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We consider the minimization of a strongly convex objective function
given access to unbiased estimates of its gradient through stochastic gradi-
ent descent (SGD) with constant step size. While the detailed analysis was
only performed for quadratic functions, we provide an explicit asymptotic
expansion of the moments of the averaged SGD iterates that outlines the de-
pendence on initial conditions, the effect of noise and the step size, as well
as the lack of convergence in the general (nonquadratic) case. For this anal-
ysis we bring tools from Markov chain theory into the analysis of stochastic
gradient. We then show that Richardson–Romberg extrapolation may be used
to get closer to the global optimum, and we show empirical improvements of
the new extrapolation scheme.

1. Introduction. We consider the minimization of an objective function given access to
unbiased estimates of the function gradients. This key methodological problem has raised
interest in different communities in large-scale machine learning [9, 53, 54], optimization
[44, 46] and stochastic approximation [30, 48, 52]. The most widely used algorithms are
stochastic gradient descent (SGD), a.k.a. Robbins–Monro algorithm [51], and some of its
modifications based on averaging of the iterates [48, 50, 55].

While the choice of the step size may be done robustly in the deterministic case (see, e.g.,
[8]), this remains a traditional theoretical and practical issue in the stochastic case. Indeed,
early work suggested to use step sizes decaying with the number k of iterations as O(1/k)

[51], but it appeared to be nonrobust to ill-conditioning and slower decays such as O(1/
√

k)

together with averaging lead to both good practical and theoretical performance [3, 44].
We consider in this paper constant step-size SGD which is often used in practice. Al-

though the algorithm is not converging in general to the global optimum of the objective
function, constant step sizes come with benefits: (a) there is a single parameter value to set
as opposed the several choices of parameters to deal with decaying step sizes, for example,
as 1/(�k + �)◦; the initial conditions are forgotten exponentially fast1 for well-conditioned
(e.g., strongly convex) problems [42, 43], and the performance, although not optimal, is suf-
ficient in practice (in a machine learning set-up being only 0.1% away from the optimal
prediction often does not matter).

The main goals of this paper are: (a) to gain a complete understanding of the properties
of constant step-size SGD in the strongly convex case, and (b) to propose provable improve-
ments to get closer to the optimum when precision matters or in high-dimensional settings.
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1On the contrary, step-size scaling as 1/(μk) (with μ the strong convexity constant) forget the initial condition
much slower. They also require to access μ (which may be difficult) and are very sensitive to its misspecification
[54].
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FIG. 1. (Left) Convergence of iterates θ
(γ )
k and averaged iterates θ̄

(γ )
k to the mean θ̄γ under the stationary

distribution πγ . (Right) Richardson–Romberg extrapolation, the disks are of radius O(γ 2).

We consider the iterates of the SGD recursion on R
d defined starting from θ0 ∈ R

d , for k ≥ 0
and a step size γ > 0 by

(1) θ
(γ )
k+1 = θ

(γ )
k − γ

[
f ′(θ(γ )

k

)+ εk+1
(
θ

(γ )
k

)]
,

where f is the objective function to minimize (in machine learning the generalization per-
formance), εk+1(θ

(γ )
k ) the zero-mean statistically independent noise (in machine learning ob-

tained from a single observation). Following [5], we leverage the property that the sequence
of iterates (θ

(γ )
k )k≥0 is a homogeneous Markov chain.

This interpretation allows us to capture the general behavior of the algorithm. In the
strongly convex case this Markov chain converges exponentially fast to a unique stationary
distribution πγ (see Proposition 2) highlighting the facts that (a) initial conditions of the algo-
rithms are forgotten quickly, and (b) the algorithm does not converge to a point but oscillates
around the mean of πγ ; see an illustration in Figure 1 (left). It is known that the oscillations
of the nonaveraged iterates have an average magnitude of γ 1/2 [47].

Consider the process (θ̄
(γ )
k )k≥0 given for all k ≥ 0 by

(2) θ̄
(γ )
k = 1

k + 1

k∑
j=0

θ
(γ )
j .

Then, under appropriate conditions on the Markov chain (θ
(γ )
k )k≥0, a central limit theorem

on (θ̄
(γ )
k )k≥0 holds which implies that θ̄

(γ )
k converges at rate O(1/

√
k) to

(3) θ̄γ =
∫
Rd

ϑ dπγ (ϑ).

The deviation between θ̄
(γ )
k and the global optimum θ∗ is thus composed of a stochastic part

θ̄
(γ )
k − θ̄γ and a deterministic part θ̄γ − θ∗.

For quadratic functions it turns out that the deterministic part vanishes [5], that is, θ̄γ = θ∗
and thus averaged SGD with a constant step size does converge. However, it is not true for
general objective functions, where we can only show that θ̄γ − θ∗ = O(γ ), and this deviation
is the reason why constant step-size SGD is not convergent.

The first main contribution of the paper is to provide an explicit asymptotic expansion in
the step size γ of θ̄γ − θ∗. Second, a quantitative version of a central limit theorem is es-

tablished which gives a bound on E[‖θ̄γ − θ̄
(γ )
k ‖2] that highlights all dependencies on initial

conditions and noise variance, as achieved for least-squares by [15], with an explicit de-
composition into “bias” and “variance” terms. The bias term characterizes how fast initial
conditions are forgotten and is proportional to N(θ0 − θ∗) for a suitable norm N : Rd →R+,
while the variance term characterizes the effect of the noise in the gradient, independently of
the starting point, and increases with the covariance of the noise.
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Moreover, akin to weak error results for ergodic diffusions [59], we achieve a nonasymp-
totic weak error expansion in the step size between πγ and the Dirac measure on R

d

concentrated at θ∗. Namely, we prove that for all functions g : Rd → R, regular enough,∫
Rd g(ϑ)dπγ (ϑ) = g(θ∗) + γC

g
1 + r

g
γ , r

g
γ ∈ R

d , ‖rg
γ ‖ ≤ C

g
2 γ 2, for some C

g
1 ,C

g
2 ≥ 0 inde-

pendent of γ . Given this expansion, we can now use a very simple trick from numerical
analysis, namely, Richardson–Romberg extrapolation [56]. If we run two SGD recursions,
(θ

(γ )
k )k≥0 and (θ

(2γ )
k )k≥0, with the two different step sizes, γ and 2γ , then the average

processes (θ̄
(γ )
k )k≥0 and (θ̄

(2γ )
k )k≥0 will converge to θ̄γ and θ̄2γ , respectively. Since θ̄γ =

θ∗ +γ�Id
1 + r Id

γ and θ̄2γ = θ∗ +2γ�Id
1 + r Id

2γ , for r Id
γ , r Id

2γ ∈ R
d , max(‖2r Id

γ ‖,‖r Id
2γ ‖) ≤ 2Cγ 2,

for C ≥ 0 and � ∈ R
d independent of γ , the combined iterates 2θ̄

(γ )
k − θ̄

(2γ )
k will converge

to θ∗ + 2r Id
γ − r Id

2γ which is closer to θ∗ by a factor γ . See illustration in Figure 1(right).
In summary, we make the following contributions:

• We provide in Section 2 an asymptotic expansion in γ of θ̄γ − θ∗ and an explicit version of

a central limit theorem is given which bounds E[‖θ̄γ − θ̄
(γ )
k ‖2]. These two results outline

the dependence on initial conditions, the effect of noise and the step size.
• We show in Section 2 that Richardson–Romberg extrapolation may be used to get closer

to the global optimum.
• We borrow and adapt in Section 3 some techniques to analyze asymptotic bias of numerical

schemes in the context of diffusion processes to get new insight about SGD. We believe
that this analogy and the associated ideas are interesting in their own right.

• We show in Section 4 empirical improvements of the extrapolation schemes.

These results can be used directly, in practice, to achieve faster convergence in both asymp-
totic and nonasymptotic regimes. Moreover, convergence results can be used to derive confi-
dence intervals for θ∗, as in [13, 57]. Another important application is the design of automatic
restart schemes for SGD. In applications (especially in nonconvex settings), practitioners typ-
ically use epoch-wise constant step size; the step size is periodically reduced [26, 29]. How-
ever, the reduction scheduling is typically hand tuned which is a major burden. Automatic
restart strategies have been considered [11]; they are based on reducing the step size when
stationarity is reached. The detailed analysis of stationarity we provide can allow to design
new or more efficient restart strategies for such applications.

Notations. We first introduce several notations. We consider the finite dimensional2 Eu-
clidean space R

d embedded with its canonical inner product 〈·, ·〉. Denote by {e1, . . . , ed}
the canonical basis of Rd . Let E and F be two real vector spaces, we denote by E ⊗ F the
tensor product of E and F . For all x ∈ E and y ∈ F , denote by x ⊗ y ∈ E ⊗ F the tensor
product of x and y. Denote by E⊗k the kth tensor power of E and x⊗k ∈ E⊗k the kth tensor
power of x. We let L((Rd)⊗k,R�) stand for the set of linear maps from (Rn)⊗k to R

� and for
L ∈ L((Rd)⊗k,R�), we denote by ‖L‖ the operator norm of L.

Let n ∈ N
∗; denote by Cn(Rd,Rm) the set of n times continuously differentiable functions

from R
d to R

m. Let F ∈ Cn(Rd,Rm); denote by F (n) or DnF , the nth differential of f . Let
f ∈ Cn(Rd,R). For any x ∈ R

d , f (n)(x) is a tensor of order n. For example, for all x ∈ R
d ,

f (3)(x) is a third order tensor. In addition, for any x ∈ R
d and any matrix, M ∈ R

d×d , we
define f (3)(x)M as the vector in R

d given by, for any l ∈ {1, . . . , d}, the lth coordinate is

given by (f (3)(x)M)l =∑d
i,j=1 Mi,j

∂3f
∂xi∂xj ∂xl

(x). By abuse of notations, for f ∈ C1(Rd), we

2Proofs and results could be extended to an infinite dimensional domain. However, it would require heavy
technical considerations without bringing new important insights.
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identify f ′ with the gradient of f and if f ∈ C2(Rd), we identify f ′′ with the Hessian matrix
of f . A function f : Rd → R

q is said to be locally Lipschitz with polynomial growth or
pseudo-Lipschitz if there exists α ≥ 0 and C ≥ 0 such that for all x, y ∈ R

d , ‖f (x)−f (y)‖ ≤
C(1 + ‖x‖α + ‖y‖α)‖x − y‖. In this document any locally Lipschitz function is assumed to
be locally Lipschitz with polynomial growth and therefore, for ease of presentation, we do
not specify it in the sequel. For ease of notations and depending on the context, we consider
M ∈R

d×d either as a matrix or a second order tensor. More generally, any M ∈ L((Rd)⊗k,R)

will be also consider as an element of L((Rd)⊗(k−1),Rd) by the canonical bijection. Besides,
for any matrices M,N ∈ R

d×d , M ⊗ N is defined as the endomorphism of Rd×d such that
M ⊗ N : P �→ MPN . For any matrix M ∈ R

d×d , tr(M) is the trace of M , that is, the sum of
diagonal elements of the matrix M .

For a, b ∈ R, denote by a ∨ b and a ∧ b the maximum and the minimum of a and b,
respectively. Denote by �·� and �·� the floor and ceiling function, respectively.

Denote by B(Rd) the Borel σ -field of Rd . For all x ∈ R
d , δx stands for the Dirac measure

at x.

2. Main results. In this section we describe the assumptions underlying our analysis,
our main results and their implications.

2.1. Setting. Let f : Rd → R be an objective function, satisfying the following assump-
tions:

A1. The function f is strongly convex with convexity constant μ > 0, that is, for all
θ1, θ2 ∈ R

d and t ∈ [0,1],
f
(
tθ1 + (1 − t)θ2

)≤ tf (θ1) + (1 − t)f (θ2) − (μ/2)t (1 − t)‖θ1 − θ2‖2.

A2. The function f is five times continuously differentiable with second to fifth uni-
formly bounded derivatives: for all k ∈ {2, . . . ,5}, supθ∈Rd ‖f (k)(θ)‖ < +∞. In particular, f

is L-smooth with L ≥ 0: for all θ1, θ2 ∈ R
d

∥∥f ′(θ1) − f ′(θ2)
∥∥≤ L‖θ1 − θ2‖.

If there exists a positive definite matrix � ∈ R
d×d such that the function f is the quadratic

function θ �→ ‖�1/2(θ − θ∗)‖2/2, then A1, A2 are satisfied.
In the definition of SGD given by (1), (εk)k≥1 is a sequence of random functions from R

d

to R
d satisfying the following properties:

A3. There exists a filtration (Fk)k≥0 (i.e., for all k ∈ N, Fk ⊂ Fk+1) on some probability
space (,F,P) such that for any k ∈ N and θ ∈ R

d , εk+1(θ) is a Fk+1-measurable random
variable and E[εk+1(θ)|Fk] = 0. In addition, (εk)k∈N∗ are i.i.d. random fields. Moreover, we
assume that θ0 is F0-measurable.

A3 expresses that we have access to an i.i.d. sequence (f ′
k)k∈N∗ of unbiased estimator of

f ′, that is, for all k ∈N and θ ∈ R
d ,

(4) f ′
k+1(θ) = f ′(θ) + εk+1(θ).

Note that we do not assume random vectors (εk+1(θ
(γ )
k ))k∈N to be i.i.d., a stronger assumption

generally referred to as the semistochastic. Moreover, as θ0 is F0-measurable, for any k ∈ N,
θk is Fk-measurable.
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We also consider the following conditions on the noise, for p ≥ 2:

A4 (p). For any k ∈ N
∗, f ′

k is almost surely L-cocoercive (with the same constant as
in A2), that is, for any η, θ ∈ R

d , L〈f ′
k(θ) − f ′

k(η), θ − η〉 ≥ ‖2‖[]f ′
k(θ) − f ′

k(η). Moreover,
there exists τp ≥ 0 such that for any k ∈ N

∗, E1/p[‖εk(θ
∗)‖p] ≤ τp .

Almost sure L-co-coercivity [62] is satisfied, for example, if, for any k ∈ N
∗, there exists

a random function fk such that f ′
k = (fk)

′ and which is a.s. convex and L-smooth. Weaker
assumptions on the noise are discussed in Section 6.1. Finally, we emphasize that under A3,
in order to verify that A4(p) holds, p ≥ 2, it suffices to show that f ′

1 is almost surely L-
cocoercive and E

1/p[‖ε1(θ
∗)‖p] ≤ τp . Under A3–A4(2), consider the function C : Rd →

R
d×d defined for all θ ∈ R

d by

(5) C(θ) = E
[
ε1(θ)⊗2].

A5. The function C is three time continuously differentiable, and there exist Mε,kε ≥ 0
such that for all θ ∈ R

d ,

max
i∈{1,2,3}

∥∥C(i)(θ)
∥∥≤ Mε

{
1 + ∥∥θ − θ∗∥∥kε

}
.

In other words, we assume that the covariance matrix θ �→ C(θ) is a regular enough func-
tion which is satisfied in natural settings.

EXAMPLE 1 (Learning from i.i.d. observations). Our main motivation comes from ma-
chine learning; consider two sets, X ,Y, and a convex loss function L : X × Y × R

d → R.
The objective function is the generalization error fL(θ) = EX,Y [L(X,Y, θ)], where (X,Y )

are some random variables. Given i.i.d. observations (Xk,Yk)k∈N∗ with the same distribution
as (X,Y ), for any k ∈ N

∗, we define fk(·) = L(Xk,Yk, ·) the loss with respect to observation
k. SGD then corresponds to following gradient of the loss on a single independent observation
(Xk,Yk) at each step; Assumption A3 is then satisfied with Fk = σ((Xj ,Yj )j∈{1,...,k}).

Two classical situations are worth mentioning. On the first hand, in least-squares regres-
sion X = R

d , Y = R and the loss function is L(X,Y, θ) = (〈X,θ〉 − Y)2. Then, f� is the
quadratic function θ �→ ‖�1/2(θ − θ∗)‖2/2, with � = E[XX�], which satisfies Assumption
A2. For any θ ∈ R

d ,

(6) εk(θ) = XkX
�
k θ − XkYk.

Then, for any p ≥ 2, Assumption A4(p) and A5 is satisfied as soon as the observations are
a.s. bounded, while A1 is satisfied if the second moment matrix is invertible or additional
regularization is added. In this setting εk can be decomposed as εk = �k + ξk where �k is the
multiplicative part, ξk the additive part, given for θ ∈ R

d by �k(θ) = (XkX
�
k − �)(θ − θ∗)

and

(7) ξk = (X�
k θ∗ − Yk

)
Xk.

For all k ≥ 1, ξk does not depend on θ . These two parts in the noise will appear in Corollary 6.
Finally, assume that there exists r ≥ 0 such that

(8) E
[‖Xk‖2XkX

�
k

]
� r2�,

then A4(4) is satisfied. This assumption is satisfied, for example, for a.s. bounded data or for
data with bounded kurtosis; see [18] for details.

On the other hand, in (regularized) logistic regression, where L(X,Y, θ) = log(1 +
exp(−Y 〈X,θ〉)), Assumptions A4 or A2 are similarly satisfied, while A1 holds when reg-
ularization is added or with an additional restriction to a compact set (using selfconcordance
assumptions [3] would allow a direct unconstrained application).
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2.2. Summary and discussion of main results. Under the stated assumptions, for all γ ∈
(0,2/L) and θ0 ∈ R

d , the Markov chain (θ
(γ )
k )k≥0 converges in a certain sense specified

below to a probability measure on (Rd,B(Rd)), πγ satisfying
∫
Rd ‖ϑ‖2πγ (dϑ) < +∞; see

Proposition 2 in Section 3. In the next section, by two different methods (Theorem 4 and
Theorem 7), we show that under suitable conditions on f and the noise (εk)k≥1, there exists
� ∈ R

d such that for all small enough γ ≥ 0,

θ̄γ =
∫
Rd

ϑπγ (dϑ) = θ∗ + γ� + r(1)
γ ,

where r
(1)
γ ∈ R

d , ‖r(1)
γ ‖ ≤ Cγ 2 for some constant C ≥ 0 independent of γ . Using Proposi-

tion 2, we get that for all k ≥ 1,

(9) E
[
θ̄

(γ )
k − θ∗]= A(θ0, γ )

k
+ γ� + r(2)

γ ,

where r
(2)
γ ∈R

d,‖r(2)
γ ‖ ≤ C(γ 2 + e−kμγ ) for some constant C ≥ 0 independent of γ .

This expansion in the step size γ shows that a Richardson–Romberg extrapolation can be
used to have better estimates of θ∗. Consider the average iterates (θ̄

(k)
2γ )k≥0 and (θ̄

(γ )
k )k≥0

associated with SGD with step size 2γ and γ , respectively. Then, (9) shows that (2θ̄
(γ )
k −

θ̄
(2γ )
k )k≥0 satisfies

E
[
2θ̄

(γ )
k − θ̄

(2γ )
k − θ∗]= 2A(θ0, γ ) − A(θ0,2γ )

k
+ 2r(2)

γ − r
(2)
2γ

and, therefore, is closer to the optimum θ∗. This very simple trick improves the convergence
by a factor of γ (at the expense of a slight increase of the variance). In practice, while the
objective values at the unaveraged gradient iterates θ

(γ )
k saturate (i.e., stop decaying) at a

suboptimal value rapidly, θ̄
(γ )
k may already perform well enough to avoid saturation on real

data-sets [5]. The Richardson–Romberg extrapolated iterate 2θ̄
(γ )
k − θ̄

(2γ )
k very rarely reaches

saturation in practice. This appears in synthetic experiments presented in Section 4. More-
over, this procedure only requires to compute two parallel SGD recursions, either with the
same inputs or with different ones, and is naturally parallelizable.

In Section 3.2 we give a quantitative version of a central limit theorem for (θ̄
(γ )
k )k≥0, for

a fixed γ > 0 and k going to +∞; under appropriate conditions there exist constants B1(γ )

and B2(γ ) such that

(10) E
[∥∥θ̄ (γ )

k − θ̄γ

∥∥2]= B1(γ )/k + B2(γ )/k2 + O
(
1/k3).

Combining (9) and (10) characterizes the bias/variance trade-off of SGD used to estimate
θ∗.

2.3. Related work. The idea to study stochastic approximation algorithms using results
and techniques from the Markov chain literature is not new. It goes back to [23], which shows
under appropriate conditions that solutions of stochastic differential equations (SDE)

dYt = −f ′(Yt )dt + γt dBt,

where (Bt )t≥0 is a d-dimensional Brownian motion and (γt )t≥0 is a one-dimensional positive
function, limt→+∞ γt = 0, converge in probability to some minima of f . Another example
is [49] which extends the classical Foster–Lyapunov criterion from Markov chain theory
(see [40]) to study the stability of the least mean square algorithm. In [10], the authors are
interested in the convergence of the multidimensional Kohonen algorithm. They show that the
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Markov chain defined by this algorithm is uniformly ergodic and derive asymptotic properties
on its limiting distribution.

The techniques we use in this paper to establish our results share a lot of similarities with
previous work. For example, our first results in Section 3.1 and Section 3.2 can be seen as
complementary results of [2]. Indeed, in [2] the authors decompose the tracking error of a
general algorithm in a linear regression model. To prove their result, they develop the error
using a perturbation approach. However, for linear regression, θ̄γ = θ∗, which justifies the
present work which deals with potentially nonquadratic objective functions f .

Another and significant point of view to study stochastic approximation relies on the gra-
dient flow equation associated with the vector field f ′: ẋt = −f ′(xt ). This approach was
introduced by [33] and [30] and has been applied in numerous papers since then; see [6, 7,
38, 39, 58]. To establish our results in Section 3.3, we use the strong connection between SGD
and the gradient flow equation as well; in particular we introduce the Poisson solution asso-
ciated with the gradient flow equation. The combination of the relation between stochastic
approximation algorithms with the gradient flow equation and the Markov chain theory has
been developed in [21] and [22]. In particular, [22] establishes under appropriate conditions
that there exists for all γ ∈ (0, γ0), with γ0 small enough, an invariant distribution πγ for the

Markov chain (θ
(γ )
k )k∈N, and (πγ )γ∈(0,γ0) is tight. In addition, they show that any limiting

distributions is invariant for the gradient flow associated with f ′. Note that their conditions
and results are different from ours. In particular, we do not assume that (θ

(γ )
k )k∈N is Feller

but require that f is strongly convex contrary to [22]. In addition, we establish an explicit
expansion in the step size γ for θ̄γ − θ∗ and more generally for the weak error between πγ

and δθ∗ .
To the authors’ knowledge, the use of the Richardson–Romberg method for stochastic

approximation has only been considered in [41] to recover the minimax rate for recursive
estimation of time varying autoregressive process.

Several attempts have been made to improve convergence of SGD. [5] proposed an online
Newton algorithm which converges in practice to the optimal point with constant step size
but has no convergence guarantees. The quadratic case was studied by [5] for the (uniform)
average iterate. The variance term is upper bounded by σ 2d/n and the squared bias term
by ‖θ∗‖2/(γ n). This last term was improved to ‖�−1/2θ∗‖2/(γ n)2 by [15, 16], showing
that, asymptotically, the bias term is negligible; see also [31]. Analysis has been extended
to “tail averaging” [28] to improve the dependence on the initial conditions. Note that this
procedure can be seen as a Richardson–Romberg trick with respect to k. Other strategies
were suggested to improve the speed at which initial conditions were forgotten, for example,
using acceleration when the noise is additive [18, 27]. A criterion to check when SGD with
constant step size is close to its limit distribution was recently proposed in [11].

In the context of discretization of ergodic diffusions, weak error estimates between the
stationary distribution of the discretization and the invariant distribution of the associated
diffusion have been first shown by [59] and [37] in the case of the Euler–Maruyama scheme.
Then, [59] suggested the use of Richardson–Romberg interpolation to improve the accuracy
of estimates of integrals with respect to the invariant distribution of the diffusion. Extension
of these results have been obtained for other types of discretization by [1] and [12]. We show
in Section 3.3 that a weak error expansion in the step size γ also holds for SGD between
πγ and δθ∗ . Interestingly, as to the Euler–Maruyama discretization, SGD has a weak error of
order γ . In addition, [20] proposed and analyzed the use of Richardson–Romberg extrapo-
lation applied to the stochastic gradient Langevin dynamics (SGLD) algorithm. This method
introduced by [61] combines SGD and the Euler–Maruyama discretization of the Langevin
diffusion associated to a target probability measure [14, 19]. Note that this method is, how-
ever, completely different from SGD in part because Gaussian noise of order γ 1/2 (instead of
γ ) is injected in SGD which changes the overall dynamics.
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Finally, it is worth mentioning [35, 36], which are interested in showing that the invariant
measure of constant step-size SGD for an appropriate choice of the step size γ , can be used
as a proxy to approximate the target distribution π with density with respect to the Lebesgue
measure e−f . Note that the perspective and purpose of this paper is completely different since
we are interested in optimizing the function f and not in sampling from π .

3. Detailed analysis. In this section we describe in detail our approach. A first step is to
describe the existence of a unique stationary distribution πγ for the Markov chain (θ

(γ )
k )k≥0

and the convergence of this Markov chain to πγ in the Wasserstein distance of order 2.

Limit distribution. We cast in this section SGD in the Markov chain framework and in-
troduce basic notion related to this theory; see [40] for an introduction to this topic. Consider
the Markov kernel Rγ on (Rd,B(Rd)) associated with SGD iterates (θ

(γ )
k )k∈N, that is, for

all k ∈ N and A ∈ B(Rd), almost surely Rγ (θk,A) = P(θk+1 ∈ A|θk), for all θ0 ∈ R
d and

A ∈ B(Rd), θ �→ Rγ (θ,A) is Borel measurable and Rγ (θ0, ·) is a probability measure on
(Rd,B(Rd)). For all k ∈ N

∗, we define the Markov kernel Rk
γ , recursively, by R1

γ = Rγ and
for k ≥ 1, for all θ0 ∈ R

d and A ∈ B(Rd)

Rk+1
γ (θ0,A) =

∫
Rd

Rk
γ (θ0,dθ)Rγ (θ,A).

For any probability measure λ on (Rd,B(Rd)), we define the probability measure λRγ for
all A ∈ B(Rd) by

λRk
γ (A) =

∫
Rd

λ(dθ)Rk
γ (θ,A).

By definition, for any probability measure λ on B(Rd) and k ∈ N
∗, λRk

γ is the distribution

of θ
(γ )
k started from θ0 drawn from λ. For any function φ : Rd → R+ and k ∈ N

∗, define the
measurable function Rk

γ φ :Rd →R for all θ0 ∈ R
d ,

Rk
γ φ(θ0) =

∫
Rd

φ(θ)Rk
γ (θ0,dθ).

For any measure λ on (Rd,B(Rd)) and any measurable function h : Rd → R, λ(h) denotes∫
Rd h(θ) dλ(θ) when it exists. Note that with such notations, for any k ∈ N

∗, probability
measure λ on B(Rd) and measurable function h : Rd → R+, we have λ(Rk

γ h) = (λRk
γ )(h).

A probability measure πγ on (Rd,B(Rd)) is said to be a invariant probability measure for

Rγ , γ > 0 if πγ Rγ = Rγ . A Markov chain (θ
(γ )
k )k∈N satisfying the SGD recursion (1) for

γ > 0 will be said at stationarity if it admits an invariant probability measure πγ and θ
(γ )
k is

distributed according to πγ . Note that in this case, for all k ∈ N, the distribution of θ
(γ )
k is πγ .

To show that (θ
(γ )
k )k≥0 admits a unique stationary distribution πγ and quantify the conver-

gence of (ν0R
k
γ )k≥0 to πγ , we use the Wasserstein distance; see [60]. A probability measure

λ on (Rd,B(Rd)) is said to have a finite second moment if
∫
Rd ‖ϑ‖2λ(dϑ) < +∞. The set

of probability measure on (Rd,B(Rd)) having a finite second moment is denoted by P2(R
d).

For all probability measures ν and λ in P2(R
d), define the Wasserstein distance of order 2

between λ and ν by

W2(λ, ν) = inf
ξ∈�(λ,ν)

(∫
‖x − y‖2ξ(dx, dy)

)1/2
,

where �(μ,ν) is the set of probability measure ξ on B(Rd × R
d), satisfying for all A ∈

B(Rd), ξ(A ×R
d) = ν(A) and ξ(Rd × A) = λ(A).
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PROPOSITION 2. Assume A1–A2–A3–A4(2). For any step size γ ∈ (0,2/L), the Markov
chain (θ

(γ )
k )k≥0, defined by the recursion (1), admits a unique stationary distribution πγ ∈

P2(R
d). In addition,

(a) for all θ ∈ R
d , k ∈ N

∗:

W 2
2
(
Rk

γ (θ, ·),πγ

)≤ (1 − 2μγ (1 − γL/2)
)k ∫

Rd
‖θ − ϑ‖2 dπγ (ϑ);

(b) for any Lipschitz function φ : Rd → R, with Lipschitz constant Lφ , for all θ ∈ R
d ,

k ∈N
∗:

∣∣Rk
γ φ(θ) − πγ (φ)

∣∣≤ Lφ

(
1 − 2μγ (1 − γL/2)

)k/2
(∫

‖θ − ϑ‖2 dπγ (ϑ)

)1/2
.

PROOF. Let γ ∈ (0,2/L) and λ1, λ2 ∈ P2(R
d). By [60], Theorem 4.1, there exists a cou-

ple of random variables θ
(1)
0 , θ

(2)
0 such that W 2

2 (λ1, λ2) = E[‖θ(1)
0 − θ

(2)
0 ‖2] independent of

(εk)k∈N∗ . Let (θ
(1)
k )k≥0,(θ(2)

k )k≥0 be the SGD iterates associated with the step size γ , starting

from θ
(1)
0 and θ

(2)
0 , respectively, and sharing the same noise, that is, for all k ≥ 0,

(11)

⎧⎨
⎩θ

(1)
k+1 = θ

(1)
k − γ

[
f ′(θ(1)

k

)+ εk+1
(
θ

(1)
k

)]
θ

(2)
k+1 = θ

(2)
k − γ

[
f ′(θ(2)

k

)+ εk+1
(
θ

(2)
k

)]
.

Note that using that θ
(1)
0 , θ

(2)
0 are independent of ε1, we have for i, j ∈ {1,2} using A3, that

(12) E
[〈
θ

(i)
0 , ε
(
θ

(j)
0

)〉]= 0.

Since for all k ≥ 0, the distribution of (θ
(1)
k , θ

(2)
k ) belongs to �(λ1R

k
γ ,λ2R

k
γ ); by definition

of the Wasserstein distance we get

W 2
2 (λ1Rγ ,λ2Rγ ) ≤ E

[∥∥θ(1)
1 − θ

(2)
1

∥∥2]
= E
[∥∥θ(1)

0 − γf ′
1
(
θ

(1)
0

)− (θ(2)
0 − γf ′

1
(
θ

(2)
0

))
)
∥∥2]

(i)= E
[∥∥θ(1)

0 − θ
(2)
0

∥∥2 − 2γ
〈
f ′(θ(1)

0

)− f ′(θ(2)
0

)
, θ

(1)
0 − θ

(2)
0

〉]
+ γ 2

E
[∥∥f ′

1
(
θ

(1)
0

)− f ′
1
(
θ

(2)
0

)∥∥2]
(ii)≤ E
[∥∥θ(1)

0 − θ
(2)
0

∥∥2 − 2γ (1 − γL/2)
〈
f ′(θ(1)

0

)− f ′(θ(2)
0

)
, θ

(1)
0 − θ

(2)
0

〉]
(iii)≤ (1 − 2μγ (1 − γL/2)

)
E
[∥∥θ(1)

0 − θ
(2)
0

∥∥2],
using (12) for (i), A4(2) for (ii) and, finally, A1 for (iii).

Thus, by a straightforward induction we get, setting ρ = (1 − 2μγ (1 − γL/2))

W 2
2
(
λ1R

k
γ ,λ2R

k
γ

)≤ E
[∥∥θ(1)

k − θ
(2)
k

∥∥2]
≤ ρE
[∥∥θ(1)

k−1 − θ
(2)
k−1

∥∥2]≤ ρkW 2
2 (λ1, λ2).

(13)

Since by A2–A3–A4(2), λ1Rγ ∈ P2(R
d), taking λ2 = λ1Rγ in (13), for any N ∈ N

∗, we
have
∑N

k=1 W 2
2 (λ1R

k
γ ,λ2R

k
γ ) ≤∑N

k=1 ρkW 2
2 (λ1, λ1Rγ ). Therefore, we get

∑+∞
k=1 W 2

2 (λ1R
k
γ ,

λ1R
k+1
γ ) < +∞. By [60], Theorem 6.16, the space P2(R

d), endowed with W2, is a Polish
space. Then, (λ1R

k
γ )k≥0 is a Cauchy sequence and converges to a limit πλ1

γ ∈ P2(R
d):

(14) lim
k→+∞W2

(
λ1R

k
γ ,πλ1

γ

)= 0.
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We show that the limit πλ1
γ does not depend on λ1. Assume that there exists πλ2

γ such that
limk→+∞ W2(λ2R

k
γ ,πλ2

γ ) = 0. By the triangle inequality

W2
(
πλ1

γ ,πλ2
γ

)≤ W2
(
πλ1

γ , λ1R
k
γ

)+ W2
(
λ1R

k
γ ,λ2R

k
γ

)+ W2
(
πλ2

γ , λ2R
k
γ

)
.

Thus, by (13) and (14), taking the limits as k → +∞, we get W2(π
λ1
γ ,πλ2

γ ) = 0 and πλ1
γ =

πλ2
γ . The limit is thus the same for all initial distributions and is denoted by πγ .
Moreover, πγ is invariant for Rγ . Indeed, for all k ∈ N

∗,

W2(πγ Rγ ,πγ ) ≤ W2
(
πγ Rγ ,πγ Rk

γ

)+ W2
(
πγ Rk

γ ,πγ

)
.

Using (13) and (14), we get taking k → +∞, W2(πγ Rγ ,πγ ) = 0 and πγ Rγ = πγ . The fact
that πγ is the unique stationary distribution is straightforward by contradiction and using
(13).

Taking λ1 = δθ , λ2 = πγ , using the invariance of πγ and (13), we get (a). Finally, note
that
∫
Rd ‖θ − ϑ‖2 dπγ (ϑ) < +∞ follows from the inequality for a, b ∈ R

d , ‖a − b‖2 ≤
2(‖a‖2 + ‖2‖[]b) and since we have established that πγ ∈ P2(R

d).
Finally, if we take λ1 = δθ and λ2 = πγ , using πγ Rγ = πγ , (13) and the Cauchy–Schwarz

inequality, we have for any k ∈ N
∗:∣∣Rk

γ φ(θ) − πγ (φ)
∣∣= ∣∣E[φ(θ(1)

k,γ

)− φ
(
θ

(2)
k,γ

)
)
]∣∣

≤ LφE
1/2[∥∥θ(1)

k,γ − θ
(2)
k,γ

∥∥2]

≤ Lφ

(
1 − 2μγ (1 − γL/2)

)k/2
(∫

‖θ − ϑ‖2 dπγ (ϑ)

)1/2
,

which concludes the proof of Proposition (b). �

A consequence of Proposition 2 is that the expectation of θ̄
(γ )
k , defined by (2), converges to∫

Rd ϑ dπγ (ϑ) as k goes to infinity at a rate of order O(k−1); see Theorem 16 in Section 6.2.

3.1. Expansion of moments of πγ when γ is in a neighborhood of 0. In this subsection
we analyze the properties of the chain starting at θ0 distributed according to πγ . As a result we
prove that the mean of the stationary distribution θ̄γ = ∫

Rd ϑπγ (dϑ) is such that θ̄γ = θ∗ +
γ�+O(γ 2). Simple developments of equation (1) at equilibrium result in expansions of the
first two moments of the chain. It extends [34, 47] which showed that (γ −1/2(πγ − δθ∗))γ>0

converges in distribution to a normal law as γ → 0.

Quadratic case. When f is a quadratic function, that is, f ′ is affine, we have the follow-
ing result:

PROPOSITION 3. Assume f = f� , f� : θ �→ ‖�1/2(θ − θ∗)‖2/2, where � is a positive
definite matrix and A2–A3–A4(4). Let γ ∈ (0,2/L). Then, it holds θ̄γ = θ∗, � ⊗ I + I ⊗
� − γ� ⊗ � is invertible, and∫

Rd

(
θ − θ∗)⊗2

πγ (dθ) = γ (� ⊗ I + I ⊗ � − γ� ⊗ �)−1
[∫

Rd
C(θ)πγ (dθ)

]
,

where θ̄γ and C are given by (3) and (5), respectively, and πγ is the invariant probability
measure of Rγ given by Proposition 2.
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The first part of the result, which highlights the crucial fact that for a quadratic function
the mean under the limit distribution is the optimal point, is easy to prove. Indeed, since
πγ is invariant for (θ

(γ )
k )k≥0, if θ

(γ )
0 is distributed according to πγ , then θ

(γ )
1 is distributed

according to πγ as well. Thus, as θ
(γ )
1 = θ

(γ )
0 − γf ′(θ(γ )

0 ) + γ ε1(θ
(γ )
0 ) taking expectations

on both sides, we get
∫
Rd f ′(ϑ)dπγ (ϑ) = 0. For a quadratic function, whose gradient is

affine:
∫
Rd f ′(ϑ)dπγ (ϑ) = f ′(θ̄γ ) = 0 and thus θ̄γ = θ∗. This implies that the averaged it-

erate converges to θ∗; see, for example, [5]. The proof for the second expression is given in
Section 6.3.

General case. While the quadratic case led to particularly simple expressions, in gen-
eral we can only get a first order development of these expectations as γ → 0. Note that it
improves on [47] which shows a similar expansion but with an error of order of O(γ 3/2).

THEOREM 4. Assume A1–A2–A3–A4(6 ∨ [2(kε + 1)])–A5 and let γ ∈ (0,2/L). Then,
f ′′(θ∗) ⊗ I + I ⊗ f ′′(θ∗) is invertible and

θ̄γ − θ∗ = γf ′′(θ∗)−1
f ′′′(θ∗)AC

(
θ∗)+ O

(
γ 2),(15) ∫

Rd

(
θ − θ∗)⊗2

πγ (dθ) = γ AC
(
θ∗)+ O

(
γ 2),(16)

where

(17) A = (f ′′(θ∗)⊗ I + I ⊗ f ′′(θ∗))−1
,

θ̄γ and C are given by (3) and (5), respectively, and πγ is the invariant probability measure
of Rγ given by Proposition 2.

PROOF. The proof is postponed to Section 6.4. �

This shows that γ �→ θ̄γ is a differentiable function at γ = 0. The “drift” θ̄γ −θ∗ can be un-
derstood as an additional error occurring because the function is nonquadratic (f ′′′(θ∗) �= 0)
and the step sizes are not decaying to zero. The mean under the limit distribution is at distance
γ from θ∗. In comparison, the final iterate oscillates in a sphere of radius proportional to

√
γ .

3.2. Expansion for a given γ > 0 when k tends to +∞. In this sub-section we analyze
the convergence of θ̄

(γ )
k to θ̄γ , when k → ∞ and the convergence of E[‖θ̄ (γ )

k − θ̄γ ‖2] to 0.

Under suitable conditions [24], θ̄
(γ )
k satisfies a central limit theorem: {√k(θ̄

(γ )
k − θ̄γ )}k∈N∗

converges in law to a d-dimensional Gaussian distribution with zero mean. However, this
result is purely asymptotic, and we propose a new tighter development that describes how
the initial conditions are forgotten. We show that the convergence behaves similarly to the
convergence in the quadratic case, where the expected squared distance decomposes as a
sum of a bias term that scales as k−2, and a variance term that scales as k−1, plus linearly
decaying residual terms. We also describe how the asymptotic bias and variance can be easily
expressed as moments of solutions associated with several Poisson equations.

For any Lipschitz function ϕ : Rd → R
q , by Lemma 8 in Section 6.2 the function ψγ =∑+∞

i=0 {Ri
γ ϕ − πγ (ϕ)} is well defined, Lipschitz and satisfies πγ (ψγ ) = 0, (Id − Rγ )ψγ = ϕ.

The function ψγ will be referred to as the Poisson solution associated with ϕ. Consider the
three following functions:

• ψγ the Poisson solution associated with ϕ : θ �→ θ − θ∗,
• �γ the Poisson solution associated with θ �→ ψγ (θ),
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• χ1
γ the Poisson solution associated with θ �→ (ψγ (θ))⊗2,

• χ2
γ the Poisson solution associated with θ �→ ((ψγ − ϕ)(θ))⊗2.

THEOREM 5. Assume A1–A2–A3–A4(4), and let γ ∈ (0,1/(2L)). Then, setting ρ =
(1 − γμ)1/2, for any starting point θ0 ∈ R

d , k ∈ N
∗,

E
[
θ̄

(γ )
k − θ̄γ

]= k−1(ψγ (θ0) + O
(
ρk)),

E
[(

θ̄
(γ )
k − θ̄γ

)⊗2]= k−1πγ

(
ψ⊗2

γ − (ψγ − ϕ)⊗2)
− k−2[πγ

(
�γ ϕ� + ϕ��

γ

)+ χ2
γ (θ0) − χ1

γ (θ0)
]

+ O
(
k−3),

where θ̄
(γ )
k , θ̄γ are given by (2) and (3), respectively, and πγ is the invariant probability

measure of Rγ given by Proposition 2.

Equation (5) is a sum of three terms: (i) a variance term that scales as 1/k, and does not
depend on the initial distribution (but only on the asymptotic distribution πγ ), (ii) a bias term
which scales as 1/k2 and depends on the initial point θ0 ∈ R

d and (iii) a nonpositive residual
term which scales as 1/k2.

PROOF. In order to give the intuition of the proof and to underline how the associated
Poisson solutions are introduced, we here sketch the proof of the first result. By definition of
ϕ : θ �→ θ − θ∗ and since ψγ satisfies (Id − Rγ )ψγ = ϕ, we have

E
[
θ̄

(γ )
k+1

]− θ∗ = (k + 1)−1
k∑

i=0

(
Ri

γ ϕ
)
(θ0)

= πγ (ϕ) + (k + 1)−1ψγ (θ0) + Rk+1
γ ψγ (θ0),

where we have used that

∞∑
i=0

Ri
γ

(
ϕ − πγ (ϕ)

)− Rk+1
γ

∞∑
i=0

Ri
γ

(
ϕ − πγ (ϕ)

)= ψγ − Rk+1
γ ψγ .

Finally, we have that Rk
γ ψγ (θ0) converges to 0 at linear speed, using Proposition 2 and

πγ (ψγ ) = 0.
The formal and complete proof of this result is postponed to Section 6.5. �

This result gives an exact closed form for the asymptotic bias and variance, for a fixed γ ,
as k → ∞. Unfortunately, in the general case, it is neither possible to compute the Poisson
solutions exactly nor is it possible to prove a first order development of the limits as γ → 0.

When f� is a quadratic function, it is possible, for any γ > 0, to compute ψγ and χ1,2
γ

explicitly; we get the following decomposition of the error which exactly recovers the result
of [15].

COROLLARY 6. Assume that f is an objective function of a least-square regression
problem, that is, with the notations of Example 1, f = f� , � = E[XX�], εk are defined by
(6) and step size γ ≤ 1/r2, with r defined by (8). Assume A1–A2–A3–A4(4). For any starting
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point θ0 ∈ R
d ,

Eθ̄
(γ )
k − θ∗ = (1/(kγ )

)
�−1(θ0 − θ∗)+ O

(
ρk),

E
[(

θ̄
(γ )
k − θ∗)⊗2]= (1/k)�−1

{∫
Rd

C(θ)dπγ (θ)

}
�−1

+ (1/
(
k2γ 2))�−1

[
ϕ(θ0)

⊗2 − πγ

(
ϕ⊗2)]�−1

− (1/
(
k2γ 2))(�−2 ⊗ Id+ Id⊗�−2)πγ

(
ϕ⊗2)+ O

(
k−3).

With  = (� ⊗ I + I ⊗ � − γ� ⊗ �)(� ⊗ I + I ⊗ � − γ T)−1, and

(18) T :Rd×d →R
d×d, A �→ E

[(
X�AX

)
XX�].

PROOF. The proof is postponed to the Supplementary Material [17], Section S5. �

The bound on the second order moment is composed of a variance term
k−1�−1πγ (C)�−1, a bias term which decays as k−2 and a nonpositive residual term. Note
that the bias is 0 if we start under the limit distribution.

3.3. Continuous interpretation of SGD and weak error expansion. Under the stated as-
sumptions on f and (εk)k∈N∗ , we have analyzed the convergence of the stochastic gradient
recursion (1). We here describe how this recursion can be seen as a noisy discretization of the
following gradient flow equation, for t ∈ R+:

(19) θ̇t = −f ′(θt ).

Note that since f ′(θ∗) = 0 by definition of θ∗ and A1, then θ∗ is an equilibrium point of
(19), that is, θt = θ∗ for all t ≥ 0 if θ0 = θ∗. Under A2, (19) admits a unique solution on R+
for any starting point θ ∈ R

d . Denote by (ϕt )t≥0 the flow of (19), defined for all θ ∈ R
d by

(ϕt (θ))t≥0 as the solution of (19) starting at θ .
Denote by (A,D(A)), the infinitesimal generator associated with the flow (ϕt )t≥0 defined

by

D(A) =
{
h :Rd →R : for all θ ∈ R

d , lim
t→0

h(ϕt (θ)) − h(θ)

t
exists
}
,

(20)

Ah(θ) = lim
t→0

{h(ϕt (θ)) − h(θ)}
t

for all h ∈ D(A), θ ∈ R
d .

Note that for any h ∈ C1(Rd), h ∈ D(A), Ah = −〈f ′, h′〉.
Under A1 and A2, for any locally Lipschitz function g : Rd → R (extension to a func-

tion g : Rd → R
q can easily be done considering all assumptions and results coordinate-

wise), denote by hg the solution of the continuous Poisson equation defined for all θ ∈ R
d

by hg(θ) = ∫∞0 (g(ϕs(θ)) − g(θ∗))ds. Note that hg is well defined by Lemma 21(b) in Sec-
tion 6.6.1, since g is assumed to be locally Lipschitz. Roughly, Lemma 21(b) implies that, for
any θ ∈ R

d , there exists C(θ) ≥ 0 such that for any s ∈ R+, |g(ϕs(θ)) − g(θ∗)| ≤ C(θ)e−s

and, therefore, s �→ g(ϕs(θ)) − g(θ∗) is integrable on R+ for any θ ∈ R
d . By (20), we have

for all g : Rd →R, locally Lipschitz,

(21) Ahg(θ) = g
(
θ∗)− g(θ).

Under regularity assumptions on g (see Theorem 23), hg is continuously differentiable and,
therefore, satisfies 〈f ′, h′

g〉 = g − g(θ∗). The idea is then to make a Taylor expansion of

hg(θ
(γ )
k+1) around θ

(γ )
k to express k−1∑k

i=1 g(θ
(γ )
i )− g(θ∗) as convergent terms involving the

derivatives of hg . For g :Rd →R and �,p ∈N, � ≥ 1, consider the following assumptions:
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A6 (�,p). There exist ag, bg ∈ R+ such that g ∈ C�(Rd) and for all θ ∈ R
d and i ∈

{1, . . . , �}, ‖g(i)(θ)‖ ≤ ag{‖θ − θ∗‖p + bg}.

THEOREM 7. Let g : Rd → R, satisfying A6(5,p) for p ∈ N. Assume A1–A2–A3–A5.
Furthermore, suppose that there exists q ∈ N and C ≥ 0 such that for all θ ∈ R

d ,

E
[∥∥ε1(θ)

∥∥p+kε+3]≤ C
(
1 + ∥∥θ − θ∗∥∥q),

and A4(2p̃) holds for p̃ = p+3+q ∨kε . Then, there exists a constant ς > 0, only depending
on p̃ such that for all γ ∈ (0,1/(ςL)), k ∈ N

∗ and any starting point θ0 ∈R
d it holds that:

E

[
k−1

k∑
i=1

{
g
(
θ

(γ )
i

)− g
(
θ∗)}]

= (1/(kγ )
){

hg(θ0) −E
[
hg

(
θ

(γ )
k+1

)]}
+ (γ /2) tr

(
h′′

g

(
θ∗)C(θ∗))− (γ /k)A1(θ0) − γ 2A2(θ0, k),

(22)

where θ
(γ )
k is the Markov chain starting from θ0 and defined by the recursion (1) and C is

given by (5). In addition, for some constant C ≥ 0 independent of γ and k, we have

A1(θ0) ≤ C
{
1 + ∥∥θ0 − θ∗∥∥p̃}, A2(θ0, k) ≤ C

{
1 + ∥∥θ0 − θ∗∥∥p̃/k

}
.

PROOF. The proof is postponed to Section 6.6. �

First, in the case where f ′ is affine, choosing for g the identity function, then hId =∫+∞
0 {ϕs − θ∗}ds = �−1, and we get that the first term in (22) vanishes which is expected

since in that case θ̄γ = θ∗. Second, by Lemma 22(b) we recover the first expansion of
Theorem 4 for arbitrary objective functions f . Finally, note that for all q ∈ N, under ap-
propriate conditions, Theorem 7 implies that there exist constants C1,C2(θ0) ≥ 0 such that
E[k−1∑k

i=1 ‖θ(γ )
i − θ∗‖2q] = C1γ + C2(θ0)/k + O(γ 2).

3.4. Discussion. Classical proofs of convergence rely on another decomposition, origi-
nally proposed by [45] and used in recent papers analyzing the averaged iterate [4]. In order to
highlight the main difference, we here sketch the arguments of these decompositions, namely,
the fact that the residual term is not well controlled when γ goes to zero in the classical proof.

Classical decomposition. The starting point of this decomposition is to consider a Taylor
expansion of f ′(θ(γ )

k+1) around θ∗. For any k ∈ N,

f ′(θ(γ )
k

)= f ′′(θ∗)(θ(γ )
k − θ∗)+ O

(∥∥θ(γ )
k − θ∗∥∥2).

As a consequence, using the definition of the SGD recursion (1),

θ
(γ )
k+1 − θ

(γ )
k = −γf ′(θ(γ )

k

)− γ εk+1
(
θ

(γ )
k

)
= −γf ′′(θ∗)(θ(γ )

k − θ∗)− γ εk+1
(
θ

(γ )
k

)+ γO
(∥∥θ(γ )

k − θ∗∥∥2).
Thus,

f ′′(θ∗)(θ(γ )
k − θ∗)= γ −1(−θ

(γ )
k+1 + θ

(γ )
k

)− εk+1
(
θ

(γ )
k

)+ O
(∥∥θ(γ )

k − θ∗∥∥2).
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Averaging over the first k iterates yields

(k + 1)
(
θ̄

(γ )
k − θ∗)

= γ −1f ′′(θ∗)−1(
θ

(γ )
0 − θ

(γ )
k+1

)− k∑
i=0

f ′′(θ∗)−1
εi+1
(
θ

(γ )
i

)

+
k∑

i=0

O
(∥∥θ(γ )

i − θ∗∥∥2).
(23)

The term on the right-hand part of equation (23) is composed of a bias term (depending on
the initial condition), a variance term and a residual term. This residual term differentiates the
general setting from the quadratic one (in which it does not appear, as the first-order Taylor
expansion of f ′ is exact). This decomposition has been used in [4] to prove upper bounds on
the error but does not allow for a tight decomposition in powers of γ when γ → 0. Indeed, the
residual θ

(γ )
i − θ∗ simply does not go to 0 when γ → 0; on the contrary, the chain becomes

ill conditioned when γ = 0.

New decomposition. Here, we use the fact that for a function g : Rd → R
q regular

enough, there exists hg : Rd →R
q satisfying, for any θ ∈ R

d ,

h′
g(θ)f ′(θ) = g(θ) − g

(
θ∗),

where h′
g(θ) ∈ R

q×d and f ′(θ) ∈ R
d . The starting point is then a first-order Taylor develop-

ment of hg(θ
(γ )
k+1) around θ

(γ )
k . For any k ∈ N

∗, we have

hg

(
θ

(γ )
k+1

)= hg

(
θ

(γ )
k

)+ h′
g

(
θ

(γ )
k

)(
θ

(γ )
k+1 − θ

(γ )
k

)+ O
(∥∥θ(γ )

k+1 − θ
(γ )
k

∥∥2)
= hg

(
θ

(γ )
k

)− γ h′
g

(
θ

(γ )
k

)
f ′(θ(γ )

k

)− γ h′
g

(
θ

(γ )
k

)
εk+1
(
θ

(γ )
k

)
+ O
(∥∥θ(γ )

k+1 − θ
(γ )
k

∥∥2)
= hg

(
θ

(γ )
k

)− γ
(
g
(
θ

(γ )
k

)− g
(
θ∗))− γ h′

g

(
θ

(γ )
k

)
εk+1
(
θ

(γ )
k

)
+ O
(∥∥θ(γ )

k+1 − θ
(γ )
k

∥∥2).
Thus, reorganizing terms,

g
(
θ

(γ )
k

)− g
(
θ∗)= γ −1{hg

(
θ

(γ )
k

)− hg

(
θ

(γ )
k+1

)}
+ h′

g

(
θ

(γ )
k

)
εk+1
(
θ

(γ )
k

)+ γ −1O
(∥∥θ(γ )

k+1 − θ
(γ )
k

∥∥2).
Finally, averaging over the first k iterations and taking g = Id, give

(k + 1)
(
θ̄

(γ )
k − θ∗)

= γ −1(hId
(
θ

(γ )
0

)− hId
(
θ

(γ )
k+1

))+ k∑
i=0

h′
Id
(
θ

(γ )
i

)
εi+1
(
θ

(γ )
i

)

+ γ −1
k∑

i=0

O
(∥∥θ(γ )

i+1 − θ
(γ )
i

∥∥2).
(24)

This expansion is the root of the proof of Theorem 7 which formalizes the expansion as
powers of γ . The key difference between decompositions (23) and (24) is that in the latter,
when γ → 0, the expectation of the residual term tends to 0 and can naturally be controlled.
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FIG. 2. Synthetic data, logarithmic scales. Upper left: logistic regression, d = 12, with averaged SGD with
step size 1/R2, 1/2R2, decaying step sizes (γk = 1/(2R2√

k)) (averaged (plain) and nonaveraged (dashed)),
Richardson–Romberg extrapolated iterates, and online Newton iterates. Upper right: same in lower dimension
(d = 4). Bottom: same but with three different step sizes and an estimator built using the Richardson estimator

θ̃3
k = 8

3 θ̄
(γ )
k − 2θ̄

(2γ )
k + 1

3 θ̄
(4γ )
k , with three different step sizes 3γ , 2γ and γ = 1/4R2.

4. Experiments. We performed experiments on simulated data, for logistic regression,
with n = 107 observations, for d = 12 and 4. Results are presented in Figure 2. The data
are a.s. bounded by R ≥ 0; therefore, R2 = L. We consider SGD with constant step sizes
1/R2, 1/2R2 (and 1/4R2), with or without averaging, with R2 = L. Without averaging, the
chain saturates with an error proportional to γ (since ‖θ(γ )

k − θ∗‖ = O(
√

γ ) as k → +∞).
Note that the ratio between the convergence limits of the two sequences is roughly 2 in
the unaveraged case and 4 in the averaged case which confirms the predicted limits. We
consider Richardson–Romberg iterates, which saturate at a much lower level, and performs
much better than decaying step sizes (as 1/

√
k) on the first iterations, as it forgets the initial

conditions faster. Finally, we run the online Newton algorithm [5] which performs very well
but has no convergence guarantee. On the right plot we also propose an estimator that uses
three different step sizes to perform a higher order interpolation. More precisely, for all k ∈
N

∗, we compute θ̃3
k = 8

3 θ̄
(γ )
k − 2θ̄

(2γ )
k + 1

3 θ̄
(4γ )
k . With such an estimator the first 2 terms in the

expansion, scaling as γ and γ 2, should vanish, which explains why it does not saturate.
We also performed experiments on the covertype dataset (581,012 observations, d = 54),

obtained from the LIBSVM data website.3 Similarly, Richardson–Romberg iterates outper-

3http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets

http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets
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FIG. 3. Covertype dataset.

form constant step size while decaying step sizes are particularly slow. Convergence results
are given in Figure 3.

5. Conclusion. In this paper we have used and developed Markov chain tools to analyze
the behavior of constant step-size SGD with a complete analysis of its convergence, outlining
the effect of initial conditions, noise and step sizes. For machine learning problems this allows
us to extend known results from least squares to all loss functions. This analysis leads nat-
urally to using Romberg–Richardson extrapolation that provably improves the convergence
behavior of the averaged SGD iterates. Our work opens up several avenues for future work:
(a) show that Richardson–Romberg trick can be applied to the decreasing step-sizes setting,
(b) study the extension of our results under selfconcordance condition [3].

6. Postponed proofs.

6.1. Discussion on assumptions on the noise. Assumption A4, made in the text, can be
weakened in order to apply to settings where input observations are unbounded. Typically,
Gaussian inputs would not satisfy Assumption A4. There exists no L, such that almost surely
f ′

k is L-Lipschitz continuous and, therefore, Assumption A4 (p = 2) does not hold. Indeed,
for least squares regression, as described in Example 1, we have f ′

k(θ)− f ′
k(η) = XkX

�
k (θ −

η) which is ‖Xk‖2-Lipshitz. If ‖Xk‖2 is not a.s. bounded, then there exists no L such that
almost surely f ′

k is L-Lipschitz.
However, in many cases, we only need Assumption A7 below. Let p ≥ 2.

A7 (p).

(i) There exists τ̃p ≥ 0 such that {E1/p[‖ε1(θ
∗)‖p]} ≤ τ̃p .

(ii) For all x, y ∈ R
d , there exists L ≥ 0 such that, for q = 2, . . . , p,

E
[∥∥f ′

1(x) − f ′
1(y)
∥∥q]

≤ Lq−1‖x − y‖q−2〈x − y,f ′(x) − f ′(y)
〉
,

(25)

where L is the same constant appearing in A2 and f ′
1 is defined by (4).

For Gaussian inputs Assumption A7 is satisfied, for example, for A7(p = 2): E‖f ′
k(θ) −

f ′
k(η)‖2 = (θ − η)�E[‖Xk‖2XkX

�
k ](θ − η) ≤ R2(θ − η)�E[XkX

�
k ](θ − η).

On the other hand, we consider also the stronger assumption that the noise is independent
of θ (referred to as the “semistochastic” setting, see [18]), or more generally that the noise
has a uniformly bounded fourth order moment.
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A8. There exists τ ≥ 0 such that supθ∈Rd {E1/4[‖ε1(θ)‖4]} ≤ τ .

Assumption A7(p), p ≥ 2, is the weakest, as it is satisfied for random design least mean
squares and logistic regression with bounded fourth moment of the inputs. Note that we do
not assume that gradient or gradient estimates are a.s. bounded, so as to avoid the need for
a constraint on the space where iterates live. It is straightforward to see that A7(p), p ≥ 2,
implies A4(p) with τp = τ̃p , and A8–A2 implies A4(4).

It is important to note that assuming A3 (especially that (εk)k∈N� are i.i.d. random fields)
does not imply A8. On the contrary, making the semi-stochastic assumption, that is, that the
noise functions (εk(θk−1))k∈N� are i.i.d. vectors (e.g., satisfied if εk is constant as a function
of θ ), is a very strong assumption and implies A8.

Validity of the results under A7(p). Most of the results given in the main text would hold
under A7(p), for p large enough. In the following proofs we use A7 when possible. It is easy
to see that under, say A7(p = 10), Propositions 2 and 3, Theorems 4 and 5 hold.

6.2. Preliminary results. We preface the proofs of the main results by some technical
lemmas.

LEMMA 8. Assume A1–A2–A3–A4(2). Let φ : Rd → R be a Lφ-Lipschitz continuous
function. For any step size γ ∈ (0,2/L), the function ψγ :Rd →R defined for all θ ∈ R

d by

(26) ψγ (θ) =
+∞∑
i=0

Ri
γ φ(θ),

is well defined, Lipschitz continuous and satisfies (Id − Rγ )ψγ = φ, πγ (ψγ ) = 0. In addition,
if ψ̃γ : Rd → R is another Lipchitz function satisfying (Id − Rγ )ψ̃γ = φ, πγ (ψ̃γ ) = 0, then
ψγ = ψ̃γ .

PROOF. Let γ ∈ (0,2/L). By Proposition 2(b), for any Lipschitz continuous function φ,
{θ �→∑k

i=1(R
i
γ φ(θ)−πγ (φ))}k≥0 converges absolutely on all compact sets of Rd . Therefore

ψγ given by (26) is well defined. Let (θ,ϑ) ∈ R
d × R

d . Consider now the two processes

(θ
(1)
k )≥0, (θ

(2)
k )k≥0 defined by (11) with λ1 = δθ and λ2 = δϑ . Then, for any k ∈ N

∗, using
(13): ∣∣Rk

γ φ(θ) − Rk
γ φ(ϑ)
∣∣≤ LφE

1/2[∥∥θ(1)
k,γ − θ

(2)
k,γ

∥∥2]
≤ Lφ

(
1 − 2μγ (1 − γL/2)

)k/2‖θ − ϑ‖.
(27)

Therefore, by definition (26), ψγ is Lipschitz-continuous. Finally, it is straightforward to
verify that ψγ satisfies the stated properties.

If ψ̃γ : Rd → R is another Lipchitz function satisfying these properties, we have for all
θ ∈R

d , (ψγ −ψ̃γ )(θ) = Rγ (ψγ −ψ̃γ )(θ). Therefore, for all k ∈N
∗, θ ∈ R

d , (ψγ −ψ̃γ )(θ) =
Rk

γ (ψγ − ψ̃γ )(θ). But, by Proposition 2(b), limk→+∞ Rk
γ (ψγ − ψ̃γ )(θ) = πγ (ψγ − ψ̃γ ) = 0

which concludes the proof. �

LEMMA 9. Assume A1–A2–A3–A4(2). Then, we have for any γ ∈ (0,2/L).∫
Rd

f ′(θ)πγ (dθ) = 0.
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PROOF. Let (θ
(γ )
k )k∈N be a Markov chain satisfying (1) with θ

(γ )
0 distributed according

to πγ . Then, the proof follows from taking the expectation in (1) for k = 0, using that the

distribution of θ
(γ )
1 is πγ , E[ε1(θ)] = 0 for all θ ∈R

d and ε1 is independent of θ
(γ )
0 . �

LEMMA 10. Assume A1–A2–A3–A7(2). Then, for any initial condition θ
(γ )
0 ∈ R

d , we
have for any γ > 0,

E
[∥∥θ(γ )

k+1 − θ∗∥∥2∣∣∣Fk

]≤ (1 − 2γμ(1 − γL)
)∥∥θ(γ )

k − θ∗∥∥2 + 2γ 2τ̃ 2
2 ,

where (θ
(γ )
k )k≥0 is given by (1). Moreover, if γ ∈ (0,1/L), we have

(28)
∫
Rd

∥∥θ − θ∗∥∥2πγ (dθ) ≤ γ τ̃ 2
2 /
(
μ(1 − γL)

)
.

PROOF. The proof and result is very close to the ones from [43], but we extend it without
a.s. Lipschitzness (A4) but with A7. Using A3–A1 and f ′(θ∗) = 0, we have

E
[∥∥θ(γ )

k+1 − θ∗∥∥2∣∣∣Fk

]≤ ∥∥θ(γ )
k − θ∗∥∥2 + γ 2

E
[∥∥f ′

k+1
(
θ

(γ )
k

)∥∥2∣∣∣Fk

]
− 2γE

[ 〈
f ′

k+1
(
θ

(γ )
k

)− f ′
k+1
(
θ∗), θ (γ )

k − θ∗〉|Fk

]
(29)

≤ (1 − 2μγ )
∥∥θ(γ )

k − θ∗∥∥2 + γ 2
E
[∥∥f ′

k+1
(
θ

(γ )
k

)∥∥2|Fk

]
.(30)

In addition, under A3–A7(2) and using (4), we have:

E
[∥∥f ′

k+1
(
θ

(γ )
k

)∥∥2|Fk

]
≤ 2
(
E
[∥∥f ′

k+1
(
θ

(γ )
k

)− f ′
k+1
(
θ∗)∥∥2|Fk

]+E
[∥∥f ′

k+1
(
θ∗)∥∥2|Fk

])
≤ 2
(
E
[∥∥f ′

k+1
(
θ

(γ )
k

)− f ′
k+1
(
θ∗)∥∥2|Fk

]+ τ 2)
≤ 2
(
LE
[ 〈

f ′
k+1
(
θ

(γ )
k

)− f ′
k+1
(
θ∗), θ (γ )

k − θ∗〉|Fk

]+ τ 2)
≤ 2
(
L
〈
f ′(θ(γ )

k

)− f ′(θ∗), θ (γ )
k − θ∗〉+ τ 2).

Combining this result and (30) concludes the proof of the first inequality.
Regarding the second bound, let a fixed initial point θ

(γ )
0 ∈ R

d . By Jensen inequality and
the first result we get for any k ∈N and M ≥ 0,

E
[∥∥θ(γ )

k+1 − θ∗∥∥2 ∧ M
]≤ (1 − 2γμ(1 − γL)

)k+1∥∥θ(γ )
0 − θ∗∥∥2

+ 2γ 2τ̃ 2
2

k∑
i=0

(
1 − 2γμ(1 − γL)

)i
.

Since by Proposition 2(b), limk→+∞E[‖θ(γ )
k+1 − θ∗‖2 ∧ M] = ∫

Rd {‖θ − θ∗‖2 ∧ M}πγ (dθ),
we get for any M ≥ 0,∫

Rd

{∥∥θ − θ∗∥∥2 ∧ M
}
πγ (dθ) ≤ γ τ̃ 2

2 /
(
μ(1 − γL)

)
.

Taking M → +∞ and applying the monotone convergence theorem concludes the proof. �

Using Lemma 10, we can extend Lemma 8 to functions φ which are locally Lipschitz.
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LEMMA 11. Assume A1–A2–A3–A4(4). Let φ : Rd → R be a function such that there
exists Lφ ≥ 0 such that for any x, y ∈ R

d ,

(31)
∣∣φ(x) − φ(y)

∣∣≤ Lφ‖x − y‖{1 + ‖x‖ + ‖y‖}.
For any step size γ ∈ (0,1/L), it holds:

(a) there exists C ≥ 0 such that for all θ ∈R
d , k ∈ N

∗:∣∣Rk
γ φ(θ) − πγ (φ)

∣∣≤ CLφ

(
1 − 2μγ (1 − γL)

)k/2{1 + ∥∥θ − θ∗∥∥2};
(b) the function ψγ : Rd → R defined for all θ ∈ R

d by (26) is well defined, satisfies
(Id − Rγ )ψγ = φ, πγ (ψγ ) = 0 and there exists Lψ ≥ 0 such that for any x, y ∈ R

d ,

(32)
∣∣ψ(x) − ψ(y)

∣∣≤ Lψ‖x − y‖{1 + ‖x‖ + ‖y‖}.
PROOF. The proof is similar to the proof of Proposition 2(b) and Lemma 8. It is given in

the Supplementary Material [17], Section S1. �

It is worth pointing out that, under Assumption A8 (the “semi-stochastic” assumption),
a slightly different result holds. The following result underlines the difference between a
stochastic noise and a semi-stochastic noise, especially the fact that the maximal step size
differs depending on this assumption being made.

LEMMA 12. Assume A1–A2–A3–A8. Then, for any initial condition θ
(γ )
0 ∈ R

d , we have
for any γ ∈ (0,2/(m + L)],

E
[∥∥θ(γ )

k+1 − θ∗∥∥2∣∣∣Fk

]≤ (1 − 2γμL/(μ + L)
)∥∥θ(γ )

k − θ∗∥∥2 + γ 2τ 2,

where (θ
(γ )
k )k≥0 is given by (1).

PROOF. The proof is postponed to [17], Section S2. �

We give uniform bounds on the moments of the chain (θ
(γ )
k )k≥0 for γ > 0. For p ≥ 1,

recall that under A4(2p) the noise at optimal point has a moment of order 2p, and we denote

(33) τ2p = E
1/2p[∥∥ε1

(
θ∗)∥∥2p]

.

We give a bound on the p-th order moment of the chain, under the assumption that the noise
has a moment of order 2p.

For moment of order larger than 2, we have the following result:

LEMMA 13. Assume A1–A2–A3–A4(2p), for p ≥ 1. There exist numerical constants
Cp,Dp ≥ 2 that only depend on p, such that, if γ ∈ (0,1/(LCp)), for all k ∈ N

∗ and θ0 ∈ R
d

E
1/p[∥∥θ(γ )

k − θ∗∥∥2p]

≤ (1 − 2γμ(1 − CpγL/2)
)k
E

1/p[‖2‖[p
]
θ0 − θ∗] + Dpγ τ 2

2p

μ
,

where (θ
(γ )
k )k∈N is defined by (1) with initial condition θ

(γ )
0 = θ0. Moreover, the following

bound holds

(34)
∫
Rd

∥∥θ − θ∗∥∥2p
πγ (dθ) ≤ (Dpγ τ 2

2p/μ
)p

.
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REMARK 14.

• Notably, Lemma 13 implies that
∫
Rd ‖θ − θ∗‖4πγ (dθ) = O(γ 2) and, thus,

∫
Rd ‖θ −

θ∗‖3πγ (dθ) = O(γ 3/2). We also note that
∫
Rd ‖θ − θ∗‖2πγ (dθ) = O(γ ) also implies,

by Jensen’s inequality, that ‖θ̄γ − θ∗‖2 = O(γ ).
• Note that there is no contradiction between (34) and Theorem 7, as for any p ≥ 2, one has

for g(θ) = ‖θ − θ∗‖2 and hg the solution to the Poisson equation, that h′′
g(θ

∗) = 0, so that
the first term in the development (of order γ ) is indeed 0.

PROOF. The proof is postponed to the Supplementary Material [17], Section S3. �

LEMMA 15. Let g :Rd →R satisfying A6(1,p) for p ∈ N. Then, for all θ1, θ2 ∈ R
d ,∣∣g(θ1) − g(θ2)

∣∣≤ ag‖θ1 − θ2‖{bg + ‖θ1 − θ∗‖p + ∥∥θ2 − θ∗∥∥p}.
PROOF. Let θ1, θ2 ∈ R

d . By the mean value theorem there exists s ∈ [0,1] such that if
ηs = sθ1 + (1 − s)θ2, then ∣∣g(θ1) − g(θ2)

∣∣= Dg(ηs){θ1 − θ2}.
The proof is then concluded using A6(�,p) and∥∥ηs − θ∗∥∥≤ max

(∥∥θ1 − θ∗∥∥,∥∥θ2 − θ∗∥∥). �

PROPOSITION 16. Let g : Rd → R, satisfying A6(1,p) for p ∈ N. Assume A1–A2–
A3–A4(2p). Let Cp ≥ 2 be given by Lemma 13 and only depending on p. For all γ ∈
(0,1/(LCp))and for all initial points θ0 ∈ R

d , there exists Cg independent of θ0 such that
for all k ≥ 1,∣∣∣∣∣E

[
k−1

k∑
i=1

{
g
(
θ

(γ )
i

)}]− ∫
Rd

g(θ)πγ (dθ)

∣∣∣∣∣≤ Cg

(
1 + ∥∥θ0 − θ∗∥∥p)/k.

PROOF. The proof is postponed to the Supplementary Material [17], Section S4. �

6.3. Proof of Lemma 3.

PROOF OF LEMMA 3. By Lemma 9 we have
∫
Rd f ′(θ)πγ (dθ) = 0. Since f ′ is linear,

we get f ′(θ̄γ ) = 0 which implies by A1 that θ̄γ = θ∗.

Let γ ∈ (0,2/L) and (θ
(γ )
k )k∈N, given by (1) with θ

(γ )
0 distributed according to πγ inde-

pendent of (εk)k∈N∗ . Note that if f = f� , (1) implies for k = 1,(
θ

(γ )
1 − θ∗)⊗2 = ((Id − γ�)

(
θ

(γ )
0 − θ∗)+ γ ε1

(
θ

(γ )
0

))⊗2
.

Taking the expectation and using A3, θ
(γ )
0 is independent of ε1 and πγ Rγ = πγ , we get∫

Rd

(
θ − θ∗)⊗2

πγ (dθ)

= (Id − γ�)

[∫
Rd

(
θ − θ∗)⊗2

πγ (dθ)

]
(Id − γ�)

+ γ 2
∫
Rd

C(θ)πγ (dθ),

(� ⊗ Id+ Id⊗� − γ� ⊗ �)

[∫
Rd

(
θ − θ∗)⊗2

πγ (dθ)

]

= γ

∫
Rd

C(θ)πγ (dθ).

(35)
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It remains to show that (� ⊗ Id+ Id⊗� − γ� ⊗ �) is invertible. To show this result,
we just claim that it is a symmetric positive definite operator. Indeed, since γ < 2L−1, Id −
(γ /2)� is symmetric positive definite and is diagonalizable with the same orthogonal vectors
(fi )i∈{0,...,d} as �. If we denote by (λi)i∈{0,...,d}, then we get that (� ⊗ Id+ Id⊗� − γ� ⊗
�) = � ⊗ (Id − γ /2�)+ (Id − γ /2�)⊗� is also diagonalizable in the orthogonal basis of
R

d ⊗R
d , (fi ⊗ fj )i,j∈{0,...,d} and (λi(1 − γ λj ) + λj (1 − γ λi))i,j∈{0,...,d} are its eigenvalues.

�

Note that in the case of the regression setting described in Example 1, we can specify
Lemma 3 as follows:

PROPOSITION 17. Assume that f is an objective function of a least-square regression
problem, that is, with the notations of Example 1, f = f� , � = E[XX�] and εk are defined
by (6). Assume A1–A2–A3–A4(4), and let r defined by (8). We have for all γ ∈ (0,1/r2),

(� ⊗ Id+ Id⊗� − γ T)

[∫
Rd

(
θ − θ∗)⊗2

πγ (dθ)

]
= γE
[
ξ⊗2

1

]
,

where T and ξ1 are defined by (18) and (7), respectively.

PROOF. The proof follows the same line as the proof of Lemma 3 and is omitted. �

6.4. Proof of Theorem 4. We preface the proof by a couple of preliminary lemmas.

LEMMA 18. Assume A1–A2–A3–A4(6 ∨ 2kε)–A5, and let γ ∈ (0,2/L). Then,

(36) θ̄γ − θ∗ = γf ′′(θ∗)−1
f ′′′(θ∗)A[∫

Rd

{
C(θ)
}
πγ (dθ)

]
+ O
(
γ 3/2),

where A is defined by (17), θ̄γ and C are given by (3) and (5), respectively.

PROOF. Let γ ∈ (0,2/L) and (θ
(γ )
k )k∈N, given by (1) with θ

(γ )
0 distributed according to

πγ independent of (εk)k∈N∗ . For conciseness, in the rest of the proof we skip the explicit

dependence in γ in θ
(γ )
i ; we only denote it θi .

First, by a third order Taylor expansion with integral remainder of f ′ around θ∗, we have
that for all x ∈ R

d ,

(37) f ′(θ) = f ′′(θ∗)(θ − θ∗)+ (1/2)f ′′′(θ∗)(θ − θ∗)⊗2 +R1(θ),

where R1 :Rd →R
d satisfies

(38) sup
θ∈Rd

{∥∥R1(θ)
∥∥/∥∥θ − θ∗∥∥3}< +∞.

It follows from Lemma 9, taking the integral with respect to πγ ,

0 =
∫
Rd

{
f ′′(θ∗)(θ − θ∗)+ (1/2)f ′′′(θ∗)(θ − θ∗)⊗2 +R1(θ)

}
πγ (dθ).

Using (38), Lemma 13 and Hölder inequality, we get

(39) f ′′(θ∗)(θ̄γ − θ∗)+ (1/2)f ′′′(θ∗)[∫
Rd

(
θ − θ∗)⊗2

πγ (dθ)

]
= O
(
γ 3/2).

Moreover, we have by a second order Taylor expansion with integral remainder of f ′ around
θ∗,

θ1 − θ∗ = θ0 − θ∗ − γ
[
f ′′(θ∗)(θ0 − θ∗)+ ε1(θ0) +R2(θ0)

]
,
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where R2 :Rd →R
d satisfies

(40) sup
θ∈Rd

{∥∥R2(θ)
∥∥/∥∥θ − θ∗∥∥2}< +∞.

Taking the second order moment of this equation and using A3, θ0 is independent of ε1, (40),
Lemma 13 and Hölder inequality, and we get∫

Rd

(
θ − θ∗)⊗2

πγ (dθ)

= (Id − γf ′′(θ∗))[∫
Rd

(
θ − θ∗)⊗2

πγ (dθ)

](
Id−γf ′′(θ∗))

+ γ 2
∫
Rd

C(θ)πγ (dθ) + O
(
γ 5/2).

This leads to: ∫
Rd

(
θ − θ∗)⊗2

πγ (dθ) = γ A
[∫

Rd
C(θ)πγ (dθ)

]
+ O
(
γ 3/2).

Combining this result and (39), we have that (36) holds if the operator (f ′′(θ∗) ⊗
Id+ Id⊗f ′′(θ∗) − γf ′′(θ∗) ⊗ f ′′(θ∗)) is invertible. To show this result, like in the quadratic
case, we just claim that it is a symmetric positive definite operator. Indeed, since γ < 2L−1,
by A1, Id − (γ /2)f ′′(θ∗) is symmetric positive definite and is diagonalizable with the
same orthogonal vectors (fi)i∈{0,...,d} as f ′′(θ∗). If we denote by (λi)i∈{0,...,d}, then we get
that (f ′′(θ∗) ⊗ Id+ Id⊗f ′′(θ∗) − γf ′′(θ∗) ⊗ f ′′(θ∗)) = f ′′(θ∗) ⊗ (Id − γ /2f ′′(θ∗)) +
(Id − γ /2f ′′(θ∗)) ⊗ f ′′(θ∗) is also diagonalizable in the orthogonal basis of R

d ⊗ R
d ,

(fi ⊗ fj )i,j∈{0,...,d} and (λi(1 − γ λj ) + λj (1 − γ λi))i,j∈{0,...,d} are its eigenvalues. �

LEMMA 19. Assume A1–A2–A3–A4(6 ∨ [2(kε + 1)])-A5. It holds as γ → 0,∫
Rd

C(θ)πγ (dθ) = C
(
θ∗)+ O(γ ),

∫
Rd

C(θ) ⊗ {θ − θ∗}πγ (dθ) = C
(
θ∗){θ̄γ − θ∗}+ O(γ ),

where C is given by (5).

PROOF. By a second order Taylor expansion around θ∗ of C and using A5, we get for all
x ∈ R

d that

C(x) − C
(
θ∗)= C′(θ∗){x − θ∗}+R1(x),

where R1 :Rd →R
d satisfies supx∈Rd ‖R1(x)‖/(‖x − θ∗‖2 +‖x + θ∗‖kε+2) < +∞. Taking

the integral with respect to πγ and using Lemma 18 and Lemma 13 concludes the proof. �

PROOF OF THEOREM 4. Let γ ∈ (0,2/L) and (θ
(γ )
k )k∈N, given by (1) with θ

(γ )
0 dis-

tributed according to πγ independent of (εk)k∈N∗ . For conciseness, in the rest of the proof we

skip the explicit dependence in γ in θ
(γ )
i ; we only denote it θi .

The proof consists in showing that the residual term in (36) of Lemma 18 is of order O(γ 2)

and not only O(γ 3/2). Note that we have already proven that θ̄γ − θ∗ = O(γ ). To find the
next term in the development, we develop further each of the terms. By a fourth order Taylor
expansion with integral remainder of f ′ around θ∗ and using A2, we have

θ1 − θ∗ = θ0 − θ∗ − γ
[
f ′′(θ∗)(θ0 − θ∗)+ (1/2)f (3)(θ∗)(θ0 − θ∗)⊗2

+ (1/6)f (4)(θ∗)(θ0 − θ∗)⊗3 + ε1(θ0) +R3(θ)
]
,

(41)
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where R3 : Rd → R
d satisfies supx∈Rd ‖R3(x)‖/‖x − θ∗‖4 < +∞. Therefore, taking the

expectation and using A3-Lemma 13, we get

f ′′(θ∗)(θ̄γ − θ∗)= − (1/2)f (3)(θ∗) ∫
Rd

(
θ − θ∗)⊗2

πγ (dθ)

− (1/6)f (4)(θ∗) ∫
Rd

(
θ − θ∗)⊗3

πγ (dθ) + O
(
γ 2).(42)

Since f ′′(θ∗) is invertible by A1, to get the next term in the development we show that

(a)
∫
Rd (θ − θ∗)⊗3πγ (dθ) = �γ 2 + o(γ 2).

(b)
∫
Rd (θ − θ∗)⊗2πγ (dθ) = �γ + �γ 2 + o(γ 2), for � given in (16), proving (16).

(a) Denote for i = 0,1, ηi = θi − θ∗. By (37)–(38), Lemma 13 and A3–A4(12), we get

E
[
η⊗3

1

]= E
[{(

Id − γf ′′(θ∗))η0 − γ ε1(θ0) − γf ′′′(θ∗)η⊗2
0 +R1(θ0)

}⊗3]
= E
[{(

Id − γf ′′(θ∗))η0
}⊗3 + γ 2{ε1(θ0)

}⊗2 ⊗ {(Id − γf ′′(θ∗))η0
}

+ γ
{(

Id − γf ′′(θ∗))η0
}⊗2 ⊗ {f ′′′(θ∗)η⊗2

0

}
+ γ
{
f ′′′(θ∗)η⊗2

0

}⊗ {(Id − γf ′′(θ∗))η0
}⊗2]+ O

(
γ 3)

= E
[{(

Id − γf ′′(θ∗))η0
}⊗3 + γ 2{ε1(θ0)

}⊗2 ⊗ {(Id − γf ′′(θ∗))η0
}]

+ O
(
γ 3)

= E
[{η0}⊗3]+E

[
γ B{η0}⊗3 + γ 2{ε1(θ0)

}⊗2 ⊗ {(Id − γf ′′(θ∗))η0
}]

+ O
(
γ 3),

where B ∈ L(Rd3
,Rd3

) is defined by

B = f ′′(θ∗)⊗ Id⊗ Id+ Id⊗f ′′(θ∗)⊗ Id+ Id⊗ Id⊗f ′′(θ∗).
Using A1 and the same reasoning as to show that A in (17) is well defined, we get that B is
invertible. Then, since η0 and η1 has the same distribution πγ , we get∫

Rd

(
θ − θ∗)⊗3

πγ (dθ)

= γ B−1
[∫

Rd

{
C(θ)
}⊗ {(Id − γf ′′(θ∗))(θ − θ∗)}πγ (dθ)

]

+ O
(
γ 2).

By Lemma 19 we get∫
Rd

(
θ − θ∗)⊗3

πγ (dθ)

= γ B−1[{C(θ∗)}⊗ {(Id − γf ′′(θ∗))(θ̄γ − θ∗)}]+ O
(
γ 2).

Combining this result and (36) implies (a).
(b) First, we have, using (41), A3 and Lemma 13, that

E
[(

θ1 − θ∗)⊗2]
= E
[(

θ0 − θ∗)⊗2 − γ
(
Id⊗f ′′(θ∗)+ f ′′(θ∗)⊗ Id

)(
θ − θ∗)⊗2

+ (γ /2)
(
θ0 − θ∗)⊗ {f (3)(θ∗)(θ0 − θ∗)⊗2}
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+ (γ /2)
{
f (3)(θ∗)(θ0 − θ∗)⊗2}⊗ (θ0 − θ∗)+ γ 2ε1(θ0)

⊗2(θ0)
]

+ O
(
γ 3).

Since θ0 and θ1 follow the same distribution πγ , it follows that

γ
(
Id⊗f ′′(θ∗)+ f ′′(θ∗)⊗ Id

)[∫
Rd

(
θ − θ∗)⊗2

πγ (dθ)

]

= O
(
γ 3)+ ∫

Rd

[
(γ /2)
(
θ − θ∗)⊗ {f (3)(θ∗)(θ − θ∗)⊗2}

+ γ

2

{
f (3)(θ∗)(θ − θ∗)⊗2}⊗ (θ − θ∗)+ γ 2ε1(θ0)

⊗2(θ0)

]
πγ (dθ).

(43)

Then, by linearity of f ′′′(θ∗) and using (a) we get (b).
Finally, the proof of (15) follows from combining the results of (a)–(b) in (42). �

6.5. Proof of Theorem 5. Theorem 5 follows from the following more general result,
taking ϕ : θ �→ θ − θ∗.

THEOREM 20. Let ϕ : Rd → R
q be a Lipschitz continuous function. Assume A1–A2–

A3–A4(4), and let γ ∈ (0,1/(2L)). Then, setting ρ = (1−2μγ (1−γL))1/2, for any starting
point θ0 ∈ R

d , k ∈N
∗

E

[
k−1

k−1∑
i=0

ϕ
(
θ

(γ )
i

)]= πγ (ϕ) + (1/k)ψγ (θ0) + O
(
k−2),

and, if πγ (ϕ) = 0,

E

[{
k−1

k−1∑
i=0

ϕ
(
θ

(γ )
i

)}⊗2]

= 1

k
πγ

[
ψ⊗2

γ − (ψγ − ϕ)⊗2]

− 1

k2

[
πγ

(
�γ ϕ� + ϕ��

γ

)+ χ2
γ (θ0) − χ1

γ (θ0)
]+ O
(
k−3),

where ψγ , �γ , χ1
γ , χ2

γ are solutions of the Poisson equation (26) associated with ϕ, ψγ , ψ⊗2
γ

and (ψγ − ϕ)⊗2, respectively.

PROOF. In the proof C will denote generic constants which can change from line to line.
In addition, we skip the dependence on γ for θ

(γ )
k , simply denoted θk .

Let θ0 ∈ R
d . By Lemma 8, ψγ exists and is Lipschitz continuous; using Proposition 2(b),

πγ (ψγ ) = 0, we have that Rk
γ ψγ (θ0) = O(ρk), with ρ := (1 − 2μγ (1 − γL))1/2. Therefore,

setting �k = k−1∑k−1
i=0 ϕ(θi),

E[�k] = k−1
k−1∑
i=0

E
[
ϕ(θi)
]

= k−1
k−1∑
i=0

Ri
γ ϕ(θ0)
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= πγ (ϕ) + k−1
k−1∑
i=0

(
Ri

γ ϕ(θ0) − πγ (ϕ)
)
)

= πγ (ϕ) + k−1ψγ (θ0) − Rk
γ ψγ (θ0) = πγ (ϕ) + k−1ψγ (θ0) + O

(
ρk).

We now consider the Poisson solution associated with ϕϕ�, χ3
γ . By Lemma 11 such a func-

tion exists and satisfies πγ (χ3
γ ) = 0, Rk

γ χ3
γ (θ0) = O(ρk). Therefore, we obtain using in addi-

tion the Markov property:

E
[
�k�

�
k

]= 1

k2

k−1∑
i,j=0

E
[
ϕ(θi)ϕ(θj )

�]

= 1

k2

k−1∑
i=0

(
E
[
ϕ(θi)ϕ(θi)

�]+ k−1∑
j=i+1

{
E
[
ϕ(θi)ϕ(θj )

�]

+E
[
ϕ(θj )ϕ(θi)

�]})

= − 1

k2

k−1∑
i=0

Ri
γ

(
ϕϕ�)(θ0)

+ 1

k2

k−1∑
i=0

(
k−1∑

j=i+1

{
E
[
ϕ(θi)ϕ(θj )

�]+E
[
ϕ(θj )ϕ(θi)

�]})

= − 1

k
πγ

(
ϕϕ�)− 1

k2

∞∑
i=0

{
Ri

γ

(
ϕϕ�)(θ0) − πγ

(
ϕϕ�)}+ O

(
ρk)

+ 1

k2

k−1∑
i=0

(
k−1∑

j=i+1

{
E
[
ϕ(θi)ϕ(θj )

�]+E
[
ϕ(θj )ϕ(θi)

�]})

= − 1

k
πγ

(
ϕϕ�)− 1

k2 χ3
γ (θ0) + O

(
ρk)

+ 1

k2

k−1∑
i=0

(
k−1−i∑
j=0

{
E
[
ϕ(θi)
(
Rj

γ ϕ(θi)
)�]+E

[
Rj

γ ϕ(θi)ϕ(θi)
�]}).

Thus, using that for all N ∈ N and θ ∈R
d ,
∑N

j=0 R
j
γ ϕ(θ)=∑N

j=0{Rj
γ ψγ (θ)−R

j+1
γ ψγ (θ)} =

ψγ (θ) − RN+1
γ ψγ (θ), we get

E
[
�k�

�
k

]= −1

k
πγ

(
ϕϕ�)− 1

k2 χ3
γ (θ0)

+ 1

k2

k−1∑
i=0

{
Ri

γ

[
ϕψ�

γ − ϕ
(
Rk−i

γ ψγ

)�]
(θ0)
}

+ 1

k2

k−1∑
i=0

{
Ri

γ

[
ψγ ϕ� − Rk−i

γ ψγ ϕ�](θ0)
}+ O
(
ρk).

(44)
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Moreover, since ϕ is Lipschitz continuous and RN
γ ψγ is CρN -Lipschitz continuous and we

have supx∈Rd {RN
γ ψγ (x)/‖x‖} ≤ CρN by Lemma 8, we get for all x, y ∈R

d and N ∈ N,

(45)
∥∥ϕ(RN

γ ψγ

)�
(x) − ϕ

(
RN

γ ψγ

)�
(y)
∥∥≤ CρN‖x − y‖(1 + ‖x‖ + ‖y‖).

Then, we obtain by Lemma 11

1

k

k−1∑
i=0

Ri
γ

[
ϕ
(
Rk−i

γ ψγ

)�]
(θ0)

= 1

k

k−1∑
i=0

[
Ri

γ − πγ

][
ϕ
(
Rk−i

γ ψγ

)�]
(θ0)

+ 1

k

k−1∑
i=0

πγ

[
ϕ
(
Rk−1

γ ψγ

)�]

= (C/k)
(
1 + ‖θ0‖) k−1∑

i=0

ρk + πγ

(
ϕ��

γ

)
/k + O

(
k−2),

(46)

using πγ (ψγ ) = 0,
∑+∞

i=0 Ri
γ ψγ (θ) = �γ (θ), for all θ ∈ R

d , where �γ is the Poisson solu-
tion associated with ψγ . Similarly, we have

(47)

1

k

k−1∑
i=0

Ri
γ

[
Rk−i

γ ψγ ϕ�](θ0) = πγ

(
�γ ϕ�)/k + O

(
k−2),

1

k

k−1∑
i=0

{
Ri

γ

[
ϕψ�

γ

]
(θ0) − πγ

[
ϕψ�

γ

]}= χ4
γ (θ0) + O

(
k−2),

1

k

k−1∑
i=0

{
Ri

γ

[
ψγ ϕ�](θ0) − πγ

[
ψγ ϕ�]}= χ5

γ (θ0) + O
(
k−2),

where χ4
γ and χ5

γ are the Poisson solution associated with ϕψ�
γ and ψγ ϕ�, respectively.

Combining (46)–(47) in (44), we obtain

E
[
�k�

�
k

]= 1

k

[
πγ

(
ϕψ�

γ

)+ πγ

(
ψγ ϕ�)− πγ

(
ϕϕ�)]+ O

(
k−3)

− 1

k2

[
πγ

(
ϕ��

γ

)+ πγ

(
�γ ϕ�)+ χ3

γ (θ0) − χ4
γ (θ0) − χ5

γ (θ0)
]
.

(48)

First, note that

(49) −ϕϕ� + ϕψ�
γ + ψγ ϕ� = −(ϕ − ψγ )(ϕ − ψγ )� + ψγ ψ�

γ .

In addition, by Lemma 11 and definition, we have for all θ0

χ3
γ (θ0) − χ4

γ (θ0) − χ5
γ (θ0)

=
+∞∑
i=1

{
Ri

γ

[
ϕϕ� − ϕψ�

γ − ψγ ϕ�](θ0) − πγ

[
ϕϕ� − ϕψ�

γ − ψγ ϕ�]}

=
+∞∑
i=1

{
Ri

γ

[
(ϕ − ψγ )(ϕ − ψγ )� − ψγ ψ�

γ

]
(θ0)
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− πγ

[
(ϕ − ψγ )(ϕ − ψγ )� − ψγ ψ�

γ

]}
= χ2(θ0) − χ1(θ0).

Combining this result and (49) in (48) concludes the proof. �

6.6. Proof of Theorem 7. Before giving the proof of Theorem 7, we need several results
regarding Poisson solutions associated with the gradient flow ODE (20).

6.6.1. Regularity of the gradient flow and estimates on Poisson solution. Let � ∈ N
∗, and

consider the following assumption:

A 9 (�). f ∈ C�(Rd) and there exists M ≥ 0 such that for all i ∈ {2, . . . , �},
supθ∈Rd ‖f (i)(θ)‖ ≤ L̄.

LEMMA 21. Assume A1 and A9(� + 1) for � ∈ N
∗.

(a) For all t ≥ 0, ϕt ∈ C�(Rd,Rd), where (ϕt )t∈R+ is the differential flow associated with

(19). In addition, for all θ ∈ R, t �→ ϕ
(�)
t (θ) satisfies the following ordinary differential equa-

tion,

dϕ
(�)
s (θ)

ds

∣∣∣∣
s=t

= D�{f ′ ◦ ϕt

}
(θ), for all t ≥ 0,

with ϕ′
0 = Id and ϕ

(�)
0 = 0 for � ≥ 2.

(b) For all t ≥ 0 and θ ∈ R
d , ‖ϕt(θ) − θ∗‖2 ≤ e−2μt‖θ − θ∗‖2.

(c) If � ≥ 2, for all t ≥ 0,

ϕ′
t

(
θ∗)= e−f ′′(θ∗)t .

(d) If � ≥ 3, for all t ≥ 0 and i, j, l ∈ {1, . . . , d},〈
ϕt

′′(θ∗){fi ⊗ fj }, fl
〉

=
⎧⎪⎨
⎪⎩

e−λlt − e−(λi+λj )t

λl − λi − λj

f (3)(θ∗){fi ⊗ fj ⊗ fl} if λl �= λi + λj ,

−te−λl tf (3)(θ∗){fi ⊗ fj ⊗ fl} otherwise,

where {f1, . . . , fd} and {λ1, . . . , λd} are the eigenvectors and the eigenvalues of f ′′(θ∗), re-
spectively, satisfying for all i ∈ {1, . . . , d}, f ′′(θ∗)fi = λifi .

PROOF.

(a) This is a fundamental result on the regularity of flows of autonomous differential
equations; see, for example, [25], Theorem 4.1, Chapter V,

(b) Let θ ∈ R
d . Differentiate ‖ϕt (θ)‖2 with respect to t and using A1, that f is at least

continuously differentiable and Grönwall’s inequality concludes the proof.
(c) By (a) and since θ∗ is an equilibrium point, for all x ∈ R

d , ξx
t (θ∗) = ϕ′

t (θ
∗){x} satis-

fies the following ordinary differential equation

(50) ξ̇ x
s

(
θ∗)= −f ′′(ϕs

(
θ∗))ξx

s

(
θ∗)ds = −f ′′(θ∗)ξx

s

(
θ∗)ds,

with ξx
0 (θ∗) = x. The proof then follows from uniqueness of the solution of (50).
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(d) By (a), for all x1, x2 ∈ R
d , ξ

x1,x2
t (θ∗) = ϕ′′

t (θ∗){x1 ⊗ x2} satisfies the ordinary
stochastic differential equation:

dξ
x1,x2
s

ds

(
θ∗)= −f (3)(ϕs

(
θ∗)){ϕ′

s

(
θ∗)x1 ⊗ ϕ′

s

(
θ∗)x2 ⊗ ei

}
− f ′′(ϕs

(
θ∗)){ξx1,x2

s ⊗ ei

}
.

By (c) and since θ∗ is an equilibrium point, we get that ξ
x1,x2
t (θ∗) satisfies

dξ
x1,x2
s

ds

(
θ∗)= −f (3)(θ∗){e−f ′′(θ∗)t x1 ⊗ e−f ′′(θ∗)t x2 ⊗ ei

}− f ′′(θ∗){ξx1,x2
s ⊗ ei

}
.

Therefore, we get for all i, j, l ∈ {1, . . . , d},
d〈ξ fi ,fj

s , fl〉
ds

= −f (3)(θ∗){e−λi t fi ⊗ e−λj t fj ⊗ fl
}− λl

〈
ξ

fi ,fj
s , fl
〉
.

This ordinary differential equation can be solved analytically which finishes the proof. �

Under A1 and A9(�), for any function g : Rd → R
q , locally Lipschitz continuous, denote

by hg the solution of the continuous Poisson equation defined for all θ ∈ R
d by

(51) hg(θ) =
∫ ∞

0

(
g
(
ϕs(θ)
)− g
(
θ∗))dt.

Note that hg is well defined by Lemma 21(b) and since g is assumed to be locally-Lipschitz.
In addition, by (20), hg satisfies

(52) Ahg(θ) = g(θ) − g
(
θ∗).

Define hId :Rd →R
d for all x ∈ R

d by

(53) hId(θ) =
∫ ∞

0

{
ϕs(θ) − θ∗}dt.

Note that hId is also well defined by Lemma 21(b).

LEMMA 22. Let g : Rd → R, satisfying A6(�,p) for �,p ∈ N, � ≥ 1. Assume A1 and
A9(� + 1).

(a) Then, for all θ ∈ R
d ,

|hg|(θ) ≤ ag

{
(bg/μ)

∥∥θ − θ∗∥∥+ (pμ)−1‖θ − θ∗‖p}.
(b) If � ≥ 2, then ∇hId(θ

∗) = (f ′′(θ∗))−1. If � ≥ 3, then for all i, j ∈ {1, . . . , d},
∂2hId

∂θi∂θj

(
θ∗)= d∑

l=1

[−f (3)(θ∗){[(f ′′(θ∗)⊗ Id+ Id⊗f ′′(θ∗))−1{ei ⊗ ej }]⊗ ei

}

× (f ′′(θ∗))−1el

]
.

PROOF.

(a) For all θ ∈R
d , we have, using Lemma 15 and (51),

∣∣hg(θ)
∣∣≤ ag

∫ +∞
0

∥∥ϕs(θ) − θ∗∥∥{bg + ∥∥ϕs(θ) − θ∗∥∥p}ds.

The proof then follows from Lemma 21(b).
(b) The proof is a direct consequence of Lemma 21(c)–(d) and (51). �
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THEOREM 23. Let g : Rd → R, satisfying A6(�,p) for �,p ∈ N, � ≥ 2. Assume A1–
A9(� + 1).

(a) For all i ∈ {1, . . . , �}, there exists Ci ≥ 0 such that for all θ ∈ R
d and t ≥ 0,∥∥ϕ(i)

t (θ)
∥∥≤ Cie

−μt .

(b) Furthermore, hg ∈ C�(Rd) and for all i ∈ {0, . . . , �}, there exists Ci ≥ 0 such that for
all θ ∈ R

d , ∥∥h(i)
g (θ)
∥∥≤ Ci

{
1 + ‖θ − θ∗‖p}.

PROOF.

(a) The proof is by induction on �. By Lemma 21(a), for all x ∈ R
d , θ ∈ R

d , ξx
t (θ) =

Dϕt(θ){x} satisfies

(54)
dξx

s (θ)

ds

∣∣∣∣
s=t

= −f ′′(ϕt(θ)
)
ξx
t (θ)

with ξx
0 (θ) = x. Now differentiating s → ‖ξx

s (θ)‖2, using A1 and Grönwall’s inequality, we
get ‖ξx

s (θ)‖2 ≤ e−2mt‖x‖2 which implies the result for � = 2.
Let now � > 2. Using again Lemma 21(a), Faà di Bruno’s formula [32], Theorem 1, and

since (19) can be written on the form

dϕs(θ)

ds

∣∣∣∣
s=t

= −
d∑

j=1

f ′(ϕt (θ)
){ej }ej ,

for all i ∈ {2, . . . , �}, θ ∈ R
d and x1, . . . , xi ∈ R

d , the function ξ
x1,...,xi
t (θ) = ϕ

(i)
t (θ){x1 ⊗

· · · ⊗ xi} satisfies the ordinary differential equation:

dξ
x1,...,xi
s (θ)

ds

∣∣∣∣
s=t

= −
d∑

j=1

∑
∈P({1,...,i})

f (||+1)(ϕt(θ)
)

×
{

ej ⊗
i⊗

l=1

⊗
j1,...,jl∈

ξ
xj1 ,...,xjl
t (θ)

}
ej ,

(55)

where P({1, . . . , i}) is the set of partitions of {1, . . . , i}, which does not contain the empty set,
and || is the cardinal of  ∈ P({1, . . . , i + 1}). We now show by induction on i that for all
i ∈ {1, . . . , �}, there exists a universal constant Ci such that for all t ≥ 0 and θ ∈R

d ,

(56) sup
x∈Rd

∥∥ϕ(i)
t (θ)
∥∥≤ Cie

−μt .

For i = 1, the result follows from the case � = 1. Assume that the result is true for {1, . . . , i}
for i ∈ {1, . . . , � − 1}. We show the result for i + 1. By (55), we have for all θ ∈ R

d and
x1, . . . , xi ∈ R

d ,

d‖ξx1,...,xi+1
s (θ)‖2

ds

∣∣∣∣
s=t

= − ∑
∈P({1,...,i+1})

f (||+1)(ϕt(θ)
)

×
{
ξ

x1,...,xi+1
t (θ) ⊗

i+1⊗
l=1

⊗
j1,...,jl∈

ξ
xj1 ,...,xjl
t (θ)

}
.

Isolating the term corresponding to  = {{1, . . . , i + 1}} in the sum above and using Young’s
inequality, A1, Grönwall’s inequality and the induction hypothesis, we get that there exists a
universal constant Ci+1 such that for all t ≥ 0 and x ∈R

d (56) holds for i + 1.
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(b) The proof is a consequence of (a), (51), A6(�,p) and Lebesgue’s dominated conver-
gence theorem. �

6.6.2. Proof of Theorem 7. We preface the proof of the theorem by two fundamental first
estimates.

THEOREM 24. Let g :Rd →R, satisfying A6(3,p) for p ∈ N. Assume A1–A2–A3–A5.
Furthermore, suppose that there exists q ∈ N and C ≥ 0 such that for all θ ∈ R

d ,

E
[∥∥ε1(θ)

∥∥p+3]≤ C
(
1 + ∥∥θ − θ∗∥∥q),

and A4(2p̃) holds for p̃ = p + 3 + q ∨ kε . Let Cp̃ be the numerical constant given by
Lemma 13 associated with p̃.

(a) For all γ ∈ (0,1/(LCp̃)), k ∈N
∗ and starting point θ0 ∈ R

d ,

E

[
k−1

k∑
i=1

{
g
(
θ

(γ )
i

)− g
(
θ∗)}]

= hg(θ0) −E[hg(θ
(γ )
k+1)]

kγ

+ (γ /2)

∫
Rd

h′′
g(θ̃)E
[{

ε1(θ̃)
}⊗2]dπγ (θ̃) − (γ /k)Ã1(θ0, k) − γ 2Ã2(θ0, k),

where θ
(γ )
k is the Markov chain starting from θ0, defined by the recursion (1), and

sup
i∈N∗

Ã1(θ0, i) ≤ C
{
1 + ∥∥θ0 − θ∗∥∥p̃},(57)

Ã2(θ0, k) ≤ C
{
1 + ‖θ0 − θ∗‖p̃/k

}
,(58)

for some constant C ≥ 0 independent of γ and k.
(b) For all γ ∈ (0,1/(LCp̃)),∣∣∣∣

∫
Rd

g(θ̃)πγ (dθ̃ ) − g
(
θ∗)+ (γ /2)

∫
Rd

h′′
g(θ̃)E
[{

ε(θ̃)
}⊗2]dπγ (θ̃)

∣∣∣∣≤ Cγ 2.

PROOF.

(a) Let k ∈ N
∗, γ > 0 and θ ∈ R

d . Consider the sequence (θ
(γ )
k )k≥0, defined by the

stochastic gradient recursion (1) and starting at θ . Theorem 23(b) shows that hg ∈ C3(Rd).
Therefore, using (1) and the Taylor expansion formula, we have for all i ∈ {1, . . . , k}

hg

(
θ

(γ )
i+1

)= hg

(
θ

(γ )
i

)+ γ hg
′(θ(γ )

i

){−f ′(θ(γ )
i

)+ εi+1
(
θ

(γ )
i

)}
+ (γ 2/2

)
h′′

g

(
θ

(γ )
i

){−f ′(θ(γ )
i

)+ εi+1
(
θ

(γ )
i

)}⊗2

+ (γ 3/(3!))h(3)
g

(
θ

(γ )
i + s

(γ )
i �θ

(γ )
i+1

){−f ′(θ(γ )
i

)+ εi+1
(
θ

(γ )
i

)}⊗3
,

where s
(γ )
i ∈ [0,1] and �θ

(γ )
i+1 = θ

(γ )
i+1 − θ

(γ )
i . Therefore, by (52) we get

k−1
k∑

i=1

{
g
(
θ

(γ )
i

)− g
(
θ∗)}

= hg(θ) − hg(θ
(γ )
k+1)

kγ
+ k−1

k∑
i=1

hg
′(θ(γ )

i−1

)
εi+1
(
θ

(γ )
i

)
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+ (γ /(2k)
) k∑

i=1

h′′
g

(
θ

(γ )
i

){−f ′(θ(γ )
i

)+ εi+1
(
θ

(γ )
i

)}⊗2

+ (γ 2/(3!k)
) k∑

i=1

h(3)
g

(
θ

(γ )
i + s

(γ )
i �θ

(γ )
i+1

){−f ′(θ(γ )
i

)+ εi+1
(
θ

(γ )
i

)}⊗3
.

Taking the expectation and using A3, we have

E

[
k−1

k∑
i=1

{
g
(
θ

(γ )
i

)− g
(
θ∗)}]

= E[hg(θ) − hg(θ
(γ )
k+1)]

kγ

+ (γ /2)

∫
Rd

h′′
g(θ̃)E
[{

ε1(θ̃)
}⊗2]dπγ (θ̃) − (γ /(2k)

)
B̃1 + (γ 2/(3!k)

)
B̃2,

where

B̃1(θ0, k) = E

[
k∑

i=1

(
h′′

g

(
θ∗){ε1
(
θ∗)}⊗2 − h′′

g

(
θ

(γ )
i

){−f ′(θ(γ )
i

)+ εi+1
(
θ

(γ )
i

)}⊗2)]
,

B̃2(θ0, k) = E

[
k∑

i=1

h(3)
g

(
θ

(γ )
i + s

(γ )
i �θ

(γ )
i+1

){−f ′(θ(γ )
i

)+ εi+1
(
θ

(γ )
i

)}⊗3

]
.

Then, it remains to show that (57) and (58) holds. By A2, Theorem 7(b) and A5, there exists
C ≥ 0 such that we have that for all θ ∈ R

d ,∥∥H ′(θ)
∥∥≤ C1

(
1 + ‖k‖[

ε + p + 2]θ − θ∗),
where H : θ �→ h′′

g(θ)E[{−f ′(θ) + ε1(θ)}⊗2]. Therefore, (57) follows from A3, Lemma 15
and Theorem 16. Finally, by Theorem 23(b) and Jensen inequality, there exists C ≥ 0 such
that for all i ∈ {1, . . . , k}, almost surely,

h(3)
g

(
θ

(γ )
i + s

(γ )
i �θ

(γ )
i+1

){−f ′(θ(γ )
i

)+ εi+1
(
θ

(γ )
i

)}⊗3

≤ C
(
1 + ∥∥θ(γ )

i

∥∥p2 + ∥∥εi+1
(
θ

(γ )
i

)∥∥p2
)(∥∥f ′(θ(γ )

i

)∥∥3 + ‖3‖[]εi+1
(
θ

(γ )
i

))
.

The proof of (58) then follows from A2, A3, (57) and Lemma 13.
(b) This result is a direct consequence of Theorem 16 and (a). �

PROOF OF THEOREM 7. Under the stated assumptions, the functions ψ : θ �→
h′′

g(θ)E[{ε(θ)}⊗2] and g satisfy the conditions of Theorem 24. The proof then follows from
combining Theorem 24(b) applied to ψ and Theorem 24 applied to g. �
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[58] TADIĆ, V. B. and DOUCET, A. (2017). Asymptotic bias of stochastic gradient search. Ann. Appl. Probab.
27 3255–3304. MR3737925 https://doi.org/10.1214/16-AAP1272

[59] TALAY, D. and TUBARO, L. (1990). Expansion of the global error for numerical schemes solving
stochastic differential equations. Stoch. Anal. Appl. 8 483–509. MR1091544 https://doi.org/10.1080/
07362999008809220

[60] VILLANI, C. (2009). Optimal Transport: Old and New. Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences] 338. Springer, Berlin. MR2459454
https://doi.org/10.1007/978-3-540-71050-9

[61] WELLING, M. and TEH, Y. W. (2011). Bayesian learning via Stochastic Gradient Langevin Dynamics. In
Proceedings of the International Conference on Machine Learning (ICML) 681–688.

[62] ZHU, D. L. and MARCOTTE, P. (1996). Co-coercivity and its role in the convergence of iterative schemes
for solving variational inequalities. SIAM J. Optim. 6 714–726. MR1402202 https://doi.org/10.1137/
S1052623494250415

http://www.ams.org/mathscinet-getitem?mr=1167814
https://doi.org/10.1137/0330046
http://www.ams.org/mathscinet-getitem?mr=1603888
https://doi.org/10.1080/07362999808809521
http://www.ams.org/mathscinet-getitem?mr=0042668
https://doi.org/10.1214/aoms/1177729586
http://www.ams.org/mathscinet-getitem?mr=1923481
https://doi.org/10.1007/978-0-387-21738-3
http://arxiv.org/abs/arXiv:1802.04876
http://www.ams.org/mathscinet-getitem?mr=3737925
https://doi.org/10.1214/16-AAP1272
http://www.ams.org/mathscinet-getitem?mr=1091544
https://doi.org/10.1080/07362999008809220
http://www.ams.org/mathscinet-getitem?mr=2459454
https://doi.org/10.1007/978-3-540-71050-9
http://www.ams.org/mathscinet-getitem?mr=1402202
https://doi.org/10.1137/S1052623494250415
https://doi.org/10.1080/07362999008809220
https://doi.org/10.1137/S1052623494250415

	Introduction
	Notations

	Main results
	Setting
	Summary and discussion of main results
	Related work

	Detailed analysis
	Limit distribution
	Expansion of moments of pigamma when gamma is in a neighborhood of  0
	Quadratic case
	General case

	Expansion for a given gamma>0 when k tends to +infty
	Continuous interpretation of SGD and weak error expansion
	Discussion
	Classical decomposition
	New decomposition


	Experiments
	Conclusion
	Postponed proofs
	Discussion on assumptions on the noise
	Validity of the results under A7(p)

	Preliminary results
	Proof of Lemma 3
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 7
	Regularity of the gradient ﬂow and estimates on Poisson solution
	Proof of Theorem 7


	Acknowledgements
	Supplementary Material
	References

