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This paper investigates estimation of the mean vector under invariant
quadratic loss for a spherically symmetric location family with a residual
vector with density of the form f (x,u) = η(p+n)/2f (η{‖x − θ‖2 + ‖u‖2}),
where η is unknown. We show that the natural estimator x is admissible for
p = 1,2. Also, for p ≥ 3, we find classes of generalized Bayes estimators
that are admissible within the class of equivariant estimators of the form
{1 − ξ(x/‖u‖)}x. In the Gaussian case, a variant of the James–Stein esti-
mator, [1 − {(p − 2)/(n + 2)}/{‖x‖2/‖u‖2 + (p − 2)/(n + 2) + 1}]x, which
dominates the natural estimator x, is also admissible within this class. We
also study the related regression model.

1. Introduction. This paper considers estimation of the p-dimensional mean vector, θ ,
of a spherically symmetric distribution in the presence of an unknown scale, σ = η−1/2. The
loss function is scale invariant quadratic loss. More specifically, we will study the question
of admissibility within the class of equivariant procedures. Estimation of the mean vector has
long been an important problem, but has become even more important since Stein’s (1956)
groundbreaking result that the usual unbiased estimator, which is also the generalized Bayes
estimator with respect to the uniform prior, is inadmissible in 3 and higher dimensions.

The issue of admissibility of generalized Bayes estimators in the Gaussian case with
known scale was largely settled by the monumental 1971 paper of Brown. Brown and Hwang
(1982) studied the related issue of admissibility of the vector of expected values in a multipa-
rameter exponential family. Maruyama and Takemura (2008) and Maruyama (2009) studied
admissibility of generalized Bayes estimators of the mean vector of a spherically symmet-
ric distributions with known scale. In the Gaussian case, Brown (1971) as well as Dasgupta
and Strawderman (1997) gave a sufficient condition for generalized Bayes estimator to be
inadmissible.

However, aside from various inadmissibility results (e.g., James–Stein-type estimators for
p ≥ 3), there has been little progress in the unknown scale case, even for Gaussian distribu-
tions. A notable exception is Strawderman (1973) which gives a class of proper Bayes, and
hence admissible estimators dominating the usual unbiased estimator in the Gaussian setting
for p ≥ 5. Also, when p = 1,2, the usual unbiased estimator is admissible among all estima-
tors, as shown in Section 5. While not surprising, this result has not appeared in the literature
as far as we know.

The most important subclass of improved estimators is arguably the class of scale equiv-
ariant estimators, particularly those that are generalized Bayes. The main contribution of this
paper is to study admissibility of such estimators within the class of scale equivariant proce-
dures. Our method of proof uses Blyth’s (1951) method in a way closely related to that of
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Brown and Hwang (1982). In Brown and Hwang (1982), the sequence hi

hi(λ) =

⎧⎪⎪⎨
⎪⎪⎩

1, λ ≤ 1,

1 − logλ/ log i, 1 ≤ λ ≤ i,

0, λ > i,

(1.1)

is the key for their proof. In this paper, we utilize a somewhat different sequence

hi(λ) = 1 − log log(λ + e)

log log(λ + e + i)
, e = exp(1),(1.2)

that are smoother and adapt better to priors on the boundary of admissibility and inadmissi-
bility within this class.

For example, in the known scale Gaussian case, Brown (1971) establishes admissibility of
priors with tails behaving like ‖θ‖2−p log‖θ‖, while the results of Brown and Hwang (1982)
establish admissibility for priors with tail behavior ‖θ‖2−p but not ‖θ‖2−p log‖θ‖. Roughly
speaking, by our modification of Brown and Hwang’s (1982) method with the new sequence
hi(λ) given by (1.2), the generalized Bayes estimator with respect to

η−1 × ηp/2π̄
(
η‖θ‖2)

,

where π̄(‖θ‖2) satisfies Brown’s (1971) sufficient condition for admissibility, is shown to
be admissible within the class of scale equivariant procedures; see Remarks 4.1 and 4.2 for
details.

The ultimate goal in this direction is to demonstrate admissibility among all estimators.
However, considering general admissibility of equivariant estimators in the presence of nui-
sance parameter has been a longstanding unsolved problem as mentioned in James and Stein
(1961) and Brewster and Zidek (1974). While our results do not resolve the general admissi-
bility issue, they do advance substantially our understanding of admissibility within the class
of scale equivariant estimators.

We consider the following model:

(1.3) (X,U) ∼ η(p+n)/2f
(
η
{‖x − θ‖2 + ‖u‖2})

,

where X ∈ R
p and U ∈R

n and where θ ∈ R
p and η ∈ R+ are unknown. We mainly assume

(1.4) p ≥ 3 and n ≥ 2,

and consider the problem of estimating θ under scaled quadratic loss

(1.5) L(δ, θ, η) = η‖δ − θ‖2.

In particular, we are interested in the admissibility among the class of equivariant estimators
of the form

(1.6) δξ (X,U) = {
1 − ξ

(
X/‖U‖)}

X, where ξ :Rp →R.

We assume that f (·) ≥ 0 is defined so that each coordinate has variance 1/η. In particular,
this implies that f (·) in (1.3), satisfies

(1.7)
∫
Rp+n

f
(‖v‖2)

dv = 1,

∫
Rp+n

v2
i f

(‖v‖2)
dv = 1,

for v = (v1, . . . , vp+n)
T ∈ R

p+n. Needless to say, this is a generalization of the Gaussian case
where

fG(t) = 1

(2π)(p+n)/2 exp(−t/2),

and hence X ∼ Np(θ, η−1I ) and ‖U‖2 ∼ η−1χ2
n are mutually independent.
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In Section 2, we show that if an estimator of the form

(1.8) δψ(X,U) = {
1 − ψ

(‖X‖2/‖U‖2)}
X, where ψ :R+ →R

is admissible within the class of all such estimators, then it is also admissible within the larger
class of estimators of the form δξ (X,U) given by (1.6). Note that the risk of an equivariant
estimator of the form (1.8) is a function of λ = η‖θ‖2.

Section 3 studies equivariant estimators of the form (1.8) which minimize the average
risk with respect to a (proper) prior π(λ) on the maximal invariant λ = η‖θ‖2. We give an
expression for this average risk and for the equivariant estimator which effects the minimiza-
tion. Additionally, we show that this proper Bayes equivariant estimator is equivalent to the
generalized (but not proper) Bayes estimator corresponding to the prior on (θ, η),

π(θ, η) = η−1{
η‖θ‖2}1−p/2

π
(
η‖θ‖2)

.

Further we demonstrate that such an estimator is admissible among the class of estimators of
the form (1.8), and hence (1.6).

Section 4, using Blyth’s (1951) method, extends the class of estimators which are admissi-
ble within the class of estimators of the form (1.8). One main result gives admissibility under
π(λ) including

π(λ) = λα for −1/2 < α ≤ 0,

equivalently π(θ, η) = η−1ηp/2{
η‖θ‖2}α+1−p/2

,

for densities f including the normal distribution and many multivariate t distributions. For
fixed η, this corresponds to a subclass of subharmonic priors including the fundamental
harmonic suggested by Stein (1974) and sometimes referred to as Stein’s prior. An inter-
esting special case (α = 0) gives admissibility (within the class of equivariant estimators)
of the generalized Bayes equivariant estimator corresponding to π(λ) ≡ 1 or π(θ, η) =
η−1ηp/2{η‖θ‖2}1−p/2. Here, the form of the generalized Bayes estimator is independent of
the underlying density f (·), as shown in Maruyama (2003). Further this estimator is minimax
and dominates the James and Stein (1961) estimator(

1 − (p − 2)/(n + 2)

‖X‖2/‖U‖2

)
X

provided f (·) is nonincreasing. Another interesting result is on a variant of the James–Stein
estimator of the simple form(

1 − (p − 2)/(n + 2)

‖X‖2/‖U‖2 + (p − 2)/(n + 2) + 1

)
X.

In the Gaussian case, this is the generalized Bayes equivariant estimator corresponding to

π(λ) = λp/2−1
∫ ∞

0

1

(2πξ)p/2 exp
(
− λ

2ξ

)(
ξ

1 + ξ

)n/2
dξ.

It is admissible within the class of equivariant estimators, and is minimax. Section 4.2 numer-
ically studies the risk functions for several of the estimators in the Gaussian and multivariate-t
case.

In Section 5, we show that when p = 1,2, the estimator X is admissible among all esti-
mators. In the Gaussian case, Kubokawa (2001) in his unpublished lecture notes written in
Japanese, showed the admissibility of X. Here, we give a generalization to the unknown scale
case for underlying density f given by (1.3).

In Section 6, we demonstrate that our setting (1.3) may be regarded as a canonical form of
a regression model with an intercept and a general spherically symmetric error distribution,
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where estimators of the form (1.8) corresponds to estimators of the vector of regression co-
efficients of the form {1 − ψ�(R

2)}β̂ where ψ� : (0,1) → R, β̂ is the vector of least square
estimators, and R2 is the coefficient of determination. Hence, from the regression viewpoint,
the class of equivariant estimators is quite natural.

Section 7 gives some concluding remarks. Most of the proofs are given in Appendix A
through Appendix N in Supplementary Material (Maruyama and Strawderman (2020)).

2. Admissibility in a broader sense. We consider two groups of transformations. In the
following, let S = ‖U‖2.

Group I.

X → γ�X, θ → γ�θ, S → γ 2S, η → η/γ 2,

where � ∈ O(p), the group of p × p orthogonal matrices, and γ ∈ R+.
Group II.

X → γX, θ → γ θ, S → γ 2S, η → η/γ 2,

where γ ∈ R+.

Equivariant estimators for Group I should satisfy

δ
(
γ�X,γ 2S

) = γ�δ(X,S),

and reduce to estimators of the form

(2.1) δψ = {
1 − ψ

(‖X‖2/S
)}

X,

where ψ : R+ →R. The equivariant estimator for Group II should satisfy

δ
(
γX,γ 2S

) = γ δ(X,S),

and reduce to estimator of the form

(2.2) δξ = {
1 − ξ(X/

√
S)

}
X,

where ξ : Rp →R. It is useful to note the following.

LEMMA 2.1.

1. The risk, R(θ, η, δψ) = E[η‖δψ − θ‖2], of an estimator δψ , is a function of η‖θ‖2 ∈
R+.

2. The risk, R(θ, η, δξ ), of an estimator δξ , is a function of η1/2θ ∈ R
p .

The standard proof is left to the reader.
Let two classes of estimators be

Dψ = {
δψ with ψ :R+ →R given by (2.1)

}
,

Dξ = {
δξ with ξ :Rp →R given by (2.2)

}
.

Clearly, it follows that Dψ ⊂ Dξ . We shall show that if δ ∈ Dψ is admissible among the class
Dψ , then it is admissible among the class Dξ . The proof is due to Section 3 of Stein (1956),
based on the compactness of the orthogonal group O(p), and the continuity of the problem.

THEOREM 2.1. If δ ∈ Dψ is admissible among the class Dψ , then it is admissible among
the class Dξ .

PROOF. See Appendix A. �

In this paper, we will investigate admissibility among the class Dψ . Admissibility among
the class Dξ then follows by Theorem 2.1.
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3. Proper Bayes equivariant estimators. Recall that an equivariant estimator for Group
I is given by

(3.1) δψ = {
1 − ψ

(‖X‖2/S
)}

X.

Since, as noted in Lemma 2.1, the risk function of the estimator δψ ∈ Dψ , R(θ, η, δψ), de-
pends only on η‖θ‖2 ∈R+, it may be expressed as

(3.2) R(θ, η, δψ) = R̃
(
η‖θ‖2, δψ

)
.

Let λ = η‖θ‖2 ∈ R+. We assume the prior density on λ is π(λ), and in this section, we
assume the propriety of π(λ), that is,

(3.3)
∫ ∞

0
π(λ)dλ = 1.

For an equivariant estimator δψ , we define the Bayes equivariant risk as

(3.4) B(δψ,π) =
∫ ∞

0
R̃(λ, δψ)π(λ)dλ.

In this paper, the estimator δψ which minimizes B(δψ,π), is called the Bayes equivariant
estimator and is denoted by δπ . In the following, let

(3.5) cm = πm/2/�(m/2) for m ∈ N+
and

(3.6) π̄(λ) = c−1
p λ1−p/2π(λ)

so that π̄ (‖μ‖2) is a proper probability density on R
p , that is,

(3.7)
∫
Rp

π̄
(‖μ‖2)

dμ = 1.

THEOREM 3.1. Assume
∫ ∞

0 π(λ)dλ = 1 and that f satisfies (1.7).

1. The Bayes equivariant risk B(δψ,π), (3.4), is given by

B(δψ,π) = cn

∫
Rp

ψ
(‖z‖2){

ψ
(‖z‖2) − 2

(
1 − zTM2(z,π)

‖z‖2M1(z,π)

)}

× ‖z‖2M1(z,π)dz + p,

(3.8)

where cn is given by (3.5) and

M1(z,π) =
∫∫

η(2p+n)/2f
(
η
{‖z − θ‖2 + 1

})
π̄

(
η‖θ‖2)

dθ dη,

M2(z,π) =
∫∫

θη(2p+n)/2f
(
η
{‖z − θ‖2 + 1

})
π̄

(
η‖θ‖2)

dθ dη.

(3.9)

2. Given π(λ), the minimizer of B(δψ,π) with respect to ψ is

(3.10) ψπ

(‖z‖2) = arg min
ψ

B(δψ,π) = 1 − zTM2(z,π)

‖z‖2M1(z,π)
.

3. The Bayes equivariant estimator

δπ = {
1 − ψπ

(‖X‖2/S
)}

X(3.11)

is equivalent to the generalized Bayes estimator of θ with respect to the joint prior density

η−1ηp/2π̄
(
η‖θ‖2)

,

where π̄(λ) = c−1
p λ1−p/2π(λ).
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4. The Bayes equivariant estimator δπ is admissible among the class Dψ .

PROOF. See Appendix B. �

REMARK 3.1. As shown in Appendix C, the generalized Bayes estimator of θ with re-
spect to the joint prior density ηνηp/2π̄(η‖θ‖2) for any ν is a member of the class Dψ . Part
3 of Theorem 3.1 applies only to the special case of ν = −1. Additionally, the admissibility
results of this section and of Section 4 apply only to this special case of ν = −1 and imply
neither admissibility or inadmissibility of generalized Bayes estimators if ν �= −1. Also note
that while π(λ) is assumed proper in this section, the prior on (θ, η), η−1ηp/2π̄(η‖θ‖2), is
never proper since∫ ∞

0

∫
Rp

η−1ηp/2π̄
(
η‖θ‖2)

dθ dη =
∫ ∞

0

∫
Rp

η−1π̄
(‖μ‖2)

dμdη

= 1 ×
∫ ∞

0

dη

η
= ∞.

4. Admissible Bayes equivariant estimators through the Blyth method. Even if π(λ)

on R+ (and hence π̄(‖μ‖2) on R
p) is improper, that is,

(4.1)
∫
Rp

π̄
(‖μ‖2)

dμ =
∫ ∞

0
π(λ)dλ = ∞,

the estimator δπ given by (3.11) can be defined if M1(z,π) and M2(z,π) given by (3.9)
are both finite, and the admissibility of δπ within the class of equivariant estimators can be
investigated through Blyth’s (1951) method.

We consider the Bayes equivariant risk difference under πi(λ) which is proper, but not
necessarily standardized; that is,

∫ ∞
0 πi(λ)dλ < ∞. Let δπ and δπi be Bayes equivariant

estimators with respect to π(λ) and πi(λ), respectively. By Parts 1 and 2 of Theorem 3.1, the
Bayes equivariant risk difference under πi(λ) is given as follows:

diffB(δπ , δπi;πi)

=
∫ ∞

0

{
R(λ, δπ) − R(λ, δπi)

}
πi(λ)dλ

= cn

∫
Rp

({
ψ2

π

(‖z‖2) − 2ψπ

(‖z‖2)
ψπi

(‖z‖2)}

− {
ψ2

πi

(‖z‖2) − 2ψπi

(‖z‖2)
ψπi

(‖z‖2)})‖z‖2M1(z,πi)dz

= cn

∫
Rp

diffB(z; δπ , δπi;πi)dz,

(4.2)

where cn is given by (3.5) and where

(4.3) diffB(z; δπ , δπi;πi) = {
ψπ

(‖z‖2) − ψπi

(‖z‖2)}2‖z‖2M1(z,πi).

There are several versions of the Blyth method. For our purpose, the following version
from Brown (1971) and Brown and Hwang (1982) is useful.

THEOREM 4.1. Assume that the sequence πi(λ) for i = 1,2, . . . , satisfies:

BL.1 π1(λ) ≤ π2(λ) ≤ · · · for any λ ≥ 0 and limi→∞ πi(λ) = π(λ).
BL.2

∫ ∞
0 πi(λ)dλ < ∞ for any fixed i.

BL.3
∫ 1

0 π1(λ)dλ > γ for some positive γ > 0.
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BL.4 limi→∞ diffB(δπ , δπi;πi) = 0.

Then δπ is admissible among the class Dψ .

PROOF. See Appendix D. �

We consider the following assumptions on π in addition to (4.1).

ASSUMPTIONS ON π .

A.1 π(λ) is differentiable.
A.2 (Behavior around the origin) For λ ∈ [0,1], there exist α > −1/2 and ν(λ) such that

π(λ) = λαν(λ),

where

0 < ν(0) < ∞ and lim
λ→0

λν′(λ) = 0.

A.3 (Asymptotic behavior) Let κ(λ) = λπ ′(λ)/π(λ). Either A.3.1 or A.3.2 is assumed;

A.3.1 −1 ≤ limλ→∞ κ(λ) < 0;
A.3.2 limλ→∞ κ(λ) = 0. Further either A.3.2.1 or A.3.2.2 is assumed;

A.3.2.1 κ(λ) is eventually monotone increasing and approaches 0 from below.
A.3.2.2 lim supλ→∞ {logλ}|κ(λ)| < 1.

Some preliminary results on π satisfying Assumptions A.1–A.3 are summarized in
Appendix E.1. Assumption A.2 is a sufficient condition for propriety around the origin,∫ 1

0 π(λ)dλ < ∞. The lower bound of α, −1/2 (not the necessary condition for propriety,
−1), comes from the application of the Cauchy–Schwarz inequality in the proof. See also
Remark 4.3. In Assumption A.3, limλ→∞ κ(λ) < −1 implies propriety at infinity, that is,∫ ∞

1 π(λ)dλ < ∞, the case which has been considered in Section 3.
A typical prior π(λ) satisfying Assumptions A.1–A.3, corresponding to a generalized

Strawderman’s (1971) prior, is given by

(4.4) π(λ;α,β, b) = cpλp/2−1
∫ ∞
b

1

(2πξ)p/2 exp
(
− λ

2ξ

)
(ξ − b)α(1 + ξ)β dξ,

which is clearly differentiable. Also, by a Tauberian theorem (see, e.g., Theorem 4 of Sec-
tion 5 of Chapter 13 in Feller (1971)), we have

lim
λ→∞

λπ ′(λ;α,β, b)

π(λ;α,β, b)
= α + β.

When α + β = 0, Assumption A.3.2.2 is satisfied. For either {α > −1, b > 0} or {α >

−1/2, b = 0}, Assumption A.2 is satisfied. See Appendix F for the proof. In summary, As-
sumptions A.1–A.3 are satisfied when {−1 ≤ α + β ≤ 0, α > −1, b > 0} or {−1 ≤ α + β ≤
0, α > −1/2, b = 0}.

Note that the power prior

π(λ) = λα for −1/2 < α ≤ 0,

which will be considered in Section 4.1, corresponds to the case β = 0 and b = 0 in (4.4).
For a generalized prior π(λ) satisfying Assumptions A.1–A.3, consider the sequence given

by

πi(λ) = π(λ)h2
i (λ),
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where hi(λ), for λ ≥ 0 and i = 1,2, . . . , is defined by

hi(λ) = 1 − log log(λ + e)

log log(λ + e + i)
,(4.5)

and e = exp(1). Some preliminary results on πi with π satisfying Assumptions A.1–A.3 are
summarized in Appendix E.2. It is clear that πi satisfies BL.1 of Theorem 4.1. In Lemma E.2
of Appendix E.2, we show that πi also satisfies BL.2 and BL.3 of Theorem 4.1.

REMARK 4.1. The basic idea behind the sequence hi given by (4.5) comes from the hi

of Brown and Hwang (1982),

hi(λ) =

⎧⎪⎪⎨
⎪⎪⎩

1, λ ≤ 1,

1 − logλ/ log i, 1 ≤ λ ≤ i,

0, λ > i.

(4.6)

A smoothed version of the above is

(4.7) hi(λ) = 1 − log(λ + 1)

log(λ + 1 + i)
.

The sequence hi given by (4.5) is more slowly changing in both λ and i, in order to handle
priors with heavier tail than treated in Brown and Hwang (1982). As in Remark 4.2, the
sequence (4.6) is optimized for the case π(λ) = O(1) and does not work well for a prior with
heavier tails such as π(λ) ≈ {logλ}1−ε which satisfies the sufficient condition of Theorem
4.2 below as well as Brown’s (1971) sufficient condition for admissibility. Using Brown and
Hwang’s (1982) idea, but with the smooth and heavier-tailed sequence hi given by (4.5), we
can approach the boundary of admissibility in Brown’s (1971) paper.

For BL.4, note that diffB(δπ , δπi;πi) given by (4.2) is a functional of f as well as π and
πi . Some additional assumptions on f (as well as (1.7)) are required as follows:

ASSUMPTIONS ON f .

F.1 0 < f (t) < ∞ for any t ≥ 0.
F.2 f is differentiable.
F.3 Either F.3.1 or F.3.2 is assumed;

F.3.1 lim supt→∞ t
f ′(t)
f (t)

< −p+n
2 − 2.

F.3.2 lim supt→∞ t
f ′(t)
f (t)

< −p+n
2 − 3.

Some preliminary results on f satisfying Assumptions F.1–F.3 are summarized in Ap-
pendix E.3. We note that, in addition to the normal distribution,

fG(t) = (2π)−(p+n)/2 exp(−t/2),

an interesting heavier tailed class, also satisfying Assumptions F.1–F.3, is given by the mul-
tivariate Student t with

f (t;m,b) =
∫ ∞

0

fG(t/g)

g(p+n)/2

g−m/2−1

�(m/2)(2/b)m/2 exp
(
− b

2g

)
dg

= �((p + n + m)/2)

(πb)(p+n)/2�(m/2)
(1 + t/b)−(p+n+m)/2.
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The usual multivariate-t random vector with m-degrees of freedom is with b = m. But the
restriction (1.7) determines b = m − 2. The distribution with the density f (t;m,m − 2),
which satisfy (1.7), may be called a scaled multivariate-t distribution. For Assumptions F.3.1
and F.3.2, m > 4 and m > 6 are needed, respectively.

The main result on admissibility of δπ given by (3.11) among the class Dψ through the
Blyth method, Theorem 4.1, is as follows.

THEOREM 4.2.

Case I Assume Assumptions A.1, A.2 and A.3.1 on π and Assumptions F.1, F.2 and F.3.1
on f . Then the estimator δπ given by (3.11) is admissible among the class Dψ .

Case II Assume Assumptions A.1, A.2 and A.3.2 on π and Assumptions F.1, F.2 and F.3.2
on f . Then the estimator δπ given by (3.11) is admissible among the class Dψ .

SKETCH OF THE PROOF OF THEOREM 4.2. Assume Assumptions A.1, A.2 and A.3 on
π . As in (4.5), set

πi(λ) = π(λ)

{
1 − log log(λ + e)

log log(λ + e + i)

}2

with λ ≥ 0 and i = 1,2, . . . . Then the first three parts BL.1, BL.2 and BL.3 of Theorem 4.1
follow from Parts 1, 8 and 6 of Lemma E.2, respectively.

Considering BL.4, we first provide an alternative expression diffB(z; δπ , δπi;πi) in (4.2)
and (4.3). Recall

diffB(δπ , δπi;πi) = cn

∫
Rp

diffB(z; δπ , δπi;πi)dz,

diffB(z; δπ , δπi;πi) = {
ψπ

(‖z‖2) − ψπi

(‖z‖2)}2‖z‖2M1(z,πi),

(4.8)

with

ψπ(z) = 1 − zTM2(z,π)

‖z‖2M1(z,π)
= zTzM1(z,π) − zTM2(z,π)

‖z‖2M1(z,π)
,

M1(z,π) =
∫∫

η(2p+n)/2f
(
η
{‖z − θ‖2 + 1

})
π̄

(
η‖θ‖2)

dθ dη,

M2(z,π) =
∫∫

θη(2p+n)/2f
(
η
{‖z − θ‖2 + 1

})
π̄

(
η‖θ‖2)

dθ dη.

The numerator of ψπ(z) is rewritten as

zTzM1(z,π) − zTM2(z,π)

= zT
∫∫

η(z − θ)η(2p+n)/2−1f
(
η
{‖z − θ‖2 + 1

})
π̄

(
η‖θ‖2)

dθ dη

= zT
∫∫

η(2p+n)/2−1∇θF
(
η
{‖z − θ‖2 + 1

})
π̄

(
η‖θ‖2)

dθ dη

= −zT
∫∫

η(2p+n)/2−1F
(
η
{‖z − θ‖2 + 1

})∇θ π̄
(
η‖θ‖2)

dθ dη,

(4.9)

where F(t) = (1/2)
∫ ∞
t f (s)ds and the last equality follows from an integration by parts. To

justify this integration by parts, note that, for fixed θi , the ith component of θ , we have

lim
θi→±∞F

(
η
{‖z − θ‖2 + 1

})
π̄

(
η‖θ‖2) = 0
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for any fixed η, z, θ1, . . . , θi−1, θi+1, . . . , θp , since the asymptotic behavior of π̄ and F are
given by

π̄ (λ) = c−1
p λ1−p/2π(λ) = o

(
λ1−p/2 logλ

)
and F(t) = o

(
t−(p+n)/2−1)

,

as in Part 7 of Lemma E.1 and Part 1.A of Lemma E.3, respectively. Thus the last equality of
(4.9) follows.

Therefore diffB(z; δπ , δπi;πi) is reexpressed as

diffB(z; δπ , δπi;πi)

=
∥∥∥∥
∫∫

η(2p+n)/2−1F(η{‖z − θ‖2 + 1})∇θ π̄(η‖θ‖2)dθ dη∫∫
η(2p+n)/2f (η{‖z − θ‖2 + 1})π̄(η‖θ‖2)dθ dη

−
∫∫

η(2p+n)/2−1F(η{‖z − θ‖2 + 1})∇θ π̄i(η‖θ‖2)dθ dη∫∫
η(2p+n)/2f (η{‖z − θ‖2 + 1})π̄i(η‖θ‖2)dθ dη

∥∥∥∥
2

×
∫∫

η(2p+n)/2f
(
η
{‖z − θ‖2 + 1

})
π̄i

(
η‖θ‖2)

dθ dη.

(4.10)

For two cases, Cases I and II, we will bound diffB(z; δπ , δπi;πi) from above by some inte-
grable functions independent of i. Then the theorem follows by the dominated convergence
theorem because limi→∞ diffB(δπ , δπi;πi) = 0 since h2

i → 1 and δπi
→ δπ in the expres-

sion of (4.8).
Here is a reason why we have two cases. Recall diffB(δπ , δπi;πi) given by (4.2) is a

functional of f as well as π and πi . In Case II with Assumption A.3.2, π(λ) satisfies
λπ ′(λ)/π(λ) → 0 as λ → ∞. In this case, we more carefully bound diffB(δπ , δπi;πi) from
above, but need the more restrictive assumption on f as in Assumption F.3.2 as well as addi-
tional assumption on π , either Assumption A.3.2.1 or A.3.2.2.

More concretely, in Appendix G, we consider Case I, where diffB(z; δπ , δπi;πi) is
bounded as

diffB(z; δπ , δπi;πi) ≤ 2(�1i + �2i ),

where

�1i = ‖ ∫∫
η(2p+n)/2−1F(◦)π̄(•)∇θh

2
i (•)dθ dη‖2∫∫

η(2p+n)/2f (◦)π̄i(•)dθ dη
,(4.11)

�2i = ‖ ∫∫
η(2p+n)/2−1F(◦)∇θ π̄(•)dθ dη‖2∫∫

η(2p+n)/2f (◦)π̄(•)dθ dη

+ ‖ ∫∫
η(2p+n)/2−1F(◦)∇θ π̄(•)h2

i (•)dθ dη‖2∫∫
η(2p+n)/2f (◦)π̄i(•)dθ dη

,

(4.12)

where, for notational convenience and to control the size of expressions,

• = η‖θ‖2, ◦ = η
(‖z − θ‖2 + 1

)
.

The integrability of supi �1i and supi �2i are shown in Appendices G.1 and G.2, respectively.
More concretely, Appendix G.2 consists of two parts. We consider α > 0 and −1/2 < α ≤ 0
separately in Appendices G.2.1 and G.2.2, respectively.

In Appendix H, we consider Case II, where diffB(z; δπ , δπi;πi) is bounded as

diffB(z; δπ , δπi;πi) ≤ 2
(n + p)2

(n + 2)2

{
�1i + (p − 2)2�3i + 4�4i

}
,
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where

�3i = 1

‖z‖2

{∫∫ (zTθ/‖θ‖2 − 1)η(2p+n)/2−1F(◦)π̄(•)dθ dη}2∫∫
η(2p+n)/2f (◦)π̄(•)dθ dη

+ 1

‖z‖2

{∫∫ (zTθ/‖θ‖2 − 1)η(2p+n)/2−1F(◦)π̄i(•)dθ dη}2∫∫
η(2p+n)/2f (◦)π̄i(•)dθ dη

,

�4i = ‖ ∫∫
θη(2p+n)/2−1F(◦)κ(•)π̄(•)‖θ‖−2 dθ dη‖2∫∫

η(2p+n)/2f (◦)π̄(•)dθ dη

+ ‖ ∫∫
θη(2p+n)/2−1F(◦)κ(•)π̄i(•)‖θ‖−2 dθ dη‖2∫∫

η(2p+n)/2f (◦)π̄i(•)dθ dη
.

The integrability of supi �3i and supi �4i are shown in Appendices H.1 and H.2, respectively.
�

Before giving some useful corollaries and examples, we give some remarks concerning
the main result and method of proof, and indicate some of the differences between our proof
and that of Brown and Hwang (1982).

REMARK 4.2. Assumption A.3 is a sufficient condition for

(4.13)
∫ ∞

1

dλ

λπ(λ)
= ∞ ⇔

∫ ∞
1

dλ

λp/2π̄(λ)
= ∞,

which is related to admissibility in the known variance case as follows. Maruyama (2009)
showed that, in the problem of estimating μ of X ∼ Np(μ, I), regularly varying priors
π̄(‖μ‖2) with

(4.14)
∫ ∞

1

dλ

λp/2π̄(λ)
= ∞

lead to admissibility, that is, the (generalized) Bayes estimator

X + ∇ logmπ̄

(‖X‖2)
,

where

(4.15) mπ̄

(‖x‖2) = 1

(2π)p/2

∫
exp

(−‖x − μ‖2/2
)
π̄

(‖μ‖2)
dμ

is admissible. As Maruyama (2009) pointed out, the sufficient condition (4.14), which de-
pends directly on the prior π̄(‖μ‖2), is closely related to Brown’s (1971) sufficient condition
for admissibility ∫ ∞

1

dr

rp/2mπ̄(r)
= ∞,

which depends on the marginal distribution and only indirectly on the prior. Under As-
sumption A.3, as shown in Part 7 of Lemma E.1 in Appendix E, there exist ε ∈ (0,1) and
λ∗ > exp(1) such that π(λ)/(logλ)1−ε for λ ≥ λ∗ is bounded from above. This implies that
Assumption A.3 is tight for the nonintegrability of (4.13) among the class

π̄(λ) ≈ λ1−p/2(logλ)b with b ∈ R,

or equivalently

π(λ) ≈ (logλ)b with b ∈R.
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In particular, for b = 1 − ε,
∫ ∞

1 dλ/{λ(logλ)1−ε} = ∞ and Assumption A.3.2 is satisfied,
but for b = 1 + ε,

∫ ∞
1 dλ/{λ(logλ)1+ε} < ∞ and Assumption A.3.2 is not satisfied. Ac-

tually, in the second case, the corresponding Bayes equivariant estimator is inadmissible
as shown in Maruyama and Strawderman (2017). For the boundary case, ε = 0 or b = 1,∫ ∞

1 dλ/(λ logλ) = ∞ but Assumption A.3.2 is not satisfied. Our result does not settle the
issue of admissibility within the class Dψ Additionally, in Maruyama and Strawderman
(2017), this case was also a boundary case and we were unable to settle the question of
quasi-admissibility; see Remark 1 of Maruyama and Strawderman (2017).

Example 4.1 of Brown and Hwang (1982) gives two separate sufficient conditions for
admissibility as follows:

BH.1 π̄ (λ) ≤ λ1−p/2−ε for some ε > 0 and

λπ̄ ′(λ)/π̄(λ) = O(1).

BH.2 π̄ (λ) ≤ λ1−p/2 and

λπ̄ ′(λ)/π̄(λ) = O(1) and λ2π̄ ′′(λ)/π̄(λ) = O(1).(4.16)

Theoretically, the sequence (4.6) of Brown and Hwang (1982) is optimized for the case
π̄(λ) ≈ λ1−p/2 and does not work well for a prior with heavier tails such as π̄(λ) ≈
λ1−p/2{logλ}1−ε which satisfies Brown’s (1971) sufficient condition for admissibility. This
paper as well as Maruyama (2009) demonstrates that using Brown and Hwang’s (1982) idea,
but with the smooth and heavier-tailed sequence hi given by (4.5), we can approach the
boundary of admissibility in Brown’s (1971) paper.

REMARK 4.3. In Remark 4.2, we paid attention to the tail behavior of the priors. Here,
we consider the behavior of the priors around the origin. Brown and Hwang (1982) omitted
a condition on the behavior around the origin in both BH.1 and BH.2. Suppose π̄(λ) satisfies
the boundedness of λπ̄ ′(λ)/π̄(λ), which is a necessary condition for A.1–A.3. Then, from
their (3.3) on page 208,

∫ 1

0
λp/2−1 π̄ (λ)

λ
dλ < ∞

or equivalently
∫ 1

0

π(λ)

λ
dλ < ∞(4.17)

is needed for establishing that their Bn → 0. This is clearly more restrictive than Assumption
A.2. For example, π(λ) = λα for α ≤ 0 does not satisfy the integrability (4.17) but does
satisfy Assumption A.2 if α > −1/2.

As in Brown and Hwang (1982), the key to the admissibility proof in this paper is to
adequately apply the Cauchy–Schwarz inequality. When we treat the term corresponding to
Brown and Hwang’s (1982) Bn and apply the Cauchy–Schwarz inequality, we introduce

k(λ;β) = λβI[0,1](λ) + I(1,∞)(λ), for β > 0,

which is effective for relaxing the condition around the origin. The reader can compare the
inequality (G.6) without k(λ;β) in Appendix G.2.1, with the inequality (G.13) with k(λ;β)

in Appendix G.2.2. When we apply the Cauchy–Schwarz inequality in (G.13), the first term
involving k(λ;β) gets smaller for larger β . On the other hand, the second term involving
1/k(λ;β) gets larger for larger β . Since the term (G.13) (the term corresponding to Brown
and Hwang’s (1982) Bn) is bounded when

(4.18) α > max(−β,β − 1),
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also since

min
β>0

{
max(−β,β − 1)

} = −1

2
, arg min

β>0

{
max(−β,β − 1)

} = 1

2
,

the best choice is β = 1/2 and the corresponding lower bound of α is −1/2. This is why
α > −1/2 is assumed in Assumption A.2.

REMARK 4.4. Under Assumption A.3.2, π(λ) satisfies λπ ′(λ)/π(λ) → 0 as λ → ∞. In
this case, to establish

lim
i→∞ diffB(δπ , δπi;πi) = 0,

we carefully bound diffB(δπ , δπi;πi) from above (see Appendix H), but need the more re-
strictive assumption on f as in Assumption F.3.2 as well as additional assumption on π ,
either Assumption A.3.2.1 or A.3.2.2. Thus, we have two cases in Theorem 4.2.

Notice that Brown and Hwang (1982) also have 2 sets of conditions BH.1 and BH.2 as
noticed in Remark 4.2 even in the case of a normal distribution. Of course, in our case, the
normal distribution satisfies both Assumptions F.3.1 and F.3.2, but for the scaled multivariate-
t , Assumptions F.3.1 and F.3.2 are satisfied for m > 4 and m > 6, respectively.

REMARK 4.5. Note also (4.16) in BH.2 requires that π̄(·) be twice differentiable while
in our case II result, only differentiability is required; see Appendix F.3.1 for details.

4.1. Some interesting cases. Here, we present three interesting special cases of our main
general theorem.

COROLLARY 4.1. Assume Assumptions F.1, F.2 and F.3.2 on f .

1. Then δπ with π ≡ 1, or equivalently the generalized Bayes estimator under the prior
on (θ, η) given by

η−1ηp/2{
η‖θ‖2}(2−p)/2

,

is admissible among the class Dψ .
2. The form of the generalized Bayes estimator does not depend on f and is given by

{1 − ψ0(W)}X where W = ‖X‖2/S and

ψ0(w) =
∫ ∞

0 (1 + ξ)n/2(1 + w + ξ)−(p+n)/2−1 dξ∫ ∞
0 (1 + ξ)n/2+1(1 + w + ξ)−(p+n)/2−1 dξ

.

3. This estimator is minimax simultaneously for all such f .
4. This estimator dominates the James–Stein estimator(

1 − p − 2

n + 2

S

‖X‖2

)
X

if f is nonincreasing (i.e., the distribution of (X,U) is unimodal).

PROOF. For Part 1, Assumptions A.1, A.2 and A.3.2 are satisfied by π(λ) ≡ 1. Parts
2 and 4 are both shown by Maruyama (2003). Part 3 is shown by Cellier, Fourdrinier and
Robert (1989). �

Note that the hierarchical structure in Corollary 4.1 is that μ = η1/2θ conditional on η has
the fundamental harmonic prior ‖μ‖2−p , sometimes referred as the Stein prior, while η−1 has
the scale invariant prior. As shown in Maruyama and Strawderman (2017), this estimator is
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close to the boundary of quasi-admissibility and quasi-inadmissibility in that an estimator of
the form (1−aS/‖X‖2)X is quasi-inadmissible (and inadmissible) if a < (p−2)/(n+2) and
quasi-admissible if a ≥ (p − 2)/(n + 2). As mentioned above, quasi-admissibility (inadmis-
sibility) refers to the non-solvability (solvability) of the differential inequality �SURE ≤ 0
where �SURE is the Stein unbiased risk difference estimate.

COROLLARY 4.2. Assume Assumptions F.1, F.2 and F.3.1 on f . Let α ∈ (−1/2,0).

1. Then δπ with π(λ) = λα , or equivalently the generalized Bayes estimator under the
prior on (θ, η) given by

η−1ηp/2{
η‖θ‖2}α+(2−p)/2

,

is admissible among the class Dψ .
2. The form of the estimator does not depend on f and is given by {1 − ψα(W)}X where

W = ‖X‖2/S and

(4.19) ψα(w) =
∫ ∞

0 ξα(1 + ξ)n/2(1 + w + ξ)−(p+n)/2−1 dξ∫ ∞
0 ξα(1 + ξ)n/2+1(1 + w + ξ)−(p+n)/2−1 dξ

.

3. This estimator is minimax when

−
(

5 + 2

p − 2
+ 3p

n + 2

)−1
≤ α < 0.

PROOF. For Part 1, Assumptions A.1, A.2 and A.3.1 are satisfied by π(λ) = λα for α ∈
(−1/2,0). Part 2 is shown by Maruyama (2003). For Part 3, see Maruyama and Strawderman
(2009) and Appendix J. �

The following corollary relates to the so-called “simple Bayes estimators” from Maruyama
and Strawderman (2005).

COROLLARY 4.3. Assume f is Gaussian. Then the simple Bayes estimator(
1 − a

(a + 1)(b + 1) + ‖X‖2/S

)
X

with a ≥ (p − 2)/(n + 2) and b ≥ 0 is admissible among the class Dψ . Within the region
{(a, b) : a ≥ (p − 2)/(n+ 2) and b ≥ 0}, the subregion {(a, b) : a > (p − 1)/(n+ 1) and b ≥
0} corresponds to proper priors, for which

∫ ∞
0 π(λ)dλ < ∞. Furthermore, the estimators

with (p − 2)/(n + 2) ≤ a ≤ 2(p − 2)/(n + 2) are minimax.

PROOF. The estimator is a (generalized) Bayes equivariant estimator with respect to
π(λ;α,β, b) given by (4.4) with β = −n/2 and α = (p + n)/{2(a + 1)} − 1. The condi-
tion α + β < −1 equivalent to a > (p − 1)/(n + 1) corresponds to to a proper prior, for
which

∫ ∞
0 π(λ)dλ < ∞; see Maruyama and Strawderman (2005) and Appendix K. �

4.2. Numerical and asymptotic study of the risk. The risk functions of several of the
estimators in Corollaries 4.1 and 4.3 are presented in Figure 1. The first graph presents the
risks in the Gaussian case, for p = 10 and n = 10, for four estimators,

δJS =
(

1 − p − 2

n + 2

S

‖X‖2

)
X James–Stein estimator,

δ+
JS = max

(
0,1 − p − 2

n + 2

S

‖X‖2

)
X James–Stein positive part estimator,
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FIG. 1. Risk (Gaussian and multivariate-t (m = 10)) with p = 10 and n = 10.

δSB =
(

1 − (p − 2)/(n + 2)

‖X‖2/S + (p − 2)/(n + 2) + 1

)
X by Corollary 4.3,

δ0 = {
1 − ψ0

(‖X‖2/S
)}

X “Harmonic Bayes” by Corollary 4.1.

As in mentioned in Part 4 of Corollary 4.1, the risk of δ0 is uniformly smaller than that of
James–Stein estimator. Also when η‖θ‖2 = 0, the two risks are equal as shown in Kubokawa
(1994). Further, note δ+

JS and δSB are expressed as

δ+
JS = {

1 − ψ+
JS

(‖X‖2/S
)}

X with ψ+
JS(w) = min

(
1,

p − 2

n + 2

1

w

)
,

δSB = {
1 − ψSB

(‖X‖2/S
)}

X with ψ+
SB(w) = (p − 2)/(n + 2)

w + (p − 2)/(n + 2) + 1
.
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Note the risk function of {1 − ψ(‖X‖2/S)}X at η‖θ‖2 = 0 is

E
[{

1 − ψ
(‖X‖2/S

)}2
η‖X‖2]

.

As in Lemma L.1 in Appendix L, ψ+
JS(w) > ψ0(w) > ψSB(w) for all w ≥ 0, and hence the

risk functions of three estimators at η‖θ‖2 = 0 satisfy

R
(
θ, η, δ+

JS

)
< R(θ, η, δ0) < R(θ, η, δSB),

which can be observed in Figure 1.
For larger λ = η‖θ‖2, by Lemma L.1, we have

lim inf
λ→∞ λ2{

R(θ, η, δ0) − R(θ, η, δSB)
} ≥ 4cp,n(cp,n + 1)2(n − 2)2,

lim inf
λ→∞ λn/2+2{

R
(
θ, η, δ+

JS

) − R(θ, η, δ0)
} ≥ (n − 2)n/2+2

B(p/2 − 1, n/2 + 2)
,

which implies that risk plots of these three estimators surely cross each other and that the
risk of δSB is asymptotically smallest among four estimators. This is natural since the simple
Bayes estimator, δSB, is admissible among the class Dψ and its risk for smaller η‖θ‖2 is
relatively large.

The second graph of Figure 1 gives the corresponding risks for the case of a scaled
multivariate-t distribution with 10 degrees of freedom. Graphs in the cases (p = 15 and
n = 5) and (p = 5 and n = 15) are provided in Appendix M. The relative risk behaviors
in these cases are largely similar.

When we numerically calculate the risk of the “Harmonic Bayes” estimator given by
Corollary 4.1, a new form of ψ0 is quite helpful. By an integration by parts and change
of variables, ψ0(w) is rewritten as

ψ0(w) = p − 2

n + 2

1

w
− 2wp/2−2(1 + w)−(p+n)/2

(n + 2)Ibeta(w/(1 + w),p/2 − 1, n/2 + 2)
,

where Ibeta(x,α,β) is the incomplete Beta function given by

Ibeta(x,α,β) =
∫ x

0
λα−1(1 − λ)β−1 dλ.

Clearly Ibeta(x,α,β) may be regarded as the product of the Beta function B(α,β) and the
cumulative probability function of the Beta distribution B(α,β), which can be easily coded
in, for example, Python and R.

5. Proof of general admissibility of X for p = 1,2. In the Gaussian case, X ∼
Np(θ, η−1I ) and η‖U‖2 ∼ χ2

n , Kubokawa (2001) in his unpublished lecture notes written
in Japanese, showed that when p = 1,2, the estimator X is admissible among all estimators.
Here, we generalize it for our general situation with the underlying density f given by (1.3).
For a general prior g(θ, η), we have

δg(x,u) =
∫
Rp

∫ ∞
0 θηη(p+n)/2f (η{‖x − θ‖2 + ‖u‖2})g(θ, η)dθ dη∫

Rp

∫ ∞
0 ηη(p+n)/2f (η{‖x − θ‖2 + ‖u‖2})g(θ, η)dθ dη

= x +
∫
Rp

∫ ∞
0 (θ − x)ηη(p+n)/2f (η{‖x − θ‖2 + ‖u‖2})g(θ, η)dθ dη∫
Rp

∫ ∞
0 η(p+n)/2+1f (η{‖x − θ‖2 + ‖u‖2})g(θ, η)dθ dη

= x −
∫
Rp

∫ ∞
0 η(p+n)/2∇θF (η{‖x − θ‖2 + ‖u‖2})g(θ, η)dθ dη∫

Rp

∫ ∞
0 η(p+n)/2+1f (η{‖x − θ‖2 + ‖u‖2})g(θ, η)dθ dη

= x +
∫
Rp

∫ ∞
0 η(p+n)/2F(η{‖x − θ‖2 + ‖u‖2})∇θg(θ, η)dθ dη∫

Rp

∫ ∞
0 η(p+n)/2+1f (η{‖x − θ‖2 + ‖u‖2})g(θ, η)dθ dη

,
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where F(t) = (1/2)
∫ ∞
t f (s)ds and the last equality follows from an integration by parts.

Hence the estimator X is the generalized Bayes estimator with respect to any improper prior
for which ∇θg(θ, η) = 0 and for which the integration by parts is valid, say g(θ, η) = π(η).
Further, let

gi(θ, η) = h2
i

(
η‖θ‖2)

π(η),

where hi is given by (4.5). Clearly gi(θ, η) approaches π(η) as i → ∞. Also gi(θ, η) for any
fixed i is integrable under the condition

(5.1)
∫ ∞

0
η−p/2π(η)dη < ∞

since ∫
Rp

∫ ∞
0

gi(θ, η)dθ dη =
∫
Rp

∫ ∞
0

ηp/2h2
i

(
η‖θ‖2)

η−p/2π(η)dθ dη

= cp

∫ ∞
0

λp/2−1h2
i (λ)dλ

∫ ∞
0

η−p/2π(η)dη,

where, by Lemma E.2 of Appendix E,
∫ ∞

0 λp/2−1h2
i (λ)dλ < ∞ for p = 1,2.

Let δgi be the proper Bayes estimator with respect to gi(θ, η). Then the Bayes risk differ-
ence between X and δgi with respect to gi(θ, η) is

�i =
∫
Rp

∫ ∞
0

{
R(θ, η,X) − R(θ, η, δgi)

}
gi(θ, η)dθ dη.

We show, in Appendix N, that under Assumptions F.1, F.2 and F.3.1 on f , �i → 0 as i → ∞,
and hence, by Blyth’s (1951) theorem (e.g., Theorem 5.6.1 of Brown (1971), not our version
for admissibility among the class Dψ given in Theorem 4.1), X is admissible among all
estimators.

THEOREM 5.1. Assume Assumptions F.1, F.2 and F.3.1 on f . Then the estimator X is
admissible for p = 1,2.

6. Canonical form of the regression setup. Suppose a linear regression model is used
to relate y to the p predictors z1, . . . , zp ,

(6.1) y = α1m + Zβ + η−1/2ε,

where α is an unknown intercept parameter, 1m is an m × 1 vector of ones, Z = (z1, . . . , zp)

is an m × p design matrix, and β is a p × 1 vector of unknown regression coefficients. In
the error term, η is an unknown scalar and ε = (ε1, . . . , εm)T has a spherically symmetric
distribution,

(6.2) ε ∼ f̃
(‖ε‖2)

,

where f̃ (·) is the probability density, E[ε] = 0m, and Var[ε] = Im. Hence the density of y is

(6.3) y ∼ ηm/2f̃
(
η‖y − α1m − Zβ‖2)

,

where f̃ satisfies ∫
Rm

f̃
(‖v‖2)

dv = 1

for v = (v1, . . . , vm)T ∈ R
m. We assume that the columns of Z have been centered so that

zT
i 1m = 0 for 1 ≤ i ≤ p. We also assume that m > p + 1 and {z1, . . . , zp} are linearly inde-

pendent, which implies that

rankZ = p.
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Let Q be an m × m orthogonal matrix of the form

Q = (
1m/

√
m,Z

(
ZTZ

)−1/2
,W

)
,

where W is m × (m − p − 1) matrix which satisfies WT1m = 0, WTZ = 0 and WTW =
Im−p−1. Also let x = (ZTZ)−1/2ZTy = (ZTZ)1/2β̂LSE ∈R

p where β̂LSE = (ZTZ)−1ZTy.
Let

QTy = (√
mȳ, xT, uT)T

,

where u = WTy ∈ R
m−p−1. Then (

√
mȳ, x,u) are sufficient and the joint density of

(
√

mȳ, x,u) is

ηm/2f̃
(
η
{
m(ȳ − α)2 + ‖x − θ‖2 + ‖u‖2})

,

where θ = (ZTZ)1/2β . Further the marginal density of (x, u) is

η(m−1)/2f
(
η
{‖x − θ‖2 + ‖u‖2})

,

which we are considering in this paper, where m − 1 = p + n and

f (t) =
∫ ∞
−∞

f̃
(
v2 + t

)
dv.

Note that the loss function η‖δ−θ‖2 corresponds to so-called “predictive loss” η‖Zβ̂ −Zβ‖2

for estimation of the regression coefficient vector β .
In the equivariant estimator δψ of θ ,{

1 − ψ
(‖x‖2/s

)}
x,

‖x‖2/s is R2/(1−R2) in the regression context where R2 is the coefficient of determination.
It is natural to make use of R2 for shrinkage since small R2 corresponds to less reliability
of the least squares estimator of β . We note that the corresponding “simple Bayes estimator”
for regression coefficient β is rewritten as(

1 − a

(a + 1)(b + 1) + R2/(1 − R2)

)
β̂LSE

and has a shrinkage factor which is increasing in R2.
In the equivariant estimator δξ = {1 − ξ(x/

√
s)}x ∈ Dξ ,

(6.4)
x√
s

= (ZTZ)1/2β̂LSE√
m − p − 1σ̂

= (ZTZ)1/2
√

m − p − 1

β̂LSE

σ̂
,

where σ̂ = √
s/(m − p − 1). Under the Gaussian assumption, β̂LSE/σ̂ is a vector of the non-

central t-values.
Hence the restriction to Dψ or Dξ is quite natural in regression context. The minimaxity

and admissibility results of Sections 3 and 4 provide some guidance as to reasonable shrink-
age estimators in the regression context.

7. Concluding remarks. We have established admissibility of certain generalized Bayes
estimators within the class of equivariant estimators, of the mean vector for a spherically
symmetric distribution with unknown scale under invariant loss. In some cases, we establish
simultaneous minimaxity and, equivariant admissibility for broader classes of sampling dis-
tributions. In the Gaussian case, we establish admissibility within the equivariant estimators
of a class of generalized Bayes minimax estimators of a particularly simple form. We have
also investigated similar issues in the setting of a general linear regression model with in-
tercept and spherically symmetric error distribution. In this setting, the shrinkage factor of
equivariant estimators of the regression coefficients depends on the coefficient of determina-
tion.
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