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We analyse the reconstruction error of principal component analysis
(PCA) and prove nonasymptotic upper bounds for the corresponding excess
risk. These bounds unify and improve existing upper bounds from the litera-
ture. In particular, they give oracle inequalities under mild eigenvalue condi-
tions. The bounds reveal that the excess risk differs significantly from usually
considered subspace distances based on canonical angles. Our approach relies
on the analysis of empirical spectral projectors combined with concentration
inequalities for weighted empirical covariance operators and empirical eigen-
values.

1. Introduction. Principal component analysis (PCA) and variants like functional PCA
or kernel PCA are standard tools in high-dimensional statistics and unsupervised learning;
see, for example, Jolliffe [16], Horváth and Kokoszka [12] and Schölkopf and Smola [29] for
an overview. Usually, they are employed as a first step to reduce the high dimensionality of
the data before methods for the specific task come into play. The basic motivation for this
work is that the understanding of the error incurred by PCA in high dimensions is so far
limited. In fact, Blanchard, Bousquet and Zwald [6] exhibit upper bounds for the excess risk
of the reconstruction error which give different rates in sample size and dimensionality de-
pending on spectral properties of the covariance operator, and thus exhibit complex facets of
this classical statistical method. By combining spectral projector calculus with concentration
inequalities, we are able to give tight bounds for the excess risk which clarify the underlying
error structure. This gives rise to oracle risk bounds which in wide generality prove that the
error due to projecting on empirical principal components is negligible compared to the error
due to optimal dimension reduction via the population version of PCA.

We include functional PCA and kernel PCA in the standard multivariate PCA setting by
allowing for general Hilbert spaces H. PCA is commonly derived by minimising the recon-
struction error E[‖X − PX‖2] over all orthogonal projections P of rank d , where X is an
H-valued random variable and d is a given dimension. Replacing the population covariance
� by an empirical covariance �̂, PCA computes the orthogonal projection P̂≤d onto the
eigenspace of the d leading eigenvalues of �̂. Put differently, P̂≤d minimises the empirical
reconstruction error and it is natural to measure its performance by the excess risk EPCA

d , that
is, by the difference between the reconstruction errors of P̂≤d and the overall minimiser P≤d .
It is easy to see that EPCA

d = 〈�,P≤d − P̂≤d〉 holds with respect to the Hilbert–Schmidt scalar
product.

Comparing the excess risk EPCA
d to the Hilbert–Schmidt distance ‖P̂≤d − P≤d‖2, which is

up to a constant equal to the l2-norm of the sines of the canonical angles between the cor-
responding subspaces, the main difference is that EPCA

d remains small if P̂≤d projects into
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eigenspaces with eigenvalues that are not much smaller than the d largest ones. In the ex-
treme case λd = λd+1, where the dth and (d + 1)st largest eigenvalues coincide, the Hilbert–
Schmidt distance is not even uniquely defined. Statistically, the reconstruction error is not
only the basis for the very definition of PCA, but it is also more adequate for many tasks like
reconstruction and prediction than the Hilbert–Schmidt distance. A typical example is given
by the prediction error of principal component regression, for which Wahl [35] establishes
a clear connection with the excess risk of PCA. Mathematically, an arbitrarily small spec-
tral gap λd − λd+1 requires new techniques because spectral perturbation results deteriorate
as the spectral gap shrinks. Our aim is to treat even the isotropic case � = σ 2I , where the
covariance is a multiple of the identity matrix and EPCA

d = 0 holds.
Classical results for PCA provide limit theorems for the empirical eigenvalues and eigen-

vectors when the sample size n tends to infinity; see, for example, Anderson [2] and Dauxois,
Pousse and Romain [9]. For the Hilbert–Schmidt distance, the most well-known result is the
Davis–Kahan sin� theorem [10], which gives an upper bound in terms of the eigenvalue
separation and the Hilbert–Schmidt norm of �̂ −�. In many cases, more precise bounds can
be derived using higher-order spectral perturbation results. Nadler [27] obtains nonasymp-
totic bounds for the spiked covariance model and studies phase transitions when dimension
and sample size tend to infinity simultaneously. Mas and Ruymgaart [25] and Jirak [14] ask
for near-optimal bounds for functional PCA with exponential or polynomial spectral decay.
Koltchinskii and Lounici [18–21] derive tight concentration bounds for the operator norm of
�̂ − � and study empirical spectral projectors in the so-called effective rank setting.

Bounds for the reconstruction error using the theory of empirical risk minimisation (ERM)
are derived by Shawe-Taylor et al. [30, 31] and Blanchard, Bousquet and Zwald [6]. While
[31] only establishes a slow n−1/2-rate, in [6] the existence of faster rates, difficult to quantify
explicitly, is discovered. We take up the ERM approach in Section 2.2 below and establish by
a simple recursion argument upper bounds, based on an interplay between a slow n−1/2-rate
and a fast n−1-rate. These bounds clarify and partly improve the existing theory, while the
proofs are short and transparent such that they have a value on their own.

Yet, we observe that the basic inequality of ERM prevents us from deriving good bounds
in basic settings like isotropic covariance. In order to obtain tight bounds in more generality
for EPCA

d in Section 2.3, we employ a more sophisticated recursion argument in combination
with concentration inequalities for weighted empirical covariance operators and empirical
eigenvalues. This is achieved by an algebraic projector-based calculus that allows us to take
advantage of the presence of the true covariance � in the expression for the excess risk
and to avoid difficulties arising from a straightforward application of standard perturbation
theory; compare Remarks 3.3, 3.4 and 3.15 for more details. Considering standard examples
in high-dimensional statistics and functional data analysis like spiked covariance models and
exponential or polynomial eigenvalue decay, Section 2.4 shows how the general bounds apply
and that existing bounds in the literature can be rediscovered and in some important aspects
improved. The overall finding is that in all of these cases a tight oracle inequality holds.

Finally, we discuss in Section 2.5 how our results can be transferred to the subspace
distance and, for instance, how the projector calculus yields the Davis–Kahan sin� theo-
rem and other spectral perturbation results in a straightforward manner. Moreover, a CLT
for the excess risk is presented for fixed dimensions, acting as a benchmark for the high-
dimensional results and revealing a surprising inhomogeneity of the excess risk with respect
to the eigenvalue spacings. We also state the concentration inequalities for individual empiri-
cal eigenvalues that might be of independent interest. Section 3 supplies the main tools from
projector-based calculus, ω-wise error decompositions and concentration inequalities. Sec-
tion 4 is devoted to the proofs. The Supplementary Material [28] contains additional proofs
and extensions via linear expansions.
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2. Main results.

2.1. The reconstruction error of PCA. Let X be a centered random variable taking values
in a separable Hilbert space (H, 〈·, ·〉) of dimension p ∈ N∪{+∞} and let ‖·‖ denote the
norm on H defined by ‖u‖ = √〈u,u〉.

ASSUMPTION 2.1. Suppose that X is sub-Gaussian, meaning that E[‖X‖2] is finite and
that there is a constant C1 with∥∥〈X,u〉∥∥ψ2

:= sup
k≥1

k−1/2
E

[∣∣〈X,u〉∣∣k]1/k ≤ C1E
[〈X,u〉2]1/2

for all u ∈ H.

If X is Gaussian, then it is easy to see that Assumption 2.1 holds with C1 = 1 (cf. [33], the
first formula in equation (5.6)).

The covariance operator of X is denoted by

� = E[X ⊗ X].
By the spectral theorem, there exists a sequence λ1 ≥ λ2 ≥ · · · > 0 of positive eigenvalues
(which is either finite or converges to zero) together with an orthonormal system of eigenvec-
tors u1, u2, . . . such that � has the spectral representation

� = ∑
j≥1

λjPj ,

with rank-one projectors Pj = uj ⊗ uj , where (u ⊗ v)x = 〈v, x〉u, x ∈ H. Note that the
choice of uj and Pj is nonunique in case of multiple eigenvalues λj .

Without loss of generality, we shall assume that the eigenvectors u1, u2, . . . form an or-
thonormal basis of H such that

∑
j≥1 Pj = I . We write

P≤d = ∑
j≤d

Pj , P>d = I − P≤d = ∑
k>d

Pk

for the orthogonal projections onto the linear subspace spanned by the first d eigenvectors of
�, and onto its orthogonal complement.

Let X1, . . . ,Xn be n independent copies of X and let

�̂ = 1

n

n∑
i=1

Xi ⊗ Xi

be the sample covariance. Again, there exists a sequence λ̂1 ≥ λ̂2 ≥ · · · ≥ 0 of eigenvalues
together with an orthonormal basis of eigenvectors û1, û2, . . . such that we can write

�̂ = ∑
j≥1

λ̂j P̂j with P̂j = ûj ⊗ ûj

and

P̂≤d = ∑
j≤d

P̂j , P̂>d = I − P̂≤d = ∑
k>d

P̂k.

For linear operators S,T : H → H, we make use of trace and adjoint tr(S), S∗ to define the
Hilbert–Schmidt or Frobenius norm and scalar product

‖S‖2
2 = tr

(
S∗S

)
, 〈S,T 〉 = tr

(
S∗T

)
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as well as the operator norm ‖S‖∞ = maxu∈H,‖u‖=1‖Su‖. For covariance operators �, this
gives ‖�‖∞ = λ1 and ‖�‖2

2 = ∑
j≥1 λ2

j . Under Assumption 2.1, � is a trace class operator
(see, e.g., [32], Theorem III.2.3) and all quantities are indeed well-defined. In addition, for
r ≥ 1, we use the abbreviations tr>r(�) and tr≥r (�) for

∑
j>r λj and

∑
j≥r λj , respectively.

Introducing the class

Pd = {P : H → H|P is orthogonal projection of rank d},
the (population) reconstruction error of P ∈ Pd is defined by

R(P ) = E
[‖X − PX‖2] = 〈�,I − P 〉.

The fundamental idea behind PCA is that P≤d satisfies

(2.1) P≤d ∈ argmin
P∈Pd

R(P ), R(P≤d) = tr>d(�).

Similarly, the empirical reconstruction error of P ∈ Pd is defined by

Rn(P ) = 1

n

n∑
i=1

‖Xi − PXi‖2 = 〈�̂, I − P 〉,

and we have

(2.2) P̂≤d ∈ argmin
P∈Pd

Rn(P ).

The excess risk of the PCA projector P̂≤d is thus given by

(2.3) EPCA
d := R(P̂≤d) − R(P≤d) = 〈�,P≤d − P̂≤d〉.

By (2.1), the excess risk EPCA
d defines a nonnegative loss function in the decision-theoretic

sense for the estimator P̂≤d under the parameter �. Our main objective is to find nonasymp-
totic bounds for

E
[
EPCA

d

] = ER(P̂≤d) − min
P∈Pd

R(P ),

the decision-theoretic risk. In some situations, we also consider the problem of deriving stan-
dard oracle inequalities, by allowing to replace the constant 1 in front of the minimum by a
larger constant.

Throughout the paper, c and C denote constants. We make the convention that these con-
stants are not necessarily the same at each occurrence. They usually depend on C1 from
Assumption 2.1. For our expectation bounds, we make C more explicit by using the constant
C2, where C2 > 0 is the smallest constant such that

(2.4) E
[∥∥Pj (� − �̂)Pk

∥∥2
2

] ≤ C2δλjλk/n

with δ = 1 if j �= k and δ = 2 otherwise. It is easy to check that (2.4) holds with C2 ≤ 16C4
1

and that for X Gaussian (2.4) holds with C2 = 1.

2.2. ERM-bounds for the excess risk. A natural approach to derive upper bounds for
the excess risk is to follow the standard theory of empirical risk minimisation (ERM). The
important basic inequality in ERM is

(2.5) 0 ≤ 〈�,P≤d − P̂≤d〉 ≤ 〈� − �̂,P≤d − P̂≤d〉 = 〈	,P≤d − P̂≤d〉
with

	 = � − �̂,
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which follows from (2.1) and (2.2). This route has been taken by Blanchard, Bousquet and
Zwald [6], who applied sophisticated arguments from empirical process theory, based on
Bartlett, Bousquet and Mendelson [3]. Let us derive some simple nonasymptotic expectation
bounds from (2.5), which will set the stage for more refined results later.

PROPOSITION 2.2. We have

EPCA
d ≤ min

(√
2d‖	‖2,

2‖	‖2
2

λd − λd+1

)

with the convention x/0 := ∞. With Assumption 2.1,

(2.6) E
[
EPCA

d

] ≤ min
(√

4C2d tr(�)√
n

,
4C2 tr2(�)

n(λd − λd+1)

)

follows, where C2 is the constant in (2.4).

REMARK 2.3. By (2.1), the left-hand side in (2.5) does not depend on the choice of P≤d

if λd = λd+1, while the right-hand side in general does. Nevertheless, since the actual choice
of P≤d does not alter the final result in Proposition 2.2, we let this choice unspecified and
make the convention that the Pj have been fixed in advance.

REMARK 2.4. Extending the terminology of [6], we call the first and the second part in
(2.6) global and local bound, respectively, referring to the dependence on specific spectral
gaps or not. The expected excess risk is thus bounded by a slow global n−1/2-rate as well as
by a fast local n−1-rate which depends on the spectral gap λd − λd+1. For (2.6) to hold, only
the fourth moment bound (2.4) is required instead of the full Assumption 2.1.

PROOF OF PROPOSITION 2.2. From (2.5), we obtain

(2.7)
(
EPCA

d

)2 ≤ ‖	‖2
2‖P≤d − P̂≤d‖2

2

by the Cauchy–Schwarz inequality. Since orthogonal projectors are idempotent and self-
adjoint, we have 〈P≤d, P̂≤d〉 = ‖P≤dP̂≤d‖2

2 ≥ 0, and thus

‖P≤d − P̂≤d‖2
2 = 2

(
d − 〈P≤d, P̂≤d〉) ≤ 2d.

Insertion into (2.7) yields the first part of the bound. The second part of the bound follows
from a short recursion argument. Indeed, we have

‖P≤d − P̂≤d‖2
2 ≤ 2EPCA

d

λd − λd+1
,

which is a variant of the Davis–Kahan inequality and follows by simple projector calculus;
see Lemma 2.6 and (2.21) below. We obtain

(
EPCA

d

)2 ≤ ‖	‖2
2

2EPCA
d

λd − λd+1
.

This yields the second part of the bound. Finally, the expectation bound (2.6) follows from
inserting (2.4). �

The global rate can be improved by using the variational characterisation of partial traces
again. In the case � = I + xP≤d , for instance, the global rate p

√
d/n of Proposition 2.2 is

improved to d
√

p/n. The latter is optimal for d ≤ p/2 and spectral gap x = √
p/n; see the

lower bound (2.19) below.
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PROPOSITION 2.5. Grant Assumption 2.1. Then we have

E
[
EPCA

d

] ≤ C
∑
j≤d

max
(√

λj tr≥j (�)

n
,

tr≥j (�)

n

)
,

where C > 0 is a constant depending only on C1.

PROOF. Using (2.5), we have

(2.8) EPCA
d ≤ 〈	,P≤d〉 + sup

P∈Pd

〈−	,P 〉.

By the variational characterisation of partial traces (cf. (2.1), (2.2)) and the min-max charac-
terisation of eigenvalues (see, e.g., [22], Chapter 28), we get

sup
P∈Pd

〈−	,P 〉 ≤ ∑
j≤d

‖P≥j	P≥j‖∞.

Noting that E[〈	,P≤d〉] = 0, we conclude that

E
[
EPCA

d

] ≤ ∑
j≤d

E
[‖P≥j	P≥j‖∞

]
.

Finally, we apply the moment bound for sample covariance operators obtained by Koltchin-
skii and Lounici [19]. Consider X′ = P≥jX, X′

i = P≥jXi which again satisfy Assumption 2.1
(with the same constant C1) and lead to the covariance and the sample covariance

(2.9) �′ = P≥j�P≥j , �̂′ = P≥j �̂P≥j .

Since �′ has trace tr≥j (�) and operator norm λ′
1 = λj , [19], Theorem 4, applied to 	′ =

�′ − �̂′ gives

E
[‖P≥j	P≥j‖∞

] ≤ C max
(√

λj tr≥j (�)

n
,

tr≥j (�)

n

)
,

where C is a constant depending only on C1, and the claim follows. �

The bounds in Propositions 2.2 and 2.5 exhibit nicely the interplay between the global
n−1/2-rate and the local n−1-rate. At first glance, it is surprising that the bounds derived via
the basic ERM-inequality may nevertheless be suboptimal. For the simple isotropic case � =
σ 2I (enforcing a finite dimension p) with EPCA

d = 0, they only provide an upper bound of
order d

√
p/n. The reason is an asymmetry with the risk 〈�̂, P̂≤d −P≤d〉 with the population

and empirical versions exchanged, which may be much larger than the excess risk.
For the lower bound model � = I +xP≤d with n = 1000, p = 50 and d = 3, Figure 1 dis-

plays the expectation (obtained from accurate Monte Carlo simulations) of the upper bound
from the basic inequality (2.5) (dashed-dotted line) and the upper bound (2.8), used for prov-
ing Proposition 2.5 (dotted line), compared to the expected excess risk (solid line). In addi-
tion, Figure 1 displays the upper bound obtained in (2.18) with C = 1.1, taking into account
Remark 3.7 (dashed line). This new upper bound captures correctly the small excess risk for
small spectral gaps x.
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FIG. 1. Expected excess risk (solid) and its upper bounds from (2.18) (dashed), (2.5) (dashed-dotted), and (2.8)
(dotted) as functions of the spectral gap.

2.3. New bounds for the excess risk. All results presented are proved in Section 4 below.
The following representation of the excess risk is fundamental for the new bounds.

LEMMA 2.6. For any μ ∈ R, we have

EPCA
d = ∑

j≤d

(λj − μ)‖Pj P̂>d‖2
2 + ∑

k>d

(μ − λk)‖PkP̂≤d‖2
2.

It turns out that the two risk parts exhibit a different behaviour and we shall bound them
separately. Therefore, we introduce

EPCA≤d (μ) = ∑
j≤d

(λj − μ)‖Pj P̂>d‖2
2, EPCA

>d (μ) = ∑
k>d

(μ − λk)‖PkP̂≤d‖2
2.

Usually, we shall choose μ ∈ [λd+1, λd ] such that all terms are positive, but sometimes it
pays off to choose a different value. Our first main result is as follows.

PROPOSITION 2.7. Grant Assumption 2.1 and let μ ∈ [λd+1, λd ]. Then for all r =
0, . . . , d we have

E
[
EPCA≤d (μ)

] ≤ C
∑
j≤r

(λj − μ)
λj tr(�)

n(λj − λd+1)2 +
d∧(r+p−d)∑

j=r+1

(λj − μ)

with C = 8C2 + 8C2
3 , where C2 and C3 are given in (2.4) and (3.16), respectively. Moreover,

if d ≤ n/(16C2
3), then for all l = d + 1, . . . , p + 1 we have

E
[
EPCA

>d (μ)
] ≤ C

∑
k≥l

(μ − λk)
λk tr(�)

n(λd − λk)2 +
l−1∑

k=(d+1)∨(l−d)

(μ − λk) + R

with remainder term R = (μ−λp)e−n/(32C2
3 ). For p = ∞, we understand λp = 0 and l ∈ {k ∈

N |k ≥ d + 1} ∪ {+∞} and for l = p = ∞ we understand
∑l−1

k=(l−d)∨(d+1)(μ − λk) = dμ.

Bounds of the same order can be derived for the Lp-norms of EPCA≤d (μ) and EPCA
>d (μ) with

a constant C depending additionally on p; see, for example, Lemma 4.3 for the additional
arguments needed in the case p = 2. By simple arguments, we obtain the following corollary.
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COROLLARY 2.8. Grant Assumption 2.1 and let μ ∈ [λd+1, λd ]. Then we have

E
[
EPCA≤d (μ)

] ≤ ∑
j≤d

min
(
C

λj tr(�)

n(λj − λd+1)
, λj − λd+1

)
.

Moreover, if d ≤ n/(16C2
3), then

E
[
EPCA

>d (μ)
] ≤ ∑

k>d

min
(
C

λk tr(�)

n(λd − λk)
, λd − λk

)
+ (λd − λp)e

− n

32C2
3 .

In both inequalities, we have C = 8C2 + 8C2
3 .

Summing up the inequalities in Proposition 2.7 leads to an upper bound for E[EPCA
d ] which

improves the local bound of Proposition 2.2 and gives the value 0 in the isotropic case � =
σ 2I . Furthermore, global bounds emerge as trade-off between the two terms involved in the
upper bounds. More precisely, we have the following.

THEOREM 2.9. Grant Assumption 2.1 and suppose d ≤ n/(16C2
3). Then we have the

local bound

E
[
EPCA

d

] ≤ C
∑
j≤d:

λj>λd+1

λj tr(�)

n(λj − λd+1)
+ C

∑
k>d:

λk<λd

λk tr(�)

n(λd − λk)
+ (λd − λp)e

− n

32C2
3

and the global bound

(2.10) E
[
EPCA

d

] ≤ ∑
j≤d

√
Cλj tr(�)

n
+

√
Cd tr>d(�) tr(�)

n
.

In both inequalities, we have C = 8C2 + 8C2
3 .

For our second main result, we impose additional eigenvalue conditions, and thus improve
the first bound of Proposition 2.7. A main feature is that the full trace of � can be replaced
by the partial trace tr>s(�), which in the case s = d coincides with the oracle reconstruction
error.

PROPOSITION 2.10. Grant Assumption 2.1. Then for all indices s = 1, . . . , d such that

(2.11)
λs

λs − λd+1

∑
j≤s

λj

λj − λd+1
≤ n/

(
16C2

3
)

and all r = 0, . . . , s, we have

E
[
EPCA≤d (λd+1)

] ≤ C
∑
j≤r

λj tr>s(�)

n(λj − λd+1)
+ 2

∑
r<j≤d

(λj − λd+1) + R

with C = 16C2 + 8C2
3 and remainder term given by

R = 1024C4
1

∑
j≤r

λj tr(�)

n(λj − λd+1)
e
− n(λs−λd+1)2

(4C3λs )2 .

In the special case λd+1 = · · · = λp (compare the spiked covariance model below), we
have EPCA

>d (λd+1) = 0, and thus Proposition 2.10 yields an upper bound for the whole excess
risk. In the general case, we still have the following consequence.
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THEOREM 2.11. Grant Assumption 2.1 and suppose λd − λd+1 ≥ c1(λd − λp) with
c1 > 0. If (2.11) holds with s = d , then we have the local bound

E
[
EPCA

d

] ≤ C

c1n

(
tr>d(�) + tr(�)e−c2

1n(λd−λp)2/(Cλ2
d )) ∑

j≤d

λj

λj − λd+1
.

Moreover, if s ≤ d is the largest number such that (2.11) is satisfied (and s = 0 if such a
number does not exist), then we have the global bound

E
[
EPCA

d

] ≤ C

c1
√

n

(√
tr>s(�) + √

tr(�)e−c2
1n(λs−λp)2/(Cλ2

s )
) ∑
j≤d

√
λj .

In both inequalities, C is a constant depending only on C1.

Finally, observe that upper bounds for the expectation of the excess risk E[EPCA
d ] ≤ r.h.s.

can be equivalently formulated as exact oracle inequalities E[R(P̂≤d)] ≤ minP∈Pd
R(P ) +

r.h.s. If we give up the constant 1 in front of the minimum, Proposition 2.10 also leads to a
third type of bound.

THEOREM 2.12. Grant Assumption 2.1. Then for all indices s = 1, . . . , d such that
(2.11) holds, we have

E
[
R(P̂≤d)

] ≤ C tr>s(�) + C tr(�)e−n(λs−λd+1)
2/(4C3λs)

2

with a constant C > 0 depending only on C1.

If (2.11) holds with s = d , then tr>d(�) = infP∈Pd
R(P ) and we obtain a standard oracle

inequality with an exponentially small remainder term.

2.4. Applications. Let us illustrate our different upper bounds for three main classes of
eigenvalue behaviour: exponential decay, polynomial decay and a simple spiked covariance
model. Eigenvalue structures such as exponential or polynomial decay are typically consid-
ered in the context of functional data (see, e.g., [11, 14, 25]). Spiked covariance models are
often studied in the context of high-dimensional data [8, 15, 34].

Exponential decay. Assume for some α > 0

(2.12) λj = e−αj , j ≥ 1.

Then we have λj − λd+1 ≥ (1 − e−α)λj for every j ≤ d and (4.4) below gives EPCA
d ≤

(1 − e−α)−1EPCA≤d (λd+1). Hence, Corollary 2.8 implies

E
[
EPCA

d

] ≤ C
∑
j≤d

min
(
1/n, e−αj ) ≤ C

d ∧ log(en)

n
,

where C (not the same at each occurrence) is a constant depending only on C1 and α. This
bound improves the local bound in Proposition 2.2 (which gives Ceαd/n) and the bounds in
Theorems 3.2 and 3.4 of [6], respectively.

Next, we show that this result can be much improved by applying the local bound in
Theorem 2.11. Indeed, the left-hand side of (2.11) with s = d can be bounded by d(1 −
e−α)−2. Thus, assuming that this value is smaller than n/(16C2

3), we can apply the local
bound in Theorem 2.11. The main term is bounded by C(1 − e−α)−3dn−1e−α(d+1) and the
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remainder term by 1024C4
1(1 − e−α)−2n−1 exp(−n(1 − e−α)2/(16C2

3)). We conclude that
there are constants c,C > 0 depending only on C1 and α such that

(2.13) E
[
EPCA

d

] ≤ C
de−αd

n
,

provided that d ≤ cn. Noting for the population reconstruction error

R(P≤d) = ∑
k>d

e−αk = e−α(
1 − e−α)−1

e−αd,

we see that the excess risk is smaller than the oracle risk, provided that d ≤ cn. In the Supple-
mentary Material [28], we derive linear expansions for the excess risk, implying that (2.13)
is indeed sharp. In fact, (B.17) in [28] says that for X Gaussian, there are constants c,C > 0
depending only on α such that E[EPCA

d ] ≥ C−1de−αdn−1, provided that d ≤ cn.

Polynomial decay. Assume for some α > 1

(2.14) λj = j−α, j ≥ 1.

Then the local bound in Theorem 2.9 and the inequalities

(2.15)
∑
j≤d

λj

λj − λd+1
≤ Cd log(ed),

∑
k>d

λk

λd − λk

≤ Cd log(ed)

from (A.19) in the Supplementary Material [28] yield that there are constants c,C > 0 de-
pending only on C1 and α such that

E
[
EPCA

d

] ≤ C
d log(ed)

n

for all d ≤ cn. This already improves the results obtained in [6], Section 5, where a rate
strictly between n−1/2 and n−1 is derived.

Again, for large d , this result can be much improved by using Theorems 2.11 and 2.12.
Choosing s = �d/2�, there is a constant c depending only on C1 and α such that Condition
(2.11) is satisfied if d ≤ cn. Thus, Theorem 2.12 yields

(2.16) E
[
EPCA] ≤ C tr>�d/2�(�) + Ce−n/C ≤ Cd1−α + Ce−n/C,

provided that d ≤ cn. Noting for the population reconstruction error

R(P≤d) = ∑
k>d

k−α ≥ cd1−α,

we see from (2.16) that for d ≤ cn the excess risk is always smaller than a constant times the
oracle risk.

Similarly, Proposition 2.10 (applied with r = s = d), Theorem 2.11, and (2.15) yield

E
[
EPCA≤d (λd+1)

] ≤ C
d2−α log(ed)

n
, E

[
EPCA

d

] ≤ C
d3−α log(ed)

n
,

provided that d2 log(ed) ≤ cn, where c,C > 0 are constants depending only on C1 and α.
In Appendix B.3 in the Supplementary Material [28], we show that the first inequality also
holds without the log(ed) term, and that the second inequality can be improved to the sharp
bound Cd2−αn−1, yet under a more restrictive condition on d . This leads to the conjecture
that for the excess risk the bound Cd2−αn−1 holds in the larger regime d2 log(ed) ≤ cn.
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Spiked covariance model. Let � be the class of all symmetric matrices whose eigenvalues
satisfy

(2.17) 1 + κx ≥ λ1 ≥ · · · ≥ λd ≥ 1 + x and λd+1 = · · · = λp = 1,

where x ≥ 0 and κ > 1. Then it holds

sup
�∈�

E
[
EPCA

d

] ≤ min
(
Cκ

(1 + κx)d(p − d)

nx
, dκx, (p − d)κx

)

+ κxe
− n

32C2
3 ,

(2.18)

provided that d ≤ cn, where c,C > 0 are constants depending only on C1. Considering sepa-
rately the cases x ≤ c and x > c, we see that the excess risk is always smaller than the oracle
risk R(P≤d) = p − d . To prove (2.18), it suffices to apply Proposition 2.7. Indeed, the claim
follows from applying either Lemma 2.6 with μ = 1 and the first inequality in Proposition 2.7
or Lemma 2.6 with μ = 1 + κx and the second inequality in Proposition 2.7 (depending on
whether (1 + κx)d ≤ p − d or (1 + κx)d > p − d).

In fact, since

x‖P≤d − P̂≤d‖2
2 ≤ 2EPCA

d ≤ κx‖P≤d − P̂≤d‖2
2,

(2.18) is equivalent to a result by Cai, Ma and Wu [8], Theorem 9. Moreover, their minimax
lower bound [8], Theorem 8 (see also Vu and Lei [34], Theorem A.2) gives

(2.19) inf
P̂≤d

sup
�∈�

E
[〈�,P≤d − P̂≤d〉] ≥ c min

(
(1 + x)d(p − d)

nx
, dx, (p − d)x

)
,

where the infimum is taken over all estimators P̂≤d based on X1, . . . ,Xn with values in Pd

and c > 0 is a constant.

Oracle inequality. One interesting conclusion in the above typical situations is a
nonasymptotic bound by the oracle risk, more precisely the following.

COROLLARY 2.13. In the cases (2.12), (2.14) and (2.17), there are constants c,C > 0
depending only on C1, α, and κ such that the oracle inequality

E
[
R(P̂≤d)

] ≤ C · R(P≤d),

holds for all d ≤ cn.

2.5. Discussion. Let us review some connections and implications.

Subspace distance versus excess risk. Many results cover the Hilbert–Schmidt distance
‖P̂≤d − P≤d‖2, which has a geometric interpretation in terms of canonical angles. In this di-
rection, the most well-known bound is the Davis–Kahan sin� theorem; see, for example, Yu,
Wang and Samworth [36] for a recent statistical account. More accurate bounds are derived,
for example, in Mas and Ruymgaart [25] in a functional setting and in Vu and Lei [34] and
Cai, Ma and Wu [8] in a high-dimensional sparse setting.

The squared Hilbert–Schmidt distance can be written as

(2.20) ‖P̂≤d − P≤d‖2
2 = 2

∑
j≤d

‖Pj P̂>d‖2
2 = 2

∑
k>d

‖PkP̂≤d‖2
2;
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see, for example, the proof of Lemma 2.6. Compared to

EPCA
d = ∑

j≤d

(λj − λd+1)‖Pj P̂>d‖2
2 + ∑

k>d

(λd+1 − λk)‖PkP̂≤d‖2
2

from Lemma 2.6, we see that the squared Hilbert–Schmidt distance and the excess risk differ
in the weighting of the projector norms. In fact, we obtain

(2.21)
2EPCA≤d (λd+1)

λ1 − λd+1
≤ ‖P̂≤d − P≤d‖2

2 ≤ 2EPCA≤d (λd+1)

λd − λd+1
≤ 2EPCA

d

λd − λd+1
.

This means that all excess risk bounds a fortiori imply bounds on the Hilbert–Schmidt dis-
tance up to a spectral gap factor. For instance, in our setting, (2.21) implies most versions
of the Davis–Kahan sin� theorem, for example, those in [36], by using the basic inequal-
ity 〈	,P≤d − P̂≤d〉 ≥ EPCA

d in (2.5) and bounding the scalar product by a Cauchy–Schwarz
or operator norm inequality. In contrast, the first inequality in (2.21) does not lead to good
bounds for the excess risk when λd −λd+1 is small relative to λ1 −λd+1. In the extreme case
λd = λd+1, the Hilbert–Schmidt distance depends on the choice of (ud, ud+1) and is thus not
even well-defined. A more sophisticated version of (2.21) is derived in Appendix B in the
Supplementary Material [28].

Finally, note that the Hilbert–Schmidt distance and the excess risk have different appli-
cations. For instance, bounds for the Hilbert–Schmidt distance ‖P̂j − Pj‖2 are fundamental
in the analysis of several testing algorithms; see, for example, Horváth and Kokoszka [12].
On the other hand, the excess risk is more adequate for tasks like reconstruction and predic-
tion; see, for example, Wahl [35] for the case of the prediction error of principal component
regression.

Asymptotic versus nonasymptotic. For the Hilbert–Schmidt distance, it is known that for
H =R

p and X ∼ N(0,�) with fixed � in the case λd > λd+1,

(2.22) n‖P̂≤d − P≤d‖2
2

d−→ 2
∑

j≤d,k>d

λjλk

(λj − λk)2 g2
jk

holds as n → ∞, where (gjk)j≤d<k is an array of independent standard Gaussian random
variables; see, for example, Dauxois, Pousse and Romain [9] and also Koltchinskii and
Lounici [18, 19]. The projector calculus developed in Section 3.1 allows to obtain readily
the analogue of the asymptotic result (2.22) for the excess risk EPCA

d without any spectral gap
condition. More precisely, we prove in Appendix A.7 in the Supplementary Material [28] the
following.

PROPOSITION 2.14. Let H = R
p and X ∼ N(0,�) with � fixed. As n → ∞, we have

for the excess risk EPCA
d,n = EPCA

d ,

nEPCA
d,n

d−→ ∑
j≤d,k>d:

λj>λk

λjλk

λj − λk

g2
jk,

where (gjk)j≤d<k are independent standard Gaussian random variables.

We see that the excess risk converges with n−1-rate also in the case λd = λd+1. Note,
however, that the convergence cannot be uniform in the parameter � in view of the disconti-
nuity of the right-hand side in (λj ). This clearly underpins the need for nonasymptotic upper
bounds for the excess risk.
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In certain examples, including the spiked covariance model and exponential decay of
eigenvalues, the eigenvalue expression in Proposition 2.10 (with r = s = d) coincides with
the one in Proposition 2.14. In the general case, including polynomial decay, the eigenvalue
expressions differ. In Appendix B in the Supplementary Material, we derive nonasymptotic
bounds which give the asymptotic leading terms in (2.22) and Proposition 2.14, by using
linear expansions for P̂≤d and P̂>d . These bounds, however, require stronger eigenvalue con-
ditions (including λd > λd+1). In contrast, our main results in Section 2.3 also apply to the
case of small or vanishing spectral gaps.

Eigenvalue concentration. We obtain deviation inequalities for empirical eigenvalues
which are of independent interest. Concentration inequalities for eigenvalues using tools from
measure concentration are widespread; see, for example, [1, 4, 7, 23, 24, 26]. The main differ-
ence to our deviation inequalities is that we take into account the local eigenvalue structure.
For instance, from Propositions 3.10 and 3.13, we get the following theorem.

THEOREM 2.15. Grant Assumption 2.1. Then there is a constant c > 0 depending only
on C1 such that for all y > 0 satisfying

1

n(y ∧ 1)

∑
k>d

λk

λd − λk + yλd

≤ 1/
(
2C2

3
)

we have

P(λ̂d − λd > yλd) ≤ e1−cn(y∧y2).

Moreover, for all y > 0 satisfying

1

n(y ∧ 1)

∑
j<d

λj

λj − λd + yλd

≤ 1/
(
2C2

3
)

we have

P(λ̂d − λd < −yλd) ≤ e1−cn(y∧y2).

If λd is a simple eigenvalue, then Theorem 2.15 can be seen as a nonasymptotic version of
the classical central limit theorem

√
n(λ̂d/λd − 1) → N (0,2) which holds for X Gaussian;

compare Anderson [2], Theorem 13.5.1, and Dauxois, Pousse and Romain [9], Proposition 8.
Moreover, the conditions imposed are related to E[λ̂d ] by the following asymptotic expansion
(see, e.g., [27], equation (2.22)):

E[λ̂d/λd ] − 1 = 1

n

∑
k �=d

λk

λd − λk

+ · · · .

A discussion how the eigenvalue conditions in Theorem 2.15 improve upon standard condi-
tions from the literature is given in Remark 3.15.

3. Main tools.

3.1. Projector-based calculus. In this section, we present two perturbation formulas,
which together with the representation of the excess risk given in Lemma 2.6 form the basis
of our analysis of the excess risk.
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LEMMA 3.1. For j ≤ d , we have

‖Pj P̂>d‖2
2 = ∑

k>d

‖Pj	P̂k‖2
2

(λj − λ̂k)2
,

and for k > d , we have

‖PkP̂≤d‖2
2 = ∑

j≤d

‖Pk	P̂j‖2
2

(λ̂j − λk)2
.

Both identities hold provided that all denominators are nonzero.

PROOF. The main ingredient is the formula

(3.1) Pj P̂k = 1

λj − λ̂k

Pj	P̂k,

which follows from inserting the spectral representations of � and �̂ into the right-hand side.
Indeed,

Pj	P̂k = ∑
l≥1

λlPjPlP̂k − ∑
l≥1

λ̂lPj P̂lP̂k = (λj − λ̂k)Pj P̂k.

The first claim now follows from inserting (3.1) into the identity

‖Pj P̂>d‖2
2 = ∑

k>d

‖Pj P̂k‖2
2.

The second claim follows similarly by switching j and k and summation over j . �

Identity (3.1) can be seen as a basic building block to derive expansions for empirical
spectral projectors. Indeed, using (3.1), we get

(3.2) Pj P̂>d = ∑
k>d

Pj	P̂k

λj − λ̂k

and a similar formula for PkP̂≤d , leading to

(3.3) P̂>d − P>d = P≤dP̂>d − P>dP̂≤d = ∑
j≤d

∑
k>d

(
Pj	P̂k

λj − λ̂k

+ Pk	P̂j

λ̂j − λk

)
.

The following lemma immediately leads to a linear expansion of P̂>d .

LEMMA 3.2. For j ≤ d , we have

Pj P̂>d = ∑
k>d

Pj	Pk

λj − λk

+ ∑
k≤d

∑
l>d

Pj	Pk	P̂l

(λj − λ̂l)(λk − λ̂l)

+ ∑
k>d

∑
l≤d

Pj	Pk	P̂l

(λj − λk)(λ̂l − λk)
− ∑

k>d

∑
l>d

Pj	Pk	P̂l

(λj − λ̂l)(λj − λk)

and for k > d , we have

PkP̂≤d = ∑
j≤d

Pk	Pj

λk − λj

+ ∑
j>d

∑
l≤d

Pk	Pj	P̂l

(λk − λ̂l)(λj − λ̂l)

+ ∑
j≤d

∑
l>d

Pk	Pj	P̂l

(λk − λj )(λ̂l − λj )
− ∑

j≤d

∑
l≤d

Pk	Pj	P̂l

(λk − λj )(λk − λ̂l)
.

Both identities hold provided that all denominators are nonzero.
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PROOF. We only prove the first identity, since the second one follows by the same line
of arguments. First, using (3.2) and the identity I = P≤d + P>d = P̂≤d + P̂>d , we have

Pj P̂>d = ∑
l>d

Pj	P̂l

λj − λ̂l

= ∑
l>d

Pj	P≤dP̂l

λj − λ̂l

+ ∑
l>d

Pj	P>dP̂l

λj − λ̂l

and ∑
k>d

Pj	Pk

λj − λk

= ∑
k>d

Pj	PkP̂≤d

λj − λk

+ ∑
k>d

Pj	PkP̂>d

λj − λk

.

Thus

Pj P̂>d = ∑
k>d

Pj	Pk

λj − λk

+ ∑
l>d

Pj	P≤dP̂l

λj − λ̂l

− ∑
k>d

Pj	PkP̂≤d

λj − λk

+
(∑

l>d

Pj	P>dP̂l

λj − λ̂l

− ∑
k>d

Pj	PkP̂>d

λj − λk

)
.

(3.4)

Using (3.1), we get

∑
l>d

Pj	P≤d P̂l

λj − λ̂l

= ∑
k≤d

∑
l>d

Pj	Pk	P̂l

(λj − λ̂l)(λk − λ̂l)

and

− ∑
k>d

Pj	PkP̂≤d

λj − λk

= ∑
k>d

∑
l≤d

Pj	Pk	P̂l

(λj − λk)(λ̂l − λk)
.

Moreover, again using (3.1), the term in parentheses in (3.4) is equal to

∑
l>d

Pj	P>dP̂l

λj − λ̂l

− ∑
k>d

Pj	PkP̂>d

λj − λk

= − ∑
k>d

∑
l>d

λk − λ̂l

(λj − λ̂l)(λj − λk)
Pj	PkP̂l

= − ∑
k>d

∑
l>d

1

(λj − λ̂l)(λj − λk)
Pj	Pk	P̂l,

and the claim follows. �

REMARK 3.3. Note that compared to (3.2), where only spectral gaps between j and
k > d appear, the first formula in Lemma 3.2 includes all spectral gaps between k > d and
l ≤ d , even in the case j = 1. Since we are also interested in the case of small spectral gaps
(including λd = λd+1), our main analysis of the excess risk will be based on Lemma 3.1.
Lemma 3.2 will be important to derive linear expansions for the excess risk under stronger
eigenvalue conditions.

REMARK 3.4. Usually, expansions for spectral projectors are obtained by the Cauchy
integral representation for spectral projectors in combination with the second resolvent equa-
tion (resp., the second Neumann series); see, for example, Kato [17]. The difference of Lem-
mas 3.1 and 3.2 to the formulation in, for example, [18], Lemma 2, or [13], Theorem 5.1.4,
is the form of the remainder term. In [13, 18], the remainder term is given by an integral
over the resolvent, while the above results lead to an algebraic form of the remainder term. In
Section 3.2 and Appendix B in the Supplementary Material [28], we will use these algebraic
expressions to establish recursion arguments.
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3.2. Error decompositions. In this section, we prove deterministic upper bounds for the
excess risk which form the basis of our new upper bounds in Section 2.3. For EPCA≤d (μ), we
split the sum into indices j ≤ r , where we expect the spectral gaps λj − λd+1 to be large,
meaning that we can insert the perturbation formulas from Lemma 3.1, and into indices r <

j ≤ d , where we expect the spectral gaps λj −μ to be small, meaning that wrong projections
do not incur a large error. The terms of the first sum can then be controlled by a recursion
argument.

PROPOSITION 3.5. For μ ∈ [λd+1, λd ] and r = 0, . . . , d , we have

EPCA≤d (μ) ≤ 4
∑
j≤r

(λj − μ)
‖Pj	P̂>d‖2

2

(λj − λd+1)2 +
d∧(r+p−d)∑

j=r+1

(λj − μ)

+ ∑
j≤r

(λj − μ)1
(
λ̂d+1 − λd+1 > (λj − λd+1)/2

)
.

(3.5)

Furthermore, for s = r, . . . , d and the weighted projector

(3.6) S≤s = S≤s(μ) = ∑
j≤s

1√
λj − μ

Pj

(assuming λs > μ) we obtain

EPCA≤d (μ) ≤ 16
∑
j≤r

(λj − μ)
‖Pj	P>s‖2

2

(λj − λd+1)2 + 2
d∧(r+p−d)∑

j=r+1

(λj − μ)

+ 2
∑
j≤r

(λj − μ)1
(
λ̂d+1 − λd+1 > (λj − λd+1)/2

)
(3.7)

+ 8
∑
j≤r

(λj − μ)
‖Pj	‖2

2

(λj − λd+1)2 1
(‖S≤s	S≤s‖∞ > 1/4

)
.

REMARK 3.6. Note that the convention of Remark 2.3 is still in force. For certain values
of r and s, the upper bounds in Proposition 3.5 may depend on the choice of the Pj . The
actual choices, however, do not alter the final results in Section 2.3.

REMARK 3.7. The constants are chosen for simplicity. For each ε > 0, the constant 16
in (3.7) can be replaced by 1 + ε provided that the constants 1/2 and 1/4 in the definition of
the events are replaced by bigger constants depending on ε.

PROOF. Using ‖Pj P̂>d‖2
2 ≤ 1 and

∑d
j=r+1 ‖Pj P̂>d‖2

2 ≤ p − d , we obtain

(3.8) EPCA≤d (μ) ≤ ∑
j≤r

(λj − μ)‖Pj P̂>d‖2
2 +

d∧(r+p−d)∑
j=r+1

(λj − μ).

By Lemma 3.1, we have

‖Pj P̂>d‖2
2 = ∑

k>d

‖Pj	P̂k‖2
2

(λj − λ̂k)2
.

Moreover, on the event{
λ̂d+1 − λd+1 ≤ (λj − λd+1)/2

} = {
λj − λ̂d+1 ≥ (λj − λd+1)/2

}
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we can bound

(3.9) ‖Pj P̂>d‖2
2 ≤ ∑

k>d

4
‖Pj	P̂k‖2

2

(λj − λd+1)2 = 4
‖Pj	P̂>d‖2

2

(λj − λd+1)2 .

By (3.9) and ‖Pj P̂>d‖2
2 ≤ 1, we conclude that

(3.10) ‖Pj P̂>d‖2
2 ≤ 4

‖Pj	P̂>d‖2
2

(λj − λd+1)2 + 1
(
λ̂d+1 − λd+1 > (λj − λd+1)/2

)
.

Inserting (3.10) into (3.8), we obtain the first claim (3.5). The second claim follows from an
additional recursion argument. For this, we introduce

(3.11) R≤s = R≤s(μ) = ∑
j≤s

√
λj − μPj ,

which satisfies the identities S≤sR≤s = P≤s and

(3.12)
∑
j≤s

(λj − μ)‖Pj P̂>d‖2
2 = ‖R≤sP̂>d‖2

2.

Then we have

∑
j≤r

(λj − μ)
‖Pj	P̂>d‖2

2

(λj − λd+1)2

≤ 2
∑
j≤r

(λj − μ)
‖Pj	P>sP̂>d‖2

2

(λj − λd+1)2 + 2
∑
j≤r

(λj − μ)
‖Pj	P≤s P̂>d‖2

2

(λj − λd+1)2

(3.13)

≤ 2
∑
j≤r

(λj − μ)
‖Pj	P>s‖2

2

(λj − λd+1)2 + 2
∑
j≤r

‖Pj	P≤s P̂>d‖2
2

λj − μ

= 2
∑
j≤r

(λj − μ)
‖Pj	P>s‖2

2

(λj − λd+1)2 + 2‖S≤r	P≤s P̂>d‖2
2.

On the event {‖S≤s	S≤s‖∞ ≤ 1/4}, the last term is bounded via

2‖S≤r	P≤s P̂>d‖2
2 = 2‖S≤r	S≤sR≤sP̂>d‖2

2

≤ 2‖S≤r	S≤s‖2∞‖R≤sP̂>d‖2
2

≤ 2‖S≤s	S≤s‖2∞‖R≤sP̂>d‖2
2 ≤ ‖R≤sP̂>d‖2

2/8,

where we also used that r ≤ s. Thus, on {‖S≤s	S≤s‖∞ ≤ 1/4}, we get

∑
j≤r

(λj − μ)
‖Pj	P̂>d‖2

2

(λj − λd+1)2

≤ 2
∑
j≤r

(λj − μ)
‖Pj	P>s‖2

2

(λj − λd+1)2 + 1

8

∑
j≤s

(λj − μ)‖Pj P̂>d‖2
2.

(3.14)
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Using also that ‖Pj	P̂>d‖2
2 ≤ ‖Pj	‖2

2, we conclude that

4
∑
j≤r

(λj − μ)
‖Pj	P̂>d‖2

2

(λj − λd+1)2

≤ 8
∑
j≤r

(λj − μ)
‖Pj	P>s‖2

2

(λj − λd+1)2 + 1

2
EPCA≤d (μ)

+ 4
∑
j≤r

(λj − μ)
‖Pj	‖2

2

(λj − λd+1)2 1
(‖S≤s	S≤s‖∞ > 1/4

)
.

Plugging this into (3.5), we obtain the second claim. �

Similarly, we can upper bound the second risk part EPCA
>d . The only difference in the proof

in Appendix A.1 in the Supplementary Material [28] is that an additional argument deals with
the sum over all sufficiently large k.

PROPOSITION 3.8. For μ ∈ [λd+1, λd ] and l = d + 1, . . . , p + 1, we have

EPCA
>d (μ) ≤ 4

∑
k≥l

(μ − λk)
‖Pk	P̂≤d‖2

2

(λd − λk)2 +
l−1∑

k=(d+1)∨(l−d)

(μ − λk)

+ ∑
k≥l:

λk≥λd/2

(μ − λk)1
(
λ̂d − λd < −(λd − λk)/2

)
(3.15)

+ d(μ − λp)1(λ̂d − λd < −λd/4).

Note that for p = ∞ the convention of Proposition 2.7 is still in force.

3.3. Concentration inequalities. In order to make the deterministic upper bounds of the
previous section useful, one has to show that the events in the remainder terms occur with
small probability. We establish concentration inequalities for the weighted sample covariance
operators as well as deviation inequalities for the empirical eigenvalues λ̂d and λ̂d+1, based
on the concentration inequality [19], Corollary 2, for sample covariance operators which we
use in the form

(3.16) P
(‖	‖∞ > C3λ1x

) ≤ e−n(x∧x2),

whenever

tr(�) ≤ nλ1
(
x ∧ x2)

,

where C3 > 1 is a constant which depends only on C1. First, consider the weighted projector
S≤s from (3.6) for μ ∈ [0, λs). Then, as in (2.9), X′ = S≤sX satisfies Assumption 2.1 with
the same constant C1 as X and has covariance operator

�′ = S≤s�S≤s = ∑
j≤s

λj

λj − μ
Pj .

The eigenvalues of �′ (in decreasing order) are λ′
j = λs+1−j /(λs+1−j − μ), noting that the

order is reversed by the weighting. Using the sample covariance �̂′ = S≤s�̂S≤s and choosing
x = 1/(4C3λ

′
1), which is smaller than 1, the concentration inequality (3.16) applied to 	′ =

�′ − �̂′ yields the following.
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LEMMA 3.9. Grant Assumption 2.1. If μ ∈ [0, λs) and if

λs

λs − μ

∑
j≤s

λj

λj − μ
≤ n/

(
16C2

3
)

holds with the constant C3 from (3.16), then

P
(‖S≤s	S≤s‖∞ > 1/4

) ≤ exp
(
−n(λs − μ)2

16C2
3λ2

s

)
.

Next, we will state deviation inequalities for the empirical eigenvalues λ̂d and λ̂d+1,
namely right-deviation inequalities for λ̂d+1 and left-deviation inequalities for λ̂d .

PROPOSITION 3.10. Grant Assumption 2.1. For all x > 0, satisfying

(3.17) max
(

C3λd+1

x
,1

) ∑
k>d

λk

λd+1 − λk + x
≤ n/C3,

we have

P(λ̂d+1 − λd+1 > x) ≤ exp
(
−nmin

(
x2

C2
3λ2

d+1

,
x

C3λd+1

))
,

where C3 is the constant in (3.16).

PROOF. First, we apply the min-max characterisation of eigenvalues and obtain λ̂d+1 ≤
λ1(P>d�̂P>d). This gives

(3.18) P(λ̂d+1 − λd+1 > x) ≤ P
(
λ1(P>d�̂P>d) − λ1(P>d�P>d) > x

)
.

We now use the following lemma, proven later.

LEMMA 3.11. Let S and T be self-adjoint, positive compact operators on H and y >

λ1(S). Then

λ1(T ) > y ⇐⇒ λ1
(
(y − S)−1/2(T − S)(y − S)−1/2)

> 1.

Applying this lemma to S = P>d�P>d , T = P>d�̂P>d , and y = λ1(S) + x = λd+1 + x,
we get

(3.19) P
(
λ1(P>d�̂P>d) − λ1(P>d�P>d) > x

) ≤ P
(‖T>d	T>d‖∞ > 1

)
with

T>d = ∑
k>d

1√
λd+1 − λk + x

Pk.

Thus, as in (2.9), we consider X′ = T>dX, satisfying Assumption 2.1 with the same constant
C1, and obtain the covariance operator

�′ = T>d�T>d = ∑
k>d

λk

λd+1 − λk + x
Pk.

Hence choosing

x′ = 1

C3λ
′
1

= x

C3λd+1
,
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the concentration inequality (3.16), applied to 	′ = T>d	T>d and x′, gives

(3.20) P
(‖T>d	T>d‖∞ > 1

) ≤ exp
(
−nmin

(
x2

C2
3λ2

d+1

,
x

C3λd+1

))

in view of Condition (3.17). Combining (3.18)–(3.20), the claim follows.
It remains to prove Lemma 3.11. We have

λ1
(
(y − S)−1/2(T − S)(y − S)−1/2) ≤ 1

if and only if (for a linear operator L : H → H, we write L ≥ 0 if L is positive, that is, if
〈Lx,x〉 ≥ 0 for all x ∈ H)

(y − S)−1/2(y − T )(y − S)−1/2 = I − (y − S)−1/2(T − S)(y − S)−1/2 ≥ 0.

Since (y −S)−1/2 is self-adjoint and strictly positive, this is the case if and only if y −T ≥ 0,
that is, λ1(T ) ≤ y. A logical negation yields the assertion of the lemma. �

In view of the error decompositions (3.5) and (3.7), we want to apply Proposition 3.10
with x = (λj − λd+1)/2, j ≤ d . For this, we require

max
(

2C3λd+1

λj − λd+1
,1

) ∑
k>d

λk

λj − λk

≤ n/(2C3).

Simplifying the maximum yields the following.

COROLLARY 3.12. Grant Assumption 2.1 and let j ≤ d . Suppose that

(3.21)
λj

λj − λd+1

∑
k>d

λk

λj − λk

≤ n/
(
4C2

3
)
.

Then

(3.22) P

(
λ̂d+1 − λd+1 >

λj − λd+1

2

)
≤ exp

(
−n(λj − λd+1)

2

4C2
3λ2

j

)
.

The corresponding left-deviation result for λ̂d is proved in Appendix A.2 in the Supple-
mentary Material [28].

PROPOSITION 3.13. Grant Assumption 2.1. For all x > 0 satisfying

(3.23) max
(

C3λd

x
,1

) ∑
j≤d

λj

λj − λd + x
≤ n/C3,

we have

P(λ̂d − λd < −x) ≤ exp
(
−nmin

(
x2

C2
3λ2

d

,
x

C3λd

))
,

where C3 is the constant in (3.16).

In particular, choosing x = (λd − λk)/2, we get the following.
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COROLLARY 3.14. Grant Assumption 2.1 and let k > d . Suppose that

(3.24)
λd

λd − λk

∑
j≤d

λj

λj − λk

≤ n/
(
4C2

3
)
.

Then

(3.25) P
(
λ̂d − λd < −(λd − λk)/2

) ≤ exp
(
−n(λd − λk)

2

4C2
3λ2

d

)
.

REMARK 3.15. Let us consider the important special case j = s = d , k = d + 1 and
μ = λd+1. Then all three conditions in Lemma 3.9 and Corollaries 3.12, 3.14 are implied by

(3.26)
λd

λd − λd+1

(∑
j≤d

λj

λj − λd+1
+ ∑

k>d

λk

λd − λk

)
≤ n/

(
16C2

3
)
.

In particular, if (3.26) holds, then all events in the remainder terms in Propositions 3.5 and
3.8 occur with small probability.

The localised analysis of this section can be compared to the following absolute one. All
events considered in Lemma 3.9 and Corollaries 3.12, 3.14 are contained in {‖	‖∞ > (λd −
λd+1)/4} and by (3.16) this occurs with small probability if

(3.27)
λ1 tr(�)

(λd − λd+1)2 ≤ n/
(
16C2

3
)
.

Note that the condition that ‖	‖∞ is small relative to certain spectral gaps, here λd − λd+1,
is often encountered in perturbation theory; see, for example, [5], Theorem VII.3.1, [13],
Theorems 5.1.4 and 5.1.8, and [18], Lemma 1. Many of our mathematical issues arise from
showing that Condition (3.27) can be replaced by the localised version in (3.26).

REMARK 3.16. Our concentration inequalities rely on Assumption 2.1. Generalisations
are possible under weaker moment assumptions, including supj≥1 E[|λ−1/2

j 〈X,uj 〉|k] < ∞
for some k > 4. Since the latter seemingly leads to stronger eigenvalue conditions than for-
mulated in Lemma 3.9 and Corollaries 3.12, 3.14, such generalisations are not pursued here.

4. Proofs. In this section, we provide the proofs for the results in Section 2.3, by combin-
ing the error decompositions in Section 3.2 with the concentration inequalities in Section 3.3.

4.1. Proof of Lemma 2.6. Inserting the spectral representation of �, the excess risk can
be written as

EPCA
d = 〈�,P≤d − P̂≤d〉 = ∑

j≥1

λj 〈Pj ,P≤d − P̂≤d〉.

By P≤d − P̂≤d = P̂>d − P>d , we obtain

EPCA
d = ∑

j≤d

λj 〈Pj , P̂>d − P>d〉 − ∑
k>d

λk〈Pk, P̂≤d − P≤d〉

= ∑
j≤d

λj 〈Pj , P̂>d〉 − ∑
k>d

λk〈Pk, P̂≤d〉.

Moreover, the identity

〈P≤d, P̂>d〉 = 〈P≤d, P̂>d − P>d〉 = −〈P>d,P≤d − P̂≤d〉 = 〈P>d, P̂≤d〉
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implies
∑

j≤d μ〈Pj , P̂>d〉 = ∑
k>d μ〈Pk, P̂≤d〉, and thus

EPCA
d = ∑

j≤d

(λj − μ)〈Pj , P̂>d〉 + ∑
k>d

(μ − λk)〈Pk, P̂≤d〉.

The claim now follows from inserting the identities 〈Pj , P̂>d〉 = ‖Pj P̂>d‖2
2 and 〈Pk, P̂≤d〉 =

‖PkP̂≤d‖2
2. �

4.2. Proof of Proposition 2.7. We only prove the first inequality. The proof of the second
one follows the same line of arguments and is given in Appendix A.3 in the Supplemen-
tary Material [28]. Taking expectation in (3.5) and using E[‖Pj	P̂>d‖2

2] ≤ E[‖Pj	‖2
2] ≤

2C2λj tr(�)/n, we get

E
[
EPCA≤d (μ)

] ≤ 8C2
∑
j≤r

(λj − μ)
λj tr(�)

n(λj − λd+1)2 +
d∧(r+p−d)∑

j=r+1

(λj − μ)

+ ∑
j≤r

(λj − μ)P
(
λ̂d+1 − λd+1 > (λj − λd+1)/2

)
.

Hence, the first inequality follows from the following lemma.

LEMMA 4.1. Let j ≤ d . Then

8C2
λj tr(�)

n(λj − λd+1)2 + P
(
λ̂d+1 − λd+1 > (λj − λd+1)/2

)

≤ (
8C2 + 4C2

3
) λj tr(�)

n(λj − λd+1)2 .

PROOF OF LEMMA 4.1. If

(4.1)
λj tr(�)

n(λj − λd+1)2 ≤ 1/
(
4C3

3
)
,

then Condition (3.21) is satisfied and we can apply (3.22). Thus, in this case, the left-hand
side can be bounded by

8C2
λj tr(�)

n(λj − λd+1)2 + exp
(
−n(λj − λd+1)

2

4C2
3λ2

j

)
≤ (

8C2 + 2C2
3
) λj tr(�)

n(λj − λd+1)2 ,

where the inequality follows from x exp(−x) ≤ 1/e ≤ 1/2, x ≥ 0. On the other hand, if (4.1)
is not satisfied, then the left-hand side can be bounded by

8C2
λj tr(�)

n(λj − λd+1)2 + 1 ≤ (
8C2 + 4C2

3
) λj tr(�)

n(λj − λd+1)2 .

Hence, we get the claim in both cases. �

4.3. Proof of Corollary 2.8. The claim follows from Proposition 2.7 together with the
facts that for μ ∈ [λd+1, λd ] the terms λj − μ (resp., μ − λk) can be upper bounded by
λj − λd+1 (resp., λd − λk) and that λ �→ λ/(λ − λd+1)

2 is decreasing for λ > λd+1 (resp.,
λ �→ λ/(λd − λ)2 is increasing for λ < λd ). �



1120 M. REISS AND M. WAHL

4.4. Proof of Theorem 2.9. In Corollary 2.8, only summands with λj > λd+1 and λk <

λd , respectively, appear. Neglecting the minimum with λj − λd+1 (resp., λd − λk) in each
summand, the local bound follows.

For the global bound use, the inequality min(a/x, x) ≤ √
a for a, x ≥ 0 to obtain from

Corollary 2.8

E
[
EPCA≤d (μ)

] ≤ ∑
j≤d

√
Cλj tr(�)

n
.

Considering EPCA
>d (μ), the value l in Proposition 2.7 has to be chosen carefully. For a > 0,

let d < l = l(a) ≤ p + 1 be the index such that λd − λk ≥ a for k ≥ l and λd − λk < a for
d < k < l. Then the second inequality of Proposition 2.7 and the inequality μ ≤ λd imply

E
[
EPCA

>d (μ)
] ≤ ∑

k>d

Cλk tr(�)

na
+ da + λde

− n

32C2
3 .

Minimizing over a > 0 and incorporating the remainder in the summand for j = d gives the
global bound in (2.10). �

4.5. Proof of Proposition 2.10. We begin with the following extension of Lemma 4.1,
proved in Appendix A.4 in the Supplementary Material [28].

LEMMA 4.2. Let j ≤ s ≤ d . Then

16C2
λj tr>s(�)

n(λj − λd+1)2 + 2P
(
λ̂d+1 − λd+1 > (λj − λd+1)/2

)

≤ (
16C2 + 8C2

3
) λj tr>s(�)

n(λj − λd+1)2 .

(4.2)

Taking expectation in (3.7) with μ = λd+1 and using Lemma 4.2, we obtain

E
[
EPCA≤d (λd+1)

] ≤ (
16C2 + 8C2

3
) ∑
j≤r

λj tr>s(�)

n(λj − λd+1)
+ 2

∑
r<j≤d

(λj − λd+1)

+ 8E
[∑
j≤r

‖Pj	‖2
2

λj − λd+1
1
(‖S≤s	S≤s‖∞ > 1/4

)]
.

If Condition (2.11) holds, then Lemma 3.9 with μ = λd+1 gives

(4.3) P
(‖S≤s	S≤s‖∞ > 1/4

) ≤ exp
(
−n(λs − λd+1)

2

16C2
3λ2

s

)
.

Thus the claim follows from applying the Cauchy–Schwarz inequality, (4.3), and the follow-
ing lemma.

LEMMA 4.3. For all r ≤ d , we have(
E

[(∑
j≤r

‖Pj	‖2
2

λj − λd+1

)2])1/2
≤ 128C4

1

∑
j≤r

λj tr(�)

n(λj − λd+1)
.

Lemma 4.3 follows from the Minkowski inequality and Assumption 2.1, see Appendix A.5
in the Supplementary Material [28] for the details. �
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4.6. Proof of Theorem 2.11. By assumption, we have λj − λp ≤ c−1
1 (λj − λd+1) for all

j ≤ d . Thus, Lemma 2.6 applied with μ = λp yields

(4.4) EPCA
d ≤ ∑

j≤d

(λj − λp)‖Pj P̂>d‖2
2 ≤ c−1

1 EPCA≤d (λd+1).

The local bound now follows from Proposition 2.10 applied with r = s = d . The proof of the
global is more technical and given in Appendix A.6 in the Supplementary Material [28]. �

4.7. Proof of Theorem 2.12. Similarly as in (4.4), we have

EPCA
d ≤ ∑

j≤d

λj‖Pj P̂>d‖2
2 ≤ λs

λs − λd+1

∑
j≤s

(λj − λd+1)‖Pj P̂>d‖2
2 + tr>s(�).

By (3.10) and (3.14) with μ = λd+1 and r = s, we have∑
j≤s

(λj − λd+1)‖Pj P̂>d‖2
2

≤ 16
∑
j≤s

‖Pj	P>s‖2
2

λj − λd+1
+ 2

∑
j≤s

(λj − λd+1)1
(
λ̂d+1 − λd+1 > (λj − λd+1)/2

)

+ 8
∑
j≤s

‖Pj	‖2
2

λj − λd+1
1
(‖S≤s	S≤s‖∞ > 1/4

)
.

As shown in the proof of Proposition 2.10 the inequality

E

[∑
j≤s

(λj − λd+1)‖Pj P̂>d‖2
2

]
≤ C

∑
j≤s

λj tr>s(�)

n(λj − λd+1)
+ R

holds with remainder term R given in Proposition 2.10 with r = s. Inserting this into the
above inequality and using Condition (2.11), we get

E
[
EPCA

d

] ≤ C tr>s(�) + C tr(�) exp
(
−n(λs − λd+1)

2

16C2
3λ2

s

)

with a constant C > 0 depending only on C1. �
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