmetric random walk on Z starting at 0 after m steps. Then there exist
an absolute constant a0 > 0 and function A : (0, a0) �→ R+ with A(0+) = 0, such that if
t = a

m
log ep

m
and a < a0, then

(4.3) E
[
exp

(
tG2

H

)] ≤ A(a).

LEMMA 4 ([32], Lemma 15, Appendix C). Let p ∈ N and m ∈ [p]. Then there exist
an absolute constant b0 > 0 and function B : (0, b0) �→ R+ with B(0+) = 0, such that if

λ = b( 1
m

log ep
m

∧ p2

m4 ) and b < b0, then

(4.4) E
[
exp

(
λH 2)] ≤ B(b).

REMARK 2 (Tightness of Lemmas 3–4). The purpose of Lemma 3 is to seek the largest t ,
as a function of p and m, such that E[exp(tG2

H )] is upper bounded by a constant nonasymp-
totically. The condition that t � 1

m
log ep

m
is in fact both necessary and sufficient. To see the

necessity, note that P{GH = H |H = i} = 2−i . Therefore,

E
[
exp

(
tG2

H

)] ≥ E
[
exp

(
tH 2)2−H ] ≥ exp

(
tm2)2−m

P{H = m}

≥ exp
(
tm2 − m log

2p

m

)
,

which cannot be upper bound bounded by an absolute constant unless t � 1
m

log ep
m

.

Similarly, the condition λ � 1
m

log ep
m

∧ p2

m4 in Lemma 4 is also necessary. To see this, note

that E[H ] = m2

p
. By Jensen’s inequality, we have E[exp(λH 2)] ≥ exp(λm4

p2 ). Therefore, a

necessary condition for (4.3) is that λ ≤ p2 logB

m4 . On the other hand, we have E[exp(λH 2)] ≥
exp(λm2 − m log p

m
), which implies that λ � 1

m
log ep

m
.

4.3. Proof of Theorem 1: Lower bound.

PROOF. Step 1: Fix t > 0 to be determined later. Recall the random sparse matrix M =
tUIBUI defined in (4.1), where I is chosen uniformly at random from all subsets of [p] of
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cardinality k, u = (u1, . . . , up)� consists of independent Rademacher entries, B is a p × p

matrix with i.i.d. Bern( k
m

) entries, and (u, I,B) are independent.
Next, we show that the hypothesis H0 : X = Z versus H1 : X = M + Z cannot be tested

with vanishing probability of error, by showing that the χ2-divergence is bounded. Let
(Ũ , Ĩ , B̃) be an independent copy of (U, I,B). Then M̃ = Ũ

Ĩ
B̃Ũ

Ĩ
is an independent copy of

M . Put s = t2. By Lemma 2, we have

χ2(PX|H0 ‖ PX|H1) + 1

= E
[
exp

(〈M,M̃〉)] = E
[
exp

(
t2〈UIBUI , ŨĨ

B̃Ũ
Ĩ
〉)]

= E

[
exp

(
s

∑
i∈I∩Ĩ

∑
j∈I∩Ĩ

ui ũiuj ũj bij b̃ij

)]

(a)= E

[
exp

(
s

∑
i∈I∩Ĩ

∑
j∈I∩Ĩ

uiujaij

)]

(b)= E

[ ∏
i∈I∩Ĩ

∏
j∈J∩J̃

(
1 + k2

m2

(
esuiuj − 1

))]

(c)≤ E

[
exp

{
k2

m2

∑
i∈I∩Ĩ

∑
j∈I∩Ĩ

(
esuiuj − 1

)}]

= E

[
exp

{
k2

m2

∑
i∈I∩Ĩ

∑
j∈I∩Ĩ

(
uiuj sinh(s) + cosh(s) − 1

)}]

= E

[
exp

{
k2 sinh(s)

m2

( ∑
i∈I∩Ĩ

ui

)2
+ k2(cosh(s) − 1)

m2 |I ∩ Ĩ |2
}]

,

(4.5)

where (a) is due to (umũm, . . . , umũm)
(d)= (u1, . . . , um); (b) follows from aij � bij b̃ij

i.i.d.∼
Bern( k2

m2 ); (c) follows from the fact that log(1 + x) ≤ x for all x > −1; (d) is because for b ∈
{±1}, we have exp(sb) = b sinh(s) + cosh(s) − 1. Recall from Lemma 3 that {Gm : m ≥ 0}
denotes the symmetric random walk on Z. Since I , Ĩ are independently and uniformly drawn
from all subsets of [p] of cardinality k, we have H � |I ∩ Ĩ | ∼ Hypergeometric(p,m,m).
Define

A(m, s) � E

[
exp

{
2k2 sinh(s)

m2 G2
H

}]
,(4.6)

B(m, s) � E

[
exp

{
2k2(cosh(s) − 1)

m2 H 2
}]

.(4.7)

Applying the Cauchy–Schwarz inequality to the right-hand side of (4.5), we obtain

(4.8) χ2(PX|H0 ‖ PX|H1) + 1 ≤ √
A(m, s)B(m, s).

Therefore, upper bounding the χ2-divergence boils down to controlling the expectations in
(4.6) and (4.7) separately.

Applying Lemma 3 and Lemma 4 to A(m, s) and B(m, s), respectively, we conclude that

k2(cosh(s) − 1)

m2 ≤ c

(
1

m
log

ep

m
∧ p2

m4

)
⇒ A(m, s) ≤ C,(4.9)
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k2 sinh(s)

m2 ≤ c

m
log

ep

m
⇒ B(m, s) ≤ C,(4.10)

where c, C are constants so that C → 0 as c → 0. Therefore, the best lower bound we get for
s is

(4.11) s∗ = max
k≤m≤p

{
(cosh−1)−1

(
cm

k2 log
ep

m
∧ cp2

m2k2

)
∧ sinh−1

(
cm

k2 log
ep

m

)}
,

where the inverses sinh−1 and (cosh−1)−1 are defined with the domain restricted to R+.
To simplify the maximization in (4.11), we use the following bounds of the hyperbolic

functions:

sinh−1(y) ≥ log(2y), (cosh−1)−1(y) ≥ logy, y ≥ 0.(4.12)

Therefore,

s∗ ≥ log max
k≤m≤p

(
cm

k2 log
ep

m
∧ cp2

m2k2

)
.

Choosing m = (
p2

logp
)

1
3 yields

(4.13) s∗ � log+
(

p logp

k3

)
,

where log+ � max{log,0}. Note that the above lower bound is vacuous unless k ≤ (p logp)
1
3 .

To produce a nontrivial lower bound for k ≥ (p logp)
1
3 , note that (4.12) can be improved as

follows. If the argument y is restricted to the unit interval, then

sinh−1(y) ≥ sinh−1(1)y, (cosh−1)−1(y) ≥ √
y, y ∈ [0,1],(4.14)

which follows from the Taylor expansion of cosh and the convexity of sinh. Applying (4.14)
to (4.11),

s∗ = max
m: cm

k2 log ep
m

≤1

(√
cp2

m2k2 ∧ c sinh−1(1)m

k2 log
ep

m

)
.

Choosing m =
√

pk

4c2 log ep
k

yields cm
k2 log ep

k
≤ 1. We then obtain

(4.15) s∗ �
√

p

k3 log
ep

k
.

Step 2: To conclude kt as a valid lower bound for λ with t = √
s∗ given in (4.13) and

(4.15), we invoke Lemma 5 in the supplementary material [19], Section 8. To this end, we
need to show that with high probability, M is O(k)-sparse and ‖M‖2 = �(kt). Define events

E1 = {
M ∈ M(p,2k)

}
, E2 = {‖M‖2 ≥ kt/2

}
.

It remains to show that both are high-probability events. Since I is independent of B , we
shall assume, without loss of generality, that I = [m]. For the event E1, by the union bound
and Hoeffding’s inequality, we have

P
{
Ec

1
} = P

{
BII /∈ �(m,2k)

} ≤ m2
P

{
m∑

i=1

bi1 ≥ 2k

}

≤ m2 exp
(−mk2) = o(1),

(4.16)
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where bi1
i.i.d.∼ Bern( k

m
). For the event E2, again by Hoeffding’s inequality,

P{E2} = P
{‖BII‖2 ≥ k/2

} ≥ P

{
‖M1I‖2 ≥ k

2
‖1I‖2

}

≥ P

{
m∑

j=1

bij ≥ k

2
,∀i ∈ [m]

}
≥ 1 − mP

{
m∑

j=1

b1j <
k

2

}

≥ 1 − m exp
(−mk2/4

) = 1 − o(1).

(4.17)

The desired lower bound now follows from Lemma 5 in the supplementary material [19],
Section 8.

Finally, we note that the lower bound continues to hold up to constant factors even if M is
constrained to be symmetric. Indeed, we can replace M with the symmetrized version M ′ =[ 0 M

M� 0

]
and note that the bound on χ2-divergence remains valid since 〈M ′, M̃ ′〉 = 2〈M,M̃〉.

�

5. Detecting sparse covariance matrices. In this section, we describe the test proce-
dures for the the covariance model and prove the upper bound part of Theorem 2. The lower
bound proof is given in the supplementary material [19], Section 9.

Let X1, . . . ,Xn be independently sampled from N(0,�). Define the sample covariance
matrix as

(5.1) S = 1

n

n∑
i=1

XiX
�
i ,

which is a sufficient statistic for �.
The following result is the counterpart of Theorem 4 for entrywise thresholding that is

optimal in the highly sparse regime.

THEOREM 6. Let C, C′ be constants that only depend on τ . Let ε ∈ (0,1). Define �̂ =
(Sij 1{|Sij | ≥ t}), where τ =

√
C log p

ε
. Assume that n ≥ C ′ logp. If λ

√
n > 2kt , then the test

ψ(S) = 1{‖�̂‖2 ≥ λ} satisfies

PI(ψ = 1) + sup
�∈�(p,k,λ,τ )

P�(ψ = 0) ≤ ε

for all 1 ≤ k ≤ p.

To extend the test (3.8) to covariance model, we need a test statistic for ‖� − I‖2
F. Consider

the following U-statistic proposed in [17, 23]:

(5.2) Q(S) = p + 1( n
2
) ∑

1≤i<j≤n

〈Xi,Xj 〉2 − 〈Xi,Xi〉 − 〈Xj,Xj 〉.

Then Q(S) is a unbiased estimator of ‖� − I‖2
F. We have the following result for the moder-

ately sparse regime.

THEOREM 7. Let m = C

√
kp

log ep
k

, where C is the universal constant from Theorem 3.

Define the following test statistic:

(5.3) Tm(S) = max
{‖SII‖2 : I ⊂ [p], |I | = m

}
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and the test

ψ(S) = 1
{
Q(S) ≥ s

} ∨ 1
{
Tm(X) ≥ t

}
,(5.4)

where

(5.5) s � 2 log
1

ε
+ 2p

√
log

1

ε
, t � 2

√
m + 4

√
m log

ep

m
.

There exists a universal constant C0 such that the following holds. For any ε ∈ (0,1/2), if

(5.6) λ ≥ C0

{
kp log

1

ε
log

(
p

k
log

1

ε

)} 1
4
,

then the test (5.4) satisfies

P0(ψ = 1) + sup
M∈�(p,k,λ)

PM(ψ = 0) ≤ ε

for all 1 ≤ k ≤ p.

The proofs of Theorems 6 and 7 parallel those of Theorems 4 and 5. Next, we point out the
main distinction. For Theorem 6, the only difference is the Gaussian tail is replaced by the
concentration inequality P{|Sij − �ij | ≥ a} ≤ c0 exp(−c1nt2) for all |t | ≤ c2, where ci ’s are

constants depending only on τ [21], equation (26). For Theorem 7, let S̃ � �− 1
2 S�− 1

2 , which
is a k×k standard Wishart matrix with n degrees of freedom. Applying the deviation inequal-

ity in [18], Proposition 4, we have E[‖S̃ −Ik‖2
2] � k

n
+ k2

n2 . Since ‖S −�‖2 ≤ ‖�‖2‖S̃ −Ik‖2,

we have E[‖S − �‖2
2] � λ2( k

n
+ k2

n2 ).

6. Computational limits. In this section, we address the computational aspects of de-
tecting sparse matrices in both the Gaussian noise and the covariance model.

Gaussian noise model. The computational hardness of the red region (reducibility from
planted clique) in Figure 1 follows from that of submatrix detection in Gaussian noise [13,
39], which is a special case of the model considered here. The statistical and computational
boundary of submatrix detection is shown in Figure 2(b), in terms of the tradeoff between
the sparsity k = pα and the spectral norm of the signal λ = pβ . Below we explain how
Figure 2(b) follows from the results in [39].

The setting in [39] also deals with the additive Gaussian noise model (1.2), where, un-
der the alternative, the entries of the mean matrix M is at least θ on a k × k submatrix and
zero elsewhere, with k = pα and θ = p−γ . Since ‖M‖2 ≥ kθ , this instance is included in the
alternative hypothesis in (1.3) with λ = pβ and β = α − γ . It is shown that (see [39], Theo-
rem 2 and Figure 1) detection is computationally at least as hard as solving the planted clique
problem when γ > 0 ∨ (2α − 1), that is, β < α ∧ (1 − α). Note that this bound is not mono-
tone in α, which can be readily improved to β < α ∧ 1

2 , corresponding to the computational
limit in Figure 2(b). Similarly, detection is statistically impossible when γ > α

2 ∨ (2α − 1),
that is, β < α

2 ∧ (1 − α). Taking the monotone upper envelope leads to β < α
2 ∧ 1

3 , yielding
the statistical limit in Figure 2(a). Finally, Figure 1 can be obtained by superimposing the
statistical-computational limits in Figure 2(a) on top of the statistical limit obtained in the
present paper as plotted in Figure 2(b).
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FIG. 2. Detection boundary for k-sparse matrices and k × k submatrices M in noise, where k = pα and
‖M‖2 = λ = pβ .

Sparse covariance model. For the problem of detecting sparse covariance matrices, which is
defined by the 4-tuple (n,p, k, λ), the picture is less complete than the additive-noise coun-
terpart; this is mainly due to the extra parameter n. Indeed, the statistical lower bound in
Theorem 2 holds under the extra assumptions (2.10) and (2.11) that the sample size is suffi-
ciently large, while the current computational lower bound for sparse PCA in the literature
[13, 30, 45] also requires a number of conditions including the assumption of n ≤ p. Nev-
ertheless, if we still let k = pα and λ

√
n = pβ and focus on the tradeoff between the (α,β)

pair, the statistical and computational limits in Figure 1 continue to hold. Next, we explain
how to deduce the computational hardness of the red region from that of sparse PCA in the
spiked Gaussian covariance model [30].

To this end, due to monotonicity, it suffices to demonstrate a “hard instance,” that is, a
sequence of triples (n,λ, k) indexed by p, for every (α,β) such that 1

3 < α < 1
2 and β < 1.

Given samples X1, . . . ,Xn
i.i.d.∼ N(0,�), the computational aspect of testing

(6.1) H0 : � = I versus H1 : � = I + λuu�,

where the eigenvector u is both k-sparse and unit-norm, has been studied in [30]. Fix α ∈
(1

3 , 1
2). Let n = pη, k = pα and λ = ck2

n log2 n
, so that β = 2α−η, and let 1

a
≤ η ≤ 1 to be chosen

later; here a > 1 and c > 0 are absolute constants from [30], Theorem 5.4. By assumption,
(2α,4α)∩ ( 1

a
,1) �= ∅; pick any η therein. Then we have λ 
 1 and (6.1) is indeed an instance

of (2.6). By the choice of the parameters, the conditions of [30], Theorem 5.4, are fulfilled,
namely, β < α and α >

η
4 , and the detection problem (6.1) and hence (2.6) are at least as hard

as the planted clique problem.
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SUPPLEMENTARY MATERIAL

Supplementary material for “Statistical and computational limits for sparse matrix
detection” (DOI: 10.1214/19-AOS1860SUPP; .pdf). Due to space constraints, some proofs
are deferred to the supplementary document [19].
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