
The Annals of Statistics
2020, Vol. 48, No. 3, 1539–1566
https://doi.org/10.1214/19-AOS1858
© Institute of Mathematical Statistics, 2020

SOME THEORETICAL PROPERTIES OF GANS

BY GÉRARD BIAU1,*, BENOÎT CADRE2, MAXIME SANGNIER1,** AND

UGO TANIELIAN1,†

1Laboratoire de Probabilités, Statistique et Modélisation, Sorbonne Université, *gerard.biau@sorbonne-universite.fr;
**maxime.sangnier@sorbonne-universite.fr; †u.tanielian@criteo.com

2ENS Rennes, Univ Rennes, IRMAR, benoit.cadre@ens-rennes.fr

Generative Adversarial Networks (GANs) are a class of generative algo-
rithms that have been shown to produce state-of-the-art samples, especially in
the domain of image creation. The fundamental principle of GANs is to ap-
proximate the unknown distribution of a given data set by optimizing an ob-
jective function through an adversarial game between a family of generators
and a family of discriminators. In this paper, we offer a better theoretical un-
derstanding of GANs by analyzing some of their mathematical and statistical
properties. We study the deep connection between the adversarial principle
underlying GANs and the Jensen–Shannon divergence, together with some
optimality characteristics of the problem. An analysis of the role of the dis-
criminator family via approximation arguments is also provided. In addition,
taking a statistical point of view, we study the large sample properties of the
estimated distribution and prove in particular a central limit theorem. Some
of our results are illustrated with simulated examples.

1. Introduction. The fields of machine learning and artificial intelligence have seen
spectacular advances in recent years, one of the most promising being perhaps the success of
Generative Adversarial Networks (GANs), introduced by Goodfellow et al. (2014). GANs are
a class of generative algorithms implemented by a system of two neural networks contesting
with each other in a zero-sum game framework. This technique is now recognized as being
capable of generating photographs that look authentic to human observers (e.g., Salimans
et al. (2016)), and its spectrum of applications is growing at a fast pace, with impressive re-
sults in the domains of inpainting, speech, and 3D modeling, to name but a few. A survey of
the most recent advances is given by Goodfellow (2016).

The objective of GANs is to generate fake observations of a target distribution p� from
which only a true sample (e.g., real-life images represented using raw pixels) is available. It
should be pointed out at the outset that the data involved in the domain are usually so com-
plex that no exhaustive description of p� by a classical parametric model is appropriate, nor
its estimation by a traditional maximum likelihood approach. Similarly, the dimension of the
samples is often very large, and this effectively excludes a strategy based on nonparametric
density estimation techniques such as kernel or nearest neighbor smoothing, for example. In
order to generate according to p�, GANs proceed by an adversarial scheme involving two
components: a family of generators and a family of discriminators, which are both imple-
mented by neural networks. The generators admit low-dimensional random observations with
a known distribution (typically Gaussian or uniform) as input, and attempt to transform them
into fake data that can match the distribution p�; on the other hand, the discriminators aim
to accurately discriminate between the true observations from p� and those produced by the
generators. The generators and the discriminators are calibrated by optimizing an objective
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function in such a way that the distribution of the generated sample is as indistinguishable as
possible from that of the original data. In pictorial terms, this process is often compared to
a game of cops and robbers, in which a team of counterfeiters illegally produces banknotes
and tries to make them undetectable in the eyes of a team of police officers, whose objective
is of course the opposite. The competition pushes both teams to improve their methods until
counterfeit money becomes indistinguishable (or not) from genuine currency.

From a mathematical point of view, here is how the generative process of GANs can be
represented. All the densities that we consider in the article are supposed to be dominated by
a fixed, known, measure μ on E, where E is a Borel subset of Rd . Depending on the prac-
tical context, this dominating measure may be the Lebesgue measure, the counting measure,
or more generally the Hausdorff measure on some submanifold of Rd . We assume to have
at hand an i.i.d. sample X1, . . . ,Xn, drawn according to some unknown density p� on E.
These random variables model the available data, such as images or video sequences; they
typically take their values in a high-dimensional space, so that the ambient dimension d must
be thought of as large. The generators as a whole have the form of a parametric family of
functions from R

d ′
to E (usually, d ′ � d), say G = {Gθ }θ∈Θ , Θ ⊂ R

p . Each function Gθ is
intended to be applied to a d ′-dimensional random variable Z (sometimes called the noise—
in most cases Gaussian or uniform), so that there is a natural family of densities associated

with the generators, say P = {pθ }θ∈Θ , where, by definition, Gθ(Z)
L= pθ dμ. In this model,

each density pθ is a potential candidate to represent p�. On the other hand, the discriminators
are described by a family of Borel functions from E to [0,1], say D , where each D ∈ D
must be thought of as the probability that an observation comes from p� (the higher D(x),
the higher the probability that x is drawn from p�). At some point, but not always, we will
assume that D is in fact a parametric class, of the form {Dα}α∈Λ, Λ ⊂ R

q , as is always the
case in practice. In GANs algorithms, both parametric models {Gθ }θ∈Θ and {Dα}α∈Λ take
the form of neural networks, but this does not play a fundamental role in this paper. We will
simply remember that the dimensions p and q are potentially very large, which takes us away
from a classical parametric setting. We also insist on the fact that it is not assumed that p�

belongs to P .
Let Z1, . . . ,Zn be an i.i.d. sample of random variables, all distributed as the noise Z. The

objective is to solve in θ the problem

(1.1) inf
θ∈Θ

sup
D∈D

[
n∏

i=1

D(Xi) ×
n∏

i=1

(
1 − D ◦ Gθ(Zi)

)]
,

or, equivalently, to find θ̂ ∈ Θ such that

(1.2) sup
D∈D

L̂(θ̂ ,D) ≤ sup
D∈D

L̂(θ,D) ∀θ ∈ Θ,

where

L̂(θ,D)
def= 1

n

n∑
i=1

lnD(Xi) + 1

n

n∑
i=1

ln
(
1 − D ◦ Gθ(Zi)

)

(ln is the natural logarithm). The zero-sum game (1.1) is the statistical translation of making
the distribution of Gθ(Zi) (i.e., pθ ) as indistinguishable as possible from that of Xi (i.e., p�).
Here, distinguishability is understood as the capability to determine from which distribution
an observation x comes from. Mathematically, this is captured by the discrimination value
D(x), which represents the probability that x comes from p� rather than from pθ . Therefore,
for a given θ , the discriminator D is determined so as to be maximal on the Xi and minimal
on the Gθ(Zi). In the most favorable situation (i.e., when the two samples are scattered by
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D ), supD∈D L̂(θ,D) is zero, and the larger this quantity, the more distinguishable the two
samples are. Hence, in order to make the distribution pθ as indistinguishable as possible
from p�, Gθ has to be driven so as to minimize supD∈D L̂(θ,D).

As mentioned above, this adversarial problem is often illustrated by the struggle between
a police team (the discriminators), trying to distinguish true banknotes from false ones (resp.,
the Xi and the Gθ(Zi)), and a counterfeiters team, slaving to produce banknotes as cred-
ible as possible and to mislead the police. Obviously, their objectives (represented by the
quantity L̂(θ,D)) are exactly opposite. All in all, we see that the criterion seeks to find
the right balance between the conflicting interests of the generators and the discriminators.
The hope is that the θ̂ achieving equilibrium will make it possible to generate observations
G

θ̂
(Z1), . . . ,Gθ̂

(Zn) indistinguishable from reality, that is, observations with a distribution
close to the unknown p�.

The criterion L̂(θ,D) involved in (1.2) is the criterion originally proposed in the adversar-
ial framework of Goodfellow et al. (2014). Since then, the success of GANs in applications
has led to a large volume of literature on variants, which all have many desirable proper-
ties but are based on different optimization criteria: examples are MMD-GANs (Dziugaite,
Roy and Ghahramani (2015)), f-GANs (Nowozin, Cseke and Tomioka (2016)), Wasserstein-
GANs (Arjovsky, Chintala and Bottou (2017)), and an approach based on scattering trans-
forms (Angles and Mallat (2018)). All these variations and their innumerable algorithmic
versions constitute the galaxy of GANs. That being said, despite increasingly spectacular
applications, little is known about the mathematical and statistical forces behind these al-
gorithms (e.g., Arjovsky and Bottou (2017), Liu, Bousquet and Chaudhuri (2017), Liang
(2018), Zhang et al. (2018)), and, in fact, nearly nothing about the primary adversarial prob-
lem (1.2). As acknowledged by Liu, Bousquet and Chaudhuri (2017), basic questions on how
well GANs can approximate the target distribution p� remain largely unanswered. In partic-
ular, the role and impact of the discriminators on the quality of the approximation are still a
mystery, and simple but fundamental questions regarding statistical consistency and rates of
convergence remain open.

In the present article, we propose to take a small step toward a better theoretical under-
standing of GANs by analyzing some of the mathematical and statistical properties of the
original adversarial problem (1.2). In Section 2, we study the deep connection between the
population version of (1.2) and the Jensen–Shannon divergence, together with some opti-
mality characteristics of the problem, often referred to in the literature but in fact poorly
understood. Section 3 is devoted to a better comprehension of the role of the discriminator
family via approximation arguments. Finally, taking a statistical point of view, we study in
Section 4 the large sample properties of the distribution p

θ̂
and of θ̂ , and prove in particular

a central limit theorem for this parameter. Section 5 summarizes the main results and dis-
cusses research directions for future work. For clarity, most technical proofs are gathered in
Section 6. Some of our results are illustrated with simulated examples.

2. Optimality properties. We start by studying some important properties of the adver-
sarial principle, emphasizing the role played by the Jensen–Shannon divergence. We recall
that if P and Q are probability measures on E, and P is absolutely continuous with respect
to Q, then the Kullback–Leibler divergence from Q to P is defined as

DKL(P ‖ Q) =
∫

ln
dP

dQ
dP,

where dP
dQ

is the Radon–Nikodym derivative of P with respect to Q. The Kullback–Leibler

divergence is always nonnegative, with DKL(P ‖ Q) zero if and only if P = Q. If p = dP
dμ
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and q = dQ
dμ

exist (meaning that P and Q are absolutely continuous with respect to μ, with
densities p and q), then the Kullback–Leibler divergence is given as

DKL(P ‖ Q) =
∫

p ln
p

q
dμ,

and alternatively denoted by DKL(p ‖ q). We also recall that the Jensen–Shannon divergence
is a symmetrized version of the Kullback–Leibler divergence. It is defined for any probability
measures P and Q on E by

DJS(P,Q) = 1

2
DKL

(
P

∥∥∥ P + Q

2

)
+ 1

2
DKL

(
Q

∥∥∥ P + Q

2

)
,

and satisfies 0 ≤ DJS(P,Q) ≤ ln 2. The square root of the Jensen–Shannon divergence is a
metric often referred to as Jensen–Shannon distance (Endres and Schindelin (2003)). When
P and Q have densities p and q with respect to μ, we use the notation DJS(p, q) in place of
DJS(P,Q).

For a generator Gθ and an arbitrary discriminator D ∈ D , the criterion L̂(θ,D) to be
optimized in (1.2) is but the empirical version of the probabilistic criterion

L(θ,D)
def=

∫
ln(D)p� dμ +

∫
ln(1 − D)pθ dμ.

We assume for the moment that the discriminator class D is not restricted and equals D∞,
the set of all Borel functions from E to [0,1]. We note however that, for all θ ∈ Θ ,

0 ≥ sup
D∈D∞

L(θ,D) ≥ − ln 2
(∫

p� dμ +
∫

pθ dμ

)
= − ln 4,

so that infθ∈Θ supD∈D∞ L(θ,D) ∈ [− ln 4,0]. Thus,

inf
θ∈Θ

sup
D∈D∞

L(θ,D) = inf
θ∈Θ

sup
D∈D∞:L(θ,D)>−∞

L(θ,D).

This identity points out the importance of discriminators such that L(θ,D) > −∞, which we
call θ -admissible. In the sequel, in order to avoid unnecessary problems of integrability, we
only consider such discriminators, keeping in mind that the others have no interest.

Of course, working with D∞ is somehow an idealized vision, since in practice the discrim-
inators are always parameterized by some parameter α ∈ Λ, Λ ⊂R

q . Nevertheless, this point
of view is informative and, in fact, is at the core of the connection between our generative
problem and the Jensen–Shannon divergence. Indeed, taking the supremum of L(θ,D) over
D∞, we have

sup
D∈D∞

L(θ,D) = sup
D∈D∞

∫ [
ln(D)p� + ln(1 − D)pθ

]
dμ

≤
∫

sup
D∈D∞

[
ln(D)p� + ln(1 − D)pθ

]
dμ

= L
(
θ,D�

θ

)
,

where

(2.1) D�
θ

def= p�

p� + pθ

.

(We use throughout the convention 0/0 = 0 and ∞ × 0 = 0.) By observing that L(θ,D�
θ ) =

2DJS(p�,pθ ) − ln 4, we conclude that, for all θ ∈ Θ ,

sup
D∈D∞

L(θ,D) = L
(
θ,D�

θ

) = 2DJS
(
p�,pθ

) − ln 4.
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We note in particular that D�
θ is θ -admissible. The fact that D�

θ realizes the supremum of
L(θ,D) over D∞ and that this supremum is connected to the Jensen–Shannon divergence
between p� and pθ appears in the original article by Goodfellow et al. (2014). This remark has
given rise to many developments that interpret the adversarial problem (1.2) as the empirical
version of the minimization problem infθ DJS(p�,pθ ) over Θ . Accordingly, many GANs
algorithms try to learn the optimal function D�

θ , using for example stochastic gradient descent
techniques and mini-batch approaches. However, it remains to prove that D�

θ is unique as
a maximizer of L(θ,D) over all D. The following theorem, which completes a result of
Goodfellow et al. (2014), shows that this is the case in some situations.

THEOREM 2.1. Let θ ∈ Θ and D ∈ D∞ be such that L(θ,D) = L(θ,D�
θ ). Then D =

D�
θ μ-almost everywhere on the complementary of the set {p� = pθ = 0}. In particular, if

μ({p� = pθ = 0}) = 0, then the function D�
θ is the unique discriminator that achieves the

supremum of the functional D �→ L(θ,D) over D∞, that is,{
D�

θ

} = arg max
D∈D∞

L(θ,D).

Before proving the theorem, it is important to note that if we dot not assume that μ({p� =
pθ = 0}) = 0, then we cannot conclude that D = D�

θ μ-almost everywhere. To see this, sup-
pose that pθ = p�. Then, whatever D̄ ∈ D∞ is, the discriminator D�

θ1{pθ>0} + D̄1{pθ=0}
satisfies

L
(
θ,D�

θ1{pθ>0} + D̄1{pθ=0}
) = L

(
θ,D�

θ

)
.

This simple counterexample shows that uniqueness of the optimal discriminator does not hold
in general.

PROOF. Let D ∈ D∞ be a discriminator such that L(θ,D) = L(θ,D�
θ ). In particu-

lar, L(θ,D) > −∞ and D is θ -admissible. Thus, letting A
def= {p� = pθ = 0} and fα

def=
p� ln(α) + pθ ln(1 − α) for α ∈ [0,1], we see that∫

Ac
(fD − fD�

θ
)dμ = 0.

Since, on Ac,

fD ≤ sup
α∈[0,1]

fα = fD�
θ
,

we have fD = fD�
θ

μ-almost everywhere on Ac. By uniqueness of the maximizer of α �→ fα

on Ac, we conclude that D = D�
θ μ-almost everywhere on Ac. �

By definition of the optimal discriminator D�
θ , we have

L
(
θ,D�

θ

) = sup
D∈D∞

L(θ,D) = 2DJS
(
p�,pθ

) − ln 4 ∀θ ∈ Θ.

Therefore, it makes sense to let the parameter θ� ∈ Θ be defined as

L
(
θ�,D�

θ�

) ≤ L
(
θ,D�

θ

) ∀θ ∈ Θ,

or, equivalently,

(2.2) DJS
(
p�,pθ�

) ≤ DJS
(
p�,pθ

) ∀θ ∈ Θ.

The parameter θ� may be interpreted as the best parameter in Θ for approaching the un-
known density p� in terms of Jensen–Shannon divergence, in a context where all possible
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discriminators are available. In other words, the generator Gθ� is the ideal generator, and
the density pθ� is the one we would ideally like to use to generate fake samples. Of course,
whenever p� ∈ P (i.e., the target density is in the model), then p� = pθ� , DJS(p�,pθ�) = 0,
and D�

θ� = 1/2. This is, however, a very special case, which is of no interest, since in the
applications covered by GANs, the data are usually so complex that the hypothesis p� ∈ P
does not hold.

In the general case, our next theorem provides sufficient conditions for the existence and
uniqueness of θ�. For P and Q probability measures on E, we let δ(P,Q) = √

DJS(P,Q),
and recall that δ is a distance on the set of probability measures on E (Endres and Schindelin
(2003)). We let dP � = p� dμ and, for all θ ∈ Θ , dPθ = pθ dμ.

THEOREM 2.2. Assume that the model P = {Pθ }θ∈Θ is convex and compact for the
metric δ. If p� > 0 μ-almost everywhere, then there exists a unique p̄ ∈ P such that

{p̄} = arg min
p∈P

DJS
(
p�,p

)
.

In particular, if the model P is identifiable, then{
θ�} = arg min

θ∈Θ

L
(
θ,D�

θ

)
or, equivalently, {

θ�} = arg min
θ∈Θ

DJS
(
p�,pθ

)
.

We note that the identifiability assumption in the second statement of the theorem is hardly
satisfied in the high-dimensional context of (deep) neural networks. In this case, it is likely
that several parameters θ yield the same function (generator), so that the parametric setting is
potentially misspecified. However, if we think in terms of distributions instead of parameters,
then the first part of Theorem 2.2 ensures existence and uniqueness of the optimum.

PROOF OF THEOREM 2.2. Assuming the first part of the theorem, the second one is
obvious since L(θ,D�

θ ) = supD∈D∞ L(θ,D) = 2DJS(p�,pθ ) − ln 4. Therefore, it is enough
to prove that there exists a unique density p̄ of P such that

{p̄} = arg min
p∈P

DJS
(
p�,p

)
.

Existence. Since P is compact for δ, it is enough to show that the function

P →R+
P �→ DJS(P �,P )

is continuous. But this is clear since, for all P1,P2 ∈ P , |δ(P �,P1)− δ(P �,P2)| ≤ δ(P1,P2)

by the triangle inequality. Therefore, arg minp∈PDJS(p�,p) �= ∅.
Uniqueness. For a ≥ 0, we consider the function Fa defined by

Fa(x) = a ln
(

2a

a + x

)
+ x ln

(
2x

a + x

)
, x ≥ 0,

with the convention 0 ln 0 = 0. Clearly, F ′′
a (x) = a

x(a+x)
, which shows that Fa is strictly con-

vex whenever a > 0. We now proceed to prove that L1(μ) ⊃ P � p �→ DJS(p�,p) is strictly
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convex as well. Let λ ∈ (0,1) and p1,p2 ∈ P with p1 �= p2, that is, μ({p1 �= p2}) > 0. Then

DJS
(
p�,λp1 + (1 − λ)p2

)
=

∫
Fp�

(
λp1 + (1 − λ)p2

)
dμ

=
∫
{p1=p2}

Fp�(p1)dμ +
∫
{p1 �=p2}

Fp�

(
λp1 + (1 − λ)p2

)
dμ.

By the strict convexity of Fp� over {p� > 0}, we obtain

DJS
(
p�,λp1 + (1 − λ)p2

)
<

∫
{p1=p2}

Fp�(p1)dμ + λ

∫
{p1 �=p2}

Fp�(p1)dμ

+ (1 − λ)

∫
{p1 �=p2}

Fp�(p2)dμ,

which implies

DJS
(
p�,λp1 + (1 − λ)p2

)
< λDJS

(
p�,p1

) + (1 − λ)DJS
(
p�,p2

)
.

Consequently, the function L1(μ) ⊃ P � p �→ DJS(p�,p) is strictly convex, and its arg min
over the convex set P is either the empty set or a singleton. �

REMARK 2.1. There are simple conditions for the model P = {Pθ }θ∈Θ to be compact
for the metric δ. It is for example enough to suppose that Θ is compact, P is convex, and:

(i) For all x ∈ E, the function θ �→ pθ(x) is continuous on Θ ;
(ii) One has sup(θ,θ ′)∈Θ2 |pθ lnpθ ′ | ∈ L1(μ).

Let us quickly check that under these conditions, P is compact for the metric δ. Since Θ

is compact, by the sequential characterization of compact sets, it is enough to prove that if
Θ ⊃ (θn)n converges to θ ∈ Θ , then DJS(pθ ,pθn) → 0. But

DJS(pθ ,pθn) =
∫ [

pθ ln
(

2pθ

pθ + pθn

)
+ pθn ln

(
2pθn

pθ + pθn

)]
dμ.

By the convexity of P , using (i) and (ii), the Lebesgue dominated convergence theorem
shows that DJS(pθ ,pθn) → 0, whence the result.

Interpreting the adversarial problem in connection with the optimization program
infθ∈Θ DJS(p�,pθ ) is a bit misleading, because this is based on the assumption that all pos-
sible discriminators are available (and in particular the optimal discriminator D�

θ ). In the end,
this means assuming that we know the distribution p�, which is eventually not acceptable
from a statistical perspective. In practice, the class of discriminators is always restricted to
be a parametric family D = {Dα}α∈Λ, Λ ⊂R

q , and it is with this class that we have to work.
From our point of view, problem (1.2) is a likelihood-type problem involving two parametric
families G and D , which must be analyzed as such, just as we would do for a classical max-
imum likelihood approach. In fact, it takes no more than a moment’s thought to realize that
the key lies in the approximation capabilities of the discriminator class D with respect to the
functions D�

θ , θ ∈ Θ . This is the issue that we discuss in the next section.
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3. Approximation properties. In the remainder of the article, we assume that θ� ex-
ists, keeping in mind that Theorem 2.2 provides us with precise conditions guaranteeing
its existence and its uniqueness. As pointed out earlier, in practice only a parametric class
D = {Dα}α∈Λ, Λ ⊂ R

q , is available, and it is therefore logical to consider the parameter
θ̄ ∈ Θ defined by

sup
D∈D

L(θ̄,D) ≤ sup
D∈D

L(θ,D) ∀θ ∈ Θ.

(We assume for now that θ̄ exists—sufficient conditions for this existence, relating to com-
pactness of Θ and regularity of the model P , will be given in the next section.) The density
pθ̄ is thus the best candidate to imitate pθ� , given the parametric families of generators G
and discriminators D . The natural question is then: is it possible to quantify the proximity
between pθ̄ and the ideal pθ� via the approximation properties of the class D? In other words,
if D is growing, is it true that pθ̄ approaches pθ� , and in the affirmative, in which sense and at
which speed? Theorem 3.1 below provides a first answer to this important question, in terms
of excess of Jensen–Shannon error DJS(p�,pθ̄ ) − DJS(p�,pθ�). To state the result, we will
need an assumption.

Let ‖ · ‖2 be the L2(μ) norm. Our condition guarantees that the parametric class D is rich
enough to approach the discriminator D�

θ̄
in the L2 sense. In the remainder of the section, it

is assumed that D�
θ̄
∈ L2(μ).

ASSUMPTION (Hε ). There exist ε > 0, m ∈ (0,1/2), and D ∈ D ∩ L2(μ) such that
m ≤ D ≤ 1 − m and ‖D − D�

θ̄
‖2 ≤ ε.

We observe in passing that such a discriminator D is θ̄ -admissible. We are now equipped
to state our approximation theorem. For ease of reading, its proof is postponed to Section 6.

THEOREM 3.1. Assume that, for some M > 0, p� ≤ M and pθ̄ ≤ M . Then, under As-
sumption (Hε) with ε < 1/(2M), there exists a positive constant c (depending only upon m

and M) such that

(3.1) 0 ≤ DJS
(
p�,pθ̄

) − DJS
(
p�,pθ�

) ≤ cε2.

This theorem points out that if the class D is rich enough to approximate the discriminator
D�

θ̄
in such a way that ‖D − D�

θ̄
‖2 ≤ ε for some small ε, then working with a restricted class

of discriminators D instead of the set of all discriminators D∞ has an impact that is not larger
than a O(ε2) factor with respect to the excess of Jensen–Shannon error. It shows in particular
that the Jensen–Shannon divergence is a suitable criterion for the problem we are examining.

4. Statistical analysis. The data-dependent parameter θ̂ , achieves the infimum of the
adversarial problem (1.2). Practically speaking, it is this parameter that will be used in the
end for producing fake data, via the associated generator G

θ̂
. We first study in Section 4.1

the large sample properties of the distribution p
θ̂

via the excess of Jensen–Shannon error
DJS(p�,p

θ̂
) − DJS(p�,pθ�), and then state in Section 4.2 the almost sure convergence and

asymptotic normality of the parameter θ̂ as the sample size n tends to infinity. Throughout,
the parameter sets Θ and Λ are assumed to be compact subsets of Rp and R

q , respectively.
To simplify the analysis, we also assume that μ(E) < ∞. In this case, every discriminator is
in Lp(μ) for all p ≥ 1.
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4.1. Asymptotic properties of DJS(p�,p
θ̂
). As for now, we assume that we have at hand

a parametric family of generators G = {Gθ }θ∈Θ , Θ ⊂ R
p , and a parametric family of dis-

criminators D = {Dα}α∈Λ, Λ ⊂ R
q . We recall that the collection of probability densities

associated with G is P = {pθ }θ∈Θ , where Gθ(Z)
L= pθ dμ and Z is some low-dimensional

noise random variable. In order to avoid any confusion, for a given discriminator D = Dα we
use the notation L̂(θ, α) (resp., L(θ,α)) instead of L̂(θ,D) (resp., L(θ,D)) when useful. So,

L̂(θ, α) = 1

n

n∑
i=1

lnDα(Xi) + 1

n

n∑
i=1

ln
(
1 − Dα ◦ Gθ(Zi)

)
,

and

L(θ,α) =
∫

ln(Dα)p� dμ +
∫

ln(1 − Dα)pθ dμ.

We will need the following regularity assumptions:

ASSUMPTIONS (Hreg).

(HD) There exists κ ∈ (0,1/2) such that, for all α ∈ Λ, κ ≤ Dα ≤ 1 − κ . In addition, the
function (x,α) �→ Dα(x) is of class C1, with a uniformly bounded differential.

(HG) For all z ∈ R
d ′

, the function θ �→ Gθ(z) is of class C1, uniformly bounded, with a
uniformly bounded differential.

(Hp) For all x ∈ E, the function θ �→ pθ(x) is of class C1, uniformly bounded, with a
uniformly bounded differential.

Note that under (HD), all discriminators in {Dα}α∈Λ are θ -admissible, whatever θ . All of
these requirements are classic regularity conditions for statistical models, which imply in par-
ticular that the functions L̂(θ, α) and L(θ,α) are continuous. Therefore, the compactness of
Θ guarantees that θ̂ and θ̄ exist. Conditions for the existence of θ� are given in Theorem 2.2.

We have known since Theorem 3.1 that if the available class of discriminators D ap-
proaches the optimal discriminator D�

θ̄
by a distance not more than ε, then DJS(p�,pθ̄ ) −

DJS(p�,pθ�) = O(ε2). It is therefore reasonable to expect that, asymptotically, the differ-
ence DJS(p�,p

θ̂
) − DJS(p�,pθ�) will not be larger than a term proportional to ε2, in some

probabilistic sense. This is precisely the result of Theorem 4.1 below. In fact, most articles
to date have focused on the development and analysis of optimization procedures (typically,
stochastic-gradient-type algorithms) to compute θ̂ , without really questioning its convergence
properties as the data set grows. Although our statistical results are theoretical in nature, we
believe that they are complementary to the optimization literature, insofar as they offer guar-
antees on the validity of the algorithms.

In addition to the regularity hypotheses, we will need the following requirement, which is
a stronger version of (Hε):

ASSUMPTION (H ′
ε ). There exist ε > 0 and m ∈ (0,1/2) such that: for all θ ∈ Θ , there

exists D ∈ D such that m ≤ D ≤ 1 − m and ‖D − D�
θ‖2 ≤ ε.

We are ready to state our first statistical theorem.

THEOREM 4.1. Assume that, for some M > 0, p� ≤ M and pθ ≤ M for all θ ∈ Θ . Then,
under Assumptions (Hreg) and (H ′

ε) with ε < 1/(2M), one has

EDJS
(
p�,p

θ̂

) − DJS
(
p�,pθ�

) = O
(
ε2 + 1√

n

)
.
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REMARK 4.1. The constant hidden in the O term scales as p + q . Knowing that (deep)
neural networks, and thus GANs, are often used in the so-called overparameterized regime
(i.e., when the number of parameters exceeds the number of examples), this limits the impact
of the result in the neural network context, at least when p+q is large with respect to

√
n. For

instance, successful applications of GANs on common datasets such as LSUN (
√

n ≈ 1740)
and FACES (

√
n ≈ 590) make use of more than 1,500,000 parameters (Radford, Metz and

Chintala (2016)).

PROOF OF THEOREM 4.1. Fix ε ∈ (0,1/(2M)) as in Assumption (H ′
ε), and choose D̂ ∈

D such that m ≤ D̂ ≤ 1 − m and ‖D̂ − D�

θ̂
‖2 ≤ ε. By repeating the arguments of the proof of

Theorem 3.1 (with θ̂ instead of θ̄ ), we conclude that there exists a constant c1 > 0 such that

2DJS
(
p�,p

θ̂

) ≤ c1ε
2 + L(θ̂, D̂) + ln 4 ≤ c1ε

2 + sup
α∈Λ

L(θ̂, α) + ln 4.

Therefore,

2DJS
(
p�,p

θ̂

) ≤ c1ε
2 + sup

θ∈Θ,α∈Λ

∣∣L̂(θ, α) − L(θ,α)
∣∣ + sup

α∈Λ

L̂(θ̂ , α) + ln 4

= c1ε
2 + sup

θ∈Θ,α∈Λ

∣∣L̂(θ, α) − L(θ,α)
∣∣ + inf

θ∈Θ
sup
α∈Λ

L̂(θ,α) + ln 4

(by definition of θ̂ )

≤ c1ε
2 + 2 sup

θ∈Θ,α∈Λ

∣∣L̂(θ, α) − L(θ,α)
∣∣ + inf

θ∈Θ
sup
α∈Λ

L(θ,α) + ln 4.

So,

2DJS
(
p�,p

θ̂

) ≤ c1ε
2 + 2 sup

θ∈Θ,α∈Λ

∣∣L̂(θ, α) − L(θ,α)
∣∣ + inf

θ∈Θ
sup

D∈D∞
L(θ,D) + ln 4

= c1ε
2 + 2 sup

θ∈Θ,α∈Λ

∣∣L̂(θ, α) − L(θ,α)
∣∣ + L

(
θ�,D�

θ�

) + ln 4

(by definition of θ�)

= c1ε
2 + 2DJS

(
p�,pθ�

) + 2 sup
θ∈Θ,α∈Λ

∣∣L̂(θ, α) − L(θ,α)
∣∣.

Thus, letting c2 = c1/2, we have

(4.1) DJS
(
p�,p

θ̂

) − DJS
(
p�,pθ�

) ≤ c2ε
2 + sup

θ∈Θ,α∈Λ

∣∣L̂(θ, α) − L(θ,α)
∣∣.

Clearly, under Assumptions (HD), (HG), and (Hp), (L̂(θ, α)−L(θ,α))θ∈Θ,α∈Λ is a separa-
ble sub-Gaussian process (e.g., van Handel (2016), Chapter 5) for the distance d = S‖·‖/√n,
where ‖ ·‖ is the standard Euclidean norm on R

p ×R
q and S > 0 depends only on the bounds

in (HD) and (HG). Let N(Θ × Λ,‖ · ‖, u) denote the u-covering number of Θ × Λ for the
distance ‖ · ‖. Then, by Dudley’s inequality (van Handel (2016), Corollary 5.25),

(4.2) E sup
θ∈Θ,α∈Λ

∣∣L̂(θ, α) − L(θ,α)
∣∣ ≤ 12S√

n

∫ ∞
0

√
ln

(
N

(
Θ × Λ,‖ · ‖, u))

du.

Since Θ and Λ are bounded, there exists r > 0 such that N(Θ × Λ,‖ · ‖, u) = 1 for u ≥ r

and

N
(
Θ × Λ,‖ · ‖, u) = O

((√
p + q

u

)p+q)
for u < r.
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FIG. 1. Bar plots of the Jensen–Shannon divergence DJS(p�,p
θ̂
) with respect to the number of layers (depth)

of both the discriminators and generators. The height of each rectangle estimates EDJS(p�,p
θ̂
).

Combining this inequality with (4.1) and (4.2), we obtain

EDJS
(
p�,p

θ̂

) − DJS
(
p�,pθ�

) ≤ c3

(
ε2 + 1√

n

)
,

for some positive constant c3 that scales as p + q . The conclusion follows by observing that,
by (2.2),

DJS
(
p�,pθ�

) ≤ DJS
(
p�,p

θ̂

)
. �

Theorem 4.1 is illustrated in Figure 1, which shows the approximate values of EDJS(p�,

p
θ̂
). We took p�(x) = e−x/s

s(1+e−x/s)2 (centered logistic density with scale parameter s = 0.33),
and let G and D be two fully connected neural networks parameterized by weights and off-
sets. The noise random variable Z follows a uniform distribution on [0,1], and the parameters
of G and D are chosen in a sufficiently large compact set. In order to illustrate the impact of
ε in Theorem 4.1, we fixed the sample size to a large n = 100,000 and varied the number of
layers of the discriminators from 2 to 5, keeping in mind that a larger number of layers results
in a smaller ε. To diversify the setting, we also varied the number of layers of the generators
from 2 to 3. The expectation EDJS(p�,p

θ̂
) was estimated by averaging over 30 repetitions

(the number of runs has been reduced for time complexity limitations). Note that we do not
pay attention to the exact value of the constant term DJS(p�,pθ�), which is intractable in our
setting.

Figure 1 highlights that EDJS(p�,p
θ̂
) approaches the value DJS(p�,pθ�) as ε ↓ 0, that is,

as the discriminator depth increases, given that the contribution of 1/
√

n is certainly negligi-
ble for n = 100,000. Figure 2 shows the target density p� versus the histograms and kernel
estimates of 100,000 data sampled from G

θ̂
(Z), in the two cases: (discriminator depth = 2,

generator depth = 3) and (discriminator depth = 5, generator depth = 3). In accordance with
the decrease of EDJS(p�,p

θ̂
), the estimation of the true distribution p� improves when ε

becomes small.

Some comments on the optimization scheme. Numerical optimization is quite a tough point
for GANs, partly due to nonconvex-concavity of the saddle point problem described in equa-
tion (1.2) and the nondifferentiability of the objective function. This motivates a very ac-
tive line of research (e.g., Goodfellow et al. (2014), Nowozin, Cseke and Tomioka (2016),
Arjovsky, Chintala and Bottou (2017), Arjovsky and Bottou (2017)), which aims at trans-
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FIG. 2. True density p�, histograms and kernel estimates (continuous line) of 100,000 data sampled from
G

θ̂
(Z). Also shown is the final discriminator Dα̂ .

forming the objective into a more convenient function and devising efficient algorithms. In the
present paper, since we are interested in original GANs, the algorithmic approach described
by Goodfellow et al. (2014) is adopted, and numerical optimization is performed thanks to
the machine learning framework TensorFlow (Abadi et al. (2015)), working with gradient
descent based on automatic differentiation. As proposed by Goodfellow et al. (2014), the ob-
jective function θ �→ supα∈Λ L̂(θ,α) is not directly minimized. We used instead an alternated
procedure, which consists in iterating (a few hundred times in our examples) the following
two steps:

(i) For a fixed value of θ and from a given value of α, perform 10 ascent steps on L̂(θ, ·);
(ii) For a fixed value of α and from a given value of θ , perform 1 descent step on θ �→

−∑n
i=1 ln(Dα ◦ Gθ(Zi)) (instead of θ �→ ∑n

i=1 ln(1 − Dα ◦ Gθ(Zi))).

This alternated procedure is motivated by two reasons. First, for a given θ , approximating
supα∈Λ L̂(θ,α) is computationally prohibitive and may result in overfitting the finite train-
ing sample (Goodfellow et al. (2014)). This can be explained by the shape of the function
θ �→ supα∈Λ L̂(θ,α), which may be almost piecewise constant, resulting in a zero gradient
almost everywhere (or at best very low; see Arjovsky, Chintala and Bottou (2017)). Next, em-
pirically, − ln(Dα ◦ Gθ(Zi)) provides bigger gradients than ln(1 − Dα ◦ Gθ(Zi)), resulting
in a more powerful algorithm than the original version, while leading to the same minimiz-
ers.

In all our experiments, the learning rates needed in gradient steps were fixed and tuned
by hand, in order to prevent divergence. In addition, since our main objective is to focus on
illustrating the statistical properties of GANs rather than delving into optimization issues, we
decided to perform mini-batch gradient updates instead of stochastic ones (i.e., new observa-
tions of X and Z are not sampled at each step of the procedure). This is different from what
is done in the original algorithm of Goodfellow et al. (2014).

All in all, we realize that our numerical approach—although widely adopted by the ma-
chine learning community—may fail to locate the desired estimator θ̂ (i.e., the exact mini-
mizer in θ of supα∈Λ L̂(θ,α)) in more complex contexts than those presented in the present
paper. It is nevertheless sufficient for our objective, which is limited to illustrating the theo-
retical results with a few simple examples.

4.2. Asymptotic properties of θ̂ . Theorem 4.1 states a result relative to the excess of
Jensen–Shannon error DJS(p�,p

θ̂
) − DJS(p�,pθ�). We now examine the convergence prop-

erties of the parameter θ̂ itself as the sample size n grows. We would typically like to find
reasonable conditions ensuring that θ̂ → θ̄ almost surely as n → ∞. To reach this goal, we
first need to strengthen a bit the Assumptions (Hreg), as follows:
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ASSUMPTIONS (H ′
reg).

(H ′
D) There exists κ ∈ (0,1/2) such that, for all α ∈ Λ, κ ≤ Dα ≤ 1 − κ . In addition,

the function (x,α) �→ Dα(x) is of class C2, with differentials of order 1 and 2 uniformly
bounded.

(H ′
G) For all z ∈ R

d ′
, the function θ �→ Gθ(z) is of class C2, uniformly bounded, with

differentials of order 1 and 2 uniformly bounded.
(H ′

p) For all x ∈ E, the function θ �→ pθ(x) is of class C2, uniformly bounded, with
differentials of order 1 and 2 uniformly bounded.

It is easy to verify that under these assumptions the partial functions θ �→ L̂(θ, α) (resp.,
θ �→ L(θ,α)) and α �→ L̂(θ, α) (resp., α �→ L(θ,α)) are of class C2. Throughout, we let θ =
(θ1, . . . , θp), α = (α1, . . . , αq), and denote by ∂

∂θi
and ∂

∂αj
the partial derivative operations

with respect to θi and αj . The next lemma will be of constant utility. In order not to burden
the text, its proof is given in Section 6.

LEMMA 4.1. Under Assumptions (H ′
reg), ∀(a, b, c, d) ∈ {0,1,2}4 such that a + b ≤ 2

and c + d ≤ 2, one has

sup
θ∈Θ,α∈Λ

∣∣∣∣ ∂a+b+c+d

∂θa
i ∂θb

j ∂αc
�∂αd

m

L̂(θ,α) − ∂a+b+c+d

∂θa
i ∂θb

j ∂αc
�∂αd

m

L(θ,α)

∣∣∣∣ → 0

almost surely, for all (i, j) ∈ {1, . . . , p}2 and (�,m) ∈ {1, . . . , q}2.

We recall that θ̄ ∈ Θ is such that

sup
α∈Λ

L(θ̄, α) ≤ sup
α∈Λ

L(θ,α) ∀θ ∈ Θ,

and insist that θ̄ exists under (H ′
reg) by continuity of the map θ �→ supα∈Λ L(θ,α). Similarly,

there exists ᾱ ∈ Λ such that

L(θ̄, ᾱ) ≥ L(θ̄, α) ∀α ∈ Λ.

The following assumption ensures that θ̄ and ᾱ are uniquely defined, which is of course a
key hypothesis for our estimation objective. Throughout, the notation S◦ (resp., ∂S) stands
for the interior (resp., the boundary) of the set S.

ASSUMPTION (H1). The pair (θ̄ , ᾱ) is unique and belongs to Θ◦ × Λ◦.

Finally, in addition to θ̂ , we let α̂ ∈ Λ be such that

L̂(θ̂ , α̂) ≥ L̂(θ̂ , α) ∀α ∈ Λ.

THEOREM 4.2. Under Assumptions (H ′
reg) and (H1), one has

θ̂ → θ̄ almost surely and α̂ → ᾱ almost surely.

PROOF. We write∣∣∣sup
α∈Λ

L(θ̂, α) − sup
α∈Λ

L(θ̄, α)
∣∣∣

≤
∣∣∣sup
α∈Λ

L(θ̂, α) − sup
α∈Λ

L̂(θ̂ , α)
∣∣∣ + ∣∣∣ inf

θ∈Θ
sup
α∈Λ

L̂(θ,α) − inf
θ∈Θ

sup
α∈Λ

L(θ,α)
∣∣∣

≤ 2 sup
θ∈Θ,α∈Λ

∣∣L̂(θ, α) − L(θ,α)
∣∣.
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Thus, by Lemma 4.1, supα∈Λ L(θ̂, α) → supα∈Λ L(θ̄, α) almost surely. In the lines that fol-

low, we make more transparent the dependence of θ̂ in the sample size n and set θ̂n
def= θ̂ . Since

θ̂n ∈ Θ and Θ is compact, we can extract from any subsequence of (θ̂n)n a subsequence (θ̂nk
)k

such that θ̂nk
→ z ∈ Θ (with nk = nk(ω), that is, it is almost surely defined). By continuity of

the function θ �→ supα∈Λ L(θ,α), we deduce that supα∈Λ L(θ̂nk
, α) → supα∈Λ L(z,α), and

so supα∈Λ L(z,α) = supα∈Λ L(θ̄, α). Since θ̄ is unique by (H1), we have z = θ̄ . In conclu-
sion, we can extract from each subsequence of (θ̂n)n a subsequence that converges toward θ̄ :
this shows that θ̂n → θ̄ almost surely.

Finally, we have∣∣L(θ̄, α̂) − L(θ̄, ᾱ)
∣∣

≤ ∣∣L(θ̄, α̂) − L(θ̂, α̂)
∣∣ + ∣∣L(θ̂, α̂) − L̂(θ̂ , α̂)

∣∣ + ∣∣L̂(θ̂ , α̂) − L(θ̄, ᾱ)
∣∣

= ∣∣L(θ̄, α̂) − L(θ̂, α̂)
∣∣ + ∣∣L(θ̂, α̂) − L̂(θ̂ , α̂)

∣∣
+

∣∣∣ inf
θ∈Θ

sup
α∈Λ

L̂(θ,α) − inf
θ∈Θ

sup
α∈Λ

L(θ,α)
∣∣∣

≤ sup
α∈Λ

∣∣L(θ̄, α) − L(θ̂, α)
∣∣ + 2 sup

θ∈Θ,α∈Λ

∣∣L̂(θ, α) − L(θ,α)
∣∣.

Using Assumptions (H ′
D) and (H ′

p), and the fact that θ̂ → θ̄ almost surely, we see that the
first term above tends to zero. The second one vanishes asymptotically by Lemma 4.1, and
we conclude that L(θ̄, α̂) → L(θ̄, ᾱ) almost surely. Since α̂ ∈ Λ and Λ is compact, we may
argue as in the first part of the proof and deduce from the uniqueness of ᾱ that α̂ → ᾱ almost
surely. �

To illustrate the result of Theorem 4.2, we undertook a series of small numerical exper-
iments with three choices for the triplet (true p� + generator model P = {pθ }θ∈Θ + dis-
criminator family D = {Dα}α∈Λ), which we respectively call the Laplace–Gaussian, Claw–
Gaussian, and Exponential–Uniform model. They are summarized in Table 1. We are aware
that more elaborate models (involving, e.g., neural networks) can be designed and imple-
mented. However, our objective is not to conduct a series of extensive simulations, but simply
to illustrate our theoretical results with a few graphs to get some better intuition and provide

TABLE 1
Triplets used in the numerical experiments

Model p� P = {pθ }θ∈Θ D = {Dα}α∈Λ

Laplace–Gaussian 1
2b

e− |x|
b 1√

2πθ
e
− x2

2θ2 1

1+ α1
α0

e
x2
2 (α

−2
1 −α

−2
0 )

b = 1.5 Θ = [10−1,103] Λ = Θ × Θ

Claw–Gaussian pclaw(x) 1√
2πθ

e
− x2

2θ2 1

1+ α1
α0

e
x2
2 (α

−2
1 −α

−2
0 )

Θ = [10−1,103] Λ = Θ × Θ

Exponential–Uniform λe−λx 1
θ 1[0,θ](x) 1

1+ α1
α0

e
x2
2 (α

−2
1 −α

−2
0 )

λ = 1 Θ = [10−3,103] Λ = Θ × Θ
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FIG. 3. Probability density functions p� used in the numerical experiments.

a sanity check. We stress in particular that these experiments are in one dimension and are
therefore very limited compared to the way GANs algorithms are typically used in practice.

Figure 3 shows the densities p�. We recall that the claw density on (−∞,∞) takes the
form

pclaw = 1

2
ϕ(0,1) + 1

10

(
ϕ(−1,0.1) + ϕ(−0.5,0.1)

+ ϕ(0,0.1) + ϕ(0.5,0.1) + ϕ(1,0.1)
)
,

where ϕ(μ,σ) is a Gaussian density with mean μ and standard deviation σ (this density is
borrowed from Devroye (1997)).

In the Laplace–Gaussian and Claw–Gaussian examples, the densities pθ are centered
Gaussian, parameterized by their standard deviation parameter θ . The random variable
Z is uniform on [0,1] and the natural family of generators associated with the model
P = {pθ }θ∈Θ is G = {Gθ }θ∈Θ , where each Gθ is the generalized inverse of the cumula-

tive distribution function of pθ (because Gθ(Z)
L= pθ dμ). The rationale behind our choice

for the discriminators is based on the form of the optimal discriminator D�
θ described in (2.1):

starting from

D�
θ = p�

p� + pθ

, θ ∈ Θ,

we logically consider the following ratio:

Dα = pα1

pα1 + pα0

, α = (α0, α1) ∈ Λ = Θ × Θ.

Figure 4 (Laplace–Gaussian), Figure 5 (Claw–Gaussian), and Figure 6 (Exponential–
Uniform) show the boxplots of the differences θ̂ − θ̄ over 200 repetitions, for a sample size
n varying from 10 to 10,000. In these experiments, the parameter θ̄ is obtained by averaging
the θ̂ for the largest sample size n. In accordance with Theorem 4.2, the size of the boxplots
shrinks around 0 when n increases, thus showing that the estimated parameter θ̂ is getting
closer and closer to θ̄ . Before analyzing at which rate this convergence occurs, we may have
a look at Figure 7, which plots the estimated density p

θ̂
(for n = 10,000) versus the true

density p�. It also shows the discriminator Dα̂ , together with the initial density pθ init and
the initial discriminator Dα init fed into the optimization algorithm. We note that in the three
models, Dα̂ is almost identically 1/2, meaning that it is impossible to discriminate between
the original observations and those generated by p

θ̂
.
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FIG. 4. Boxplots of θ̂ − θ̄ for different sample sizes (Laplace–Gaussian model, 200 repetitions).

In line with the above, our next step is to state a central limit theorem for θ̂ . Although
simple to understand, this result requires additional assumptions and some technical prereq-
uisites. One first needs to ensure that the function (θ,α) �→ L(θ,α) is regular enough in a
neighborhood of (θ̄ , ᾱ). This is captured by the following set of assumptions, which require
in particular the uniqueness of the maximizer of the function α �→ L(θ,α) for a θ around
θ̄ . For a function F : Θ → R (resp., G : Θ × Λ → R), we let HF(θ) (resp., H1G(θ,α)

and H2G(θ,α)) be the Hessian matrix of the function θ �→ F(θ) (resp., θ �→ G(θ,α) and
α �→ G(θ,α)) computed at θ (resp., at θ and α).

ASSUMPTIONS (Hloc).

(HU) There exists a neighborhood U of θ̄ and a function α : U → Λ such that

arg max
α∈Λ

L(θ,α) = {
α(θ)

} ∀θ ∈ U.

(HV ) The Hessian matrix HV (θ̄) is invertible, where V (θ)
def= L(θ,α(θ)).

(HH ) The Hessian matrix H2L(θ̄, ᾱ) is invertible.

We stress that under Assumption (HU), there is for each θ ∈ U a unique α(θ) ∈ Λ such
that L(θ,α(θ)) = supα∈Λ L(θ,α). We also note that α(θ̄) = ᾱ under (H1). We still need some
notation before we state the central limit theorem. For a function f (θ,α), ∇1f (θ,α) (resp.,
∇2f (θ,α)) means the gradient of the function θ �→ f (θ,α) (resp., the function α �→ f (θ,α))
computed at θ (resp., at α). For a function g(t), J (g)t is the Jacobian matrix of g computed

FIG. 5. Boxplots of θ̂ − θ̄ for different sample sizes (Claw–Gaussian model, 200 repetitions).
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FIG. 6. Boxplots of θ̂ − θ̄ for different sample sizes (Exponential–Uniform model, 200 repetitions).

at t . Observe that by the envelope theorem,

HV (θ̄) = H1L(θ̄, ᾱ) + J
(∇1L(θ̄, ·))ᾱJ (α)θ̄ ,

where, by the chain rule,

J (α)θ̄ = −H2L(θ̄, ᾱ)−1J
(∇2L(·, ᾱ)

)
θ̄ .

Therefore, in Assumption (HV ), the Hessian matrix HV (θ̄) can be computed with the sole
knowledge of L. Finally, we let

�1(θ,α) = lnDα(X1) + ln
(
1 − Dα ◦ Gθ(Z1)

)
,

and denote by
L→ the convergence in distribution.

FIG. 7. True density p�, estimated density p
θ̂

, and discriminator Dα̂ for n = 10,000 (from left to right:
Laplace–Gaussian, Claw–Gaussian and Exponential–Uniform model). Also shown are the initial density pθ init
and the initial discriminator Dα init fed into the optimization algorithm.
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THEOREM 4.3. Under Assumptions (H ′
reg), (H1), and (Hloc), one has

√
n(θ̂ − θ̄ )

L→ Z,

where Z is a Gaussian random variable with mean 0 and covariance matrix

V = Var
[−HV (θ̄)−1∇1�1(θ̄ , ᾱ)

+ HV (θ̄)−1J
(∇1L(θ̄, ·))ᾱH2L(θ̄, ᾱ)−1∇2�1(θ̄ , ᾱ)

]
.

The expression of the covariance is relatively complex and, unfortunately, cannot be sim-
plified, even for a dimension of the parameter equal to 1. We note however that if Y is a
random vector of Rp whose components are bounded in absolute value by some δ > 0, then
the Euclidean norm of the covariance matrix of Y is bounded by 4pδ2. But each component
of the random vector of Rp involved in the covariance matrix V is bounded in absolute value
by Cpq2, for some positive constant C resulting from Assumption (H ′

reg). We conclude that

the Euclidean norm of V is bounded by 4C2p3q4. Thus, our statistical approach reveals that
in the overparameterized regime (i.e., when p and q are very large compared to n), the esti-
mator θ̂ has a large dispersion around θ̄ , which may affects the performance of the algorithm.

Nevertheless, the take-home message of Theorem 4.3 is that the estimator θ̂ is asymptoti-
cally normal, with a convergence rate of

√
n. This is illustrated in Figures 8, 9, and 10, which

respectively show the histograms and kernel estimates of the distribution of
√

n(θ̂ − θ̄ ) for
the Laplace–Gaussian, the Claw–Gaussian, and the Exponential–Uniform model in function
of the sample size n (200 repetitions).

PROOF OF THEOREM 4.3. By technical Lemma 6.1, we can find under Assumptions
(H ′

reg) and (H1) an open set V ⊂ U ⊂ Θ◦ containing θ̄ such that, for all θ ∈ V , α(θ) ∈ Λ◦.

FIG. 8. Histograms and kernel estimates (continuous line) of the distribution of
√

n(θ̂ − θ̄ ) for different sample
sizes n (Laplace–Gaussian model, 200 repetitions).
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FIG. 9. Histograms and kernel estimates (continuous line) of the distribution of
√

n(θ̂ − θ̄ ) for different sample
sizes n (Claw–Gaussian model, 200 repetitions).

FIG. 10. Histograms and kernel estimates (continuous line) of the distribution of
√

n(θ̂ − θ̄ ) for different sample
sizes n (Exponential–Uniform model, 200 repetitions).
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In the sequel, to lighten the notation, we assume without loss of generality that V = U . Thus,
for all θ ∈ U , we have α(θ) ∈ Λ◦ and L(θ,α(θ)) = supα∈Λ L(θ,α) (with α(θ̄) = ᾱ by (H1)).
Accordingly, ∇2L(θ,α(θ)) = 0, ∀θ ∈ U . Also, since H2L(θ̄, ᾱ) is invertible by (HH ) and
since the function (θ,α) �→ H2L(θ,α) is continuous, there exists an open set U ′ ⊂ U such
that H2L(θ,α) is invertible as soon as (θ,α) ∈ (U ′, α(U ′)). Without loss of generality, we
assume that U ′ = U . Thus, by the chain rule, the function α is of class C2 in a neighborhood
U ′ ⊂ U of θ̄ , say U ′ = U , with Jacobian matrix given by

J (α)θ = −H2L
(
θ,α(θ)

)−1
J

(∇2L
(·, α(θ)

))
θ ∀θ ∈ U.

We note that H2L(θ,α(θ))−1 is of format q × q and J (∇2L(·, α(θ)))θ of format q × p.
Now, for each θ ∈ U , we let α̂(θ) be such that L̂(θ, α̂(θ)) = supα∈Λ L̂(θ,α). Clearly,∣∣L(

θ, α̂(θ)
) − L

(
θ,α(θ)

)∣∣
≤ ∣∣L(

θ, α̂(θ)
) − L̂

(
θ, α̂(θ)

)∣∣ + ∣∣L̂(
θ, α̂(θ)

) − L
(
θ,α(θ)

)∣∣
≤ sup

α∈Λ

∣∣L(θ,α) − L̂(θ, α)
∣∣ + ∣∣∣sup

α∈Λ

L̂(θ,α) − sup
α∈Λ

L(θ,α)
∣∣∣

≤ 2 sup
α∈Λ

∣∣L̂(θ, α) − L(θ,α)
∣∣.

Therefore, by Lemma 4.1, supθ∈U |L(θ, α̂(θ)) − L(θ,α(θ))| → 0 almost surely. The event
on which this convergence holds does not depend upon θ ∈ U , and, arguing as in the proof of
Theorem 4.2, we deduce that under (H1), P(α̂(θ) → α(θ)∀θ ∈ U) = 1. Since α(θ) ∈ Λ◦ for
all θ ∈ U , we also have P(α̂(θ) ∈ Λ◦∀θ ∈ U) → 1 as n → ∞. Thus, in the sequel, it will be
assumed without loss of generality that, for all θ ∈ U , α̂(θ) ∈ Λ◦.

Still by Lemma 4.1, supθ∈Θ,α∈Λ ‖H2L̂(θ, α) − H2L(θ,α)‖ → 0 almost surely. Since
H2L(θ,α) is invertible on U × α(U), we have

P
(
H2L̂(θ, α) invertible ∀(θ,α) ∈ U × α(U)

) → 1.

Thus, we may and will assume that H2L̂(θ, α) is invertible for all (θ,α) ∈ U × α(U).
Next, since α̂(θ) ∈ Λ◦ for all θ ∈ U , one has ∇2L̂(θ, α̂(θ)) = 0. Therefore, by the chain

rule, α̂ is of class C2 on U , with Jacobian matrix

J (α̂)θ = −H2L̂
(
θ, α̂(θ)

)−1
J

(∇2L̂
(·, α̂(θ)

))
θ ∀θ ∈ U.

Let V̂ (θ)
def= L̂(θ, α̂(θ)) = supα∈Λ L̂(θ,α). By the envelope theorem, V̂ is of class C2,

∇V̂ (θ) = ∇1L̂(θ, α̂(θ)), and

HV̂ (θ) = H1L̂
(
θ, α̂(θ)

) + J
(∇1L̂(θ, ·))α̂(θ)J (α̂)θ .

Recall that θ̂ → θ̄ almost surely by Theorem 4.2, so that we may assume that θ̂ ∈ Θ◦ by
(H1). Moreover, we can also assume that θ̂ + t (θ̂ − θ̄ ) ∈ U , ∀t ∈ [0,1]. Thus, by a Taylor
series expansion with integral remainder, we have

(4.3) 0 = ∇V̂ (θ̂ ) = ∇V̂ (θ̄ ) +
∫ 1

0
HV̂

(
θ̂ + t (θ̂ − θ̄ )

)
dt (θ̂ − θ̄ ).

Since α̂(θ̄ ) ∈ Λ◦ and L̂(θ̄ , α̂(θ̄ )) = supα∈Λ L̂(θ̄ , α), one has ∇2L̂(θ̄ , α̂(θ̄ )) = 0. Thus,

0 = ∇2L̂
(
θ̄ , α̂(θ̄ )

)
= ∇2L̂

(
θ̄ , α(θ̄)

) +
∫ 1

0
H2L̂

(
θ̄ , α(θ̄) + t

(
α̂(θ̄ ) − α(θ̄)

))
dt

(
α̂(θ̄ ) − α(θ̄)

)
.
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By Lemma 4.1, since α̂(θ̄ ) → α(θ̄) almost surely, we have

Î1
def=

∫ 1

0
H2L̂

(
θ̄ , α(θ̄) + t

(
α̂(θ̄ ) − α(θ̄)

))
dt → H2L(θ̄, ᾱ) almost surely.

Because H2L(θ̄, ᾱ) is invertible, P(Î1 invertible) → 1 as n → ∞. Therefore, we may assume,
without loss of generality, that Î1 is invertible. Hence,

(4.4) α̂(θ̄ ) − α(θ̄) = −Î−1
1 ∇2L̂

(
θ̄ , α(θ̄)

)
.

Furthermore,

∇V̂ (θ̄ ) = ∇1L̂
(
θ̄ , α̂(θ̄ )

) = ∇1L̂
(
θ̄ , α(θ̄)

) + Î2
(
α̂(θ̄ ) − α(θ̄)

)
,

where

Î2
def=

∫ 1

0
J

(∇1L̂(θ̄ , ·))α(θ̄)+t (α̂(θ̄ )−α(θ̄)) dt.

By Lemma 4.1, Î2 → J (∇1L(θ̄, ·))α(θ̄) almost surely. Combining (4.3) and (4.4), we obtain

0 = ∇1L̂
(
θ̄ , α(θ̄)

) − Î2Î
−1
1 ∇2L̂

(
θ̄ , α(θ̄)

) + Î3(θ̂ − θ̄ ),

where

Î3
def=

∫ 1

0
HV̂

(
θ̂ + t (θ̂ − θ̄ )

)
dt.

By technical Lemma 6.2, we have Î3 → HV (θ̄) almost surely. So, by (HV ), it can be assumed
that Î3 is invertible. Consequently,

θ̂ − θ̄ = −Î−1
3 ∇1L̂

(
θ̄ , α(θ̄)

) + Î−1
3 Î2Î

−1
1 ∇2L̂

(
θ̄ , α(θ̄)

)
,

or, equivalently, since α(θ̄) = ᾱ,

θ̂ − θ̄ = −Î−1
3 ∇1L̂(θ̄ , ᾱ) + Î−1

3 Î2Î
−1
1 ∇2L̂(θ̄ , ᾱ).

Using Lemma 4.1, we conclude that
√

n(θ̂ − θ̄ ) has the same limit distribution as

Sn
def= −√

nHV (θ̄)−1∇1L̂(θ̄ , ᾱ)

+ √
nHV (θ̄)−1J

(∇1L(θ̄, ·))ᾱH2L(θ̄, ᾱ)−1∇2L̂(θ̄ , ᾱ).

Let

�i(θ, α) = lnDα(Xi) + ln
(
1 − Dα ◦ Gθ(Zi)

)
, 1 ≤ i ≤ n.

With this notation, we have

Sn = 1√
n

n∑
i=1

(−HV (θ̄)−1∇1�i(θ̄ , ᾱ)

+ HV (θ̄)−1J
(∇1L(θ̄, ·))ᾱH2L(θ̄, ᾱ)−1∇2�i(θ̄ , ᾱ)

)
.

One has ∇V (θ̄) = 0, since V (θ̄) = infθ∈Θ V (θ) and θ̄ ∈ Θ◦. Therefore, under (H ′
reg),

E∇1�i(θ̄ , ᾱ) = ∇1E�i(θ̄ , ᾱ) = ∇1L(θ̄, ᾱ) = ∇V (θ̄) = 0. Similarly, we have E∇2�i(θ̄ , ᾱ) =
∇2E�i(θ̄ , ᾱ) = ∇2L(θ̄, ᾱ) = 0, since L(θ̄, ᾱ) = supα∈Λ L(θ̄, α) and ᾱ ∈ Λ◦. Using the cen-
tral limit theorem, we conclude that

√
n(θ̂ − θ̄ )

L→ Z,

where Z is a Gaussian random variable with mean 0 and covariance matrix

V = Var
[−HV (θ̄)−1∇1�1(θ̄ , ᾱ)

+ HV (θ̄)−1J
(∇1L(θ̄, ·))ᾱH2L(θ̄, ᾱ)−1∇2�1(θ̄ , ᾱ)

]
. �



1560 BIAU, CADRE, SANGNIER AND TANIELIAN

5. Conclusion and perspectives. In this paper, we have presented a theoretical study of
the original Generative Adversarial Networks algorithm, which consists in building a gen-
erative model of an unknown distribution from samples from that distribution. The key idea
of the procedure is to simultaneously train the generative model (the generators) and an ad-
versary (the discriminators) that tries to distinguish between real and generated samples.
We made a small step toward a better understanding of this generative process by analyz-
ing some optimality properties of the problem in terms of Jensen–Shannon divergence in
Section 2, and explored the role of the discriminator family via approximation arguments in
Section 3. Finally, taking a statistical view, we studied in Section 4 some large sample prop-
erties (convergence and asymptotic normality) of the parameter describing the empirically
selected generator. Some numerical experiments were conducted to illustrate the results.

The point of view embraced in the article is statistical, in that it takes into account the
variability of the data and its impact on the quality of the estimators. This point of view is
different from the classical approach encountered in the literature on GANs, which mainly
focuses on the effective computation of the parameters using optimization procedures. In this
sense, our results must be thought of as a complementary insight. We realize however that
the simplified context in which we have placed ourselves, as well as some of the assumptions
we have made, are quite far from the typical situations in which GANs algorithms are used.
Thus, our work should be seen as a first step toward a more realistic understanding of GANs,
and certainly not as a definitive explanation for their excellent practical performance. We give
below three avenues of theoretical research that we believe should be explored as a priority.

1. One of the basic assumptions is that the family of densities {pθ }θ∈Θ (associated with
the generators {Gθ }θ∈Θ ) and the unknown density p� are dominated by the same measure
μ on the same subset E of R

d . In a way, this means that we already have some kind of
information on the support of p�, which will typically be a manifold in R

d of dimension
smaller than d ′ (the dimension of Z). Therefore, the random variable Z, the dimension d ′ of
the so-called latent space Rd ′

, and the parametric model {Gθ }θ∈Θ should be carefully tuned in
order to match this constraint. From a practical perspective, the original article of Goodfellow
et al. (2014) suggests using for Z a uniform or Gaussian distribution of small dimension,
without further investigation. Mirza and Osindero (2014) and Radford, Metz and Chintala
(2016), who have surprisingly good practical results with a deep convolutional generator, both
use a 100-dimensional uniform distribution to represent, respectively, 28 × 28 and 64 × 64
pixel images. Many papers have been focusing on either decomposing the latent space R

d ′

to force specified portions of this space to correspond to different variations (as, e.g., in
Donahue et al. (2018)) or inverting the generators (e.g., Lipton and Tripathi (2017), Srivastava
et al. (2017), Bojanowski et al. (2018)). However, to the best of our knowledge, there is to
date no theoretical result tackling the impact of d ′ and Z on the performance of GANs,
and it is our belief that a thorough mathematical investigation of this issue is needed for a
better understanding of the generating process. Similarly, whenever the {Gθ }θ∈Θ are neural
networks, the link between the networks (number of layers, dimensionality of Θ , etc.) and the
target p� (support, dominating measure, etc.) is also a fundamental question, which should
be addressed at a theoretical level.

2. Assumptions (Hε) and (H ′
ε) highlight the essential role played by the discriminators to

approximate the optimal functions D�
θ . We believe that this point is critical for the theoretical

analysis of GANs, and that it should be further developed in the context of neural networks,
with a potentially large number of hidden layers.

3. Theorem 4.2 (convergence of the estimated parameter) and Theorem 4.3 (asymptotic
normality) hold under the assumption that the model is identifiable (uniqueness of θ̄ and ᾱ).
This identifiability assumption is hardly satisfied in the high-dimensional context of (deep)
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neural networks, where the function to be optimized displays a very wild landscape, with-
out immediate convexity or concavity. Thus, to take one more step toward a more realistic
model, it would be interesting to shift the parametric point of view and move toward results
concerning the convergence of distributions not parameters.

6. Technical results.

6.1. Proof of Theorem 3.1. Let ε ∈ (0,1/(2M)), m ∈ (0,1/2), and D ∈ D be such that
m ≤ D ≤ 1 − m and ‖D − D�

θ̄
‖2 ≤ ε. Observe that

(6.1)

L(θ̄,D) =
∫

ln(D)p� dμ +
∫

ln(1 − D)pθ̄ dμ

=
∫

ln
(

D

D�
θ̄

)
p� dμ +

∫
ln

(
1 − D

1 − D�
θ̄

)
pθ̄ dμ

+ 2DJS
(
p�,pθ̄

) − ln 4.

We first derive a lower bound on the quantity

I
def=

∫
ln

(
D

D�
θ̄

)
p� dμ +

∫
ln

(
1 − D

1 − D�
θ̄

)
pθ̄ dμ

=
∫

ln
(

D(p� + pθ̄ )

p�

)
p� dμ +

∫
ln

(
(1 − D)(p� + pθ̄ )

pθ̄

)
pθ̄ dμ.

Let dP � = p� dμ, dPθ̄ = pθ̄ dμ,

dκ = D(p� + pθ̄ )∫
D(p� + pθ̄ )dμ

dμ and dκ ′ = (1 − D)(p� + pθ̄ )∫
(1 − D)(p� + pθ̄ )dμ

dμ.

Observe, since m ≤ D ≤ 1 − m, that P � � κ and Pθ̄ � κ ′. With this notation, we have

(6.2)

I = −DKL
(
P � ‖ κ

) − DKL
(
Pθ̄ ‖ κ ′)

+ ln
[∫

D
(
p� + pθ̄

)
dμ

(
2 −

∫
D

(
p� + pθ̄

)
dμ

)]
.

Since ∫
D

(
p� + pθ̄

)
dμ =

∫ (
D − D�

θ̄

)(
p� + pθ̄

)
dμ + 1,

the Cauchy–Schwarz inequality leads to

(6.3)

∣∣∣∣
∫

D
(
p� + pθ̄

)
dμ − 1

∣∣∣∣ ≤ ∥∥D − D�
θ̄

∥∥
2

∥∥p� + pθ̄

∥∥
2

≤ 2Mε,

because both p� and pθ̄ are bounded by M . Thus,

(6.4)

ln
[∫

D
(
p� + pθ̄

)
dμ

(
2 −

∫
D

(
p� + pθ̄

)
dμ

)]
≥ ln

(
1 − 4M2ε2)

≥ − 4M2ε2

1 − 4M2ε2 ,
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using the inequality ln(1 − x) ≥ −x/(1 − x) for x ∈ [0,1). Moreover, recalling that the
Kullback–Leibler divergence is smaller than the chi-square divergence, and letting F =
F/(

∫
F dμ) for F ∈ L1(μ), we have

DKL
(
P � ‖ κ

) ≤
∫ (

p�

D(p� + pθ̄ )
− 1

)2
D

(
p� + pθ̄

)
dμ.

Hence, letting J
def= ∫

D(p� + pθ̄ )dμ, we see that

DKL
(
P � ‖ κ

)
≤ 1

J

∫ (
p�

∫
D

(
p� + pθ̄

)
dμ − D

(
p� + pθ̄

))2 1

D(p� + pθ̄ )
dμ

= 1

J

∫ (
p�

∫ (
D − D�

θ̄

)(
p� + pθ̄

)
dμ + (

D�
θ̄
− D

)(
p� + pθ̄

))2

× 1

D(p� + pθ̄ )
dμ.

Since ε < 1/(2M), inequality (6.3) gives 1/J ≤ c1 for some constant c1 > 0. By Cauchy–
Schwarz and (a + b)2 ≤ 2(a2 + b2), we obtain

DKL
(
P � ‖ κ

)
≤ 2c1

(∫ (∫ (
D − D�

θ̄

)(
p� + pθ̄

)
dμ

)2 (p�)2

D(p� + pθ̄ )
dμ

+
∫ (

D�
θ̄
− D

)2 p� + pθ̄

D
dμ

)

≤ 2c1

(∥∥D − D�
θ̄

∥∥2
2

∥∥p� + pθ̄

∥∥2
2

∫
(p�)2

D(p� + pθ̄ )
dμ

+
∫ (

D�
θ̄
− D

)2 p� + pθ̄

D
dμ

)
.

Therefore, since p� ≤ M , pθ̄ ≤ M , and D ≥ m,

DKL
(
P � ‖ κ

) ≤ 2c1

(
4M2

m
+ 2M

m

)
ε2.

One proves with similar arguments that

DKL
(
Pθ̄ ‖ κ ′) ≤ 2c1

(
4M2

m
+ 2M

m

)
ε2.

Combining these two inequalities with (6.2) and (6.4), we see that I ≥ −c2ε
2 for some con-

stant c2 > 0 that depends only upon M and m. Getting back to identity (6.1), we conclude
that

2DJS
(
p�,pθ̄

) ≤ c2ε
2 + L(θ̄,D) + ln 4.

But

L(θ̄,D) ≤ sup
D∈D

L(θ̄,D)

≤ sup
D∈D

L
(
θ�,D

)
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(by definition of θ̄ )

≤ sup
D∈D∞

L
(
θ�,D

)
= L

(
θ�,D�

θ�

) = 2DJS
(
p�,pθ�

) − ln 4.

Thus,

2DJS
(
p�,pθ̄

) ≤ c2ε
2 + 2DJS

(
p�,pθ�

)
.

This shows the right-hand side of inequality (3.1). To prove the left-hand side, just note that
by inequality (2.2),

DJS
(
p�,pθ�

) ≤ DJS
(
p�,pθ̄

)
.

6.2. Proof of Lemma 4.1. To simplify the notation, we set

Δ = ∂a+b+c+d

∂θa
i ∂θb

j ∂αc
�∂αd

m

.

Using McDiarmid’s inequality (McDiarmid (1989)), we see that there exists a constant c > 0
such that, for all ε > 0,

P

(∣∣∣ sup
θ∈Θ,α∈Λ

∣∣ΔL̂(θ,α) − ΔL(θ,α)
∣∣ −E sup

θ∈Θ,α∈Λ

∣∣ΔL̂(θ,α) − ΔL(θ,α)
∣∣∣∣∣ ≥ ε

)

≤ 2e−cnε2
.

Therefore, by the Borel–Cantelli lemma,

(6.5) sup
θ∈Θ,α∈Λ

∣∣ΔL̂(θ,α) − ΔL(θ,α)
∣∣ −E sup

θ∈Θ,α∈Λ

∣∣ΔL̂(θ,α) − ΔL(θ,α)
∣∣ → 0

almost surely. It is also easy to verify that under Assumptions (H ′
reg), the process (ΔL̂(θ,α)−

ΔL(θ,α))θ∈Θ,α∈Λ is sub-Gaussian. Thus, as in the proof of Theorem 4.1, we obtain via
Dudley’s inequality that

(6.6) E sup
θ∈Θ,α∈Λ

∣∣ΔL̂(θ,α) − ΔL(θ,α)
∣∣ = O

(
1√
n

)
,

since EΔL̂(θ,α) = ΔL(θ,α). The result follows by combining (6.5) and (6.6).

6.3. Some technical lemmas.

LEMMA 6.1. Under Assumptions (H ′
reg) and (H1), there exists an open set V ⊂ Θ◦

containing θ̄ such that, for all θ ∈ V , arg maxα∈ΛL(θ,α) ∩ Λ◦ �= ∅.

PROOF. Assume that the statement is not true. Then there exists a sequence (θk)k ⊂ Θ

such that θk → θ̄ and, for all k, αk ∈ ∂Λ, where αk ∈ argmaxα∈ΛL(θk,α). Thus, since Λ is
compact, even if this means extracting a subsequence, one has αk → z ∈ ∂Λ as k → ∞. By
the continuity of L, L(θ̄, αk) → L(θ̄, z). But∣∣L(θ̄, αk) − L(θ̄, ᾱ)

∣∣ ≤ ∣∣L(θ̄, αk) − L(θk,αk)
∣∣ + ∣∣L(θk,αk) − L(θ̄, ᾱ)

∣∣
≤ sup

α∈Λ

∣∣L(θ̄, α) − L(θk,α)
∣∣ + ∣∣∣sup

α∈Λ

L(θk,α) − sup
α∈Λ

L(θ̄, α)
∣∣∣

≤ 2 sup
α∈Λ

∣∣L(θ̄, α) − L(θk,α)
∣∣,

which tends to zero as k → ∞ by (H ′
D) and (H ′

p). Therefore, L(θ̄, z) = L(θ̄, ᾱ) and, in turn,
z = ᾱ by (H1). Since z ∈ ∂Λ and ᾱ ∈ Λ◦, this is a contradiction. �
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LEMMA 6.2. Under Assumptions (H ′
reg), (H1), and (Hloc), one has Î3 → HV (θ̄) almost

surely.

PROOF. We have

Î3 =
∫ 1

0
HV̂

(
θ̂ + t (θ̂ − θ̄ )

)
dt

=
∫ 1

0

(
H1L̂

(
θ̂t , α̂(θ̂t )

) + J
(∇1L̂(θ̂t , ·))α̂(θ̂t )

J (α̂)
θ̂t

)
dt,

where we set θ̂t = θ̂ + t (θ̂ − θ̄ ). Note that θ̂t ∈ U for all t ∈ [0,1]. By Lemma 4.1,

sup
t∈[0,1]

∥∥H1L̂
(
θ̂t , α̂(θ̂t )

) − H1L
(
θ̂t , α̂(θ̂t )

)∥∥
≤ sup

θ∈Θ,α∈Λ

∥∥H1L̂(θ, α) − H1L(θ,α)
∥∥ → 0 almost surely.

Also, by Theorem 4.2, for all t ∈ [0,1], θ̂t → θ̄ almost surely. Besides,∣∣L(
θ̄ , α̂(θ̂t )

) − L
(
θ̄ , α(θ̄)

)∣∣ ≤ ∣∣L(
θ̄ , α̂(θ̂t )

) − L
(
θ̂t , α̂(θ̂t )

)∣∣
+ ∣∣L(

θ̂t , α̂(θ̂t )
) − L

(
θ̄ , α(θ̄)

)∣∣
≤ sup

α∈Λ

∣∣L(θ̄, α) − L(θ̂t , α)
∣∣

+ 2 sup
θ∈Θ,α∈Λ

∣∣L̂(θ, α) − L(θ,α)
∣∣.

Thus, via (H ′
reg), (H1), and Lemma 4.1, we conclude that almost surely, for all t ∈ [0,1],

one has α̂(θ̂t ) → α(θ̄) = ᾱ. Accordingly, almost surely, for all t ∈ [0,1], H1L(θ̂t , α̂(θ̂t )) →
H1L(θ̄, ᾱ). Since H1L(θ,α) is bounded under (H ′

D) and (H ′
p), the Lebesgue dominated

convergence theorem leads to

(6.7)
∫ 1

0
H1L̂

(
θ̂t , α̂(θ̂t )

)
dt → H1L(θ̄, ᾱ) almost surely.

Furthermore,

J (α̂)θ = −H2L̂
(
θ, α̂(θ)

)−1
J

(∇2L̂
(·, α̂(θ)

))
θ ∀(θ,α) ∈ U × α(U),

where U is the open set defined in the proof of Theorem 4.3. By the cofactor method,
H2L̂(θ, α)−1 takes the form

H2L̂(θ, α)−1 = ĉ(θ, α)

det(H2L̂(θ, α))
,

where ĉ(θ, α) is the matrix of cofactors associated with H2L̂(θ, α). Thus, each component
of −H2L̂(θ, α)−1J (∇2L̂(·, α))θ is a quotient of a multilinear form of the partial derivatives
of L̂ evaluated at (θ,α) divided by det(H2L̂(θ, α)), which is itself a multilinear form in the

∂2L̂
∂αi∂αj

(θ, α). Hence, by Lemma 4.1, we have

sup
θ∈U,α∈α(U)

∥∥H2L̂(θ, α)−1J
(∇2L̂(·, α)

)
θ − H2L(θ,α)−1J

(∇2L(·, α)
)
θ

∥∥ → 0
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almost surely. So, for all n large enough,

sup
t∈[0,1]

∥∥J (α̂)
θ̂t

+ H2L
(
θ̂t , α̂(θ̂t )

)−1
J

(∇2L
(·, α̂(θ̂t )

))
θ̂t

∥∥
≤ sup

θ∈U,α∈α(U)

∥∥H2L̂(θ, α)−1J
(∇2L̂(·, α)

)
θ − H2L(θ,α)−1J

(∇2L(·, α)
)
θ

∥∥
→ 0 almost surely.

We know that almost surely, for all t ∈ [0,1], α̂(θ̂t ) → ᾱ. Thus, since the function U ×α(U) �
(θ,α) �→ H2L(θ,α)−1J (∇2L(·, α))θ is continuous, we have almost surely, for all t ∈ [0,1],

H2L̂
(
θ̂t , α̂(θ̂t )

)−1
J

(∇2L̂
(·, α̂(θ̂t )

))
θ̂t

→ H2L(θ̄, ᾱ)−1J
(∇2L(·, ᾱ)

)
θ̄ .

Therefore, almost surely, for all t ∈ [0,1], J (α̂)
θ̂t

→ J (α)θ̄ . Similarly, almost surely, for

all t ∈ [0,1], J (∇1L̂(θ̂t , ·))α̂(θ̂t )
→ J (∇1L(θ̄, ·))ᾱ . All involved quantities are uniformly

bounded in t , and so, by the Lebesgue dominated convergence theorem, we conclude that

(6.8)
∫ 1

0
J

(∇1L̂(θ̂t , ·))α̂(θ̂t )
J (α̂)

θ̂t
dt → J

(∇1L(θ̄, ·))ᾱJ (α)θ̄ almost surely.

Consequently, by combining (6.7) and (6.8),

Î3 → H1L(θ̄, ᾱ) + J
(∇1L(θ̄, ·))ᾱJ (α)θ̄ = HV (θ̄) almost surely,

as desired. �
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