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The problem of determining a periodic Lipschitz vector field b =
(b1, . . . , bd ) from an observed trajectory of the solution (Xt : 0 ≤ t ≤ T )

of the multi-dimensional stochastic differential equation

dXt = b(Xt ) dt + dWt , t ≥ 0,

where Wt is a standard d-dimensional Brownian motion, is considered. Con-
vergence rates of a penalised least squares estimator, which equals the maxi-
mum a posteriori (MAP) estimate corresponding to a high-dimensional Gaus-
sian product prior, are derived. These results are deduced from corresponding
contraction rates for the associated posterior distributions. The rates obtained
are optimal up to log-factors in L2-loss in any dimension, and also for supre-
mum norm loss when d ≤ 4. Further, when d ≤ 3, nonparametric Bernstein–
von Mises theorems are proved for the posterior distributions of b. From this,
we deduce functional central limit theorems for the implied estimators of
the invariant measure μb. The limiting Gaussian process distributions have
a covariance structure that is asymptotically optimal from an information-
theoretic point of view.

1. Introduction. For Wt = (W 1
t , . . . ,Wd

t ) a d-dimensional Brownian motion and b =
(b1, . . . , bd) a Lipschitz vector field, consider the multi-dimensional Markov diffusion pro-
cess (Xt = (X1

t , . . . ,X
d
t ) : t ≥ 0) describing the solution to the stochastic differential equa-

tion (SDE)

(1) dXt = b(Xt) dt + dWt, X0 = x0 ∈Rd, t ≥ 0.

The random process (Xt : t ≥ 0) describes a Brownian motion whose trajectories are subject
to spatially variable displacements enforced by the drift vector field b. We are interested in
recovering the parameter b based on observing the process up to time T . A closely related
problem is that of estimating the invariant measure μb of the diffusion, which in the ergodic
case describes the probabilities

(2) μb(A)=a.s. lim
T→∞

1

T

∫ T

0
1A(Xt) dt

corresponding to the average asymptotic time spent by the process (Xt) in a given measurable
subset A of the state space.

While the one-dimensional case d = 1 is well studied (e.g., [1–3, 13, 14, 29, 30, 39, 52,
55]), comparably little is known about the important multi-dimensional setting, particularly
when b is modelled in a nonparametric or high-dimensional way. In the measurement model
we consider here, Dalalyan and Reiß [15] first obtained convergence rates of multivariate
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nonparametric kernel-type estimators. Schmisser [48] established adaptive L2-convergence
rates of certain model selection based projection estimators and Strauch [49–51] obtained
adaptive convergence rate results for b in pointwise and L2-loss, and for μb in ‖ · ‖∞-loss;
more discussion can be found below.

For observations (Xt : 0 ≤ t ≤ T ), the likelihood function is directly available from Gir-
sanov’s theorem and has a convenient “Gaussian” form in the parameter b. This motivates
the use of likelihood based inference procedures: the estimators b̂T for b we study in the
present paper are minimisers of a penalised likelihood (or least squares) criterion over a
high-dimensional approximation space. In fact, since the penalties we use are squared Hilbert
norms, b̂T equals a Bayesian “maximum a posteriori” (MAP) estimate arising from a trun-
cated Gaussian series prior. The Bayesian interpretation of b̂T is exploited in our proofs and
has further appeal since it directly suggests uncertainty quantification methodology (“poste-
rior credible sets”). In particular, posterior sampling is feasible even for “real-world” discrete
data by simulation techniques; see [6, 7, 37, 46, 53] and references therein.

Let us briefly describe our contributions: we obtain convergence rates of b̂T to the “true”
vector field b0 generating equation (1) and also frequentist contraction rates about b0 for
the corresponding posterior distributions, both in L2- and ‖ · ‖∞-distances. For L2-loss, the
rates obtained are minimax optimal (up to log-factors) over Hölder classes in any dimension,
and this remains true for ‖ · ‖∞-loss whenever dimension d ≤ 4. When d ≤ 3, we further
prove nonparametric Bernstein–von Mises theorems that establish asymptotic normality of
the re-centred and scaled posterior distributions

√
T (b − b̂T )|(Xt : 0 ≤ t ≤ T ) in a (large

enough) function space. From this, we deduce central limit theorems for the implied plug-
in estimators for the invariant density μb. The proofs imply that the limiting covariances
obtained coincide with the semiparametric information lower bounds for these estimation
problems. We exploit that the nonlinear identification map b 	→ μb can be shown to be “one-
smoothing”. As inference on b is approximately a nonparametric regression problem [15],
this offers an analytical explanation for why the invariant density μb of the process can be
estimated at 1/

√
T rate in stronger norms than is the case in i.i.d. density estimation.

The multi-dimensional case d ≥ 2 is fundamentally more challenging than the one-
dimensional one for various reasons. First, when d = 1 properties of diffusion local times
can be used to take advantage of regularity properties of the sample paths of (Xt) as in [2, 3,
14, 39, 52, 55], whereas for d > 1 these local times are no longer appropriately defined. Sec-
ond, Markovian concentration properties can be derived using martingale techniques com-
bined with mapping properties of the generator of the underlying semigroup (via the Poisson
equation and Itô’s formula, see Lemma 1). In dimension one, this involves the study of an ex-
plicitly solvable ordinary differential equation (ODE), whereas for d ≥ 2 the theory of elliptic
partial differential equations (PDEs) is required. PDE techniques are an effective alternative
to the functional inequalities used in [15, 50, 51], in particular the requirement that b be a
gradient vector field ∇B for some B : Rd → R, and thus of reversibility of (Xt)—used in
the references [15, 48, 50, 51]—can be avoided this way; neither does X0 ∼ μb have to be
started in equilibrium as in [48]. To simplify the PDE arguments in our proofs, we restrict
to periodic vector fields b. In our setting, periodicity ensures the required mixing properties
of (Xt), replacing spectral gap assumptions in [15, 50, 51]. The techniques of the present
paper extend in principle, albeit at the expense of considerable technicalities, to the nonperi-
odic case if b is known outside of a compact subset of Rd and upon employing assumptions
on b as in [38]. Finally, that b is not required to be a gradient field is crucial in the multi-
dimensional setting for the use of Bayesian (or penalisation) methods as standard Gaussian
priors for b will draw gradient vector fields with probability zero. Moreover, for d > 1 the
potential absence of reversibility of (Xt) introduces some fundamentally new features to the
inference problem at hand, since the invariant measure μb no longer identifies the law Pb of
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the process (Xt); see after Proposition 1 below. Unlike in the one-dimensional case (e.g., [1,
34]), Bayesian inference thus cannot be based on a prior assigned directly to the invariant
measure μb. In contrast, we show how Gaussian priors for b give valid Bayesian models for
the data and allow one to make optimal inference on b and μb.

Our proofs employ techniques from Bayesian nonparametric and semiparametric statistics,
specifically [8, 10–12], and are related to recent results on Bayesian inverse problems [4, 16,
27, 28, 36, 40], Bernstein–von Mises theorems [24, 31, 33, 35, 41, 42, 44] and diffusion
models [1, 25, 34, 39, 52, 54, 55].

2. Main results.

2.1. Basic notation and definitions. Let T
d denote the d-dimensional torus, isomor-

phic to (0,1]d if opposite points on the cube are identified. By L2(Td), we denote the
usual L2-spaces with respect to Lebesgue measure dx on T

d equipped with inner product
〈·, ·〉 = 〈·, ·〉L2 . Let μ be a probability measure on T

d . If its Lebesgue density, also denoted
by μ, exists and is bounded and bounded away from zero, then an equivalent norm ‖ · ‖μ
on L2(Td) arises from the inner product 〈f,g〉μ = ∫

fg dμ for f,g ∈ L2(Td). The symbol
L2

0(T
d) denotes the subspace of functions f for which

∫
Td f (x) dx = 0, and L2

μ(Td) denotes
the subspace for which

∫
Td f dμ= 0.

We define the space C(Td)=C0(Td) of continuous functions on T
d normed by the usual

supremum norm ‖ · ‖∞. For s > 0, we denote by Cs(Td) the usual Hölder spaces of [s]-times
continuously differentiable functions on T

d , where [s] is the integer part of s. For s ∈ R,
let Hs(Td) denote the usual Sobolev space of functions from T

d to R (defined by duality
when s < 0). They form the special case p = q = 2 in the scale of Besov spaces Bs

pq(T
d),

1 ≤ p,q ≤ ∞ (see Chapter 3 of [47] for definitions), where it is also shown that Cs(Td)

embeds continuously into Bs∞∞(Td), s ≥ 0. When no confusion may arise, we employ the
same function space notation for vector fields f = (f1, . . . , fd). For instance, f ∈ Hs ≡
(Hs)⊗d will then mean that each fj ∈ Hs(Td) and the norm on Hs is given by ‖f ‖2Hs =∑d

j=1 ‖fj‖2Hs . We shall repeatedly use multiplication inequalities for Besov–Sobolev norms,

(3)
‖fg‖Bs

pq
≤ c(s,p, q, d)‖f ‖Bs

pq
‖g‖Bs∞∞

≤ c′(s,p, q, d)‖f ‖Bs
pq
‖g‖Cs , s ≥ 0.

Starting with a periodised Daubechies’ wavelet basis of L2(T), we consider a tensor product
wavelet basis of L2(Td) given by{

�l,r : r = 0, . . . ,max
(
0,2ld − 1

)
, l = {−1,0} ∪N}

,

VJ ≡ span(�l,r : r, l ≤ J )
(4)

(see Section 4.3 of [23]), where the base Daubechies wavelets are taken “S-regular”, S ∈ N.
The dimension of VJ is O(2Jd) as J →∞, and the decay of wavelet coefficients in this
basis, or equivalently the scaling of approximation errors from L2-projections PVJ

onto VJ ,
characterise the norms of the Besov spaces Bs

pq(T
d) and Sobolev spaces Hs(Td) (page 370f

in [23]).
If μ is a probability measure on some metric space, then Z ∼ μ means that Z is a random

variable in that space drawn from the distribution μ, also called the law L(Z)= μ of Z. We
write ZT →d Z, or ZT →d L(Z) when no confusion can arise, to denote the usual notion of
weak convergence of the laws L(ZT )→ L(Z) as T →∞; see, for example, Chapter 11 in
[17].

For a normed linear space (X,‖ · ‖X), the topological dual space is

X∗ = (
X,‖ · ‖X)∗ := {

L :X→R linear s.t.
∣∣L(x)

∣∣≤ C‖x‖X∀x ∈X,C > 0
}
,
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which is a Banach space for the norm ‖L‖X∗ ≡ supx∈X,‖x‖X≤1 |L(x)|. We will sometimes use
the symbols �, �, � to denote one- or two-sided inequalities up to multiplicative constants
that may either be universal or “fixed” in the context where the symbols appear. We also write
(·)+ =max(·,0) to denote the nonnegative part of a real number, and a ∨ b, a ∧ b to denote
maximum and minimum of real numbers a, b, respectively.

2.2. Diffusions with periodic drift; likelihood, prior and posterior. Consider the SDE
(1) where the vector field b : Rd 	→ R

d is Lipschitz continuous and one-periodic, that is,
b(· +m)= b(·) for every m ∈ Zd . Then a strong pathwise solution of this SDE exists which
is a d-dimensional diffusion Markov process Xt = (X1

t , . . . ,X
d
t ). We denote by Pb = P x

b the
cylindrical probability measure describing the law of (Xt) in path space C([0,∞)→ R

d)

when X0 = x; its restriction P T
b = P

T,x
b to the separable space C([0, T ] → R

d) describes
the law of the process XT ≡ (Xt : t ∈ [0, T ]) until time T ; see, for example, Sections 24 and
39 in [5]. We suppress the dependence on the starting value x as our results do not depend on
it.

We seek to recover the drift function b : Td → R
d from an observed trajectory XT . The

periodic model (which has also been used in [39, 52] when d = 1) is convenient in our
context as it effectively confines the diffusion process (Xt) to a bounded state space T

d . To
be precise, while our diffusion takes values in the whole of Rd (in particular (Xt) will not be
globally recurrent), the values of the process (Xt) modulo Z

d contain all relevant statistical
information. In particular, we have (arguing as in the proof of Lemma 6 below),

1

T

∫ T

0
ϕ(Xt) dt→Pb

∫
Td

ϕ dμb as T →∞,∀ϕ ∈C
(
T

d)
,

where μb is a uniquely defined probability measure on T
d and where we identify ϕ with its

periodic extension to R
d on the left-hand side. The measure μb has the usual probabilistic

interpretation as an invariant measure appearing in the limit of ergodic averages, but for
our purposes it is more convenient to define it in terms of a partial differential equation
involving the generator of the diffusion Markov process. Heuristically, if (Pt = etL : t ≥ 0) is
the transition operator of a diffusion process with invariant measure μ and generator L, then
we can differentiate the invariant identity

∫
Pt [ϕ]dμ= ∫

ϕ dμ∀t at t = 0, so that
∫

Lϕ dμ=
0 for all smooth ϕ. If L∗ is the adjoint operator for the standard L2-inner product, then it
must satisfy

∫
ϕL∗μ = 0 for all smooth ϕ, and hence necessarily L∗μ = 0 (in the weak

sense), which can be used to identify μ via the adjoint generator L∗.
More precisely, in our setting the generator L :H 2(Td)→ L2(Td) is

(5) L= Lb = 1

2
�+ b.∇ = 1

2

d∑
i=1

∂2

∂x2
i

+
d∑

i=1

bi(·) ∂

∂xi

,

and from integration by parts the adjoint operator for 〈·, ·〉L2 equals

(6) L∗ = L∗b =
1

2
�− b.∇ − div(b), div(b)=

d∑
j=1

∂bj

∂xj

,

so that μb can be identified as the (weak) solution of the PDE

(7) L∗bμb ≡ 1

2
�μb − b.∇μb − div(b)μb = 0.

One can prove the following result (see after (67) in Section 6 below).
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PROPOSITION 1. Let b ∈ C1(Td). A unique periodic solution μb to (7) satisfying∫
Td dμb = 1 exists. Moreover, μb is Lipschitz continuous and bounded away from zero on
T

d , with ‖1/μb‖∞ and the Lipschitz constant ‖μb‖Lip depending on b only through a bound
for ‖b‖∞.

One may show (e.g., as after (63) below) that for smoother vector fields b the resulting
invariant measure actually equals a classical C2-solution of (7), but for existence of μb a
weak solution suffices.

If b arises as a gradient vector field ∇B for some B ∈ C2(Td), one can check di-
rectly that μb ∝ e2B is a classical solution of (7), and we can then recover b from μb via
b = (1/2)∇ logμb. However, the invariant measure μb does not identify b or the law Pb of
(Xt : t ≥ 0) for general vector fields b (unless d = 1). To see this, start with b = ∇B and
invariant measure μb ∝ e2B . For any smooth divergence-free vector field v̄ and v = v̄/μ (so
that div(vμ)= 0), one checks by integration by parts that

∫
φL∗b+vμb = ∫

μbLb+vφ = 0 for
all smooth φ, and as a consequence μb is also the invariant measure for Lb+v . Thus any
statistical approach to recover b via first estimating μb is bound to fail in our general setting.

We instead propose likelihood-based inference methods. The log-likelihood function
�T (b) of our measurement model can be obtained from Girsanov’s theorem (Section 17.7
in [5]): for any periodic and Lipschitz b : Td→R

d ,

(8) e�T (b) = dP T
b

dP T
0

(
XT )= exp

(
−1

2

∫ T

0

∥∥b(Xt)
∥∥2

dt +
∫ T

0
b(Xt).dXt

)
,

where P T
0 is the law of a d-dimensional Brownian motion (Wt : t ∈ [0, T ]).

Our approach to inference on b amounts to computing a penalised maximum likelihood
estimator over a high-dimensional wavelet approximation space. More precisely, set

(9) b̂T = b̂
(
XT )= argmin

b∈V⊗d
J

[
−�T (b)+ 1

2
‖b‖2

H

]
,

where V⊗d
J =⊗d

j=1 VJ (cf. (4)) and ‖ · ‖H is a Hilbert tensor norm on V⊗d
J . The estimator

b̂T has a natural Bayesian interpretation as the maximum a posteriori (MAP) estimate arising
from a mean zero Gaussian prior � =⊗d

j=1 �j on V⊗d
J with reproducing kernel Hilbert

space H. Indeed, the posterior distribution �(·|XT ) arising from observing XT ∼ P T
b is of

the form

(10) d�
(
b|XT )= e�T (b) d�(b)∫

e�T (b) d�(b)
∝ e�T (b)− 1

2‖b‖2H, b ∈ V⊗d
J .

Our proofs imply that the denominator in the last expression is finite and nonzero
with probability approaching one under the law of XT as T →∞. The map (b, c) 	→∫ T

0 b(Xt)c(Xt) dt + 〈b, c〉H induces an inverse covariance D−1
H on some linear subspace

H ⊂ V⊗d
J . [Since 1 ∈ V⊗d

J , we have dimH �= 0 a.s., and our proofs imply in fact that
H = V⊗d

J with probability approaching one as T →∞.] By characterisations of Gaus-
sian laws (e.g., Theorem 9.5.7 in [17]) and linearity of b 	→ ∫ T

0 b(Xt).dXt , the distribution
�(·|XT ) is thus Gaussian on V⊗d

J and the MAP estimate (9) equals the posterior mean
E�[b|XT ].

The Gaussian process priors � = �T we will use here are constructed from high-
dimensional wavelet expansions for b= (b1, . . . , bd) of the form:

(11) bj =
∑
l≤J

2ld−1∑
r=0

σlgl,r,j�l,r , gl,r,j ∼i.i.d. N (0,1), j = 1, . . . , d,
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where the �l,r form a S-regular periodised wavelet basis of L2(Td) (cf. (4)), where J =
JT →∞ as T →∞ in a way to be chosen below, and where the weights σl govern the
regularisation prescribed by the penalty functional. We will tacitly assume throughout that S

is large enough (depending on parameters s, a, α to be specified). We choose wavelets for
convenience and B-spline bases, which give rise to the same MAP estimates, could have been
used as well. Recall (page 75 in [23]) that the Gaussian process (11) has reproducing kernel
Hilbert space (RKHS) inner product of tensor form

(12) 〈g1, g2〉H =
d∑

j=1

∑
l≤J

2ld−1∑
r=0

σ−2
l 〈g1,j ,�l,r〉L2〈g2,j ,�l,r〉L2, g1, g2 ∈ V⊗d

J .

2.3. Contraction rates for the posterior distribution and MAP estimate. We now give
results concerning the concentration of the posterior measure �(·|XT ) around the “ground
truth” vector field b0 that generated XT according to the diffusion equation (1). This implies
convergence rates of the same order of magnitude for the MAP estimate b̂T (see Corollary 1).
We denote the “true” invariant measure from Proposition 1 by μ0 = μb0 .

Our first theorem gives a contraction rate in the “natural distance” induced by the statis-
tical experiment, following the general theory [20, 55]. Initially, this distance is a “random
Hellinger semimetric” (see Theorem 7 below). In dimension d = 1, the theory of diffusion
local times can then be used to compare this metric to the standard ‖ · ‖μ0,‖ · ‖L2 -distances
[39, 52, 55], but when d > 1 such local time arguments are not available. We instead exploit
concentration properties of the high-dimensional random matrices induced by the Hellinger
semimetric on V⊗d

J (Lemma 4).

THEOREM 1. Let s > max(d/2,1), d ∈N. Suppose b0 ∈Cs(Td)∩Hs(Td). Consider the

Gaussian prior �T from (11) with 2J ≈ T
1

2a+d and σl = 2−l(α+d/2) for a > max(d − 1,1/2)

and 0≤ α ≤ a. Then for εT = T −
a∧s

2a+d (logT ) and every MT →∞, as T →∞,

�T

(
b : ‖b− b0‖μ0 ≥MT εT |XT )→Pb0 0.

In particular, if a = s then εT = T −
s

2s+d (logT ).

Since we wish to perform the primary regularization via the truncation level J rather than
the variance scaling α, we have taken 0≤ α ≤ a.

REMARK 1 (Adaptation). The previous theorem extends to adaptive priors, where J is
randomised according to a hyperprior on N of the form �(J = j) ∼ exp{−C2jd}, without
requiring knowledge of the smoothness s. Given the techniques underlying Theorem 1, the
proof of such a result follows standard patterns (e.g., [1, 40]) and is left to the reader.

From the previous theorem, and imposing slightly stronger conditions on b0 and �T , one
can obtain perturbation approximations of the Laplace transform of �(·|XT ) by the Laplace
transform of a certain Gaussian distribution (see Proposition 2), which makes more precise
“semiparametric” tools available for the analysis of the posterior distribution. Following ideas
in [8] (see also [9, 11, 12, 33]), we obtain contraction results in the ‖ · ‖∞-norm.

THEOREM 2. Let a ∧ s > max(3d/2 − 1,1), d ∈ N. Suppose b0 ∈ Cs(Td) ∩ Hs(Td).

Consider the Gaussian prior �T from (11) with 2J ≈ T
1

2a+d and σl = 2−l(α+d/2) for 0≤ α <
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a ∧ s − d/2. Assume further that a ≤ s + 1 if d ≤ 4 or a ≤ s + d/2− 1 if d ≥ 5. Then for
every δ > 5/2,

�T

(
b :

d∑
j=1

‖bj − b0,j‖∞ ≥ (logT )δT −
s∧[a−(d/2−2)+]

2a+d |XT

)
→Pb0 0 as T →∞.

In particular, if a = s, 0 ≤ α ≤ s − d/2 and d ≤ 4, then the convergence rate is
(logT )δT −

s
2s+d .

By Gaussianity of the posterior distribution, the previous theorems translate into conver-
gence rates of the MAP estimates from (9).

COROLLARY 1. Let b̂T = E�T [b|XT ]. Under the conditions of Theorem 1, for every
MT →∞,

‖b̂T − b0‖μ0 =OPb0

(
MT T −

a∧s
2a+d logT

)
as T →∞,

while under the conditions of Theorem 2, for every δ > 5/2,

‖b̂T − b0‖∞ =OPb0

(
T −

s∧[a−(d/2−2)+]
2a+d (logT )δ

)
as T →∞.

PROOF. Consider the function

H
(
b′

)=�T

(
b : ∥∥b− b′

∥∥
μ0
≤MT εT |XT )

, b′ ∈ V⊗d
J .

The posterior is a Gaussian measure on the finite-dimensional space V⊗d
J , centred at b̂T .

Since ‖ · ‖μ0 -norm balls centred at the origin are convex symmetric sets, Anderson’s lemma
(Theorem 2.4.5 of [23]) yields that b̂T is a maximizer of H . Using Theorem 2.5 in [19]
with the contraction rate from Theorem 1, we deduce that ‖b̂T − b0‖μ0 = OPb0

(MT εT ) as
T →∞. The ‖ · ‖∞-rate follows similarly using the contraction rate from Theorem 2. �

Up to log-factors, the ‖ · ‖L2 -rates obtained are minimax optimal for any dimension d (the
lower bounds follow, for example, via the asymptotic equivalence results in [15], see also
[49, 50]). The ‖ · ‖∞-rates are then also optimal whenever d ≤ 4, up to log-factors. The sub-
optimality of our rate for d > 5 is related to the presence of common semiparametric “bias
terms” in the approximation-theoretic Lemma 9 below.

2.4. Bernstein–von Mises theorems for b. We now adopt the framework of nonparamet-
ric Bernstein–von Mises theorems from [10, 11]; see also the recent contributions [9, 31, 33,
35, 42]. The idea is to obtain a Gaussian approximation for the posterior distribution in a func-
tion space in which 1/

√
T -convergence rates can be obtained. We will view the re-centred

and re-scaled posterior draws
√

T (b− b̂T )|XT as (conditionally on XT ) random vector fields
acting linearly on test functions φ = (φ1, . . . , φd) by integration(

φ 	→√T

∫
Td

(b− b̂T ).φ : φ ∈ B
ρ
1∞

∣∣∣XT

)
,

and show that a Bernstein–von Mises theorem holds true uniformly in φ belonging to any
bounded subset of the Besov space B

ρ
1∞, ρ > d/2, d ≤ 3. Equivalently, the limit theorem

holds for the probability laws induced by these stochastic processes in the “dual” Banach
space (B

ρ
1∞)∗. The limit will be the tight Gaussian probability measure Nb0 on (B

ρ
1∞)∗ in-

duced by the centred Gaussian white noise process (W0(φ) : φ ∈ B
ρ
1∞) with covariance

EW0(φ)W0
(
φ′

)= 〈
φ,φ′

〉
1/μ0
=

d∑
j=1

∫
Td

φj (x)φ′j (x)μ−1
0 (x), φ,φ′ ∈ B

ρ
1∞;
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its existence is established in the proof of the following theorem.
By embedding other spaces into B

ρ
1∞, one may deduce various further limit theorems

from the results below, for example in negative Sobolev spaces H−ρ = (Hρ)∗, ρ > d/2. For
the applications to estimation of μb in the next subsection, this particular choice of Besov
space is, however, crucial, and restriction to the simpler scale of Sobolev spaces would be
insufficient to obtain the results in Section 2.5 below.

For two probability measures τ , τ ′ on a metric space (S, e), define the bounded Lipschitz
(BL) metric for weak convergence (page 157 in [18]) by

βS

(
τ, τ ′

)= sup
F :S→R,‖F‖Lip≤1

∣∣∣∣
∫
S
F d

(
τ − τ ′

)∣∣∣∣,
‖F‖Lip ≡ sup

x∈S
∣∣F(x)

∣∣+ sup
x �=y,x,y∈S

|F(x)− F(y)|
e(x, y)

.

THEOREM 3. Let 1 ≤ d ≤ 3, ρ > d/2, a > max(3d/2 − 1,1) and let s ≥ a be such
that s > a − 1+ d/2. Suppose b0 ∈ Cs(Td) ∩Hs(Td). Let �T be the Gaussian prior from
(11) with σl = 2−l(α+d/2), 0 ≤ α < a ∧ s − d/2 and J chosen such that 2J ≈ T 1/(2a+d).
Let �̃T (·|XT ) be the conditional law L(

√
T (b − b̂T )|XT ), where b ∼�T (·|XT ) and b̂T =

E�T [b|XT ] is the posterior mean, and let Nb0 denote the law in (B
ρ
1∞)∗ of a centred Gaus-

sian white noise process for 〈·, ·〉1/μ0 . Then, as T →∞,

(13) β(B
ρ
1∞)∗

(
�̃

(·|XT )
,Nb0

)→Pb0 0.

As in related situations in [10, 35], the condition ρ > d/2 cannot be relaxed as otherwise
the limiting process does not exist as a tight probability measure in (B

ρ
1∞)∗. Also the choices

p = 1, q = ∞ are maximal for Besov spaces. From convergence of moments in (13) we
deduce the following.

THEOREM 4. Under the conditions of the previous theorem, the MAP estimate b̂T =
E�[b|XT ] satisfies, as T →∞,

√
T (b̂T − b0)→d Nb0 in

(
B

ρ
1∞

)∗
.

A confidence set for b can now be constructed by using the posterior quantiles to create a
multiscale ball around b̂T , which can be further intersected with smoothness information as
in [10, 11] to obtain confidence bands that are valid and near-optimal also in ‖ · ‖∞-diameter.

As remarked at the end of Section 2.3, the presence of semiparametric bias terms prevents
our proof from giving a Bernstein–von Mises theorem when d ≥ 4, and also necessitates
s > a − 1+ d/2 in Theorem 3. Unlike in Theorem 2, the case d = 4 is excluded as we need
to suppress logT -factors to obtain precise limit distributions. Similar phenomena occur in
nonparametric smoothing (e.g., Section 3.6 in [22]).

2.5. Bayesian inference on the invariant measure. We now turn to the problem of making
inference on the invariant measure μb. Frequentist estimators of μb can be suggested directly
based on (2), for example [51]. For the Bayesian statistician, modelling μb directly by a prior
is not coherent since μb does not identify the law P T

b generating the likelihood (8) (cf. the
discussion after Proposition 1). Instead, given the MAP estimate b̂T , we can (numerically)
solve (7) to obtain a point estimate μ

b̂T
. For uncertainty quantification, we can generate

posterior samples μb|XT from b∼�T (·|XT ). Although numerical solvers for elliptic PDEs
such as (7) are available, this algorithm may be computationally expensive. Nonetheless, it
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gives a principled Bayesian approach to inference on μb that, as the results in this section
show, is optimal from an information theoretic point of view.

For the formulation of the following general result, we define spaces

Br = Br
1∞

(
T

d)∩L2(
T

d)
, r > 0, d ≤ 3,

normed by ‖ · ‖L2 + ‖ · ‖Br
1∞ ; as before the conditional laws L(

√
T (μb − μ

b̂T
)|XT ) induce

stochastic processes in the normed dual space B
∗
r via actions

g 	→√T

∫
Td

(μb −μ
b̂T

)g, g ∈ Br ,

and weak convergence occurs in B
∗
r . We note that the inverse L−1

b0
of the generator Lb0 from

(5) exists as a well-defined mapping from L2
μ0

(Td) into H 2(Td)∩L2
0(T

d); see Lemma 11 in
Section 6. We postpone the special case d = 1 to Theorem 6 below.

THEOREM 5. Let d = 2,3 and r > d/2 − 1. Under the conditions of Theorem 3, if
μb, μ

b̂T
are the solutions of (7) (invariant measures) associated with a posterior draw

b ∼ �T (·|XT ) and b̂T = E�T [b|XT ], respectively, then for τ(·|XT ) the conditional law
L(
√

T (μb −μ
b̂T

)|XT ) in B
∗
r we have

βB∗r
(
τ
(·|XT )

,Nμ0

)→Pb0 0 and
√

T (μ
b̂T
−μ0)→d Nμ0 in B

∗
r

as T →∞, where Nμ0 is the tight Borel probability measure on B
∗
r induced by the centred

Gaussian process M with covariance metric

EM(g)M
(
g′

)= 〈∇L−1
b0
[ḡ],∇L−1

b0

[
ḡ′

]〉
μ0

, ḡ = g−
∫
Td

g dμ0, g, g′ ∈ Br .

This theorem has various corollaries, upon using the richness of the spaces Br , r > d/2−1.
For instance, since Hr embeds continuously into B

r on the bounded domain T
d , one deduces

weak convergence in Pb0 -probability of the conditional laws in the negative Sobolev spaces
H−r (Td)= (Hr(Td))∗:

βH−r

(
L

(√
T (μb −μ

b̂T
)|XT )

,Nμ0

)→Pb0
T→∞ 0, r > d/2− 1, d = 2,3.

2.5.1. Bayesian inference on invariant probabilities. Indicator functions of measur-
able subsets C of T

d of finite perimeter define elements of B1
1∞(Td) (proved, e.g., as

in Lemma 8b, [21]) and we can thus make inference on invariant probabilities μb(C) =∫
Td 1C dμ for d = 2,3. Let C = CK be a class of Borel subsets of (0,1]d that have perime-

ter bounded by a fixed constant K . This includes, in particular, all convex subsets of T
d

(e.g., Remark 5 in [21]). Then the collection of functions {1C : C ∈ C} is bounded in
B1

1∞(Td) ∩ L2(Td), and for the resulting set-indexed process of posterior invariant prob-
abilities (μb(C) : C ∈ C), b ∼ �T (·|XT ), we deduce from Theorem 5 and the continuous
mapping theorem

β
(
L

(√
T

(
μb(·)−μ

b̂T
(·))|XT )

,Nμ0

)→Pb0 0,

√
T (μ

b̂T
−μ0)→d Nμ0 in �∞(C),

as T →∞, where β = β�∞(C), �∞(C)⊃ B
∗
r is the Banach space of bounded functions on C

(see Proposition 3.7.24 in [23] for a precise definition of βS for nonseparable S). One further
deduces that the estimated invariant probabilities induced by the MAP estimate b̂T obey the
limit law √

T sup
C∈C

∣∣μ
b̂T

(C)−μ0(C)
∣∣→d sup

C∈C
∣∣M(1C)

∣∣ <∞ a.s., T →∞.
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2.5.2. The one-dimensional case. We finally turn to the special case d = 1, where the
proof of Theorem 5 needs adaptations as then r > d/2 − 1 can be negative. We obtain a
central limit theorem for the invariant probability densities (μb(x), x ∈ T) viewed as random
functions in C(T).

For d = 1, the solution map L−1
b from before Theorem 5 has a representation L−1

b [g] =∫
T

Gb(·, y)g(y) dy, g ∈ L2
μb

(T), with periodic Green kernel Gb : T × T→ R such that
Gb(·, x) ∈H 1(T) for all x ∈ T. This follows, for example, from directly deriving explicit ex-
pressions for the solution v of the ODE bv′ + v′′/2= (2μb)

−1(μbv
′)′ = g, where μb ∝ e2B

and B ′ = b.

THEOREM 6. Under the conditions of Theorem 3 with d = 1, a > 3/2, if μb(x),
μ

b̂T
(x), x ∈ T, are the invariant probability density functions associated to b ∼ �(·|XT ),

b̂T =E�T [b|XT ], respectively, then as T →∞,

βC(T)

(
L

(√
T (μb −μ

b̂T
)|XT )

, N̄b0

)→Pb0 0 and
√

T (μ
b̂T
−μ0)→d N̄b0 in C(T),

where N̄b0 is the Borel probability law in C(T) induced by the centred Gaussian random
function (M̄(x) : x ∈ T) with covariance

EM̄(x)M̄
(
x′

)= ∫
T

d

dy
Gb0(y, x)

d

dy
Gb0

(
y, x′

)
dμ0(y), x, x′ ∈ T.

In [3], an analogue of the second limit in the above theorem was obtained for an estimator
based on smoothing the empirical measure μ̂T from (2). Their proof is very different from
ours and based on first establishing that their estimator is asymptotically close to the local
time of the diffusion process, in conceptual analogy to the i.i.d. setting [22].

2.5.3. Information lower bounds. The LAN expansion of our measurement model under
Pb0 is obtained in Lemma 6 below, with LAN-inner product 〈·, ·〉μ. Standard arguments from
asymptotic semiparametric statistics ([56], Chapter 25) then imply that the asymptotic vari-
ance occurring in Theorems 3 and 4 is optimal in an information-theoretic sense. This is also
true in the case of Theorem 5, where inference on a nonlinear functional �g(b)= ∫

Td g dμb,
g ∈ L2(Td), of b is considered. Indeed, the expansion

�g(b+ h)−�g(b)= 〈∇L−1
b [ḡ], h

〉
μb
+ o

(‖h‖∞)
, ḡ = g−

∫
Td

g dμb,

follows from the proof of Theorem 5. Thus arguing as in Section 7.5 in [35], the information
lower bound for estimating �g(b) from our observations is

∥∥∇L−1
b [ḡ]

∥∥2
μb
=

∫
Td

∥∥∥∥∇L−1
b

[
g −

∫
Td

g dμb

]
(x)

∥∥∥∥2
dμb(x) any d ≥ 1.

Examining the proof of Theorem 6, a similar remark applies to the covariance appearing in
that theorem. See also [3] for the case d = 1.

3. Proofs of main results.

3.1. Concentration of measure tools for multi-dimensional diffusions. The following re-
sults provide uniform stochastic control of functionals of the diffusion process (1) with peri-
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odic drift b0 in terms of metric entropy bounds via a metric dL involving the inverse generator
L−1

b0
from Lemma 11.

LEMMA 1. Suppose b0 ∈ C(d/2+κ)∨1(Td) and let FT ⊂ L2
μ0

(Td)∩Hd/2+κ(Td) for some
κ > 0 be such that 0 ∈FT . Define the empirical process

GT [f ] = 1√
T

∫ T

0
f (Xs) ds, f ∈FT ,

the pseudo-distance dL on FT by

(14) d2
L(f, g)=

d∑
i=1

∥∥∂xi
L−1

b0
[f − g]∥∥2

∞,

and let DFT
be the dL-diameter of FT . Further set

JFT
= J (FT ,6dL,DFT

)=
∫ DFT

0

√
log 2N(FT ,6dL, τ ) dτ,

where N(FT ,6dL, τ ) denotes the covering number of the set FT by dL-balls of radius τ/6.
Then

Eb0 sup
f∈FT

∣∣GT (f )
∣∣≤ 2√

T
sup

f∈FT

∥∥L−1
b0
[f ]∥∥∞ + 4

√
2JFT

,

and for any x > 0,

Pb0

(
sup

f∈FT

∣∣GT (f )
∣∣≥ sup

f∈FT

2‖L−1
b0
[f ]‖∞√
T

+ JFT
(4
√

2+ 192x)

)
≤ e−x2/2.

PROOF. By Lemma 11 and the Sobolev embedding theorem, the Poisson equation Lu=
Lb0u= f has a unique solution L−1[f ] ∈Hd/2+κ+2 ∩L2

0 ⊂ C2 satisfying LL−1[f ] = f for
any f ∈FT . We may therefore define for f ∈FT ,

ZT (f )=
∫ T

0
∇L−1[f ](Xs).dWs

=L−1[f ](XT )−L−1[f ](X0)−
∫ T

0
LL−1[f ](Xs) ds,

where we have used Itô’s lemma (Theorem 39.3 in [5]). Since

sup
f∈FT

∣∣∣∣
∫ T

0
f (Xs) ds

∣∣∣∣− 2 sup
f∈FT

∥∥L−1[f ]∥∥∞ ≤ sup
f∈FT

∣∣ZT (f )
∣∣,

it suffices to control supf∈FT
|ZT (f )|. For fixed f ∈FT , ZT (f ) is a continuous square inte-

grable local martingale with quadratic variation

[
Z·(f )

]
T =

∫ T

0

∥∥∇L−1[f ](Xs)
∥∥2

ds ≤ T

d∑
i=1

∥∥∂xi
L−1[f ]∥∥2

∞ = T d2
L(f,0).

Recall Bernstein’s inequality for continuous local martingales (page 153 of [43]): if M is a
continuous local martingale vanishing at 0 with quadratic variation [M], then for any stopping
time T and any y,K > 0,

(15) P
(

sup
0≤t≤T

|Mt | ≥ y, [M]T ≤K
)
≤ 2e−

y2

2K .
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Applying this to ZT (f ) gives for any f ∈FT and x > 0,

Pb0

(∣∣ZT (f )
∣∣≥√T x

)= Pb0

(∣∣ZT (f )
∣∣≥√T x,

[
Z·(f )

]
T ≤ T d2

L(f,0)
)

≤ 2e
− x2

2d2
L

(f,0) .

Since L−1 is linear, so is f 	→ZT (f ), and consequently

Pb0

(∣∣ZT (f )−ZT (g)
∣∣≥√T x

)≤ 2 exp
(
− x2

2d2
L(f, g)

)
,

a nonasymptotic inequality. The process (T −1/2ZT (f ) : f ∈ FT ) is thus mean-zero and
sub-Gaussian with respect to dL. From this, we deduce the expectation bound
Eb0 supf∈FT

T −1/2|ZT (f )| ≤ 4
√

2JFT
by the usual chaining method for sub-Gaussian pro-

cesses (e.g., Theorem 2.3.7 of [23]—the factor 6 scales the sub-Gaussian constant, see after
Definition 2.3.5 of [23]). This chaining bound extends to exponential ψ2-Orlicz norms ‖ · ‖ψ2

(see Exercise 2.3.1 of [23]), so one further has ‖ supf∈FT
T −1/2|ZT (f )|‖ψ2 ≤ 16

√
6JFT

.
Using Lemma 2.3.1 of [23] and that for any random variable X, ‖X−EX‖ψ2 ≤ 2‖X‖ψ2 , we
obtain for any x > 0,

Pb0

(
sup

f∈FT

|ZT (f )|√
T
≥Eb0 sup

f∈FT

|ZT (f )|√
T
+ x

)
≤ exp

(
− x2

2(196JFT
)2

)
.

Using the expectation bound just derived, the above inequality yields

Pb0

(
sup

f∈FT

T −1/2∣∣ZT (f )
∣∣≥ 4
√

2JFT
+ 196JFT

x
)
≤ e−

x2
2 .

Combining the above gives the required sub-Gaussian inequality. �

We now establish usable bounds for the metric dL. The following is a special case of the
Runst–Sickel lemma.

LEMMA 2 ([45], page 345). For t > 0 and any bounded f,g ∈Ht(Td),

‖fg‖Ht ≤C(t, d)
(‖f ‖Ht‖g‖∞ + ‖g‖Ht‖f ‖∞)

.

LEMMA 3. Suppose b0 ∈ Cs(Td) for s > max(d/2 − 1,0). Then for any 0 < κ < s −
d/2+ 1 (or κ = 0 if d = 1) and f,g ∈ L2

μ0
(Td), the pseudo-distance dL in (14) satisfies

dL(f, g)≤ C(d, κ, b0)‖f − g‖H(d/2+κ−1)+ ,

where H 0 = L2. Moreover, let VJ denote the span of all wavelets up to resolution level
J of an S-regular wavelet basis of L2(Td). If γ,ρ ∈ VJ and 0 ≤ p < S, then for C =
C(p,d,�,‖μ0‖∞), ∥∥γρ − 〈γ,ρ〉μ0

∥∥
Hp ≤ C2J (p+d/2)‖γ ‖L2‖ρ‖L2 .

PROOF. If d ≥ 2, then for any 0 < κ < s − d/2+ 1, by the Sobolev embedding theorem
and Lemma 11 there exists C =C(d, κ, b0) such that

d2
L(f, g)=

d∑
i=1

∥∥∂xi
L−1[f − g]∥∥2

∞ ≤ C
∥∥L−1[f − g]∥∥2

Hd/2+κ+1

≤ C‖f − g‖2
Hd/2+κ−1 .
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If d = 1, one similarly has d2
L(f, g) ≤ C‖L−1[f − g]‖2

H 2 ≤ C‖f − g‖2
L2 . For the second

statement, if p > 0, then the triangle inequality, Lemma 2 and the Cauchy–Schwarz inequal-
ity bound the quantity in question by

C(p,d)
(‖γ ‖Hp‖ρ‖∞ + ‖ρ‖Hp‖γ ‖∞)+ ‖μ0‖∞‖γ ‖L2‖ρ‖L2‖1‖Hp.

If p = 0, one instead uses the simpler bound ‖γρ‖L2 ≤ ‖γ ‖L2‖ρ‖∞. By the wavelet charac-
terisation of the Sobolev norm,

(16) ‖γ ‖2Hp =
∑
l≤J

∑
r

22lp
∣∣〈γ,�l,r〉

∣∣2 ≤ 22Jp‖γ ‖2
L2 .

Using Cauchy–Schwarz and that for all l ≥ 0, ‖∑
r �2

l,r‖∞ ≤ C(�)2ld ,

(17) ‖γ ‖∞ ≤ sup
x

∑
l≤J

∑
r

∣∣〈γ,�l,r〉
∣∣∣∣�l,r (x)

∣∣≤ C(�)2Jd/2‖γ ‖L2 .

Applying these bounds to γ,ρ ∈ VJ gives the result. �

3.2. A restricted isometry inequality for h2
T (·, ·) on V⊗d

J . We next consider the action on
the spaces V⊗d

J of the random distance hT defined by

T h2
T (b1, b2)≡

∫ T

0

∥∥b1(Xs)− b2(Xs)
∥∥2

ds =
d∑

j=1

∫ T

0

∣∣b1,j (Xs)− b2,j (Xs)
∣∣2 ds.

From the preceding concentration inequalities, and using a commonly used contraction prin-
ciple to bound minimal eigenvalues of random matrices (e.g., Section 5.6 in [58]), we estab-
lish the following key inequality.

LEMMA 4. Suppose b0 ∈ Cs(Td) for s > max(d/2,1) and let J ∈ N. For VJ as in (4)
set vJ := dim(VJ ) =O(2Jd). Then for any 0 < κ < s − d/2+ 1 (or κ = 0 if d = 1), there
exist positive constants c0 = c0(b0) and C = C(d, b0, κ,�) such that for any x > 0,

Pb0

[
sup

b,b̄∈V⊗d
J :b �=b̄

∣∣∣∣h
2
T (b, b̄)− ‖b− b̄‖2μ0

‖b− b̄‖2
μ0

∣∣∣∣≥ 2J [ d2+( d
2+κ−1)+]

√
T /C

(1+ x)

]
≤ dec0vJ− x2

2 .

PROOF. Let bj , b̄j ∈ VJ and write b = (b1, . . . , bd), b̄ = (b̄1, . . . , b̄d) with bj =∑
l≤J,r θl,r,j�l,r and b̄j =∑

l≤J,r θ̄l,r,j�l,r . Then

h2
T (b, b̄)= 1

T

d∑
j=1

∫ T

0

(∑
l,r

(θl,r,j − θ̄l,r,j )�l,r (Xs)

)2
ds

=
d∑

j=1

∑
l,r

∑
l′,r ′

(θl,r,j − θ̄l,r,j )(θl′,r ′,j − θ̄l′,r ′,j )

× 1

T

∫ T

0
�l,r (Xs)�l′,r ′(Xs) ds

=
d∑

j=1

(θj,· − θ̄j,·)T �̂(θj,· − θ̄j,·),
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where �̂(l,r)(l′,r ′) = 1
T

∫ T
0 �l,r (Xs)�l′,r ′(Xs) ds, so that �̂ is a vJ × vJ symmetric matrix.

Similarly,

‖b− b̄‖2μ0
=

d∑
j=1

(θj,· − θ̄j,·)T �(θj,· − θ̄j,·),

where �(l,r)(l′,r ′) = ∫
Td �l,r (x)�l′,r ′(x) dμ0(x). Denote the quantity on the right-hand side

of the inequality in Lemma 4 by ζT = CT −1/22J [d/2+(d/2+κ−1)+](1 + x). Since (θj,· −
θ̄j,·)T �(θj,· − θ̄j,·)= ‖bj − b̄j‖2μ0

≥ 0 for all j , applying a union bound to the probability in
Lemma 4 gives

d∑
j=1

Pb0

(
sup

θj ·,θ̄j ·∈RvJ :(θj ·−θ̄j ·)T �(θj ·−θ̄j ·) �=0

∣∣∣∣(θj · − θ̄j ·)T (�̂− �)(θj · − θ̄j ·)
(θj · − θ̄j ·)T �(θj · − θ̄j ·)

∣∣∣∣≥ ζT

d

)
.

(Note that at least one (θj · − θ̄j ·)T �(θj · − θ̄j ·) �= 0 by assumption and the above supre-
mum is maximized when θj · �= θ̄j ·, so the denominator is well-defined for all j .) Setting
u= (θj · − θ̄j ·) ∈ RvJ and using the bilinearity of the above quadratic form, each of the pre-
vious probabilities, which are all equal, are bounded by

(18) Pb0

(
sup
u∈�

∣∣uT �u
∣∣≥ ζT /d

)
,

where � = {u ∈ R
vJ : uT �u ≤ 1} and � = �̂ − �. Let ‖u‖2� := uT �u, u ∈ R

vJ , and for

0 < δ < 1, let (ul)
N(δ)
l=1 be a minimal δ-covering of � in ‖ · ‖�-distance. For every u ∈�, let

ul = ul(u) denote the closest point in this δ-covering, so that ‖u− ul‖� ≤ δ. By bilinearity,
for any u ∈�, ∣∣(u− ul)T �

(
u− ul)∣∣≤ δ2 sup

w∈�
∣∣wT �w

∣∣.
For any u ∈�, set gu =∑

l≤J,r ul,r�l,r . By Proposition 1, ‖u‖RvJ = ‖gu‖L2 ≤ ‖1/μ0‖1/2∞ ×
‖gu‖μ0 = ‖1/μ0‖1/2∞ ‖u‖� . For (λi)

vJ

i=1 the eigenvalues of the symmetric matrix � and
λmax =maxi |λi |, applying the Cauchy–Schwarz inequality gives∣∣(u− ul)T �ul

∣∣≤ ∥∥u− ul
∥∥
R

vJ

∥∥�ul
∥∥
R

vJ ≤ δ‖1/μ0‖1/2∞ λmax
∥∥ul

∥∥
R

vJ

≤ δ‖1/μ0‖∞ sup
v:‖v‖

R
vJ ≤1

∣∣vT �v
∣∣,

where the last inequality follows from page 234 of [26]. Since

sup
v:‖v‖

R
vJ ≤1

∣∣vT �v
∣∣≤ ‖μ0‖∞ sup

w∈�
∣∣wT �w

∣∣,
then |(u − ul)T �ul| ≤ δ‖1/μ0‖∞‖μ0‖∞ supw∈� |wT �w| for all u ∈ �. Combining the
above yields for 0 < δ < 1,

sup
u∈�

∣∣uT �u
∣∣≤ (

δ2 + 2δ‖1/μ0‖∞‖μ0‖∞)
sup
w∈�

∣∣wT �w
∣∣+ max

1≤l≤N(δ)

∣∣(ul)T �ul
∣∣,

and for δ0 = δ0(μ0) small enough that δ2
0 + 2‖1/μ0‖∞‖μ0‖∞δ0 ≤ 1/2,

(19) sup
u∈�

∣∣uT �u
∣∣≤ 2 max

1≤l≤N(δ0)

∣∣(ul)T �ul
∣∣.

A union bound now yields that (18) is bounded by N(δ0) supu∈� Pb0(|uT �u| ≥ ζT /(2d)).
The covering number of the unit ball in a vJ -dimensional space is bounded by N(δ0) ≤
(C/δ0)

vJ = ec0vJ (Proposition 4.3.34 of [23]).
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For u ∈�, set fu(x)= gu(x)2 − 〈gu, gu〉μ0 ∈ L2
μ0

(Td) ∩HS(Td), where S > d/2 is the
regularity of the wavelet basis. Since also b0 ∈ Cs with s > d/2, applying Lemma 1 to the
class F = {fu,0} and noting that uT �u= T −1 ∫ T

0 fu(Xt) dt yields

(20) Pb0

(∣∣uT �u
∣∣≥ CT −1∥∥L−1[fu]

∥∥∞ +CT −1/2dL(fu,0)(1+ x)
)≤ e−x2/2.

For 0 < κ < s − d/2+ 1 (or κ = 0 if d = 1), applying Lemma 3 with γ = ρ = gu ∈ VJ and
p = (d/2+ κ − 1)+ gives

dL(fu,0)≤ C
∥∥g2

u − 〈gu, gu〉μ0

∥∥
H(d/2+κ−1)+ ≤ C2J [d/2+(d/2+κ−1)+]‖gu‖2L2 .

By Proposition 1, ‖gu‖2L2 ≤ ‖1/μ0‖∞‖gu‖2μ0
= ‖1/μ0‖∞uT �u≤ ‖1/μ0‖∞, so that dL(fu,

0) ≤ C2J [d/2+(d/2+κ−1)+] for any u ∈ �. Applying the Sobolev embedding theorem,
Lemma 11 and Lemma 3 as above, ‖L−1[fu]‖∞ � ‖fu‖H(d/2+κ−2)+ � 2J [d/2+(d/2+κ−1)+]
for κ as above and any u ∈�. Substituting this into (20) gives

sup
u∈�

Pb0

(∣∣uT �u
∣∣≥CT −1/22J [d/2+(d/2+κ−1)+](1+ x)

)≤ e−x2/2,

where the right-hand side equals ζT up to constants. Combining the last inequality with (19)
and the remarks after it completes the proof. �

3.3. Proof of Theorem 1. As a first step, we obtain a convergence rate in the “ran-
dom Hellinger distance hT ” defined before Lemma 4 corresponding to the regression prob-
lem posed by equation (1). This random semimetric arises naturally in the classical testing
approach (see [20], and formulated in the Brownian semimartingale setting relevant here
by van der Meulen et al. [55]), since the log-likelihood with respect to P T

b0
can be ex-

pressed as M − 1
2 [M], where M is a continuous local martingale with quadratic variation

[M]T = T h2
T (b, b0). The next result is a combination of Theorem 2.1 and Lemma 2.2 of

[55], restated in the present context. The proof relies on martingale arguments which gener-
alize to the multi-dimensional setting without difficulty, hence the proof is left to the reader.

Consider the statistical experiments (P T
b : b ∈ BT ), where the parameter spaces BT ,

which are allowed to vary with T , are arbitrary sets equipped with σ -algebras satisfying
mild measurability conditions; see Section 2 of [55]. In particular, these are satisfied by the
finite-dimensional spaces considered in Theorem 1.

THEOREM 7. Let εT → 0 be such that T ε2
T →∞. Suppose that for any C1 > 0, there

exist measurable sets BT and C2,C3 > 0 such that

�T

(
Bc

T

)≤ e−C1T ε2
T ,(21)

logN
(
BT ,‖ · ‖μ0, εT

)≤ C2T ε2
T ,(22)

�T

(
b : ‖b− b0‖μ0 ≤ εT

)≥ e−C3T ε2
T .(23)

Assume further that for every γ > 0 there exist cγ ,Cγ > 0, Dγ ≥ 0 such that

(24)

lim inf
T→∞ Pb0

(
cγ ‖b− b0‖μ0 ≤ hT (b, b0),∀b ∈BT

s.t. hT (b, b0)≥Dγ εT ,and

hT (b1, b2)≤ Cγ ‖b1 − b2‖μ0,∀b1, b2 ∈BT

s.t. hT (b1, b2)≥Dγ εT

)≥ 1− γ.

Then for every MT →∞, �T (b ∈BT : hT (b, b0)≥MT εT |XT )→Pb0
T→∞ 0.
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The proof of the theorem implies in particular that the denominator in (10) is nonzero on
events of Pb0 -probability approaching one. We now turn to the proof of Theorem 1 and verify
the conditions (21)–(24) of Theorem 7. By Proposition 1, ‖ · ‖L2 and ‖ · ‖μ0 are equivalent
norms. Applying Theorem 4.5 of [57] (see also Sections 11.3 and 11.4.5 in [20]), there exist
measurable sets BT ⊂ VJ such that for εT = T −

a∧s
2a+d (logT ):

(i) logN(BT ,‖ · ‖∞,3εT )≤ 6CT ε2
T ,

(ii) �T (bj /∈ BT )≤ e−CT ε2
T ,

(iii) �T (‖bj − b0,j‖∞ < 4εT )≥ e−T ε2
T .

The set BT = B⊗d
T satisfies logN(BT ,‖ · ‖μ0,3d1/2‖μ0‖1/2∞ εT ) ≤ 6dCT ε2

T and

�T (Bc
T )≤ de−CT ε2

T , which verifies (21) and (22) for (a constant multiple of) εT . Further,

�T

(‖b− b0‖μ0 ≤ 4
√

d‖μ0‖1/2∞ εT

)≥�T

(
sup

j=1,...,d

‖bj − b0,j‖L2 ≤ 4εT

)

≥
d∏

j=1

�T

(‖bj − b0,j‖∞ ≤ 4εT

)≥ e−dT ε2
T ,

thereby verifying (23) for (a constant multiple of) εT .
We now verify (24). Since �T (V⊗d

J ) = 1, we may take as parameter space BT =
V⊗d

J ∪ {b0}. Let b0,j,J denote the orthogonal projection of b0,j onto VJ and set b0,J =
(b0,1,J , . . . , b0,d,J ). Since b0 ∈Cs , ‖b0,j −b0,j,J ‖∞ ≤ C(b0)2−J s ≤C(b0)εT , so that for our

choice of J this yields hT (b0, b0,J )≤ rεT and ‖b0−b0,J ‖μ0 ≤ ‖μ0‖1/2∞ ‖b0−b0,J ‖L2 ≤ rεT

for some r = r(d, b0). By considering the cases b1 ∈ V⊗d
J and b1 = b0 separately, the event

in (24) therefore contains the event{
cγ ‖b− b0,J ‖μ0 + cγ rεT ≤ hT (b, b0,J )− rεT

and hT (b, b0,J )+ rεT ≤ Cγ ‖b− b0,J ‖μ0 −Cγ rεT ,

∀b ∈ V⊗d
J with hT (b, b0,J )≥ (Dγ − r)εT

}
∩ {

hT (b1, b2)≤ Cγ ‖b1 − b2‖μ0,∀b1, b2 ∈ V⊗d
J with hT (b1, b2)≥Dγ εT

}
.

For Dγ large enough that (Dγ − r)≥max{(Cγ + 1)r,2(cγ + 1)r}, the last event contains{
2cγ ‖b− b0,J ‖μ0 ≤ hT (b, b0,J )≤ 1

2
Cγ ‖b− b0,J ‖μ0,

∀b ∈ V⊗d
J with hT (b, b0,J )≥ (Dγ − r)εT

}

∩ {
hT (b1, b2)≤ Cγ ‖b1 − b2‖μ0,∀b1, b2 ∈ V⊗d

J with hT (b1, b2)≥Dγ εT

}
⊃

{
2cγ ‖b1 − b2‖μ0 ≤ hT (b1, b2)≤ 1

2
Cγ ‖b1 − b2‖μ0,∀b1, b2 ∈ V⊗d

J

}

since b0,J ∈ V⊗d
J . It thus suffices to lower bound the Pb0 -probability of the last event. For

Cγ > 2 and 0 < cγ < 1/2, this probability equals

(25)

Pb0

(
4c2

γ − 1≤ h2
T (b1, b2)

‖b1 − b2‖2μ0

− 1≤ 1

4
C2

γ − 1,∀b1, b2 ∈ V⊗d
J , b1 �= b2

)

≥ 1− Pb0

(
sup

b1,b2∈V⊗d
J :b1 �=b2

|h2
T (b1, b2)− ‖b1 − b2‖2μ0

|
‖b1 − b2‖2μ0

> Kγ

)
,
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where Kγ =min{1− 4c2
γ ,C2

γ /4− 1}> 0. Since b0 ∈ Cs , s > max(d/2,1), Lemma 4 with

x =√2M02Jd/2→∞ and M0 > 1 large enough yields

Pb0

(
sup

b1,b2∈V⊗d
J :b1 �=b2

∣∣∣∣h
2
T (b1, b2)− ‖b1 − b2‖2μ0

‖b1 − b2‖2μ0

∣∣∣∣≥ CM0√
T

2J [d+(d/2+κ−1)+]
)

≤ de(c′0−M2
0 )2Jd → 0,

where 0 < κ < s − d/2+ 1 (or κ = 0 if d = 1). Since T −1/22J [d+(d/2+κ−1)+] → 0 as T →
∞ for a > max(d − 1,1/2) and κ > 0 small enough, the right-hand side of (25) equals
1 − oPb0

(1) as T →∞. This verifies (24) for Cγ > 2, 0 < cγ < 1/2 and Dγ > 0 large
enough, so that applying Theorem 7 yields posterior contraction rate εT in the Hellinger
distance hT .

We have shown above that for Cγ > 2 and 0 < cγ < 1/2,

Pb0

(
2cγ ‖b1 − b2‖μ0 ≤ hT (b1, b2)≤ 1

2
Cγ ‖b1 − b2‖μ0,∀b1, b2 ∈ V⊗d

J

)
→ 1.

Using again the bias bounds hT (b0, b0,J ) ≤ rεT and ‖b0 − b0,J ‖μ0 ≤ rεT , with Pb0 -
probability tending to one it holds that{

b ∈ V⊗d
J : ‖b− b0‖μ0 ≥ M̃T εT

}⊆ {
b ∈ V⊗d

J : hT (b, b0)≥MT εT

}
for M̃T = (MT + r)/(2cγ )+ r . Since the posterior probability of the last set tends to zero in
Pb0 -probability, this completes the proof of Theorem 1.

3.4. Proofs of Theorems 2–4. The proof of Theorem 2 is based on combination of The-
orem 1—which allows an initial localisation of the posterior distribution in a neighbourhood
contracting about b0 in L2-norm via (26) below—with the key Lemma 5(i) (which itself
follows from “quantitiative” semiparametric techniques developed in Section 4). Once Theo-
rem 2 is proved, one can refine Lemma 5 (see its Part (ii)) and apply it to the ‖ · ‖∞-localised
posterior, from which one can derive Theorems 3 and 4.

3.4.1. Localisation and a key lemma. We will repeatedly use the following basic fact
that allows to “localise” the posterior distribution to sets DT of high frequentist posterior
probability: let DT be any measurable set in the support of the prior satisfying �(DT |XT )=
1− oPb0

(1) as T →∞, let

�DT (·)=�(· ∩DT )/�(DT )

denote the prior conditioned to DT and let �DT (·|XT ) denote the posterior distribution aris-
ing from prior �DT . By a standard inequality ([56], page 142),

(26) sup
A measurable

∣∣�(
A|XT )−�DT

(
A|XT )∣∣≤ 2�

(
Dc

T |XT )→Pb0
T→∞ 0.

The relevant choices DT and D̄T for DT , to be defined below, depend on a further choice
�T ⊂ V⊗d

J of vector fields γ admitting envelopes

(27) |�T |2 ≥ sup
γ∈�T

‖γ ‖L2, σ�T
≥ sup

γ∈�T

‖γ ‖H,

where the RKHS norm ‖ · ‖H arises from (12) with σl = 2−l(α+d/2). For any M > 0 and
εT = T −

a∧s
2a+d (logT ) as in Theorem 1, define

(28) DT =
{
b ∈ V⊗d

J : ‖b− b0‖L2 ≤MT εT , sup
γ∈�T

∣∣〈b, γ 〉H
∣∣≤M

√
T εT σ�T

}
,
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where MT →∞ arbitrarily slowly; and for M̄T = (logT )δ−1, δ > 5/2, define

(29) D̄T =
{
b ∈ V⊗d

J : ‖b− b0‖∞ ≤ M̄T εT , sup
γ∈�T

∣∣〈b, γ 〉H
∣∣≤M

√
T εT σ�T

}
.

For λ ≤ J , 1 ≤ j ≤ d and aλ > 0 to be chosen, define the vector fields �̃λ,k,j =
(�̃λ,k,j,1, . . . , �̃λ,k,j,d) : Td→R

d with

�̃λ,k,j,i =
{
aλPVJ

[�λ,k/μ0] i = j,

0 i �= j.

Thus �̃λ,k,j is the vector field which projects aλ�λ,k/μ0 onto VJ in the j th coordinate and
is uniformly zero on all other coordinates. Denote the collection of all such functions by

(30) �T = {�̃λ,k,j : λ≤ J, k,1≤ j ≤ d} ⊂ V ⊗d
J .

By Lemma 10 and for �T as above, we can take the envelopes from (27) as

(31) |�T |2 = C(d,μ0)max
λ≤J

aλ, σ�T
= C(d,μ0,�)2J (α+d/2) max

λ≤J
aλ.

The following central lemma will be proved in Section 4.4 below.

LEMMA 5. (i) Assume the conditions of Theorem 2 and let DT be the set from (28) with
�T as in (30), envelope σ�T

as in (31) and with

aλ =
{

2λd/22−Jd/2(logT )−η if d ≤ 4,

2λd/22−J (d−2)(logT )−η if d ≥ 5,

for any η > 1. Then �(DT |XT )= 1− oPb0
(1) as T →∞. Moreover, if b∼�DT (·|XT ) then

for all λ≤ J , as T →∞,

E�DT
[
max
k,j

√
T

∣∣〈bj − b0,j , aλ�λ,k〉L2
∣∣∣∣XT

]
=OPb0

(
√

λ),(32)

E�DT
[

max
λ≤J,k,j

√
T

∣∣〈bj − b0,j , aλ�λ,k〉L2
∣∣∣∣XT

]
=OPb0

(
√

J ).(33)

(ii) Assume the conditions of Theorem 3 and let D̄T be the set from (29) with �T as in (30)
with aλ = 1 for all λ and envelope σ�T

as in (31). Then �(D̄T |XT )= 1−oPb0
(1) as T →∞

and if b∼�D̄T (·|XT ), then for all λ≤ J ,

E�D̄T
[
max
k,j

√
T

∣∣〈bj − b0,j ,�λ,k〉L2
∣∣∣∣XT

]
=OPb0

(
√

λ).

3.4.2. Proof of Theorem 2. Take the set DT from (28) with �T , σ�T
as in Lemma 5(i).

Then by that Lemma and (26) with DT = DT , it suffices to prove Theorem 2 for b drawn
from the localised posterior distribution �DT (·|XT ). Denote by PVJ

, P
V⊗d

J
the projection

operators onto VJ , V⊗d
J , respectively. Setting

ε̃T = (logT )δT −
s∧[a−(d/2−2)+]

2a+d
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and applying Markov’s inequality,

(34)

�DT

(
b :

d∑
j=1

‖bj − b0,j‖∞ ≥ ε̃T

∣∣∣XT

)

≤ ε̃−1
T

d∑
j=1

E�DT [‖bj − b0,j‖∞|XT ]

≤ ε̃−1
T

d∑
j=1

E�DT [∥∥bj − PVJ
[b0,j ]

∥∥∞|XT ]

+ ε̃−1
T

d∑
j=1

∥∥PVJ
[b0,j ] − b0,j

∥∥∞.

Since b0 ∈ Cs , the second sum is of order O(2−J s) = O(T −
s

2a+d ) = o(ε̃T ) by standard re-
sults in approximation theory (cf. after (4) above). Suppose first that d ≤ 4 and let aλ =
2λd/22−Jd/2(logT )−η for some η > 1. The standard inequality supx

∑
k |�λ,k(x)| � 2λd/2

(Section 4.3 in [23]) now gives

d∑
j=1

∥∥bj − PVJ
[b0,j ]

∥∥∞ =
d∑

j=1

sup
x

∣∣∣∣∑
λ≤J

∑
k

〈bj − b0,j ,�λ,k〉L2�λ,k(x)

∣∣∣∣
�

∑
j

∑
λ≤J

2λd/2
√

T
max

k

√
T

∣∣〈bj − b0,j ,�λ,k〉L2
∣∣

= 1√
T

∑
j

∑
λ≤J

2λd/2a−1
λ max

k

√
T

∣∣〈bj − b0,j , aλ�λ,k〉L2
∣∣

� J2Jd/2(logT )η√
T

max
λ≤J,k,j

√
T

∣∣〈bj − b0,j , aλ�λ,k〉L2
∣∣.

Taking posterior expectations in the last inequality, Lemma 5(i) implies that the first term in
(34) is bounded by

ε̃−1
T

J2Jd/2(logT )η√
T

E�DT
[

max
λ≤J,k,j

√
T

∣∣〈bj − b0,j , aλ�λ,k〉L2
∣∣∣∣XT

]

=OPb0

(
ε̃−1
T

J 3/22Jd/2(logT )η√
T

)
=OPb0

(
(logT )3/2+η−δ).

Taking δ > 3/2+ η completes the proof when d ≤ 4 since η > 1 was arbitrary. If d > 4, we
set aλ = 2λd/22−J (d−2)(logT )−η for η > 1 and use again Lemma 5(i) to obtain, as T →∞,
the convergence to zero of

ε̃−1
T

∑
j

E�DT [‖bj − PVJ
b0,j‖∞|XT ]=OPb0

(
J

3
2 2J (d−2)(logT )η

ε̃T

√
T

)
= oPb0

(1).

3.4.3. Proof of Theorems 3 and 4. Let b ∼�D̄T (·|XT ) conditionally on XT , where D̄T

is the event from (29) with �T , σ�T
chosen as in Lemma 5(ii). Then by that lemma and (26)

with DT = D̄T , it suffices to prove Theorem 3 for �D̄T (·|XT ) in place of �(·|XT ).
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Denote the centred ball of radius r in B
ρ
1∞ = B

ρ,⊗d
1∞ by Bρ(r) and let η = (η1, . . . , ηd) ∈

Bρ(1). For projections

P
V⊗d

J
[η/μ0] = (

PVJ
[ηj/μ0] : j = 1, . . . , d

)
,

define the centring process (ĜJ (η)≡ 〈ĜJ , η〉L2 : η ∈ Bρ(1)) by

〈ĜJ , η〉L2 =
d∑

j=1

〈ĜJ,j , ηj 〉L2 = 〈b0, η〉L2 + 1

T

∫ T

0
P

V⊗d
J
[η/μ0](Xt).dWt ,

where the notation 〈ĜJ , ·〉L2 is justified by linearity of the stochastic integral. Next, define
stochastic processes(

Z1(η)=√T
(〈b,η〉L2 − ĜJ (η)

) : η ∈ Bρ(1)
)
,

(
Z2(η) : η ∈ Bρ(1)

)
,

where Z2 has (cylindrical) law Nb0 , and denote the (conditional) law of Z1 by �̄D̄T =
�̄D̄T (·|XT ). Both processes prescribe linear actions on Bρ(1) – this is clear for Z1 and fol-
lows also for Z2 as explained before (39) below. The estimates that follow imply moreover
that the Zi define proper random variables in (B

ρ
1∞)∗. For κ ∈N to be chosen, define proba-

bility measures �̄D̄T
κ , Nb0,κ as the laws of the stochastic processes

(35) P(κ)(Zi)≡ (
Zi

(
P

V⊗d
κ
[η]) : η ∈ Bρ(1)

)
, i = 1,2,

which, as projections, are defined on the same probability space as the Zi’s. Using the triangle
inequality for the metric β = β(B

ρ
1∞)∗ , we obtain

(36)

β
(
�̄D̄T ,Nb0

)≤ β
(
�̄D̄T

κ ,Nb0,κ

)+ β
(
�̄D̄T , �̄D̄T

κ

)+ β(Nb0,Nb0,κ )

= β
V⊗d

κ

(
�̄D̄T

κ ,Nb0,κ

)

+
2∑

i=1

sup
‖F‖Lip≤1

∣∣E[
F(Zi)− F

(
P(κ)(Zi)

)]∣∣

≤ β
V⊗d

κ

(
�̄D̄T

κ ,Nb0,κ

)+ 2∑
i=1

E
∥∥Zi − P(κ)(Zi)

∥∥
(B

ρ
1∞)∗

=A+B +C.

For term B , we use Parseval’s identity and the fact that (cf. after (4))

(37) ‖η‖Bρ
1∞ ≤ 1 ⇒ ∑

j

∑
r

∣∣〈ηj ,�l,r〉L2
∣∣ � 2−l(ρ−d/2) ∀l

to obtain, with E =E�D̄T [·|XT ],

(38)

E
∥∥Z1 − P(κ)(Z1)

∥∥
(B

ρ
1∞)∗

=E sup
‖η‖

B
ρ
1∞
≤1

√
T

∣∣〈b− ĜJ , η− P
V⊗d

κ
[η]〉L2

∣∣

�
∑
κ<λ

2−λ(ρ−d/2)E max
k,j

√
T

∣∣〈bj − ĜJ,j ,�λ,k〉L2
∣∣

�
∑
κ<λ

2−λ(ρ−d/2)E max
k,j

√
T

∣∣〈bj − b0,j ,�λ,k〉L2
∣∣

+∑
κ<λ

2−λ(ρ−d/2) max
k,j

√
T

∣∣〈ĜJ,j − b0,j ,�λ,k〉L2
∣∣.
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By Lemma 5(ii) and the usual decay bound for wavelet coefficients of b0 ∈ Cs , the first sum
is bounded in Pb0 -probability by∑

κ<λ≤J,j

2−λ(ρ−d/2)
√

λ+√T
∑
λ>J

2−λ(ρ+s) = o(1)

as T →∞ and κ→∞, since ρ > d/2 and s ≥ a. To deal with the second sum, note that by
definition

√
T 〈ĜJ,j − b0,j ,�λ,k〉L2 = 1√

T

∫ T

0
PVJ
[�λ,k/μ0](Xt) dW

j
t .

Arguing as after (60) below, Bernstein’s inequality (15) implies that these variables are sub-
Gaussian under Pb0 with variance proxy bounded by

∥∥PVJ
[�λ,k/μ0]

∥∥2
μ0
+ 1

T

∫ T

0

∣∣PVJ
[�λ,k/μ0](Xt)

∣∣2 dt − ∥∥PVJ
[�λ,k/μ0]

∥∥2
μ0

.

The first quantity is bounded by ‖�λ,k‖L2‖1/μ0‖∞ � 1 whereas Proposition 2(ii) implies
that the second quantity is OPb0

(R̃T ) = OPb0
(1) uniformly over λ, k for our choice of J ,

s. Thus by the usual sub-Gaussian maximal inequality (Lemma 2.3.4 in [23]), the last term
in (38) is OPb0

(
∑

λ>J 2−λ(ρ−d/2)
√

λ) = oPb0
(1) for ρ > d/2, so that the last sum in (38) is

oPb0
(1) as κ,T →∞.

For term C, we first note that Nb0 defines a tight Gaussian probability measure in the
space of bounded functions on Bρ(1) (using Theorem 2.3.7, Proposition 2.1.5 and (4.184)
in [23]), and arguing as in Theorem 3.7.28 in [23] one shows further that Nb0 extends to
a Gaussian probability measure on (B

ρ
1∞)∗. In particular, a version of Z2 exists that acts

linearly on Bρ(1). Define �λ,k,j = (0, . . . ,0,�λ,k,0, . . . ,0) : Td → R
d , where the nonzero

coordinate occurs in the j th entry. Then, recalling the definition (35) of P(κ)(Z2) and us-
ing again (37) and the standard sub-Gaussian maximal inequality, now for the variables
(Z2(�λ,k,j )∼N(0,‖�λ,k‖21/μ0

)),

(39)

E
∥∥Z2 − P(κ)(Z2)

∥∥
(B

ρ
1∞)∗ =E sup

‖η‖
B

ρ
1∞
≤1

∣∣Z2
(
η− P

V⊗d
κ
[η])∣∣

�
∑
κ<λ

2−λ(ρ−d/2)E max
k,j

∣∣Z2(�λ,k,j )
∣∣

�
∑
κ<λ

2−λ(ρ−d/2)
√

λ=κ→∞ o(1).

For term A, we show convergence of the finite-dimensional distributions by the semiparamet-
ric techniques from Section 4: consider the basis (�λ,k,j : k, j ;λ ≤ κ) of V⊗d

κ for κ fixed.
We apply Proposition 2(iii) with γ = P

V⊗d
J
[�λ,k,j /μ0], then Lemma 8(ii) and the third part

of Lemma 9 to obtain

E�D̄T [
e
u
√

T (〈b−b0,�λ,k,j /μ0〉μ0 )−(u/
√

T )
∫ T

0 P
V
⊗d
J

[�λ,k,j /μ0](Xt ).dWt |XT ]
= CT exp

{
u2

2

∫
Td

∥∥P
V⊗d

J
[�λ,k,j /μ0]

∥∥2
dμ0

}
,

where we can take the envelopes in Lemma 8(ii) to satisfy |�T |2 � 1, εT σ�T
= o(1) as in

the proof of Lemma 5, and where CT = 1 + oPb0
(1) as T →∞ for fixed u ∈ R. We also

have ‖P
V⊗d

J
[�λ,k,j /μ0]‖μ0 → ‖�λ,k/μ0‖μ0 = ‖�λ,k‖1/μ0 as J →∞ since PVJ

are L2-
projections. The same is true if �λ,k,j is replaced by arbitrary finite linear combinations
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∑
j

∑
λ≤κ,k aλ,k,j�λ,k,j , κ fixed, and thus by Proposition 29 in [35] we deduce joint weak

convergence of the finite-dimensional distributions. In particular, for every fixed κ ∈N,

(40) β
V⊗d

κ

(
�̄D̄T

κ ,Nb0,κ

)→Pb0 0 as T →∞.

Combining the above bounds, given ε′ > 0 we can choose κ = κ(ε′) large enough so that by
virtue of the bounds following (38) and (39), the terms B , C in (36) are each less than ε′/3
(for B on an event of Pb0 -probability as close to one as desired). Then applying (40) for this
choice of κ , we can also make the term A less than ε′/3 for T large enough and with Pb0 -
probability as close to one as desired, completing the proof of Theorem 3 with �̄T replacing
�̃T , that is, with centring equal to ĜJ .

That ĜJ can be replaced by the posterior mean in Theorem 3 is the last step: since the
laws �̄T form a sequence of (conditionally on XT ) Gaussian distributions on (B

ρ
1∞)∗ that

converge weakly (in probability), we also have convergence of moments of that sequence
(in probability) in (B

ρ
1∞)∗, using Exercise 2.1.4 in [23] and arguing as in the proof of Theo-

rem 2.7 in [31]. Since Nb0 has Bochner-mean zero, we deduce that

(41)
√

T
(
E�T

[
b|XT ]− ĜJ

)= oPb0
(1) in

(
B

ρ
1∞

)∗
.

This concludes the proof of Theorem 3. Theorem 4 now follows from (41) and asymptotic
normality of the

√
T (ĜJ (η)− 〈b0, η〉) variables in the space (B

ρ
1∞)∗, proved as follows: if

we denote by νT the law of the latter variables, then arguing just as in (36) we have

(42) β(B
ρ
1∞)∗(νT ,Nb0)≤ β

V⊗d
κ

(νT ,κ ,Nb0,κ )+
2∑

i=1

E
∥∥Z̃i − P(κ)(Z̃i)

∥∥
(B

ρ
1∞)∗,

where Z̃2 =L Z2 from above, Z̃1 has law νT and P(κ)(Z̃i) refers to the projected processes as
in (35). The first term on the right-hand side converges to zero, for every fixed κ , by applying
the martingale central limit theorem as in (46) to (1/

√
T )

∫ T
0 (�λ,r,j /μ0)(Xt).dWt , λ ≤ κ

fixed, and using (15) to show that the term

1√
T

∫ T

0

[
P

V⊗d
J
[�λ,r,j /μ0] −�l,r,j /μ0

]
(Xt).dWt = oPb0

(1)

in view of ‖P
V⊗d

J
[�λ,r,j /μ0]−�λ,r,j /μ0‖∞→ 0 as J →∞ for fixed λ≤ κ . The third term

in (42) was bounded as o(1) for κ→∞ in (39), and the second term also converges to zero
as κ→∞ by the arguments below (38). Thus choosing κ large enough but fixed, and letting
T →∞, Theorem 4 follows since β(B

ρ
1∞)∗ metrises weak convergence.

3.4.4. Proofs of Theorems 5 and 6. The proofs for Section 2.5 are given in Section 5
below and follow from Theorems 3 and 4 and a version of the “Delta”-method for weak con-
vergence applied to the map b 	→ μb. We will represent μb−μb+h by a linear transformation
of the vector field h plus a remainder term that will be seen to be quadratic in (suitable norms
of) h. The identity (45) below is the key to these proofs and can be derived from pertur-
bation arguments for the PDE (7) as follows: let μb and μb+h correspond to vector fields
b, b+h ∈ C1(Td) (cf. Proposition 1). Then necessarily L∗bμb = L∗b+hμb+h or in other words

�

2
μb − b.∇μb − div(b)μb = �

2
μb+h − (b+ h).∇μb+h − div(b+ h)μb+h,

which is the same as
�

2
(μb −μb+h)− b.∇(μb −μb+h)− div(b)(μb −μb+h)

=−h.∇μb+h − div(h)μb+h.
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Thus u= μb −μb+h solves the equation

(43) L∗bu=−h.∇μb+h − div(h)μb+h.

Next, denote by vh = vb,h the unique periodic solution of the PDE

(44) L∗bvh =−h.∇μb − div(h)μb =−
d∑

j=1

∂

∂xj

(hjμb)≡ fh

satisfying
∫

vh = 0. In view of the results in Section 6 and since, with dx(j) =∏
i �=j dxi ,

∫
Td

fh(x) dx =
d∑

j=1

∫ 1

0
· · ·

∫ 1

0

∂

∂xj

(
hj (x)μb(x)

)
dx

=∑
j

∫
Td−1

[
(hjμb)(x1, . . . , xj−1,1, xj+1, . . . , xd)

− (hjμb)(x1, . . . , xj−1,0, xj+1, . . . , xd)
]
dx(j) = 0,

such a solution exists and can be represented as vh = (L∗b)−1[fh], a map that is linear in h.
Now since

∫
μb+h − ∫

μb = 1− 1= 0, we can use (43) and (44) to see that the differences
wb,h = μb −μb+h − vh are the unique (periodic) integral-zero solutions of

L∗b+hwb,h =L∗bwb,h − h.∇wb,h − div(h)wb,h =
d∑

j=1

∂

∂xj

[hjvh] ≡ f̄h,

where again
∫

f̄h = 0 as in the penultimate display, so that we can write wb,h = (L∗b+h)
−1[f̄h].

Thus we have, for any h ∈ C1(Td), the decomposition

(45) μb −μb+h = vb,h +wb,h = (
L∗b

)−1[fh] + (
L∗b+h

)−1[f̄h],
which for sufficiently smooth b, h (such that also μb,μb+h ∈ Cr , r > 2, see after (63)) holds
classically (pointwise on T

d ).
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SUPPLEMENTARY MATERIAL

Supplement to “Nonparametric statistical inference for drift vector fields of multi-
dimensional diffusions” (DOI: 10.1214/19-AOS1851SUPP; .pdf). The remaining proofs
and technical results, along with a review of the relevant PDE material, are given in the sup-
plement [32]. We linearly continue the numbering scheme for sections, equations, lemmas,
etc., from the main document in the supplement, and items referred to which do not appear
in the main article can be found in the supplement (e.g., Lemma 6).
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