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Pairwise comparison data arises in many domains, including tournament
rankings, web search and preference elicitation. Given noisy comparisons of
a fixed subset of pairs of items, we study the problem of estimating the un-
derlying comparison probabilities under the assumption of strong stochastic
transitivity (SST). We also consider the noisy sorting subclass of the SST
model. We show that when the assignment of items to the topology is arbi-
trary, these permutation-based models, unlike their parametric counterparts,
do not admit consistent estimation for most comparison topologies used in
practice. We then demonstrate that consistent estimation is possible when
the assignment of items to the topology is randomized, thus establishing a di-
chotomy between worst-case and average-case designs. We propose two com-
putationally efficient estimators in the average-case setting and analyze their
risk, showing that it depends on the comparison topology only through the
degree sequence of the topology. We also provide explicit classes of graphs
for which the rates achieved by these estimators are optimal. Our results are
corroborated by simulations on multiple comparison topologies.

1. Introduction. The problems of ranking and estimation from ordinal data arise in
many applications, including web search and information retrieval [15], crowdsourcing [11],
tournament play [22], social choice theory [7] and recommender systems [2]. The ubiquity of
such datasets stems from the relative ease with which ordinal data can be obtained, and from
the empirical observation that using pairwise comparisons as a means of data elicitation can
lower the noise level in the observations [4, 52].

Given that the number of items n to be compared can be very large, it is often difficult or
impossible to obtain comparisons between all

(n
2

)
pairs of items. A subset of pairs to com-

pare, which defines the comparison topology, must therefore be chosen. Fixed comparison
topologies can arise in problem domains where there are artificial constraints imposed on the
comparisons that can be made. For example, in league stage tournament formats in sports,
passive pairwise comparisons are used, and artificial constraints on comparisons exist; for
example, there are more games played within a conference than between conferences in all
four major sports leagues in the United States. Different comparison topologies can also arise
as a property of the elicitation process. For instance, in movie rating or recommender sys-
tems, pairwise comparisons between items of the same genre are typically more abundant
than comparisons between items of dissimilar genres [35, 51]; as a specific example, con-
sider the UT Zappos online shopping dataset [56], in which the comparison topology has
different intercategory and intra-category edge densities. Another example is the increasing
use of ordinal data in peer-grading in massive open online courses [49]: here, comparisons
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are passive since all students must be graded at once, and not necessarily made at random
due to preexisting biases in selecting graders [41].

Fixed comparison topologies are also important in rank breaking [19, 26], and more gen-
erally in matrix completion based on structured observations [27, 42]. For these reasons, it
is of interest to study statistical properties of ranking models and performance of ranking
algorithms based on fixed comparison topologies.

An important problem in ranking is the design of accurate models for capturing uncertainty
in pairwise comparisons. Given a collection of n items, the outcomes of pairwise comparisons
are completely characterized by the n × n matrix of comparison probabilities; a comparison
probability refers to the probability that item i beats item j in a comparison between them.
Various models have been proposed for such matrices. The most classical models, among
them the Bradley–Terry–Luce [5, 28] and Thurstone models [53], assign a quality vector
to the set of items, and assign pairwise probabilities by applying a cumulative distribution
function to the difference of qualities associated to the pair. There is now a relatively large
body of work on methods for ranking in such parametric models (e.g., see the papers [13,
19, 35, 45] as well as references therein). By contrast, relatively less attention has been paid
to a richer class of models proposed decades ago in the sociology literature [16, 34], which
impose a milder set of constraints on the pairwise comparison matrix. Rather than positing
a quality vector, these models impose constraints that are typically given in terms of a latent
permutation that rearranges the matrix into a specified form, and hence can be referred to as
permutation-based models. Two such models that have been recently analyzed are those of
strong stochastic transitivity [46], as well as the special case of noisy sorting [6]. The strong
stochastic transitivity (SST) model, in particular, has been shown to offer significant robust-
ness guarantees and to provide a good fit to many existing datasets [1], and this flexibility has
driven recent interest in understanding its statistical properties. Also, perhaps surprisingly,
past work has shown that this additional flexibility comes at only a small price when one
has access to all possible pairwise comparisons, or more generally, to comparisons chosen
at random [46]; in particular, the rates of estimation in these SST models differ from those
in parametric models by only logarithmic factors in the number of items. On a related note,
permutation-based models have also recently been shown to be useful in other settings like
crowd-labeling [48], statistical seriation [17] and to a variety of regression problems [39, 44].

Given pairwise comparison data from one of these models, the problem of estimating the
comparison probabilities has applications in inferring customer preferences in recommender
systems, advertisement placement and sports, and is the main focus of this paper.

Our contributions. Our goal is to estimate the matrix of comparison probabilities for
fixed comparison topologies, studying both the noisy sorting and SST classes of matrices.
Focusing first on the worst-case setting in which the assignment of items to the topology may
be arbitrary, we show in Theorem 1 that consistent estimation is impossible for many natural
comparison topologies. This result stands in sharp contrast to parametric models, and may be
interpreted as a “no free lunch” theorem: although it is possible to estimate SST models at
rates comparable to parametric models when given a full set of observations [46], the setting
of fixed comparison topologies is problematic for the SST class. This can be viewed as a
price to be paid for the additional robustness afforded by the SST model.

Seeing as such a worst-case design may be too strong for permutation-based models, we
turn to an average-case setting in which the items are assigned to a fixed graph topology in a
randomized fashion. Under such an observation model, we propose and analyze two efficient
estimators: Theorems 2 and 4 show that consistent estimation is possible under commonly
used comparison topologies; it is important to note that Theorem 4 for the SST class holds
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for a slightly different notion of average case design. Moreover, the error rates of these esti-
mators depend only on the degree sequence of the comparison topology, and are shown to be
unimprovable for a class of graphs that we explicitly characterize in Theorem 3.

Our results therefore establish a sharp distinction between average-case and worst-case
design when using fixed comparison topologies in permutation-based models. Such a phe-
nomenon arises from the difference between the Bayes risk under a uniform prior on the
ranking versus the minimax risk, and may also be worth studying for other ranking models.

Related work. The literature on ranking and estimation from pairwise comparisons is
vast, and we refer the reader to some surveys [8, 18, 32] and references therein for a more
detailed overview. Estimation from pairwise comparisons has been analyzed under various
metrics like top-k ranking [12, 13, 24, 50] and comparison probability or parameter estima-
tion [19, 45, 46]. There have been studies of these problems under active [23, 33], passive
[35, 43] and collaborative settings [36, 40], and also for fixed as well as random comparison
topologies [46, 55]. Here, we focus on the subset of papers that are most relevant to the work
described here.

The problem of comparison probability estimation has been analyzed for both nonpara-
metric and parametric models. In the former case, Braverman and Mossel [6] propose an
algorithm the noisy sorting model that runs in polynomial-time, and show that it is minimax
optimal for the complete graph topology. Mao et al. [31], in work carried out after the sub-
mission of this manuscript, provide a more efficient algorithm that is also minimax optimal
for the random comparison topology. For the SST model class, Shah et al. [46] analyze the
case where the comparison topology is random, and provide minimax rates and efficient al-
gorithms for this setting. Two salient features of this work are most relevant to to our develop-
ment. First, as mentioned before, the minimax rates of estimation for the random comparison
topology differ from those for the smaller class of parametric models only by logarithmic
factors in the number of items. Second, the computationally efficient algorithms proposed
for the random comparison topology [10, 46, 47] are not minimax optimal for this setting,
and this has remained a challenging open problem that has only recently seen some progress
[29, 30]. It is important to state here that while obtaining minimax optimal and efficient al-
gorithms for the random graph topology is acknowledged to be a challenging problem, the
focus of this paper is on studying general comparison topologies.

Comparison probability estimation has also been analyzed under a fixed topology for para-
metric models by Hajek et al. [19] and Shah et al. [45]. Both papers analyze the worst-case
design setting in which the assignment of items to the topology may be arbitrary, and derive
bounds on the minimax risk of parameter (or equivalently, comparison probability) estima-
tion. While their characterizations are not sharp in general, the rates are shown to depend
on the spectrum of the Laplacian matrix of the topology. We point out an interesting con-
sequence of both results: in the parametric model, provided that the comparison graph G is
connected, the maximum likelihood solution, in the limit of infinite samples for each graph
edge, allows for exact recovery of the quality vector, and hence the matrix of comparison
probabilities. We will see that this property no longer holds for the SST models considered
in this paper: there are comparison topologies and SST matrices for which it is impossible
to recover the full matrix even given an infinite amount of data per graph edge. It is also
worth mentioning that the top-k ranking problem has been analyzed for parametric models
under fixed design assumptions [24], and here as well, asymptotic consistency is observed
for connected comparison topologies.

Notation. Here, we summarize some notation used throughout the remainder of this pa-
per. We use n to denote the number of items, and adopt the shorthand [n] := {1,2, . . . , n}.
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We use Ber(p) to denote a Bernoulli random variable with success probability p. For two
sequences {an}∞n=1 and {bn}∞n=1, we write an � bn if there is a universal constant C such that
an ≤ Cbn for all n ≥ 1. The relation an � bn is defined analogously, and we write an � bn

if the relations an � bn and an � bn hold simultaneously. We use c, c1, c2 to denote uni-
versal constants that may change from line to line. Given a matrix M ∈ R

n×n, its ith row is
denoted by Mi . For a graph G with edge set E, let M(G) denote the entries of the matrix
M restricted to the edge set of G, and let ‖M‖2

E = ∑
(i,j)∈E M2

ij . For a matrix M ∈ R
n×n

and a permutation π : [n] → [n], we use the shorthand π(M) = �M�	, where � represents
the row permutation matrix corresponding to the permutation π . We let id denote the iden-
tity permutation. The Kendall tau distance [25] between permutations π and π ′ is given by
KT(π,π ′) :=∑

i,j∈[n] 1{π(i) < π(j),π ′(i) > π ′(j)}.
We let α(G) denote the size of the largest independent set of a graph G; note that an

independent set is defined as any subset of vertices that have no edges among them. Define a
biclique of a graph as two disjoint subsets of its vertices V1 and V2 such that (u, v) ∈ E(G)

for all u ∈ V1 and v ∈ V2. Define the biclique number β(G) as the maximum number of edges
in any such biclique, given by maxV1,V2 biclique |V1||V2|. Let dv denote the degree of vertex v.

2. Background and problem formulation. Consider a collection of n ≥ 2 items that
obey a total ordering or ranking determined by a permutation π∗ : [n] → [n]. More precisely,
item i ∈ [n] is preferred to item j ∈ [n] in the underlying ranking if and only if π∗(i) < π∗(j).
We are interested in observations arising from stochastic pairwise comparisons between
items. We denote the matrix of underlying comparison probabilities by M∗ ∈ [0,1]n×n, with
M∗

ij = Pr{i � j} representing the probability that item i beats item j in a comparison; we set
M∗

ii = 1/2 by convention.
Each item i is associated with a score τ ∗

i that measures the probability that item i beats
another item chosen uniformly at random, that is,

τ ∗
i := [

τ ∗(M∗)]
i := 1

n − 1

∑
j =i

M∗
ij .(1)

Arranging the scores in descending order naturally yields a ranking of items. In fact, for the
models we define below, the ranking given by the scores is consistent with the ranking given
by π∗, that is, τ ∗

i ≥ τ ∗
j if π∗(i) < π∗(j). The converse also holds if the scores are distinct.

2.1. Pairwise comparison models. Let us consider a permutation-based model for the
comparison matrix M∗ defined by the property of strong stochastic transitivity [16, 34], or
the SST property for short. In particular, a matrix M∗ of pairwise comparison probabilities is
said to obey the SST property if for items i, j and k in the total ordering such that π∗(i) <

π∗(j) < π∗(k), it holds that Pr(i � k) ≥ Pr(i � j). Recalling that π(M) denotes the matrix
obtained from M by permuting its rows and columns according to the permutation π , the
SST matrix class can be equivalently defined in terms of permutations applied to the class
CBISO of bivariate isotonic matrices as

CSST :=⋃
π

π(CBISO) =⋃
π

{
π(M) : M ∈ CBISO

}
.(2)

Here, the class CBISO of bivariate isotonic matrices is given by{
M ∈ [0,1]n×n : M + M	 = ee	 and

M has nondecreasing rows and nonincreasing columns
}
,

where e ∈ R
n denotes a vector of all ones.
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As shown by Shah et al. [46], the SST class is substantially larger than commonly used
class of parametric models, in which each item i is associated with a scalar parameter wi ,
and the probability that item i beats item j is given by F(wi − wj), where F : R �→ [0,1] is
smooth and monotone.

A special case of the SST model that we also study is the noisy sorting model [6], in which
the all underlying probabilities are described with a single parameter λ ∈ [0,1/2]. The matrix
MNS(π,λ) ∈ [0,1]n×n has entries[

MNS(π,λ)
]
ij = 1/2 + λ · sgn

(
π(j) − π(i)

)
,

and the noisy sorting classes are given by

CNS(λ) :=⋃
π

{
MNS(π,λ)

}
, and CNS := ⋃

λ∈[0,1/2]
CNS(λ).(3)

Here, sgn(x) is the sign operator, with the convention that sgn(0) = 0. In words, the noisy
sorting class models the case where the probability Pr{i � j} depends only on the parameter
λ and whether π∗(i) < π∗(j). Although the noisy sorting subclass is a very special case
of the SST class, it cannot be represented by any parametric class with a smooth function
F (apart from the degenerate case λ∗ = 1/2), and so captures some essential difficulties of
learning in the SST class.

We now turn to describing the observation models that we consider in this paper.

2.2. Partial observation models. Our goal is to provide guarantees on estimating the
underlying comparison matrix M∗ when the comparison topology is fixed. In other words,
we would like to provide such a guarantee when we have access to a subset of pairwise
comparisons. Given such a subset E ⊆ ([n]

2

)
of compared items, our observations obey the

probabilistic model

Yij =
{

Ber
(
M∗

ij

)
for (i, j) ∈ E, independently

� otherwise,
(4)

where � indicates a missing observation. We set the diagonal entries of Y equal to 1/2, and
also specify that Yji = 1 − Yij for j > i where (i, j) ∈ E . We consider two different instanti-
ations of the set E given the comparison topology G(V,E), which is a graph on n vertices.

2.2.1. Worst-case setting. In this setting, we assume that the assignment of items to ver-
tices of the comparison graph G is arbitrary. In particular, we consider the set of fixed com-
parisons given by E = E. Our goal is to provide uniform guarantees in the metric ‖M̂ −M∗‖2

F

over all matrices M∗ in our model class given this restricted set of observations.
This setting is of the worst-case type, since the adversary is allowed to choose the underly-

ing matrix with knowledge of the edge set E. Providing guarantees against such an adversary
is known to be possible for parametric models [19, 45]. However, as we show in Section 3.1,
such a guarantee is impossible to obtain even over the the noisy sorting subclass of the full
SST class. Consequently, the latter parts of our analysis apply to a less rigid, average-case
setting.

2.2.2. Average-case setting. In this setting, we assume that the assignment of items to
vertices of the comparison graph G is random. Consequently, the set of comparisons E is
given by the edge set of the randomly relabeled graph. Recalling the notation π(M) that
we used to denote the matrix M with rows and column permuted by the permutation π ,
we can also describe our observations as follows. Given a fixed comparison graph G hav-
ing adjacency matrix A, define the random observation matrix O = σ(A) for a permutation
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σ : [n] → [n] chosen uniformly at random. Then the set of observed entries is given by
E = {(i, j) : i > j andOij = 1}. Such a setting is reasonable when the graph topology is con-
strained, but we are still given the freedom to assign items to vertices of the comparison
graph.

Our guarantees in the one sample setting with the observation matrix O can be seen as
a form of Bayes risk, where given a fixed observation pattern E (consisting of the entries
of the comparison matrix Y determined by the adjacency matrix A of the graph G, with
Aij representing the indicator that entry Yij is observed), we want to estimate a matrix M∗
under a uniform Bayesian prior on the ranking π∗. Studying this average-case setting is well
motivated, since given fixed comparisons between a set of items, there is no reason to assume
a priori that the underlying ranking is generated adversarially.

In this paper, we theoretically analyze an extension of such an observation model in which
we have two random designs, consisting of two random observation matrices O(1) = σ1(A)

and O(2) = σ2(A), chosen with independent, random permutations σ1 and σ2, and where the
set of observed comparisons is given by their union E = {(i, j) : i > j and O(1)

ij +O(2)
ij ≥ 1}.

Our main motivation for studying such an observation model is theoretical: having two ran-
dom designs allows us to split our samples in the most natural way, and simplifies the analysis
of one of our algorithms by exploiting the statistical independence between the observations
used in distinct steps.1 Having said this, our proposed estimator can be implemented for one
random observation as well, and we show empirically that the estimation error rates are very
similar.

We are now ready to state the goal of the paper. We address the problems of recovering
the ranking π∗ and estimating the matrix M∗ in the Frobenius norm. More precisely, given
the observation matrix Y = Y(E) (where the set E is random in the average-case observation
model), we would like to output a matrix M̂ that is a function of Y , and for which good
control on the squared Frobenius norm error ‖M̂ − M∗‖2

F can be guaranteed.

3. Main results. In this section, we state our main results and discuss some of their
consequences. Proofs are deferred to Section 5.

3.1. Worst-case design: Minimax bounds. In the worst-case setting of Section 2.2.1, the
performance of an estimator is measured in terms of the normalized minimax error

M(G,C) = inf
M̂=f (Y (G))

sup
M∗∈C

E

[
1

n2

∥∥M̂ − M∗∥∥2
F

]
,

where the expectation is taken over the randomness in the observations Y as well as any
randomness in the estimator, and C ∈ {CSST,CNS} represents the model class. Our first result
shows that for many comparison topologies, the minimax risk is prohibitively large even for
the noisy sorting model.

THEOREM 1. For any graph G, the diameter of the set consistent with observations on
the edges of G is lower bounded as

sup
M1,M2∈CNS

M1(G)=M2(G)

‖M1 − M2‖2
F ≥ α(G)

(
α(G) − 1

)∨ β
(
Gc).(5a)

Consequently, the minimax risk of the noisy sorting model is lower bounded as

M(G,CNS)� 1

n2

[
α(G)

(
α(G) − 1

)∨ β
(
Gc)∨ n

]
.(5b)

1For the special case of the noisy sorting model, we obtain our theoretical result for one random observation—
we handle the dependence between the two steps of the algorithm directly.
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Note that via the inclusion CNS ⊂ CSST, Theorem 1 also implies the same lower bound
(5b) on the risk M(G,CSST). In addition to these bounds, the lower bounds for estimation in
parametric models, known from past work [45], carry over directly to the SST model, since
parametric models are subclasses of the SST class.

Inequality (5a) of Theorem 1 is approximation-theoretic in nature: it is a statement purely
about the size of the set of matrices consistent with observations on the graph. It may be in-
terpreted as the worst-case error in the infinite sample limit of observations on G: for graphs
with large independent sets or complement bicliques, it is impossible to distinguish two ma-
trices that are separated in the Frobenius norm from observations just on the edges of the
graph. The intuition behind the result is illustrated by a simple example: take an n-vertex star
graph with the central vertex ranked highest in the underlying ordering. In the noisy sorting
model, an infinite number of samples effectively allows us to estimate (exactly) the proba-
bility with which the top item beats the other items, and hence the parameter λ. However,
we obtain no information about the partial orders between items ranked second through last,
only that the central item is ranked first. In contrast, for parametric models (which are a spe-
cial subset of permutation-based models), knowing the exact probabilities with which the top
item beats the remaining items allows us to then infer the associated quality vector up to a
global shift, since this amounts to inverting a well-behaved generalized linear model (see the
papers [19, 45] for details). The intuition from the star graph can be extended to show that
connected graphs with large independent sets or with large bicliques in their complements
(e.g., complete bipartite and barbell graphs) result in large worst-case approximation errors.
In particular, when we have α(G) ∨ β(G) � n2, the lower bound evaluates to an order 1
quantity, and a matching upper bound is trivially achieved by any reasonable estimator.

Since inequality (5a) is purely an approximation-theoretic statement, it does not capture
the uncertainty due to noise, and thus can be a loose characterization of the minimax risk
for some graphs, with the complete graph being one example. The minimax risk bound (5b)
combines the aforementioned approximation theoretic bound with a lower bound due to noisy
observations on the complete graph, which is of the order 1/n. For graphs with small inde-
pendent sets and bicliques, the estimation-theoretic lower bound is larger, and sharp in the
case of the complete graph topology.

In Section 4, we specialize Theorem 1 to some commonly used graph topologies, showing
that for many of them, the approximation error is lower bounded by a constant even for
graphs admitting consistent parametric estimation. Seeing as the minimax error in the worst-
case setting can be prohibitively large, we now turn to evaluating practical estimators in the
random observation models of Section 2.2.2.

3.2. Average-case design. We first present our results for noisy sorting matrix estimation,
and then for SST matrix estimation.

3.2.1. Noisy sorting matrix estimation. In the average-case setting described in Sec-
tion 2.2.2, we measure the performance of an estimator using the risk

sup
M∗∈C

EO,Y

1

n2

∥∥M̂ − M∗∥∥2
F .

It is important to note that the expectation is taken over both the comparison noise, as well
as the random observation pattern O (or equivalently, the underlying random permutation σ

assigning items to vertices). We propose the Average-Sort-Project estimator (ASP for short)
for matrix estimation in this metric, which is a natural generalization of the Borda count
estimator [10, 47]. It consists of three steps, described below for the noisy sorting model:
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(I) Averaging step: Compute the average τ̂i = [τ̂ (Y )]i =
∑

j =i YijOij∑
j =i Oij

, corresponding to

the fraction of comparisons won by item i.
(II) Sorting step: Choose the permutation π̂ASP such that the sequence {τ̂

π̂−1
ASP(i)

}ni=1 is
decreasing in i, with ties broken arbitrarily.

(III) Projection step: Find the maximum likelihood estimate λ̂ by treating π̂ASP as the true
permutation that sorts items in decreasing order. Output the matrix M̂ASP := MNS(π̂ASP, λ̂).

The average-sort-project algorithm, like a broad class of other algorithms in this space,
decouples the estimation of the unknown permutation and the unknown parameter λ. As
mentioned in Section 2, the true score vector τ ∗ is consistent with the true permutation π∗;
step (I) simply computes an unbiased estimate τ̂ of the true scores, and treating this as the
underlying truth, step (II) computes a permutation estimate π̂ASP. This should be intuitive,
since items that are ranked higher should win a larger fraction of their comparisons than
lower-ranked items. In step (III), we focus on estimating the unknown parameter λ, treating
our estimate of the permutation from step (2) as the ground truth. Specifically, we assume
that when viewed along the permutation π̂ASP on both dimensions, the underlying matrix
has constant upper and lower triangular portions. Thus, the MLE of the quantity 1/2 + λ∗ is
given by averaging the upper triangular portion of the sorted matrix. The estimator runs in
time O(n2), which is linear in the input size.

We now state an upper bound on the mean-squared Frobenius error achievable using the
ASP estimator. It involves the degree sequence {dv}v∈V of a graph G without isolated ver-
tices, meaning that dv ≥ 1 for all v ∈ V . Also recall our notation O to denote the random
observation process.

THEOREM 2. For any graph G = (V ,E) without isolated vertices and any matrix
M∗ ∈ CNS(λ∗), we have

EO,Y

[
1

n2

∥∥M̂ASP − M∗∥∥2
F

]
� 1

|E| + n logn

|E|2 + λ∗

n

∑
v∈V

1√
dv

, and(6a)

EO,Y

[
KT
(
π∗, π̂ASP

)]
� n

λ∗
∑
v∈V

1√
dv

.(6b)

A few comments are in order. First, while the results are stated in expectation, a high
probability bound can be proved for permutation estimation—namely

Pr
O,Y

{
KT
(
π∗, π̂ASP

)
� n

√
logn

λ∗
∑
v∈V

1√
dv

}
≤ n−10.

Second, it can be verified that 1
|E| + n logn

|E|2 � 1
n

∑
v∈V

1√
dv

, so that taking a supremum over the

parameter λ∗ ∈ [0,1/2] guarantees that the mean-squared Frobenius error is upper bounded
as O( 1

n

∑
v∈V

1√
dv

), uniformly over the entire noisy sorting class CNS. Third, it is also inter-

esting to note the dependence of the bounds on the noise parameter λ∗ of the noisy sorting
model. The “high-noise” regime λ∗ ≈ 0 is a good one for estimating the underlying matrix,
since the true matrix M∗ is largely unaffected by errors in estimating the true permutation.
However, as captured by equation (6b), the permutation estimation problem is more challeng-
ing in this regime.

Let us also provide some intuition for the terms appearing in bound (6a). Ignoring the
second term for the moment, which should be thought of as a slack term that allows the
application of union bounds, the first and third terms have an operational interpretation. As
will be made clear in the proof, the Frobenius error decomposes into two terms: the first
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term 1/|E| represents the error due to estimation of the scalar parameter λ, since we have
an effective sample size |E|. The quantity 1

n

∑
v∈V

1√
dv

should be thought of as the average

deviation of the scores τ ∗
i , and enters our bounds as a proxy for the error of permutation

estimation.
The bound (6a) can be specialized to the complete graph Kn and the Erdős–Rényi random

graph with edge probability p to obtain the rates 1/
√

n and 1/
√

np, respectively, for estima-
tion in the mean-squared Frobenius norm. While we eliminate logarithmic factors that were
present in previous work [46], these rates are strictly suboptimal for these graphs, since the
minimax rates scale as 1/n and 1/(np), respectively; both are achieved by the global MLE
[46]. This is unsurprising, since the ASP estimator is based on Borda counts, which provide
permutation estimates that are too noisy for minimax-optimal estimation in the full observa-
tion case.2 It is important to note, however, that the MLE for estimating permutation-based
models is computationally intractable. Until very recently, Borda count algorithms (along
with their spectral counterparts) were the best performing polynomial time algorithms uni-
formly over the SST class, even for the special case of full observations. Recently, work by a
subset of the current authors [30] has shown that the Borda counts can be carefully denoised
to obtain faster rates of the order n−3/4.

Interestingly, we can show that Borda count algorithms are, in fact, minimax optimal in the
average-case, fixed design setting for certain comparison topologies. This is because some
topologies—for instance, those composed of disjoint cliques—provide very little information
about many partial orders. Although refining the count estimate within the cliques has its ben-
efits, the error is driven by permutation estimation across the cliques, which is information-
theoretically limited (see Theorem 3). The Borda counts are thus good enough to achieve the
globally minimax-optimal rate for these comparison topologies.

We require some additional notation to state this precisely. Fix constants C1 = 10−2 and
C2 = 102 and two sequences {an}n≥1 and {bn}n≥1 of (strictly) positive scalars. For each
n ≥ 1, define the family of graphs

Gn(an, bn) :=
{
G(V,E) is connected : |V | = n,C1an ≤ |E| ≤ C2an, and

C1bn ≤ ∑
v∈V

1√
dv

≤ C2bn

}
.

As noted in Section 2.2.2, the average-case design observation model is equivalent to choos-
ing the matrix M∗ from a random ensemble with the permutation π∗ chosen uniformly at ran-
dom, and observing fixed pairwise comparisons. Such a viewpoint is useful in order to state
our lower bound. Expectations are taken over the randomness of both π∗ and the Bernoulli
observation noise.

THEOREM 3.

(a) Let M∗ = MNS(π∗,1/4), where the permutation π∗ is chosen uniformly at random
on n items. For any pair of sequences of positive numbers ({an}n≥1, {bn}n≥1) such that the set
Gn(an, bn) is nonempty for every n ≥ 1, and for any estimators (M̂, π̂) that are measurable

2Interestingly, in the parametric case, Borda count estimators similar to the ASP estimator are still minimax-
optimal (up to log factors) in estimating the comparison matrix itself with full observations (but suboptimal in
estimating the parameters underlying the model). This phenomenon is due to the fact that parametric models
afford smoothness that is not present in the more general SST case; see Chatterjee and Mukherjee [10] for more
precise statements of these claims.
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functions of the observations on G, we have

sup
G∈Gn(an,bn)

E

[
1

n2

∥∥M̂ − M∗∥∥2
F

]
� bn

n
, and sup

G∈Gn(an,bn)

E
[
KT
(
π∗, π̂

)]
� nbn.

(b) For any graph G, let M∗ = MNS(π∗, c
√

n/|E|), with the permutation π∗ chosen
uniformly at random and the constant c chosen sufficiently small. Then for any estimators
(M̂, π̂) that are measurable functions of the observations on G, we have

E

[
1

n2

∥∥M̂ − M∗∥∥2
F

]
� n

|E| .

Parts (a) and (b) of the lower bound may be interpreted respectively as the approximation
error caused by having observations only on a subset of edges, and the estimation error aris-
ing from the Bernoulli observation noise. Note that part (b) applies to every graph, and is
particularly noteworthy for sparse graphs. In particular, in the regime in which the graph has
bounded average degree, it shows that the inconsistency exhibited by the ASP estimator is
unavoidable for any estimator. A more detailed discussion for specific graphs may be found
in Section 4.

Although part (a) of the theorem is stated for a supremum over graphs, we actually prove a
stronger result that explicitly characterizes the class of graphs that attain these lower bounds.
As an example, given the sequences an = n2 and bn = √

n, we show that the ASP estimator
is information-theoretically optimal for the sequence of graphs consisting of two disjoint
cliques Kn/2 ∪ Kn/2, which can be verified to lie within the class G(an, bn). As alluded to
before, our lower bound applies more generally to graphs in which the comparison topology
provides very little information about many partial orders, so that it is difficult to estimate
these partial orders better than with a random guess. The ASP algorithm is therefore able to
attain the minimax-optimal rate for these comparison topologies.

Having addressed the noisy sorting model, a natural question is whether a variant of the
ASP estimator is applicable even to matrix estimation under the SST model. In particular,
the ASP estimator for the SST model would replace step (III), as stated, by a maximum
likelihood estimate over bivariate isotonic matrices using the entries on the edges that we
observe. While such an estimator is reasonable to implement, analyzing it is a challenging
problem due to structural dependencies introduced by the comparison topology. In order to
manage these dependencies, we establish some structural properties of SST matrices, and
leverage these to propose a different estimator that exploits these properties to attain provable
rates of estimation.

3.2.2. SST matrix estimation. For the more general SST model, the same permutation
estimator π̂ASP in fact achieves the optimal rate for estimating the true ranking with error
measured by ‖π̂ASP(M∗) − M∗‖2

F , as stated in Theorem 4 below. However, estimating the
underlying matrix of probabilities M∗ requires more effort.

For SST matrix estimation, we rely on a structural property of SST matrices that we estab-
lish. In particular, we show (in Lemma 6) that every SST matrix is close in the squared Frobe-
nius norm to a matrix that is constant on suitably chosen blocks. Consequently, we relate the
problem of SST matrix estimation to estimating these blockwise constant matrices, thus dras-
tically reducing the number of parameters to be estimated. Such a blockwise approximation
can be chosen in many ways: our choice is guided by the goal of balancing the estimation er-
ror of the aforementioned problem and the approximation error between the SST matrix and
its blockwise approximation. Our algorithm relies on a certain block-averaging subroutine,
which we describe next.
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Block-average subroutine. Given a partially observed and noisy SST matrix, the goal of this
subroutine is to output a blockwise constant matrix estimate that is close to the true matrix, so
that the approximation error is minimized. In order to do so, we apply two natural steps. First,
we identify the configuration of the blocks on the matrix by the following simple intuition:
grouping “similar” items into the same block should result in small approximation error, and
a good indicator of similarity between items is the similarity between their scores. Once such
a configuration of blocks has been obtained, we then average our noisy observations over
these blocks, thus controlling the estimation error of the problem.

Let us now make both of these steps precise. For any vector v ∈ [0,1]n, fix some value
t ∈ (0,1) and define a block partition blt (v) of v as[

blt (v)
]
i = {

j ∈ [n] : vj ∈ [(i − 1)t, it)
}
.(7)

We are particularly interested in obtaining such a block partition from score estimates τ̂ (Y ) of
a partially observed matrix Y . In this case, the blocking vector blt (τ̂ (Y )) contains a partition
of indices such that the row sums of the matrix within each block of the partition differ by at
most a scalar t .

Any partition bl of the index set [n] induces a natural partition of the set [n] × [n] parti-
tioned according to bl along both dimensions. Let us denote such a partition by Bbl. For every
pair (i, j) ∈ [n] × [n], we denote the block in the partition Bbl that contains the index-pair
(i, j) by Bbl(i, j) ⊆ [n] × [n]. Note that by definition, we have the inclusion Bbl(i, j) ∈ Bbl.
Now given a partially observed matrix Y ′ ∈ [0,1]n×n, we use E ⊆ [n] × [n] to denote the
(symmetric) set of edges where we observe entries of Y ′, and define the blocked version of
Y ′ on the set E as

(8)
[
B
(
Y ′,bl

)]
ij =

⎧⎪⎪⎨⎪⎪⎩
1

|Bbl(i, j) ∩ E|
∑

(k,
)∈Bbl(i,j)∩E

Y ′
k
 if Bbl(i, j) ∩ E = φ,

1/2 otherwise.

In words, this defines a projection of the matrix Y ′ onto the set of blockwise constant matrices,
by averaging the entries of Y ′ over each block using only the observed set of entries E.

We have now established the notation required to precisely describe the subroutine. It takes
a tuple of parameters (Y,Y ′) as input, and outputs a blockwise constant matrix BA(Y,Y ′). Let
S = 1

n

∑
v∈V d

−1/2
v .

(I) Block: Compute a block partition bl = blS(τ̂ (Y )).
(II) Average: Average the matrix Y ′ according to the blocks computed in step (I), as

B(Y ′,bl). Return the estimate BA(Y,Y ′) = B(Y ′,bl).

Note that as defined, the blocking and averaging steps can be carried out for two different
observation matrices Y and Y ′. The various steps of this subroutine and examples of our
notation are illustrated in Figure 1 for the special case Y = Y ′.
BAP algorithm. With the block-average subroutine in place, we are now ready to describe
the entire algorithm. The only missing detail is that the estimate returned at the end of the
block-average subroutine may not lie within the SST class, and so we need to define a suitable
projection onto it. This leads to the block-average-project (BAP) algorithm, which, as before,
takes as input the tuple (Y,Y ′), and outputs a matrix M̂BAP(Y,Y ′) ∈ CSST.

(I) Block-Average: Compute the block averaged matrix M̃ = BA(Y,Y ′).
(II) ASP: Using the observation Y , compute a permutation estimate π̂ASP as in step (II)

of the ASP estimator.
(III) Projection: Project M̃ onto the space π̂ASP(CBISO) = {π̂ASP(M) : M ∈ CBISO}, to

obtain the estimator M̂BAP(Y,Y ′).
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FIG. 1. Illustration of the block-average subroutine for the special case where Y ′ = Y , and for a particular
realization of the edge set E. Here, we have n = 7, as the degree of a vertex is given by the number of entries

observed in the corresponding row; the degree functional is given by S = 1
n

∑
v∈V d

−1/2
v = 0.45. The dotted

lines separate the blocks induced by the partition blS(τ̂ (Y )), and while it is the case in this example, the blocks
are not contiguous in general. Let us also illustrate some notation: in this example, it is also worth noting that
Bbl(1,2) = {1,2,3,4} × {5,6,7}.

While the estimator can in principle be implemented in the average-case setting of the pre-
vious section by setting Y ′ = Y , and we can obtain good permutation estimates in this setting
(see equation (9a) to follow), our analysis of the block-average subroutine for comparison
matrix estimation requires an independent tuple of samples (Y,Y ′). Toward this end, recall
the average-case setting with multiple random designs, as described in Section 2.2.2, in which
the comparison topology is fixed ahead of time, but one can collect two sets of observations
Y (1) and Y (2) by assigning items to the vertices of the underlying graph at random. Notice
that observation Y (i) is obtained as a result of observing the matrix M∗ (with noise) on the
random subset of entries given by the nonzero entries in the matrix O(i). The BAP estimator
produces the following rate for this observation model.

THEOREM 4. Consider any graph G without isolated vertices and any matrix M∗ ∈
CSST. For the permutation estimator π̂ASP computed using Y (1), we have

E

[
1

n2

∥∥π̂ASP
(
M∗)− M∗∥∥2

F

]
� 1

n

∑
v∈V

1√
dv

,(9a)

where the expectation is taken over one sample of observations. For the matrix estimator
M̂BAP(Y (1), Y (2)), we have

E

[
1

n2

∥∥M̂BAP
(
Y (1), Y (2))− M∗∥∥2

F

]
� 1

n

∑
v∈V

1√
dv

,(9b)

where the expectation is taken over both samples of observations.

In the simulations of Section 4, we see that for a large variety of graphs, using a single
sample O(1) enjoys similar performance to using two independent samples O(1) and O(2).
Consequently, we make the following conjecture for the case where this single sample is
given by Y and the block-average subroutine performs both steps on the matrix Y .

CONJECTURE 1. For any graph G without isolated vertices and any matrix M∗ ∈ CSST,
we have

E

[
1

n2

∥∥M̂BAP(Y,Y ) − M∗∥∥2
F

]
� 1

n

∑
v∈V

1√
dv

.

It is also important to note that while we were able to show a bound on permutation re-
covery in the Kendall tau distance for estimation in the noisy sorting case, such a result is not
immediately obtainable uniformly over the SST class. For SST matrices satisfying a certain
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separation condition between the items, guarantees in the Frobenius norm can be turned into
those that hold for permutation recovery in the Kendall tau distance (see, e.g., Appendix A.1
of Shah et al. [46]). However, without an appropriate separation condition, such a guarantee
cannot be immediately obtained: for example, there is no way to obtain a permutation with a
low Kendall tau error when a few items are near identical.

4. Dependence on graph topologies. In this section, we discuss implications of our
results for some comparison topologies. Let us focus first on the worst-case design setting,
and the lower bound of Theorem 1. For any graph with bounded average degree (including
the star and path graphs) as well as for complete bipartite graphs, one can verify that we
have α(G) � n, so M(G,CNS) � 1. If the graph is a union of disjoint cliques Kn/2 ∪ Kn/2
(or having a constant number of edges across the cliques, like a barbell graph), then we see
that β(Gc) � n2, so M(G,CNS) � 1. Thus, our theory yields pessimistic results for many
practically motivated comparison topologies under worst-case designs, even though all the
connected graphs above admit consistent estimation for parametric models—the complete
bipartite graph, for instance, admits optimal rates of estimation—as the number of samples
grows. In the average case setting of Section 2.2.2, Theorems 2, 3 and 4 characterize the
mean-squared Frobenius norm errors of the corresponding estimators (up to constants) as
D(G) := 1

n

∑
v∈V

1√
dv

.
The SST model has been validated extensively on real data in past work (see, e.g., Ballinger

and Wilcox [1]). In order to illustrate our results for the average-case setting, we present the
results of simulations on data generated synthetically from two special cases of the SST
model. We fix π∗ = id without loss of generality, and generate the ground truth comparison
matrix M∗ in one of two ways:

(i) Noisy sorting with high SNR: We set M∗ = MNS(id,0.4). This matrix is used in the
simulations illustrated in Figure 2.

(ii) SST with independent bands: We first set M∗
ii = 1/2 for every i. Entries on the di-

agonal band immediately above the diagonal (i.e., M∗
i,i+1 for i ∈ [n − 1]) are chosen i.i.d.

and uniformly at random from the set [1/2,1]. The band above is then chosen uniformly at
random from the allowable set, where every entry is constrained to be upper bounded by 1
and lower bounded by the entries to its left and below. We also set M∗

ij = 1 − M∗
ji to fill the

lower triangle of the matrix. This matrix is used in the simulations illustrated in Figure 3.

For each graph G with adjacency matrix A, the data is generated from ground truth by
observing independent Bernoulli comparisons under the observation process O = σ(A), for
a randomly generated permutation σ . For the SST model, we also generate data from two
independent random observations O(1) and O(2) as required by the BAP estimator; however,
we also simulate the behavior of the estimator for one sample O(1) and show that it closely
tracks that of the two-sample estimator.

Recall that the estimation error rate was dictated by the degree functional D(G). While
our graphs were chosen to illustrate scalings of D(G), some variants of these graphs also
naturally arise as comparison topologies.

(a) Two-disjoint-clique graph: For this graph Kn/2 ∪Kn/2, we have dv = n
2 − 1 for every

v ∈ V , and simple calculations yield D(G) � 1√
n

. It is interesting to note that this graph has
unfavorable guarantees for parametric estimation under the adversarial model, because it is
disconnected (and thus has a Laplacian with zero spectral gap). We observe that this spectral
property does not play a role in our analysis of the ASP or BAP estimator under the average-
case observation model, and this behavior is corroborated by our simulations. Although we do
not show it here, a similar behavior is observed for the stochastic block model, a practically
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FIG. 2. Normalized Frobenius norm error 1
n2 ‖M̂ASP −M∗‖2

F with data generated using the noisy sorting model

M∗ = MNS(id,0.4), averaged over 10 trials.

FIG. 3. Normalized Frobenius norm error 1
n2 ‖M̂BAP − M∗‖2

F with data generated using the SST model with

independent bands, averaged over 10 trials, plotted for one and two samples.
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motivated comparison topology when there are genres present among the items, which is a
relaxation of the two-clique case allowing for sparser “communities” instead of cliques, and
edges between the communities.

(b) Clique-plus-path graph: The nodes are partitioned into two sets of n/2 nodes each.
The graph contains an edge between every two nodes in the first set, and a path starting from
one of the nodes in the first set and chaining the other n/2 nodes. This is an example of a
graph construction that has many (� n2) edges, but is unfavorable for noisy sorting or SST
estimation. Simple calculations show that the degree functional is dominated by the constant
degree terms and we obtain D(G) � 1.

(c) Power law graph: We consider the special power law graph [3] with degree sequence
di = i for 1 ≤ i ≤ n, and construct it using the Havel–Hakimi algorithm [20, 21]. For this
graph, we have a disparate degree sequence, but D(G) � 1√

n
, and the simulated estimators

are consistent.
(d) �(n/2)α�-regular bipartite graphs: A final powerful illustration of our theoretical

guarantees is provided by a regular bipartite graph construction in which the nodes are par-
titioned into two sets of n/2 nodes each, and each node in one set is (deterministically) con-
nected to �(n/2)α� nodes in the other set. This results in the degree sequence dv = �(n/2)α�
for all v ∈ V , and the degree functional evaluates to D(G) � n−α/2. The value of α thus de-
termines the scaling of the estimation error for the ASP estimator in the noisy sorting case,
as well as the BAP estimator in the SST case, as seen from the slopes of the corresponding
plots.

Some other graphs that were considered in parametric model environments [45], such as
the star, cycle, path and hypercube graphs, turn out to be unfavorable for permutation-based
models even in the average-case setting, as corroborated by the lower bound of Theorem 3,
part (b).

5. Proofs. In this section, we provide the proofs of our main results. We assume through-
out that n ≥ 2, and use c, c′ to denote universal constants that may change from line to line.
We defer the proofs of technical lemmas to the Supplementary Material [38].

5.1. Proof of Theorem 1. Here, we focus on establishing the bound (5b) from bound (5a).
The proof of the claimed lower bound (5a) is deferred to Appendix A of the Supplementary
Material [38].

First, the estimation-theoretic lower bound of order 1/n in inequality (5b) holds for the
noisy sorting model even if we have complete observations [31, 46]. Therefore, we focus on
the other two terms that result from approximations.

For each fixed graph G, define the quantity

A(G) := sup
M,M ′∈CNS

M(G)=M ′(G)

1

n2

∑
(i,j)/∈E

(
Mij − M ′

ij

)2
corresponding to the diameter quantity that is lower bounded in equation (5a). We claim that
the minimax risk is lower bounded in terms of A(G) as

inf
M̂=f (Y (G))

sup
M∗∈CNS

E

[
1

n2

∥∥M̂ − M∗∥∥2
F

]
≥ 1

4
A(G).(10)

In order to verify this claim, consider the two matrices M1,M2 ∈ CNS that attain the supre-
mum in the definition of A(G); note that such matrices exist due to the compactness of the
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space and the continuity of the squared loss. By construction, these two matrices satisfy the
properties

M1(G) = M2(G), and
∑

(i,j)/∈E

(
M1

ij − M2
ij

)2 = n2A(G).

We can now reduce the problem to one of testing between the two matrices M1 and M2,
with the distribution of observations being identical for both alternatives. Consequently, any
procedure can do no better than to make a random guess between the two, so we have

inf
M̂

sup
M∗∈CNS

E
[∥∥M̂ − M∗∥∥2

F

]≥ 1

4

∑
(i,j)/∈E

(
M1

ij − M2
ij

)2
,

which proves claim (10).

5.2. Proof of Theorem 2. Without loss of generality, reindexing as necessary, we may as-
sume that the true permutation π∗ is the identity id, thereby ensuring that M∗ = MNS(id, λ∗).
We begin by applying the triangle inequality to upper bound the error as a sum of two terms:

1

2

∥∥M̂ASP − M∗∥∥2
F ≤ ∥∥M̂ASP − π̂ASP

(
M∗)∥∥2

F︸ ︷︷ ︸
estimation error

+∥∥π̂ASP
(
M∗)− M∗∥∥2

F︸ ︷︷ ︸
approximation error

.

Lemma B.1 in the Supplementary Material [38] bounds the approximation error as

E
[∥∥π̂ASP

(
M∗)− M∗∥∥2

F

]≤ cn
∑
v∈V

1√
dv

.

We now turn to the estimation error term, which evaluates to n2(̂λ − λ∗)2, with λ̂ rep-
resenting the MLE of λ∗ conditional on π̂ being the correct permutation. Abusing notation
slightly, let E denote the random set of observed edges, where we use the convention that
each ordered pair (i, j) ∈ E obeys i < j . Define the set

Iπ(E) = {
(i, j) ∈ E | i < j,π(i) > π(j)

}
,

corresponding to the set of inversions that are also observed on the edge set E. With this
notation in place, the MLE takes the form

1/2 + λ̂ = 1

|E|
( ∑

(i,j)∈E\Iπ̂ASP (E)

Yij + ∑
(i,j)∈Iπ̂ASP (E)

(1 − Yij )

)

= 1

|E|
( ∑

(i,j)∈E

Yij + ∑
(i,j)∈Iπ̂ASP (E)

(1 − 2Yij )

)

= 1/2 + λ∗ + 1

|E|
( ∑

(i,j)∈E

Wij

)
+ 1

|E|
( ∑

(i,j)∈Iπ̂ASP (E)

−2λ∗ − 2Wij

)
,

where we have written Yij = M∗
ij + Wij . Consequently, the error obeys(̂

λ − λ∗)2
≤ 3

|E|2
( ∑

(i,j)∈E

Wij

)2
+ 12

|E|2
(
λ∗)2∣∣Iπ̂ASP(E)

∣∣2 + 12

|E|2
( ∑

(i,j)∈Iπ̂ASP (E)

Wij

)2

(i)≤ 3

|E|2
( ∑

(i,j)∈E

Wij

)2

︸ ︷︷ ︸
T1

+ 12

|E|
(
λ∗)2∣∣Iπ̂ASP(E)

∣∣︸ ︷︷ ︸
T2

+ 12

|E|2
( ∑

(i,j)∈Iπ̂ASP (E)

Wij

)2

︸ ︷︷ ︸
T3

,
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where step (i) follows since |Iπ̂ASP(E)| ≤ |E| pointwise. We now bound each of the terms T1,
T2 and T3 separately.

Bounding T1. First, by standard subexponential tail bounds [54], and noting that Wij ∈
[−1,1], we have E[T1] ≤ 3

|E| , and Pr{T1 ≥ 6
|E| } ≤ e−|E|.

Bounding T2. Writing

|E|
12(λ∗)2E[T2] = E

[∣∣Iπ̂ASP(E)
∣∣]

= ∑
i<j

∑
(u,v)∈E

Pr
[
σ(i) = u,σ (j) = v

]
× Pr

[
π̂ASP(i) > π̂ASP(j)|σ(i) = u,σ (j) = v

]
= ∑

(u,v)∈E

∑
i<j

1

n(n − 1)
Pr
[
π̂ASP(i) > π̂ASP(j)|σ(i) = u,σ (j) = v

]
,

and the following lemma provides a bound on this quantity. We remark that most of the tech-
nical effort of the proof is devoted to proving this lemma, and we do so in the Supplementary
Material [38].

LEMMA 1. For any pair of vertices u = v, we have∑
i<j

1

n(n − 1)
Pr
[
π̂ASP(i) > π̂ASP(j)|σ(i) = u,σ (j) = v

]
≤ c

λ∗
(

1√
du

+ 1√
dv

)
.

(11)

Using Lemma 1 in conjunction with our previous bounds yields

E[T2] ≤ c
λ∗

|E|
∑

(u,v)∈E

(
1√
du

+ 1√
dv

)
= cλ∗

∑
u∈V

√
du∑

u∈V du

,(12)

where the equality follows since each term 1√
du

appears du times in the sum over all edges,

and 2|E| =∑
u∈V du. Let {d(u)}nu=1 represent the sequence of vertex degrees sorted in ascend-

ing order. An application of Lemma B.2 in the Supplementary Material [38] with au = d(u)

and bu = 1√
d(u)

for u ∈ [n] yields

∑
u∈V

√
du ≤ 1

n

(∑
u∈V

du

)(∑
u∈V

1√
du

)
.

Together with equation (12), we find that

E[T2] ≤ cλ∗

n

∑
u∈V

1√
du

.

Bounding T3. Note that this step is nontrivial, since the noise terms Wij for (i, j) ∈
Iπ̂ASP(E) depend on and are coupled through the data-dependent quantity π̂ASP. In order
to circumvent this tricky dependency, consider some fixed permutation π , and let T π

3 =
(
∑

(i,j)∈Iπ (E) Wij )
2. Note that T π

3 has two sources of randomness: randomness in the edge
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set E and randomness in observations. Since the observations {Wij } are independent and
bounded and |Iπ(E)| ≤ |E|, the term

∑
(i,j)∈Iπ (E) Wij is sub-Gaussian with parameter at

most
√|E|. Since the squares of sub-Gaussian variables have subexponential tails [54], we

then have the uniform subexponential tail bound

Pr
{
T π

3 ≥ |E| + δ
}≤ e−cδ.(13)

Notice that for any α ∈ R, the inequality T3 ≥ α implies that the inequality 12
|E|2 T π

3 ≥ α

holds for some fixed permutation π . Taking a union bound over all n! ≤ en logn fixed permu-
tations, and setting δ = cn logn for a constant c > 1 yields

Pr
{
T3 ≥ 12

|E| + c
n logn

|E|2
}

≤ exp{n logn − cn logn} ≤ exp
{−c′n logn

}
.

Noticing, in addition, that T3 ≤ 1 pointwise, we obtain

E[T3] ≤ Pr
{
T3 ≥ 12

|E| + c
n logn

|E|2
}

+
(

1 − Pr
{
T3 ≥ 12

|E| + c
n logn

|E|2
})(

12

|E| + c
n logn

|E|2
)

≤ exp
{−c′n logn

}+ 12

|E| + c
n logn

|E|2

≤ c′
(

1

|E| + n logn

|E|2
)
.

Combining the pieces proves the claimed bound on the expectation.

5.3. Proof of Theorem 3. We sketch the proof of part (a) in the main text; the proof of
part (b) may be found in the Supplementary Material [38]. The proof of part (a) is based on
the following lemmas.

LEMMA 2. Consider a matrix of the form M∗ = MNS(π∗,1/4) where the permutation
π∗ is chosen uniformly at random. For any graph G = K1 ∪ K2 ∪ . . . composed of multiple
disjoint cliques with the number of vertices bounded as C ≤ |Ki | ≤ n/5 for all i, and for any
estimators (M̂, π̂) that are measurable functions of the observations on G, we have

E

[
1

n2

∥∥M̂ − M∗∥∥2
F

]
≥ c2

n

∑
v∈V

1√
dv

, and

E
[
KT
(
π∗, π̂

)]≥ c2n
∑
v∈V

1√
dv

.

(14)

LEMMA 3. Given any graph G with degree sequence {dv}v∈V , there exists a graph G′
consisting of multiple disjoint cliques with degree sequence {d ′

v}v∈V such that

|E| � ∣∣E′∣∣ and
∑
v∈V

1√
dv

� ∑
v∈V

1√
d ′
v

.(15)

Part (a) of the theorem follows by combining these two lemmas, so that it suffices to prove
each of the lemmas individually. We provide the proof of Lemma 2 below, and defer the proof
of Lemma 3 to the Supplementary Material [38].



1090 A. PANANJADY ET AL.

Proof of Lemma 2. Our result is structural, and proved for permutation recovery in the
Kendall tau metric. The bound for matrix recovery follows as a corollary. Assume we are
given a graph on n vertices consisting of k disjoint cliques of sizes n1, . . . , nk . Let N0 = 0
and Nj =∑j

i=1 ni for j ∈ [k]. Without loss of generality, we let the j th clique consist of the
set of vertices Vj indexed by {Nj−1 + 1, . . . ,Nj }. By assumption, each nj is upper bounded
by n/5 and lower bounded by a universal constant.

Note that any estimator can only use the observations to construct the correct partial order
within each clique, but not across cliques. We denote the induced partial order of a permu-
tation π on the clique Vj by the permutation πj : [nj ] → [nj ]. (As an example, the identity
permutation π = id would yield πj = id on [nj ] for all j ∈ [k].) We claim that there exists a
coupling of two marginally uniform random permutations (π∗, π#) on the set [n] such that

E
[
KT
(
π∗, π#)]≥ cn

k∑
j=1

√
nj = cn

∑
v∈V

1√
dv

, and(16a)

π∗
j = π#

j for all j ∈ [k].(16b)

Taking such a coupling as given for the moment, let us establish Lemma 2.
Let E[· | π∗] denote the expectation over the observations conditional on π∗. Given a pair

of permutations (π∗, π#) satisfying the above assumption, we view them as two hypothe-
ses of the latent permutation. Then for any estimator π̂ , the Neyman–Pearson lemma [37]
guarantees that

E
[
KT
(
π̂ , π∗) | π∗]+E

[
KT
(
π̂ , π#) | π#]≥ KT

(
π#, π∗)

for each instance of (π∗, π#), because the observations are identical for π∗ and π#. Taking
expectation over (π∗, π#), we obtain the bound

2E
[
KT
(
π̂ , π∗)]≥ E

[
KT
(
π∗, π#)]≥ cn

∑
v∈V

1√
dv

,

since both π∗ and π# are marginally uniform. It remains to construct the claimed coupling.

Constructing the coupling. The construction is done as follows. First, two permutations
π∗ and π̃ on the set [n] are generated uniformly at random and independently. Second, we
sort the permutation π̃ on each clique according to π∗, and denote the resulting permutation
by π#. Then the permutations π∗ and π# are marginally uniform and have common induced
partial orders on the cliques, which we denote by {π∗

j : j ∈ [k]}.
With some extra notation, we can define the sorting step more formally for the interested

reader. For a set of partial orders on the cliques {πj : j ∈ [k]}, we define a special permutation
that effectively orders vertices within each clique Vj according to its corresponding partial
order πj , but does not permute any vertices across cliques. We denote this special permutation
by πpar({πj : j ∈ [k]}). For every clique Vj , we consider the permutation πsort,j := π∗

j ◦
(π̃j )

−1. Now we define the sorting step to generate π# by

π# := πpar
({

πsort,j : j ∈ [k]}) ◦ π̃ .

By construction, such a coupling obeys condition (16b); it remains to evaluate the ex-
pected Kendall tau distance between these coupled permutations in order to establish condi-
tion (16a). By the tower property, we have

E
[
KT
(
π∗, π#)]= E

[
E
[
KT
(
π∗, π#) | {π∗

j : j ∈ [k]}]].
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The inner expectation can be simplified as follows. Precomposing permutations π∗ and π#

with any permutation does not change the Kendall tau distance between them, so we have

E
[
KT
(
π∗, π#) | {π∗

j : j ∈ [k]}]= E
[
KT
(
π,π ′)],

where the permutations π and π ′ are drawn independently and uniformly at random from
the set of permutations that are increasing on every clique. That is, for every clique Vj and
every two vertices i1, i2 ∈ Vj , we have π(i1) < π(i2) and π ′(i1) < π ′(i2). To understand why
π and π ′ can be chosen independently, note that the only dependency between the original
permutations π∗ and π# is through the common induced partial orders {π∗

j : j ∈ [k]}. By
conditioning and precomposing, we removed that dependency.

We now turn to computing the quantity E[KT(π,π ′)]. It is well known [14] that
2KT(π,π ′) ≥ ‖π − π ′‖1. This fact together with Jensen’s inequality implies that

2E
[
KT
(
π,π ′)]≥ n∑

i=1

E
[∣∣π(i) − π ′(i)

∣∣]

≥
n∑

i=1

E
[∣∣E[π(i) − π ′(i) | π]∣∣]

=
n∑

i=1

E
[∣∣π(i) −E

[
π ′(i)

]∣∣]= E
[∥∥π −E[π ]∥∥1

]
.

(17)

It therefore suffices to lower bound the quantity E[‖π −E[π ]‖1].
Fix any i ∈ [n]. Then i is 
th smallest index in the j th clique for some j ∈ [k] and 
 ∈ [nj ],

or succinctly, i = Nj−1 + 
. If we view π−1 as random draws from the n items, then π(i)

is equal to the the number of draws needed to get the 
th smallest element of Vj . Denoting
E[π(i)] by μ, we have

μ = 
 +E

[ ∑
r:σ(r)/∈Vj

1{r is drawn before i}
]

= 
 + (n − nj )



nj + 1
= 


n + 1

nj + 1
,

since the probability that an item not in Vj is drawn before the 
th smallest element of Vj is

/(nj + 1). Furthermore, π(i) = s if and only if 
 − 1 elements of Vj are selected in the first
s − 1 draws and the sth draw is from Vj , so

Pr
{
π(i) = s

}=
(

nj


 − 1

)(
n − nj

s − 


)(
n

s − 1

)−1
nj − 
 + 1

n − s + 1
.(18)

For any 0 ≤ m ≤ n/
√

nj , equation (18) and Lemma D.1 together yield

E
[∣∣π(i) − μ

∣∣]≥ mPr
{∣∣π(i) − μ

∣∣≥ m
}≥ m

[
1 − c(2m + 1)

√
nj/n

]
by Markov’s inequality. Choosing m = n

6c
√

nj
yields

E
[∣∣π(i) − μ

∣∣]≥ c2n/
√

nj

for some positive constant c2. Summing over 
 in the given range and putting together the
pieces establishes that condition (16a) holds.
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5.4. Proof of Theorem 4. The first part of the theorem is the bound on ‖π̂ASP(M∗) −
M∗‖2

F for the permutation estimator π̂ASP, and follows immediately from Lemma B.1 in the
Supplementary Material [38].

We now concentrate on the second part of the theorem. Recall that we have two samples of
independent observations, and for the rest of the proof, it is helpful to think of the observation
model in its linearized form. In particular, we have two random edge sets E1 and E2 and the
observation matrices Y (i) := M∗ + W(i) for each i ∈ {1,2}. For a set B ⊆ [n] × [n], recall
that we use the notation ‖M‖2

B :=∑
(i,j)∈B M2

ij .

Recall the definition of the estimator M̃ = BA(Y (1), Y (2)) = B(Y (2),bl) where bl =
blS(τ (Y (1))). Then the estimator M̂BAP is obtained by projecting the matrix M̃ onto the space
π̂ASP(CBISO) = {π̂ASP(M) : M ∈ CBISO}. Our first step is to show that it suffices to consider
the estimator M̃ , because the projection to obtain M̂BAP is nonexpansive with respect to the
Frobenius norm.

More precisely, the triangle inequality yields∥∥M̂BAP − M∗∥∥2
F ≤ 2

∥∥M̂BAP − π̂ASP
(
M∗)∥∥2

F + 2
∥∥M∗ − π̂ASP

(
M∗)∥∥2

F

(i)≤ 2
∥∥M̃ − π̂ASP

(
M∗)∥∥2

F + 2
∥∥M∗ − π̂ASP

(
M∗)∥∥2

F(19)

≤ 4
∥∥M̃ − M∗∥∥2

F + 6
∥∥M∗ − π̂ASP

(
M∗)∥∥2

F ,

where step (i) follows from the nonexpansiveness of the projection operator on a convex set.
The second term in inequality (19) is already bounded as desired, so it remains to consider
the first term.

Toward that end, we split the error into the approximation error, measuring how well the
matrix M∗ is approximated by a block matrix, and the estimation error, measuring how well
this block approximation is estimated by our estimator M̃ . Namely, we again apply the trian-
gle inequality to write∥∥M̃ − M∗∥∥2

F ≤ 2
∥∥M∗ − B

(
M∗,bl

)∥∥2
F + 2

∥∥M̃ − B
(
M∗,bl

)∥∥2
F .(20)

Bounding the estimation error E[‖M̃ − B(M∗,bl)‖2
F ]. Before diving into the details, it is

worth noting that this is the only bound that requires the two sample assumption. In particular,
once the blocks have been obtained, Lemma 4 relies on the fact that the remaining samples
are uniformly distributed across each blocks, so that sample averages estimate the population
block-average. Lemma 5 then shows that there are sufficiently many samples seen on each
block, so that the variance of such an averaging estimator is bounded as desired. We expect
that the proof of Conjecture 1 will involve showing analogues of these lemmas when the
samples used in the two steps are coupled.

Let us now provide the required bound in the two sample setting. We write the error as a
sum of errors on individual blocks∥∥M̃ − B

(
M∗,bl

)∥∥2
F = ∑

B∈Bbl

∥∥M̃ − B
(
M∗,bl

)∥∥2
B.

Note that it is sufficient to consider off diagonal blocks in the sum, since both M̃ and
B(M∗,bl) have all entries equal to 1/2 in the diagonal blocks due to the skew symmetry
property M∗ + (M∗)	 = ee	. Considering each block separately, we now split the analysis
into two cases.

Case 1: B ∩E2 = φ. Because the entries of the error matrix are bounded within [−1,1], we
have ‖M̃ − B(M∗,bl)‖2

B ≤ |B|.
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Case 2: B ∩ E2 = φ. Since both M̃ and B(M∗,bl) are constant on each block, we have∥∥M̃ − B
(
M∗,bl

)∥∥2
B

= |B|
|B ∩ E2|

∥∥M̃ − B
(
M∗,bl

)∥∥2
B∩E2

= |B|
|B ∩ E2|

∥∥B
(
M∗ + W(2),bl,E2

)− B
(
M∗,bl

)∥∥2
B∩E2

≤ 2
|B|

|B ∩ E2|
(∥∥B

(
M∗ + W(2),bl,E2

)
− B

(
B
(
M∗,bl

)+ W(2),bl,E2
)∥∥2

B∩E2

+ ∥∥B
(
B
(
M∗,bl

)+ W(2),bl,E2
)− B

(
M∗,bl

)∥∥2
B∩E2

)
.

(21)

Before proceeding further, we require the following technical lemma.

LEMMA 4. For any block B and tuple (i, j) ∈ B , we have

Pr
{
(i, j) ∈ E2 | |B ∩ E2| = k

}= k

|B| .

See the Supplementary Material [38] for a proof of this claim. This key lemma hinges on
the independence between the block B which is determined using the first sample, and the
edge set E2 from the second sample. In the case where only one sample is available, the exact
statement does not hold.

Let us now handle each term on the RHS of inequality (21) separately. First, by nonexpan-
siveness of the projection operation defined by equation (8), we have∥∥B

(
M∗ + W(2),bl,E2

)− B
(
B
(
M∗,bl

)+ W(2),bl,E2
)∥∥2

B∩E2

≤ ∥∥M∗ − B
(
M∗,bl

)∥∥2
B∩E2

.
(22)

Now taking expectation over the randomness in E2 (which, crucially, is independent of the
randomness in bl), we have

EE2

[∥∥M∗ − B
(
M∗,bl

)∥∥2
B∩E2

||B ∩ E2| = k
]

= ∑
(i,j)∈B

Pr
{
(i, j) ∈ E2||B ∩ E2| = k

} · [M∗ − B
(
M∗,bl

)]2
ij

(ii)= ∑
(i,j)∈B

k

|B|
[
M∗ − B

(
M∗,bl

)]2
ij

= k

|B|
∥∥M∗ − B

(
M∗,bl

)∥∥2
B,

(23)

where step (ii) follows from Lemma 4.
Next, we turn to the second term on the RHS of inequality (21). Notice that [W(2)]ij

for (i, j) ∈ E2 is independent and bounded within the interval [−1,1]. Also, notice that the
entries of the matrix B(M∗,bl) are constant on the set of indices B ∩E2. Consequently, given
|B ∩ E2| noisy samples of a constant parameter, we can achieve the estimation rate

EW(2)

[∥∥B
(
B
(
M∗,bl

)+ W(2),bl,E2
)− B

(
M∗,bl

)∥∥2
B∩E2

]≤ 1.(24)
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It follows from equations (21), (22), (23) and (24) that

E
[∥∥M̃ − B

(
M∗,bl

)∥∥2
B

]≤ 2E
[ |B|
|B ∩ E2|

]
+ 2E

[∥∥M∗ − B
(
M∗,bl

)∥∥2
B

]
.

Combining the two cases and summing over the blocks, we obtain

E
[∥∥M̃ − B

(
M∗,bl

)∥∥2
F

]≤ 2
∑

B∈Bbl

E

[ |B|
|B ∩ E2| ∨ 1

]

+ 2E
[∥∥M∗ − B

(
M∗,bl

)∥∥2
F

]
.

(25)

The first term can be bounded using the following lemma, which is proved in the Supplemen-
tary Material [38].

LEMMA 5. With S =∑
v∈V 1/

√
dv and for the partition bl = blS(Y (1)), we have

EE2

[ ∑
B∈Bbl

|B|
|B ∩ E2| ∨ 1

]
≤ nS.

Thus, we have bounded the estimation error as∥∥M̃ − B
(
M∗,bl

)∥∥2
F ≤ 2nS + 2E

[∥∥M∗ − B
(
M∗,bl

)∥∥2
F

]
.

Notice that the second term above is identical to the approximation error; therefore, in order
to complete the proof, it suffices to bound the second term of inequality (20).

Bounding the approximation error E[‖M∗ − B(M∗,bl)‖2
F ]. Let us use X	

i to denote the
ith row of a matrix X. Given a matrix M∗ and a partition bl of [n], define R(M∗,bl) by
averaging the rows of M∗ over bl, that is,[

R
(
M∗,bl

)]	
i = 1

|bl(i)|
∑

j∈bl(i)

(
M∗)	

j ,

where bl(i) is the set of indices in the partition bl where i lies in. Note that by definition, we
have

B
(
M∗,bl

)= R
(
R
(
M∗,bl

)	)	
.

The following lemma, required for the approximation bound, is a generalization of a result
of Chatterjee [9] to the noisy, two-dimensional setting. Its proof is postponed to the Supple-
mentary Material [38].

LEMMA 6. Given any matrix X ∈ [0,1]n×n with monotone columns, let τ(X)i =
1
n

∑n
j=1 Xij . For any score vector τ̂ ∈ [0,1]n, and any value t ∈ [0, n], we have∥∥X − R

(
X,blt (τ̂ )

)∥∥2
F ≤ nt + 2n

∥∥τ̂ − τ(X)
∥∥

1.

Let us now focus on the expression we wish to bound. We have∥∥M∗ − B
(
M∗,bl

)∥∥2
F

≤ 2
∥∥M∗ − R

(
M∗,bl

)∥∥2
F + 2

∥∥R
(
M∗,bl

)− B
(
M∗,bl

)∥∥2
F

= 2
∥∥M∗ − R

(
M∗,bl

)∥∥2
F + 2

∥∥R
(
M∗,bl

)	 − R
(
R
(
M∗,bl

)	
,bl
)∥∥2

F .
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Recall that bl = blS(τ̂ (Y (1))). Applying Lemma 6 to both terms, we obtain3∥∥M∗ − B
(
M∗,bl

)∥∥2
F ≤ 2nS + 4n

∥∥τ̂ (Y (1))− τ ∗∥∥
1,

because both M∗ and R(M∗,bl)	 have normalized row sums equal to τ ∗. Lemma B.1 in the
Supplementary Material [38] yields the desired bound on the quantity ‖τ̂ (Y (1)) − τ ∗‖1 in
expectation. This together with equations (20) and (25) completes the proof of Theorem 4
with the choice S =∑

v∈V 1/
√

dv .

6. Discussion. In this paper, we studied the problem of estimating the comparison
probabilities from noisy pairwise comparisons under worst-case and average-case design
assumptions. We exhibited a dichotomy between worst-case and average-case models for
permutation-based models, which suggests that a similar distinction may exist even for their
parametric counterparts. Our bounds leave a few interesting questions unresolved: Is there a
sharp characterization of the diameter A(G) quantifying the worst-case approximation error
of a comparison topology G? The Borda count estimator, a variant of which we analyzed,
is known to achieve a suboptimal rate for random comparison topologies; the estimator of
Mao et al. [31] achieves the optimal rate over the noisy sorting class. What is the analog of
such an estimator in the average-case setting with partial pairwise comparisons? Is there a
computational lower bound to show that our estimators are the best possible polynomial-time
algorithms for SST matrix estimation?
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SUPPLEMENTARY MATERIAL

Supplement to “Worst-case versus average-case design for estimation from partial
pairwise comparisons” (DOI: 10.1214/19-AOS1838SUPP; .pdf). Due to space constraints,
we have relegated the technical details of remaining proofs to the supplement [38]. The sup-
plement also contains a section characterizing the minimax denoising error under partial ob-
servations.
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