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CONSISTENT MAXIMUM LIKELIHOOD ESTIMATION USING SUBSETS
WITH APPLICATIONS TO MULTIVARIATE MIXED MODELS

BY KARL OSKAR EKVALL* AND GALIN L. JONES**

School of Statistics, University of Minnesota, *ekvall@umn.edu; **galin@umn.edu

We present new results for consistency of maximum likelihood estima-
tors with a focus on multivariate mixed models. Our theory builds on the idea
of using subsets of the full data to establish consistency of estimators based
on the full data. It requires neither that the data consist of independent obser-
vations, nor that the observations can be modeled as a stationary stochastic
process. Compared to existing asymptotic theory using the idea of subsets, we
substantially weaken the assumptions, bringing them closer to what suffices
in classical settings. We apply our theory in two multivariate mixed mod-
els for which it was unknown whether maximum likelihood estimators are
consistent. The models we consider have nonstochastic predictors and mul-
tivariate responses which are possibly mixed-type (some discrete and some
continuous).

1. Introduction. Mixed models are frequently used in applications and have been the
subject of numerous articles and books [7, 15, 20]. Yet, it was unknown until recently whether
maximum likelihood estimators (MLEs) are consistent even in some simple generalized lin-
ear mixed models (GLMMs) [17]. What complicates proving consistency in some mixed
models is the dependence among response variables induced by certain random effect de-
signs. Of course, not all types of dependence between responses are problematic—there is a
vast literature on maximum likelihood estimation with dependent observations [1, 6, 13, 14,
25, 27, 30]. But, as we will discuss in more detail below, for some commonly used random
effect designs such as those with crossed random effects, existing conditions for consistency
of MLEs are hard to verify [17]. In a few GLMMs with crossed random effects, consistency
has been proved using a novel argument that relates the likelihood for the full data to that of
a subset consisting of independent and identically distributed (i.i.d.) random variables, “the
subset argument” [16].

Fundamentally, however, the issue is not unique to GLMMs or even mixed models; any
other parametric model appropriate for the same settings may present similar difficulties.
Accordingly, it was recognized in the first work on consistency using subsets that the idea
has the potential to be extended to more general models [16]. We address this by establishing
weaker conditions, based in part on the use of subsets, that are sufficient for consistency of
MLEs, without assuming a particular model. They help explain formally what makes the
subset argument work, why it is useful in some settings where more classical ones are not,
and when it can fail. We illustrate the usefulness of our conditions by proving consistency
of MLEs in two multivariate GLMMs (MGLMMs) to which existing theory has not been
applied successfully.

To fix ideas, let � denote a parameter set, f n
θ a joint density for the random vector

Y = (Y1, . . . , Yn), and θ0 the “true” parameter. Let also Ln(θ;Y) = f n
θ (Y )/f n

θ0(Y ) and
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�n(θ;Y) = logLn(θ;Y). If � is a finite set, then since Ln(θ
0;Y) = 1, a necessary and suf-

ficient condition for consistency of MLEs is that, as n → ∞,

P
(
Ln(θ;Y) ≥ 1

)→ 0 for all θ �= θ0.(1)

When � is not a finite set, (1) needs to be amended by a uniformity argument to be sufficient,
but the main ideas are the same. There are many ways to establish (1). With i.i.d. observations
and regularity conditions, (1) or stronger results follow from the law of large numbers applied
to n−1�n(θ;Y) [5, 8, 10, 28]. If Y is a more general stochastic process, �n(θ;Y) may still,
suitably scaled, satisfy an ergodic theorem, leading again to (1) under regularity conditions.
In the literature on maximum likelihood estimation with dependent observations, it is often
assumed that some such limit law holds, either for �n(θ;Y) or its derivatives [6, 13, 14], or
that the moments of �n(θ;Y) converge in an appropriate way [1, 25]. Unfortunately, in many
practically relevant settings, it is not clear that any such convergence holds and proving that
it does is arguably the main obstacle to establishing consistency of MLEs. Let us illustrate
using an MGLMM, commonly considered both in statistics and applied sciences [3, 4, 11,
19, 29].

Let X = [x1, . . . , xn]T ∈ R
n×p be a matrix of nonstochastic predictors, Z = [z1, . . . , zn]T ∈

R
n×r a nonstochastic design matrix and U ∈ R

r a multivariate normal vector of random
effects, with mean zero and covariance matrix �. For the MGLMM, � ⊆ R

d , for some d ≥ 1,
β = β(θ), and � = �(θ). The responses Y1, . . . , Yn are conditionally independent given U ,
with conditional exponential family densities

fθ,i(yi | u) = ki(yi, τi) exp
(

yi[xT
i β + zT

i u] − ci(x
T
i β + zT

i u)

τi

)
,

where, for i = 1, . . . , n, ci is the conditional cumulant function, τi a dispersion parame-
ter and ki(yi, τi) ensures fθ,i(yi | u) integrates to one. Conditional independence implies
f n

θ (y | u) =∏n
i=1 fθ,i(yi | u). Several of the responses could be from the same subject, hence

the “multivariate,” and they can be of mixed type, some continuous and some discrete, for
example.

The dependence among the linear predictors is easily characterized since Xβ + ZU ∼
N (Xβ,Z�ZT). The relevant density for maximum likelihood estimation, however, is the
marginal density,

f n
θ (y) =

∫
Rr

f n
θ (y | u)φr

θ (u)du,(2)

where φr
θ denotes the r-dimensional multivariate normal density with mean zero and covari-

ance matrix � = �(θ). The density f n
θ (y) typically does not admit a closed form expression.

Moreover, the dependence among responses it implies is in general less transparent than that
among the linear predictors. What we can say in general is that two responses are dependent
only if their corresponding linear predictors are. That is, response component i and j are
independent if zT

i �zj = 0.
It is convenient if Z�ZT is, upon possible reordering of the responses, block diagonal

since in that case the full vector of responses can be partitioned into independent subvectors.
If these are of fixed length as n grows, then one is back in the classical setting where the full
data consists only of an increasing number of independent vectors. This setting is common
to many articles on asymptotic theory in mixed models [12, 22, 23, 26]. Unfortunately, in
applications the number of independent response vectors—the number of diagonal blocks in
Z�ZT—is often small. For example, Sung and Geyer [26] note that in the famous salaman-
der data [18] there are 3 independent vectors, each of length 120. Thus, in their notation there
are n = 3 independent observations, but in our notation there are n = 3 × 120 = 360 possibly
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dependent observations. It seems more reasonable, then, to consider large sample properties
that do not assume the response vector Y consists only of a large number of independent
subvectors. The type of limiting process we consider has, in the context of mixed models,
previously only been investigated carefully in special cases that do not allow for predictors
or mixed-type responses [16, 21]. To be sure, Jiang’s [16] general theory does allow for pre-
dictors, but the specific applications do not. Due to the inclusion of nonstochastic predictors,
uniform convergence results needed for our theory, which in simpler models can be estab-
lished using classical laws of large numbers, are in one of our applications verified using
empirical process theory.

The intuition behind the usefulness of the subset argument can be understood by con-
sidering the following simple LMM with crossed random effects. Suppose Yi,j = θ +
U

(1)
i + U

(2)
j + Ei,j , where U

(1)
i , U

(2)
j and Ei,j are all i.i.d. standard normal, i = 1, . . . ,N ,

j = 1, . . . ,N . It is easy to check that the Yi,j ’s cannot be partitioned into independent subsets.
However, there are many subsets that, even though there is dependence among them, consist
of independent random variables. For example, the two subsets (Y1,1, Y2,2, . . . , YN,N) and
(Y1,2, Y2,3, . . . , YN−1,N ) are dependent, but taken separately they both consist of i.i.d. random
variables. The MLE of θ based on either subset, that is, a subset sample mean, is consistent
as N → ∞. Intuitively, then, the MLE based on all of the N2 variables should be, too. Of
course, the subset argument is not needed to prove that in this simple example, but the intu-
ition is the same for models where a direct proof is harder. How to formalize this intuition in
more general models, without actually having to require the subset components to be either
independent or identically distributed, is the topic of Section 2.

After developing a general theory, we will return to mixed models in Section 3 and prove
consistency of MLEs in two MGLMMs. The first is a longitudinal linear mixed model with
autoregressive temporal dependence and crossed random effects. In this model, the integral in
(2) has a closed form solution which makes it easier to demonstrate some of the intricacies of
the subset argument. For the second MGLMM we consider, which includes both binary and
continuous responses, f n

θ (y) does not admit a closed form expression. The subset argument
is especially useful in this setting since the considered subsets have likelihoods that are more
amenable to analysis than that of the full data.

The rest of the paper is organized as follows. We develop theory using subsets in Section 2.
In Section 3, we apply the theory from Section 2 to two MGLMMs. Section 4 contains a
brief discussion of our results. Many technical details are deferred to the Appendix and the
Supplementary Material [9].

2. Consistency using subsets of the full data. Recall that Y = (Y1, . . . , Yn) denotes a
collection of random variables and let W = (W1, . . . ,Wm) be a collection of random variables
that form a subset of those in Y , that is, {W1, . . . ,Wm} ⊆ {Y1, . . . , Yn}. We will henceforth
call W a subcollection of Y to avoid confusion with other subsets introduced later. The main
results in this section give conditions for when subcollections can be used to prove consis-
tency of maximizers of Ln(θ;Y). Unless otherwise noted, all convergence statements are as
n tends to infinity and the number of elements in a subcollection, m = m(n), tends to infinity
as a function of n.

All discussed random variables are defined on an underlying probability space (	,F,P),
with the elements of 	 denoted ω. The parameter set � is assumed to be a subset of a metric
space (T , dT ). We write, for any t ∈ T and δ > 0, Bδ(t) = {t ′ ∈ T : dT (t, t ′) < δ}. For any
A ⊆ T , Ā denotes its closure and ∂A its boundary. We assume the true parameter θ0 is
the same for all n but the joint density f n

θ (y) of Y , against a dominating, σ -finite product
measure ν = νn, can depend on n in an arbitrary manner. In particular, our setting allows for
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a triangular array of responses, Yn,1, . . . , Yn,n, though for convenience we do not make this
explicit in the notation.

By θ0 being the true parameter, we mean that P(Y ∈ A) = ∫
A f n

θ0(y)ν(dy) for any mea-
surable A in the range space of Y . That is, expectations and probabilities with respect
to P are the same as those taken with respect to distributions indexed by θ0. Densities
for the subcollection and its components are denoted by g in place of f ; for example,
Lm(θ;W) = gm

θ (W)/gm
θ0(W).

We will establish the following sufficient condition for consistency of maximizers of
Ln(θ;Y):

P
(

sup
θ∈�∩Bε(θ0)c

Ln(θ;Y) ≥ 1
)

→ 0 ∀ε > 0.(3)

That is, the probability that there exists a maximizer of the likelihood outside an arbitrarily
small ball around the true parameter tends to zero. We now discuss the use of subcollec-
tions and the assumptions used to achieve (3), which eventually leads to the main results in
Theorems 2.3 and 2.4 presented at the end of the section.

The appeal of using subcollections to prove (3), instead of directly working with the full
data likelihood Ln(θ;Y), can be explained using the following lemma.

LEMMA 2.1. For every c ∈ (0,∞), θ ∈ �, and subcollection W , P-almost surely,

P
(
Ln(θ;Y) ≥ c | W )≤ c−1Lm(θ;W).

Versions of Lemma 2.1 are well known [16, 17], but the Supplementary Material [9]
contains a proof for completeness. From the lemma it follows that if Lm(θ;W) → 0, then
E[P(Ln(θ;Y) ≥ 1 | W)] = P(Ln(θ;Y) ≥ 1) → 0 by dominated convergence. That is, up to a
uniformity argument, (3) can be established by showing that the likelihood of the subcollec-
tion converges to zero in probability, outside of a neighborhood of θ0. Uniform versions of
that convergence will play a crucial role in our results.

DEFINITION 2.1. We say that a subset A ⊆ � is identified by a subcollection W if

supθ∈A Lm(θ;W)
P→ 0. If supθ∈A Lm(θ;W) = OP(an) for some sequence of constants {an},

n = 1,2, . . . , we call an an identification rate.

To understand this definition better, consider the case where the subcollection W consists
of m i.i.d. random variables with common marginal density gθ,1. Suppose also that there is no
θ ∈ A for which gθ,1 = gθ0,1 ν-almost everywhere. That is, θ0 is an identified parameter in
the classical sense if we restrict attention to the parameter set A∪{θ0}. Then, under regularity
conditions [10], Theorems 16 and 17, one has supθ∈A E[�m(θ;W)] < 0 and, by a uniform
strong law of large numbers,

lim
m→∞m−1 sup

θ∈A

∣∣�m(θ;W) − E
[
�m(θ;W)

]∣∣= 0.

Using this, it is straightforward to show that A is identified by W with an identification rate
that is exponentially fast in m. That is, with i.i.d. components and regularity conditions, the
classical definition of an identified parameter implies identification in the sense of Defini-
tion 2.1. However, we want to allow for subcollections that do not consist of i.i.d. compo-
nents, and in that case the classical definition is not as useful. For example, we have indepen-
dent but not identically distributed components in one of our MGLMMs. In this and more
general cases, a parameter could be identified in the classical sense for all sample sizes n,
but loosely speaking, the difference between the distributions for W indexed by some θ ∈ A
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and that indexed by θ0 could vanish asymptotically, preventing W from identifying A in our
sense. Finally, notice also that A being identified by W is essentially equivalent to MLEs
based on W with the restricted parameter set A ∪ {θ0} being consistent.

We can now be more precise about how to use subcollections to establish (3). The strategy
is to first find a subcollection W that identifies Bε(θ

0)c ∩ � for every ε > 0, and then use
Lemma 2.1 to get the convergence for the full likelihood in (3). For this strategy to be useful,
showing that W identifies Bε(θ

0)c ∩ � has to be easier than showing that Y does since the
latter would directly imply (3). That is, one has to be able to pick out a subcollection with
more convenient properties than the full data. Our applications in Section 3 illustrate how this
can be done.

It is useful to allow for several subcollections W(i), consisting of mi components, and sub-
sets Ai , i = 1, . . . , s. By doing so, different subcollections can be used to identify different
subsets of the parameter set. For example, if the parameter set is a product space, as is com-
mon in applications, then different subcollections can be used to, loosely speaking, identify
different elements of the parameter vector. Assumption 1 makes precise what we need to
identify � ∩ Bε(θ

0)c using several subcollections.

ASSUMPTION 1. For every small enough ε > 0, there are subsets Ai = Ai(ε) ⊆ � and
corresponding subcollections W(i), i = 1, . . . , s, such that

⋃s
i=1 Ai ⊇ � ∩ Bε(θ

0)c and each
Ai is identified by W(i) with some identification rate an,i , n = 1,2, . . . , i = 1, . . . , s.

This assumption is somewhat similar to assumptions A2 and A3 made by Jiang [16],
which are also assumptions about parameter identification using several subcollections.
However, those assumptions are stated in terms of E(�mi

(θ;W(i))) and Var(�mi
(θ;W(i))),

i = 1, . . . , s. The fact that we do not have to assume anything about the variances of the
log-likelihood ratios is an important improvement. For example, if subcollection i consists of
i.i.d. components, the convergence of m−1

i �mi
(θ;W(i)) is immediate from the law of large

numbers, but calculating its variance may be difficult.
For finite parameter sets, Assumption 1 is enough to give consistency of MLEs via

Lemma 2.1. For more general cases, we also need to control the regularity of the log-
likelihood for the full data. The following two assumptions are made to ensure that the
uniformity of the convergence detailed in Assumption 1 and Definition 2.1 carries over to
�n(θ;Y), in the sense of (3).

ASSUMPTION 2. For every i ∈ {1, . . . , s} and n ∈ {1,2, . . . }, �n(θ;Y) is P-almost
surely Lipschitz continuous in θ on the Ai defined in Assumption 1; that is, there exists a
random variable Kn,i not depending on θ such that, P-almost surely and for every θ, θ ′ ∈ Ai ,∣∣�n(θ;Y) − �n

(
θ ′;Y )∣∣≤ Kn,idT

(
θ, θ ′).

ASSUMPTION 3. Each Ai from Assumption 1 can be covered by Mn,i balls of radius
δn,i such that

Kn,iδn,i
P→ 0 and Mn,ian,i → 0,

where an,i and Kn,i , i = 1, . . . , s, n = 1,2, . . . , are the same as in Assumptions 1 and 2,
respectively.

There is an interplay between Assumption 1–3 where the rates in Assumption 1 need to
be sufficiently fast in comparison to the growth of the Lipschitz constants in Assumption 2;
Assumption 3 specifies how the rates should align. Why these rates work will be clear from
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the proof of Lemma 2.2, but the intuition is as follows. To get uniformity in θ , we cover A1
(say) with balls small enough that the likelihood is approximately constant on them, so that
one can work pointwise in θ in each ball instead of uniformly. If the likelihood changes much
on A1 in the sense that Kn,1 is large, then the radius δn,1 needs to be small; this is what the
first rate condition says. The second rate condition illustrates that there is a price for picking
small balls, namely that if many balls are needed to cover A1, then fast identification rates
are needed.

The assumptions give us the convergence in (3), and consequently, the following lemma.

LEMMA 2.2. If Assumptions 1–3 hold, then the probability that there exists a global
maximizer of �n(θ;Y) in Bε(θ

0)c ∩ � tends to zero as n → ∞, for every ε > 0.

PROOF. We give an outline here and a detailed proof in the Appendix. Without loss of
generality, we may assume s = 1, so there is one subcollection W that identifies A = � ∩
Bε(θ

0)c, for arbitrary, small ε > 0, with rate an. It suffices to prove that P(supθ∈A Ln(θ;Y) ≥
1) → 0. For j = 1, . . . ,Mn let θj be a point in the intersection of A and the j th ball in the
cover of A given by Assumption 3. Some algebra and Assumption 2 gives

P
(

sup
θ∈A

Ln(θ;Y) ≥ 1
)

≤ P
(

max
j≤Mn

Ln

(
θj ;Y )≥ 1/2

)
+ P

(
eKnδn ≥ 2

)
.

The second term is o(1) by Assumption 3. It remains to deal with the first. By conditioning
on the subcollection and using Lemma 2.1, one gets

P
(

max
j≤Mn

Ln

(
θj ;Y )≥ 1/2 | W

)
≤ 2Mn sup

θ∈A

Lm(θ;W).

The right-hand side is oP(1) by Assumption 3, so the expectation of the left- hand side is o(1)

by dominated convergence, which completes the proof. �

We will use Lemma 2.2 to establish both a Wald-type consistency, meaning consistency of
sequences of global maximizers of Ln(θ;Y) and a Cramér-type consistency, meaning con-
sistency of a sequence of roots to the likelihood equations ∇�n(θ;Y) = 0. It follows almost
immediately from the lemma that if Ln(θ;Y) has a global maximizer θ̂n, P-almost surely

for every n, then θ̂n
P→ θ0. In particular, if � is compact one gets Wald-type consistency

with an additional continuity assumption. Since Assumption 2 implies Ln(θ;Y) is continu-
ous at every point except possibly θ0, assuming continuity also at the unknown θ0 should be
insignificant in any application of interest.

THEOREM 2.3. If � is compact, Ln(θ;Y) is P-almost surely continuous on � for every
n, and Assumptions 1–3 hold, then a maximizer θ̂n of Ln(θ;Y) exists P-almost surely for

every n, and θ̂n
P→ θ0 for any sequence of such maximizers.

PROOF. Since continuous functions attain their suprema on compact sets, Ln(θ;Y) has
a maximizer on �, P-almost surely. By Lemma 2.2, all maximizers are in Bε(θ

0) with prob-
ability tending to one, for all small enough ε > 0. �

Though compactness is a common assumption [14, 31], it is sometimes too restrictive or
even unnecessary. If Ln(θ;Y), or more commonly �n(θ;Y), is strictly concave in θ on a con-
vex �, then it is enough to verify the assumptions on a neighborhood of θ0 (cf. Theorem 2.4)
to get consistency of the unique global maximizer. However, a global maximizer need not
exist even as n → ∞, or perhaps the assumptions cannot be verified for other reasons. With
a few additional assumptions, Lemma 2.2 can then be used to get the weaker Cramér-type
consistency, which also only requires verifying assumptions for neighborhoods of θ0.
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THEOREM 2.4. If � ⊆ R
d for some d ≥ 1, Ln(θ;Y) is almost surely differentiable in θ

on a neighborhood of an interior θ0 for every n, and Assumptions 1–3 hold with � replaced
by B̄ε(θ

0) for all small enough ε > 0, then, with probability tending to one as n → ∞,
there exists a local maximizer of Ln(θ;Y), and hence a root to the likelihood equation
∇�n(θ;Y) = 0, in Bε(θ

0), for all small enough ε > 0.

PROOF. Since θ0 is interior, we may assume ε > 0 is small enough that all points of
B̄ε(θ

0) are interior. Almost sure differentiability of Ln(θ;Y) implies almost sure continu-
ity. Thus, Ln(θ;Y) attains a local maximum on the compact B̄ε(θ

0), P-almost surely. By
Lemma 2.2, with probability tending to one, there are no such maximizers in B̄ε(θ

0) \
Bε(θ

0) = ∂Bε(θ
0). Thus, with probability tending to one, there exists a local maximizer

in Bε(θ
0). Since Ln(θ;Y), and hence �n(θ;Y) is P-almost surely differentiable, any such

maximizer must be a root to the likelihood equation ∇�n(θ;Y) = 0. �

In the next section, we apply Theorem 2.4 to two special cases of the MGLMM described
in Section 1. We also discuss in more detail how to think about the subcollections and subsets
in specific models.

3. Application to multivariate mixed models.

3.1. Longitudinal linear mixed model. The first model we consider is an extension of a
variance components model that has been studied previously [21]. In addition to dependence
between subjects induced by crossed random effects, the model incorporates autoregressive
temporal dependence between measurements from the same subject. To make the discussion
clearer, we assume easy-to-specify fixed and random effect structures. This allows us to focus
on the core issues, that is, on how to select subcollections and subsets that can be used to
verify the conditions of our theory. Our model includes a baseline mean and a treatment
effect. A general fixed effect design matrix could be treated the same way as in our second
example, discussed in Section 3.2. Before establishing consistency, we discuss the model
definition and how to select appropriate subcollections.

Suppose for subjects (i, j), i = 1, . . . ,N and j = 1, . . . ,N , and time points t = 1, . . . , T ,
we observe the response Yi,j,t , where for convenience we assume both N and T are even. Let
the stacked vector of responses be

Y = [Y1,1,1, . . . , Y1,1,T , Y1,2,1, . . . , YN,N,T ]T ∈ R
n, n = T N2.

Recall from the Introduction that the MGLMM is specified by the conditional distribution
f n

θ (y | u) and the distribution of the random effects, φr
θ (u). For a linear mixed model, we

let f n
θ (y | u) be the density of a multivariate normal distribution with mean Xβ + Zu and

covariance matrix θ3In, θ3 > 0, where the two components of β = [θ1, θ2]T ∈ R
2 are a base-

line mean and a treatment effect, respectively, and Ik denotes the k × k identity matrix. Note,
in the notation of the Introduction, the dispersion parameter in the conditional distribution
is τi = θ3, for all i. We treat θ3 as a parameter to be estimated and not as known, which is
otherwise common in the literature.

Let hn be a vector of zeros and ones where the ith element is one if it corresponds to an
observation in time t ≤ T/2 and zero otherwise and let 1n denote an n-vector of ones. We take
X = [1n, hn] ∈ R

T N2×2, which corresponds to a treatment being applied in the first half of
the experiment. Unless T is fixed, which we do not assume, this setup implies the predictors
change with n. Indeed, as T grows, a particular observation can go from being made in the
latter half of the experiment to the earlier half. Thus, the responses form a triangular array.
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Partition U into three independent subvectors, U(1) ∼N (0, θ4IN), U(2) ∼ N (0, θ5IN) and

U(3) ∼ N (0, θ6IN2 ⊗�), where � = (�i,j ) = (θ
|i−j |
7 ) is a first-order autoregressive correla-

tion matrix, θi > 0, i = 4,5,6 and θ7 ∈ (−1,1). We will use U(1) and U(2) as crossed random
effects, inducing dependence between subjects, and U(3) to get temporal dependence within
subjects. To that end, let Z1 = IN ⊗ 1N ⊗ 1T , Z2 = 1N ⊗ IN ⊗ 1T and Z = [Z1,Z2, IT N2].
Then, with Jk = 1k1T

k , the covariance matrix of the linear predictors Xβ + ZU is

Z�ZT = θ4IN ⊗ JNT + θ5JN ⊗ IN ⊗ JT + θ6IN2 ⊗ �.

More transparently, for the elements of E(Y | U) = Xβ + ZU , it holds that

cov
[
E(Yi,j,t | U),E(Yi′,j ′,t ′ | U)

]=
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

θ4 + θ5 + θ6θ
|t−t ′|
7 i = i ′, j = j ′,

θ4 i = i ′, j �= j ′,
θ5 i �= i ′, j = j ′,
0 otherwise.

The marginal density f n
θ (y) admits a closed form expression in this example. Specifically, the

marginal distribution for Y is multivariate normal with mean m(θ) = Xβ(θ) and covariance
matrix C(θ) = θ3IT N2 + Z�(θ)ZT. Note that the structure of C(θ) is similar to that of the
covariance matrix of the linear predictors just discussed. In particular, there are many zeros
in the covariance matrix C(θ), that is, there are many independent observations, but Y cannot
be partitioned into independent vectors.

3.1.1. Subcollection selection. The model definitions imply that � =R×R× (0,∞) ×
(0,∞)× (0,∞)× (0,∞)× (−1,1), a subset of R7, which we equip with the metric induced
by the Euclidean norm ‖ · ‖. We write θ = (θ1, . . . , θ7).

Subcollections are selected for the purpose of verifying Assumption 1. The main idea guid-
ing selection is suggested by the fact that identification follows, under regularity conditions,
if the subcollection’s log-likelihood satisfies a law of large numbers. We will use s = 2 such
subcollections and require that they together identify θ in the classical sense. By this, we
mean that, letting νi

θ denote the distribution of subcollection i implied by parameter θ ,

{
θ ∈ � : ν1

θ = ν1
θ0

}∩ {θ ∈ � : ν2
θ = ν2

θ0

}= {
θ0}.

With these properties in mind, we take W(1) to consist of the vectors

W
(1)
i = (Y2i−1,2i−1,1, Y2i,2i,T ) ∈ R

2, i = 1, . . . ,N/2.

Because these vectors do not share any random effects, they are independent. In fact, they are
i.i.d. multivariate normal with common mean m1(θ) = [θ1 +θ2, θ1]T and common covariance
matrix C1(θ) = I2(θ3 + θ4 + θ5 + θ6). Clearly, θ1 and θ2 are identified in the classical sense
by this subcollection, but not θ3, . . . , θ7. Note that even though the predictors, and hence the
distributions, do not change with N for this subcollection, it is strictly speaking a triangular
array unless T is fixed.

To identify the remaining parameters, take W(2) to consist of the vectors

W
(2)
i = (Y2i−1,2i−1,1, Y2i−1,2i−1,2, Y2i−1,2i−1,3, Y2i−1,2i,1, Y2i,2i−1,1),
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i = 1, . . . ,N/2. These are also i.i.d. multivariate normal, with common mean m2(θ) = (θ1 +
θ2)15 and common covariance matrix

C2(θ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6∑
i=3

θi θ4 + θ5 + θ6θ7 θ4 + θ5 + θ6θ
2
7 θ4 θ5

·
6∑

i=3

θi θ4 + θ5 + θ6θ7 θ4 θ5

· ·
6∑

i=3

θi θ4 θ5

· · ·
6∑

i=3

θi 0

· · · ·
6∑

i=3

θi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is straightforward to check that C2(θ) = C2(θ
′) implies θi = θ ′

i , i = 3, . . . ,7.
In summary, the two subcollections together identify θ in the classical sense. Moreover,

since both subcollections consist of i.i.d. multivariate normal vectors, their log-likelihoods
satisfy a law of large numbers as N → ∞. With this we are equipped to verify that Assump-
tions 1–3 hold locally, leading to the main result of the section in Theorem 3.4.

3.1.2. Consistency. The purpose of this section is to verify the conditions of Theo-
rem 2.4. The interesting part of that is to check that Assumptions 1–3 hold with � replaced
by B̄ε(θ

0), for all small enough ε > 0. For this purpose, we will first prove two lemmas that
roughly correspond to Assumptions 1 and 2. The limiting process we consider is that N tends
to infinity while T can be fixed or tend to infinity with N , at rates discussed below. Thus, the
statements n → ∞ and N → ∞ are equivalent. We will need the following result which is
proved in the Supplementary Material [9].

PROPOSITION 3.1. If � is compact, Lmi
(θ;w(i)) is continuous in θ on � for every w(i)

in the support of W(i), i = 1, . . . , s, and
⋂s

i=1{θ ∈ � : νi
θ = νi

θ0} = {θ0}, then for any ε > 0

there are compact sets Ã1, . . . , Ãs such that {θ ∈ � : νi
θ = νi

θ0} ∩ Ãi = ∅, i = 1, . . . , s, and⋃s
i=1 Ãi = � ∩ Bε(θ

0)c.

Note, when applying the proposition in the present application, mi = N , s = 2, and � is
replaced by B̄ε(θ

0). As we will see in the proof of the following lemma, the proposition is
useful because the Ãi ’s it gives are compact. Lemma 3.2 formalizes verification of Assump-
tion 1.

LEMMA 3.2. If θ0 is an interior point of �, then for all small enough ε > 0 there exist
subsets A1 and A2 such that A1 ∪ A2 = ∂Bε(θ

0):

1. N−1 supθ∈Ai
E[�N/2(θ;W(i))] = supθ∈Ai

E[�1(θ;W(i)
1 )]/2 < 0,

2. P-almost surely, N−1 supθ∈Ai
|�N/2(θ;W(i)) − E[�N/2(θ;W(i))]| → 0, and, conse-

quently;
3. Ai is identified by W(i) with an identification rate an,i = o(e−εN(n)) for some ε > 0,

i = 1,2.
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PROOF. We give an outline here and a detailed proof in the Supplementary Material [9].
It is easy to check that the requirements of Proposition 3.1 are satisfied with � replaced by
B̄ε(θ

0). By taking the Ai ’s to be the Ãi ’s given by Proposition 3.1, proving points 1–2 is
similar to proving that MLEs based on subcollection i are consistent if the parameter set is
restricted to the compact set Ai ∪{θ0}, i = 1,2. Since the subcollection components are i.i.d.,
this is straightforward using classical ideas [10], Theorems 16 and 17. The only difference
from the referenced work is that one subcollection is a triangular array and so we use a
different strong law. Point 3 follows from points 1 and 2. �

Note that, in this lemma and elsewhere, ε is a small number that is defined in context
whereas ε always denotes the radius of the neighborhood of θ0 we are considering. It remains
to verify the assumptions concerned with the regularity of the log-likelihood of the full data.
When the log-likelihood is differentiable, Lipschitz continuity follows from the mean value
theorem if the gradient is bounded. The following lemma uses that to verify Assumption 2.
The resulting Lipschitz constant, that is, the bound of the gradient, is the same for both A1
and A2. The lemma also gives a probabilistic bound on the order of this Lipschitz constant as
n → ∞ that will be useful when verifying Assumption 3.

LEMMA 3.3. If θ0 is an interior point of �, then for every n and small enough ε > 0
there exists a random variable Kn such that, P-almost surely,

sup
θ∈B̄ε(θ0)

∥∥∇�n(θ;Y)
∥∥≤ Kn = oP

(
nb),

for some b > 0.

Proving Lemma 3.3 (see the Supplementary Material [9]) is largely an exercise in bound-
ing the eigenvalues of the covariance matrix C(θ) and its inverse on interior points of �. We
are ready for the main result of the section.

THEOREM 3.4. If θ0 is an interior point of � and T = O(Nk) for some k ≥ 0 as N →
∞, then, P-almost surely, there exists a sequence θ̂n of roots to the likelihood equations

∇�n(θ;Y) = 0 such that θ̂n
P→ θ0.

PROOF. We verify the conditions of Theorem 2.4. Fix an arbitrary ε > 0. Since θ0 is
interior, we may assume ε is small enough that all points in B̄ε(θ

0) are interior points of �.
As is proven in the Supplementary Material [9], �n(θ;Y) = log(f n

θ (Y )) is P-almost surely
differentiable on B̄ε(θ

0), so �n(θ;Y) = �n(θ, Y ) − �n(θ
0;Y) is too. By Lemma 3.2, As-

sumption 1 holds with what is there denoted � replaced by B̄ε(θ
0). The identification rate is

exponentially fast in N/2, an = o(e−Nε) for some ε > 0. Lemma 3.3 shows that �n(θ;Y)

is Kn-Lipschitz on both A1 and A2, and that Kn = oP(nb) for some b > 0. This verifies
Assumption 2. It remains only to verify that the rate conditions in Assumption 3 hold. The
δ-covering number of the sphere ∂Bε(θ

0) is O([ε/δ]d−1) as δ → 0 [2], Lemma 1. Thus,
since Ai ⊆ ∂Bε(θ

0), by picking δi,n = n−b we can have Mn,i = O(n[d−1]b) as n → ∞,
i = 1,2. Our choice of δn,i ensures Kn,iδn,i = Knδn = oP(1), which is the first rate condi-
tion. Since the identification rate is exponential in N/2 for both subcollections, we have that
Mn,ian,i = O(N2b[d−1]T b[d−1]e−εN) for some ε > 0, which is o(1) as N → ∞ since T is of
(at most) polynomial order in N . �

We expect the proof technique used here to work in many other models. Essentially, all
that is needed is that the subcollections’ log-likelihoods satisfy uniform strong laws, that the
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gradient of the full data log-likelihood is of polynomial order, and that the number of obser-
vations in any subcollection grows faster than logarithmically in the total sample size. Here,
to show that the gradient of the log-likelihood is of polynomial order (Lemma 3.3) we worked
with the closed form expression 2 logf n

θ (Y ) = − log det(C(θ)) − (Y − m(θ))TC−1(θ)(Y −
m(θ)) − n log(2π), using that ‖Y‖ is of polynomial order and that the eigenvalues of C(θ)

are appropriately bounded by polynomials in n on Bε(θ
0). This illustrates that, in order to

determine if the gradient in a given model is of polynomial order or not, one in general has to
consider both the stochastic properties of the data and the particular parameterization. Uni-
form strong laws for the subcollections’ log-likelihoods, leading to Lemma 3.2, hold here
because the subcollections consist of i.i.d. random variables. This is clearly not necessary; in
the next example, we consider subcollections with independent but not identically distributed
variables, and, similarly, strong laws for stationary stochastic processes may apply if one has
a model with subcollections consisting of dependent but identically distributed variables.

It is possible that the assumption that T = O(Nk), k ≥ 0, could be relaxed by picking
other subcollections that also make use of the variation in the time dimension. It is not trivial,
however, since the dependence between any two responses sharing a random effect does not
vanish as time between the observations increases. Indeed, it is crucial that N → ∞ in this
model: if T → ∞ but N is fixed, then the data consist of a fixed number (N2) of vectors of
T equicorrelated random variables. In that case, it is not possible to find a subcollection that
consists of an increasing number of independent variables. Accordingly, one can show that
even if one was to simplify our model so that the N2 vectors were independent and one was
estimating only a mean parameter, the MLE would not be consistent. In the next section, we
examine how predictors and mixed-type responses affect the argument.

3.2. Logit-normal MGLMM. The model we consider in this section is an extension in
several ways of the logistic GLMMs for which the technique based on subcollections was
first developed [16]. The random effect structures are similar, that is, crossed, but we have
multivariate, mixed-type responses and predictors. The main ideas for verifying the assump-
tions of the theory from Section 2 are the same as in our LMM example. However, due
to the inclusion of predictors, we use results from empirical process theory in place of the
more classical strong laws used for the LMM. Showing existence of appropriate subsets of
the parameter space that the subcollections identify also requires more work than with i.i.d.
components. As before, we discuss the model definition and subcollection selection before
establishing consistency.

Suppose for subjects (i, j), i = 1, . . . and N , j = 1, . . . ,N , there are two responses, Yi,j,1
which is continuous and Yi,j,2 which is binary. The vector of all responses is

Y = [Y1,1,1, Y1,1,2, Y1,2,1, . . . , YN,N,2]T ∈ R
n, n = 2N2.

For each subject, we observe a vector of nonstochastic predictors xi,j ∈ R
p , the same for

both responses. Similarly, zi,j ∈R
r is the same for both responses. Let ηi,j,k = xT

i,j βk + zT
i,j u

be the linear predictor, i = 1, . . . ,N , j = 1, . . . ,N , k = 1,2, where β1 = [θ1, . . . , θp]T, β2 =
[θp+1, . . . , θ2p]T. We assume that ‖xi,j‖ ≤ 1 for all i, j . In practice, this only rules out the
possibility that ‖xi,j‖ = ∞ since our setting allows for the standardization of predictors. The
conditional density of the responses given the random effects that we consider is, up to scaling
by (2π)−n/2,

f n
θ (y | u) ∝ exp

[∑
i,j

−(yi,j,1 − ηi,j,1)
2/2 + yi,j,2ηi,j,2 − log

(
1 + eηi,j,2

)]
.

Given the random effects, Yi,j,1 is normal with mean ηi,j,1 and variance 1, and Yi,j,2 is
Bernoulli with success probability 1/(1 + e−ηi,j,2)—a logistic GLMM. The choice of τi = 1
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for all i is made for identifiability reasons for the Bernoulli responses, and for convenience for
the normal responses. Setting the τi’s to some other known constants does not fundamentally
change the results.

Suppose U(1) ∼ N (0, θdIN) and U(2) ∼ N (0, θdIN), independently, with corresponding
design matrices Z1 = IN ⊗ 1N ⊗ 12 and Z2 = 1N ⊗ In ⊗ 12. Taking U = [U(1)T,U(2)T]T and

Z = [Z1,Z2], the linear predictors are ηi,j,k = xT
i,j βk + u

(1)
i + u

(2)
j . Thus, responses from

the same subject share two random effects, responses from different subjects with one of the
first two indexes in common share one random effect, and other responses share no random
effects and are hence independent. The covariance matrix for the linear predictors is easily
computed in the same way as in the LMM. The covariance matrix for responses, however, is
less transparent. It is for simplicity that we assume in this section that all random effects have
the same variance. It is not necessary for our theory to be operational but this simplification
shortens proofs considerably and allows us to focus on the main ideas.

3.2.1. Subcollection selection. With p predictors the (2p + 1)-dimensional parameter
set is � = R

p ×R
p × (0,∞), a subset of Rd , again equipped with the usual Euclidean met-

ric. The intuition behind the selection of subcollections is that the normal responses should
identify the coefficient β1 and the variance parameter θd . Similarly, the Bernoulli responses
should identify the coefficient vector β2. With that in mind, we take for i = 1,2,

W(i) = (Y1,1,i , Y2,2,i , . . . , YN,N,i).

Both of these subcollections consist of independent but not identically distributed random
variables—independence follows from the fact that no components in the same subcollection
share random effects. Notice that these subcollections are in practice often triangular arrays
since the predictors may need to be scaled by 1/maxi≤N,j≤N ‖xi,j‖ to satisfy ‖xi,j‖ ≤ 1. All
responses in the first subcollection have marginal normal distributions and all responses in
the second have marginal Bernoulli distributions.

Identification is more complicated than in our previous example. One issue is that there
can be many θd and β2 that give the same marginal success probability for the components
in the second subcollection. A second issue is that, since the predictors can change with n,
classical identification for a fixed n does not necessarily lead to identification in the sense of
Definition 2.1. Additionally, the approach used in the LMM to find appropriate subsets A1
and A2 by means of Proposition 3.1 only works in general when the subcollection compo-
nents are i.i.d. Thus, we take a slightly different route to establishing consistency compared
to the LMM.

3.2.2. Consistency. In this section, we verify the conditions of Theorem 2.4. The limiting
process is that N → ∞, which is equivalent to n → ∞ since n = 2N2. We will first prove
two lemmas that roughly correspond to Assumptions 1 and 2.

Let λmin(·) denote the minimum eigenvalue of its matrix argument.

LEMMA 3.5. If θ0 is an interior point of � and

lim inf
N→∞ λmin

(
N−1

N∑
i=1

xi,ix
T
i,i

)
> 0,

then for all small enough ε > 0 there exist A1 and A2 such that A1 ∪ A2 = ∂Bε(θ
0):

1. lim supN→∞ N−1 supθ∈Ai
E[�N(θ;W(i))] < 0,

2. supθ∈Ai
N−1|�N(θ;W(i)) − E[�N(θ;W(i))]| P→ 0, and consequently;
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3. Ai is identified by W(i) with an identification rate an,i = o(e−εN ) for some ε > 0,
i = 1,2.

PROOF. A detailed proof is the Appendix; we here give the proof idea. Let A2 =
∂Bε(θ

0) ∩ {θ : |θd − θ0
d | ≤ ζ } ∩ {‖β2 − β0

2‖ ≥ ε/2}, for some small ζ > 0. Let A1 be
the closure of ∂Bε(θ

0) ∩ Ac
2. The idea is that if ζ is small enough, so that θd ≈ θ0

d and
‖β2 − β0

2‖ ≥ ε/2 on A2, then the distributions of W(2) implied by θ ∈ A2 and θ0 are dif-
ferent if X = [x1,1, x2,2, . . . , xN,N ]T has full column rank. That is, W(2) should be able to
distinguish every θ ∈ A2 from θ0. Moreover, one can show that on A1 it holds either that
|θd − θ0

d | ≥ min(ζ, ε/4) or that ‖β1 − β0
1‖ ≥ ε/4. In either case, W(1) should be able to dis-

tinguish θ ∈ A1 from θ0. Formalizing this idea leads to point 1. Point 2 follows from checking
the conditions of a uniform law of large numbers [24], Theorem 8.2, and point 3 from points
1 and 2. �

The explicit construction of the subsets A1 and A2, as opposed to using Proposition 3.1,
warrants an additional comment. Recall, the proposition gives compact Ã1 and Ã2 such that
Ã1 ∪ Ã2 = ∂Bε(θ

0) and νi
θ �= νi

θ0 , θ ∈ Ãi , i = 1,2. If one takes Ai = Ãi , then point 1 in
Lemma 3.2 follows. Moreover, when the subcollection components are i.i.d., this in turn leads
to point 1 in Lemma 3.5, which is what is really needed. However, when the distributions of
the subcollection components are not identical, this last implication is not true in general.

Having selected appropriate subcollections and subsets it remains only to check that the
log-likelihood for the full data satisfies the regularity conditions in Assumptions 2–3. The
following lemma verifies Assumption 2 and establishes a rate needed for the verification of
Assumption 3.

LEMMA 3.6. If θ0 is an interior point of �, then for every n and small enough ε > 0
there exists a random variable Kn such that, P-almost surely,

sup
θ∈B̄ε(θ0)

∥∥∇�n(θ;Y)
∥∥≤ Kn = oP

(
nb),

for some b > 0.

Upon inspecting the proof (Supplementary Material [9]) one sees that b can be taken to
be 1 + ε, for any ε > 0. This is a better (slower) rate than that obtained in the linear mixed
model (see the proof of Lemma 3.3). We are now ready to state the main result of the section.

THEOREM 3.7. If θ0 is an interior point of � and

lim inf
N→∞ λmin

(
N−1

N∑
i=1

xi,ix
T
i,i

)
> 0,

then P-almost surely, there exists a sequence θ̂n of roots to the likelihood equations

∇�n(θ;Y) = 0 such that θ̂n
P→ θ0.

PROOF. The proof is similar to that of Theorem 3.4 so we skip some details. We may
assume all points in B̄ε(θ

0) are interior points of �. As is proven in the Supplementary
Material [9], �n(θ;Y) is differentiable on B̄ε(θ

0). By Lemma 3.5, the identification rate
is exponentially fast in N and Lemma 3.6 shows that �n(θ;Y) is Kn-Lipschitz on both
A1 and A2, and that Kn = oP(nb) for some b > 0. This verifies Assumption 2. By picking
δi,n = n−b, we can have Mn,i = O(n[d−1]b) as n → ∞, i = 1,2. Thus, Knδn = oP(1) and
Mn,ian,i = O(N2b[d−1]e−εN) for some ε > 0, which is o(1) as N → ∞ since n = 2N2. �
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4. Discussion. Our theory develops the current state-of-the-art asymptotic theory based
on subcollections to cover more general cases. The assumptions we make highlight what
makes the use of subcollections work. In particular, the interplay between the identification
rates of subcollections and the regularity of the likelihood function for the full data is made
precise. We note that when the subcollections consist of m ∈ {1,2, . . . } independent random
variables, as in our examples, then if n = o(mb) for some b > 0 and ∇�n(θ;Y) = oP(nb′

) for
some b′ > 0, uniformly on a compact �, the rate conditions are satisfied. This is so because,
under regularity conditions, the identification rate in a subcollection with m independent
random variables is exponential in m = n1/b. Since this argument works for arbitrarily large
b and b′ our theory is operational in a wide range of models. Loosely speaking, if the score
function is of less than exponential order in the sample size and there are subcollections
of independent random variables that grow faster than logarithmically in the sample size,
the MLE is consistent. The conditions should be verifiable in many models since they often
require only standard asymptotic tools. For example, in the LMM example nothing more
than a uniform law of large numbers and strict positivity of the K–L divergence between
distributions corresponding to distinct, identified parameters is needed. Though not pursued
here, by inspecting the assumptions of our theory one also sees that it has the potential to
be extended to allow the dimension of the parameter set, d , grow with n. The rates required
in our assumptions could be satisfied also if d grows, at least if at a slow enough rate. The
wide applicability of empirical process theory, which we use in the second application, also
suggests that it may be possible to verify our conditions in yet more complicated models.

Consistency of MLEs has not previously been established in either of the two models to
which we apply the general theory. In particular, previous work on asymptotic theory for
MLEs in mixed models often either assumes independent replications of a response vector,
that there are no predictors or no mixed-type responses. We have tried to keep the models
here as simple as possible while still illustrating key ideas. Crossed random effects, temporal
dependence and predictors are included because they are challenging theoretically and are
commonly used in practice. We have refrained from including things that do not require any
new methods but make ideas less transparent. For example, it would be straightforward to
include random effects that are not crossed, possibly at the expense of using more subcol-
lections or subcollections consisting of independent vectors of larger dimension than what is
now necessary. Similarly, adding several crossed random effects does not make things much
harder, only less transparent.

Avenues for future research includes the rate of convergence of the MLEs as well as their
asymptotic distribution. Intuitively, one expects MLEs based on the full data to converge at
least as fast as the slowest of the subcollection MLEs, that is, the estimators one gets from
using only a subset of the full data. There is some evidence of this, namely that, under reg-
ularity conditions, the Fisher information in the full data is always larger than that in any
subcollection [16]. On the other hand, it is easy to show that, for the simple LMM example
in the Introduction, the full data MLE converges at the same rate as that based on a subcol-
lection of N = √

n i.i.d. observations; that is, at the rate n1/4. Given the similarities of the
random effect structures, that convergence rate may in future work be a reasonable working
hypothesis for MLEs in the MGLMM considered here.

APPENDIX: PROOFS

PROOF OF LEMMA 2.2. Fix some arbitrary ε > 0. If supθ∈Ai
Ln(θ;Y) < 1 for i =

1, . . . , s, then since Ln(θ
0;Y) = 1, there are no global maximizers in

⋃s
i=1 Ai ⊇ �∩Bε(θ

0)c.
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Thus, it suffices to prove

P

(
s⋃

i=1

{
sup
θ∈Ai

Ln(θ;Y) ≥ 1
})

≤
s∑

i=1

P
(

sup
θ∈Ai

Ln(θ;Y) ≥ 1
)

→ 0.

Since s is fixed it is enough that P(supθ∈Ai
Ln(θ;Y) ≥ 1) → 0 for every i = 1, . . . , s. Without

loss of generality, consider i = 1. Pick a cover of A1 as given by Assumption 3 and, for every
ball in the cover, pick a θj in the intersection of that ball with A1. If there are some balls
that do not intersect A1, they may be discarded from the cover, so we assume without loss of
generality that all balls do intersect A1. We then get Mn,1 points such that every point in A1 is
within δn,1 of at least one of them. For any θ ∈ A1, let θj (θ) denote the θj closest to it (pick
an arbitrary one if there are many). Using the Lipschitz continuity given by Assumption 2
and that x �→ ex is increasing we have

P
(

sup
θ∈A1

Ln(θ;Y) ≥ 1
)

= P
(

sup
θ∈A1

�n(θ;Y) ≥ 0
)

= P
(

sup
θ∈A1

�n(θ;Y) ≥ �n

(
θ0;Y ))

which is upper bounded by

P
(

sup
θ∈A1

[
�n

(
θj (θ);Y )+ Kn,1dT

(
θ, θj (θ)

)]≥ �n

(
θ0;Y )).

Because there are only Mn,1 points θj , and dT (θj (θ), θ) ≤ δn,1 since θj (θ) is the one closest
to θ , we get that the last inline equation is upper bounded by

P
(

max
j≤Mn,1

fθj (Y )eKn,1δn,1 ≥ fθ0(Y )
)

≤ P
(
2 max

j≤Mn,1
fθj (Y ) ≥ fθ0(Y )

)
+ P

(
eKn,1δn,1 ≥ 2

)

= P
(
2 max

j≤Mn,1
fθj (Y ) ≥ fθ0(Y )

)
+ o(1),

where the last line uses Assumption 3. The remaining term,

P
(
2 max

j≤Mn,1
fθj (Y ) ≥ fθ0(Y )

)
= P

(
max

j≤Mn,1
Ln

(
θj ;Y )≥ 1/2

)
,

we will deal with using Lemma 2.1 and dominated convergence. After conditioning on W(1),
we have

P
(

max
j≤Mn,1

Ln

(
θj ;Y )≥ 1/2 | W(1)

)
≤

Mn,1∑
i=1

2Lm1

(
θj ;W(1))

≤ 2Mn,1 sup
θ∈A1

Lm1

(
θ,W(1)),

P-almost surely, where the first inequality is by subadditivity and Lemma 2.1, and the second
uses that Ln(θ

j ;W(1)) ≤ supθ∈A1
Lm1(θ;W(1)) by definition. The expression in the last line

vanishes as n → ∞ by Assumption 3. Thus,

P
(

max
j≤Mn,1

Ln

(
θj ;Y )≥ 1/2

)
→ 0

by dominated convergence. The dominating function can be the constant 1. This completes
the proof. �
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Let C(δ,G,‖ · ‖) denote the δ-covering number of the set G under the distance associated
with the norm ‖ · ‖. We will use the following result due to Pollard [24], Theorem 8.2, here
stated in terms of covering numbers instead of packing numbers.

LEMMA A.1. Let h1(ω, θ), h2(ω, θ), . . . , θ ∈ A ⊆ �, be independent processes with
integrable envelopes H1(ω),H2(ω), . . . , meaning |hi(ω, θ)| ≤ Hi(ω), for all i and θ ∈ A.
Let H = (H1, . . . ,HN) and

HN,ω = {[
h1(ω, θ), . . . , hN(ω, θ)

] ∈ R
N : θ ∈ A

}
.

If for every ε > 0, there exists a K > 0 such that:

1. N−1∑N
i=1 E[HiI (Hi > K)] < ε for all N , and

2. log C(ε‖H‖1,HN,ω,‖ · ‖1) = oP(N) as N → ∞,

then

sup
θ∈A

N−1

∣∣∣∣∣
N∑

i=1

hi(ω, θ) − E
(
hi(ω, θ)

)∣∣∣∣∣ P→ 0.

PROOF OF LEMMA 3.5. Let us first prove that, given ε > 0, there exists a ζ > 0, and
hence Ai = Ai(ε, ζ ), i = 1,2, such that point 1 in the lemma holds. The definition of Ai(ε, ζ )

is as in the main text. Let c(t) = log(1 + et ) denote the cumulant function in the conditional
distribution of Yi,i,2 given the random effects and define

pi(β2, θd) = E
[
c′(xT

i,iβ2 +
√

θd/θ0
d

(
U

(1)
i + U

(2)
j

))]
.

Recall, E denotes expectation with respect to the distributions indexed by θ0, so pi(β2, θd) is
the success probability of Yi,i,2 when β2 and θd are the true parameters.

Note that because the components in W(2) are independent, we can write E[�N(θ;W(2))]
as a sum of N terms, each summand being the negative K–L divergence between two
Bernoulli variables with parameters pi(β2, θd) and pi(β

0
2 , θ0

d ). Thus (see the Supplementary
Material [9]),

N−1E
[
�N

(
θ;W(2))]≤ −2N−1

N∑
i=1

[
pi(β2, θd) − pi

(
β0

2 , θ0
d

)]2
which one can show is upper bounded by

(4)

−2

[
N−1

N∑
i=1

∣∣pi(β2, θd) − pi

(
β2, θ

0
d

)∣∣

− N−1
N∑

i=1

∣∣pi

(
β0

2 , θ0
d

)− pi

(
β2, θ

0
d

)∣∣]2

.

Let us work separately with the averages in the last line. We will show that the sec-
ond can be made arbitrarily small on A2 by selecting ζ small enough, and that the first
is bounded away from zero on the same A2, leading to an asymptotic upper bound on
supθ∈A2

N−1E[�N(θ;W(2))] away from zero. We start with the first average.
Let H be a compact subset of R such that xT

i,iβ2 ∈ H for all i and θ ∈ B̄ε(θ
0). Such

H exists because the predictors are bounded and β2 is bounded on B̄ε(θ
0). Then, defining

p̃i(γ, θd) as pi(β2, θd) but with xT
i,iβ2 replaced by γ , we get

sup
θ∈A2

∣∣pi(β2, θd) − pi

(
β2, θ

0
d

)∣∣≤ sup
θ∈A2

sup
γ∈H

∣∣p̃i(γ, θd) − p̃i

(
γ, θ0

d

)∣∣.
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Since the random variable in the expectation defining p̃i is bounded by 1 (it is the mean
of a Bernoulli random variable), p̃i is continuous by dominated convergence. Thus, since
H is compact, supγ∈H |p̃i(γ, θd) − p̃i(γ, θ0

d )| is continuous in θd . That is, we can make

supγ∈H |p̃i(γ, θd)− p̃i(γ, θ0
d )| arbitrarily small on A2 = A2(ζ, ε) by picking ζ small enough,

which is what we wanted to show. We next work with the second average in (4).
By the mean value theorem, for some β̃2,i between β2 and β0

2 , |pi(β
0
2 , θ0

d )−pi(β2, θ
0
d )| =

|E(c′′(xT
i,i β̃2,i + U

(2)
i + U

(2)
j ))xT

i,i(β2 − β0
2 )|. Here, differentiation under the expectation is

permissible since c′′ is the variance of a Bernoulli random variable, hence bounded by 1/4,
and |xT

ii(β2 − β0
2 )| ≤ ‖xi,i‖‖β2 − β0

2‖2 ≤ ε on B̄ε(θ
0). By the same bound on c′′, we get that

E(c′′(γ + U
(1)
i + U

(2)
j )) is continuous in γ . Thus, infγ∈H E(c′′(γ + U

(1)
i + U

(2)
j )) ≥ c1 > 0.

That c1 must be positive follows from that c′′ is strictly positive on all of R. We have thus
proven that |pi(β

0
2 , θ0

d )−pi(β2, θ
0
d )| ≥ c1|xT

i (β2 −β0
2 )|, uniformly on B̄ε(θ

0). Using this and
that |xT

i,i(β2 − β0
2 )| ≤ ‖xi,i‖‖β2 − β0

2‖ ≤ ε ≤ 1 so that squaring it makes it smaller,

N−1
N∑

i=1

∣∣pi

(
β0

2 , θ0
d

)− pi

(
β2, θ

0
d

)∣∣

≥ c1N
−1

N∑
i=1

∣∣xT
i,i

(
β2 − β0

2
)∣∣

≥ c1N
−1(β2 − β0

2
)T( N∑

i=1

xi,ix
T
i,i

)(
β2 − β0

2
)

≥ c1
∥∥β2 − β0

2

∥∥2
N−1λmin

(
N∑

i=1

xi,ix
T
i,i

)

which lower limit as N → ∞ is bounded below by some strictly positive constant, say c2,
since lim infN→∞ N−1λmin(

∑N
i=1 xi,ix

T
i,i) ≥ c3 > 0, for some c3, and ‖β2 − β0

2‖ ≥ ε/2 > 0
on A2. To summarize, we may pick ζ so small that the second average in (4) is less than c2/2,
say, and hence get supθ∈A2

N−1E[�N(θ;W(2))] ≤ −2(c2 − c2/2)2 < 0, for all but at most
finitely many N . This proves point 1 as it pertains to A2.

Consider next

A1 = ∂Bε

(
θ0)∩ ({θ : ∣∣θd − θ0

d

∣∣≥ ζ
}∪ {θ : ∥∥β2 − β0

2

∥∥≤ ε/2
})

and W(1). Due to independence, E[�N(θ;W(1))] can be written as a sum of N terms in the
form

−1

2

[
log

(
1 + 2θd

1 + 2θ0
d

)
+ 1 + 2θ0

d + [xT
i (β2 − β0

2 )]2

1 + 2θd

− 1
]
,(5)

which is the negative K–L divergence between two univariate normal distributions. Let us
consider the possible values this can take for θ ∈ A1. If |θd − θ0

d | ≥ ζ , then (5) is upper
bounded by what is obtained when β1 = β0

1 . This in turn is a continuous function in θd and
hence attains its supremum on the compact set {θd : ζ ≤ |θd −θ0

d | ≤ ε}, and hence on A1. This
supremum is strictly positive because the divergence can be zero only if θd = θ0

d . If instead
‖β2 − β0

2‖ ≤ ε/2, then either |θd − θ0
d | ≥ ε/4 or ‖β1 − β0

1‖ ≥ ε/4, for otherwise it cannot
be that ‖θ − θ0‖ = ε. If |θd − θ0

d | ≥ ε/4 the divergence in (5) has a lower bound away from
zero by the same argument as for the cases |θd − θ0

d | ≥ ζ . It remains to deal with the case
‖β1 − β0

1‖ ≥ ε/4.
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Writing [
xT
i,i

(
β0

1 − β1
)]2 = (

β0
1 − β1

)T
xix

T
i

(
β0

1 − β1
)

we see that −2N−1�N(θ;W(1)) is equal to

log
(

1 + 2θd

1 + 2θ0
d

)
+ 1 + 2θ0

d + N−1∑N
i=1(β

0
1 − β1)

Txix
T
i (β0

1 − β1)

1 + 2θd

− 1,

which has a lower limit that is greater than

log
(

1 + 2θd

1 + 2θ0
d

)
+ 1 + 2θ0

d + c3(ε/4)2

1 + 2θd

− 1.

This expression is in turn maximized in θd at θd = θ0
d + c3(ε/16)2; this follows from a

straightforward optimization in 1 + 2θd . The corresponding maximum evaluates to log(1 +
2θ0

d + c3(ε/4)2) − log(1 + 2θ0
d ) > 0. This completes the proof of point 1.

The proof of point 2 consists of checking the conditions of Lemma A.1. We first work with
A1 and W(1). Let hi(ω, θ) = log[fθ (Yi,i,1(ω))/fθ0(Yi,i,1(ω))] be the log-likelihood ratio for
the ith observation in the first subcollection, i = 1, . . . ,N . We equip HN,ω with the L1 norm
‖·‖1, and � is equipped with the L2 norm as before. To facilitate checking the two conditions,
we will first derive envelopes with the following properties: sup−∞<i<∞ EHk

i < ∞ for every
k ≥ 0, sup−∞<i<∞ P(Hi ≥ K) → 0 as K → 0, and each hi(ω, θ) is Hi -Lipschitz in θ on
B̄ε(θ

0), and hence on A1, for every ω. We start with the Lipschitz property.
Let us use the slight abuse of notation that yi,i,1 = Yi,i,1(ω). Since the distribution of W(1)

does not depend on β2, we have ∇β2hi(ω, θ) = 0, and for some c1, c2, c3, c4, c5 > 0 (depend-
ing on ε), and every θ ∈ B̄ε(θ

0),∥∥∇β1hi(ω, θ)
∥∥= ∥∥(yi,i,1 − xT

i,iβ1
)
xi,i/(1 + 2θd)

∥∥≤ c1|yi,i,1| + c2,

∣∣∇θd
hi(ω, θ)

∣∣= 1

2

∣∣∣∣ 1

1 + 2θd

− (
yi,i,1 − xT

i,iβ1
)2

/(1 + 2θd)2
∣∣∣∣

≤ c3 + c4
(|yi,i,1| + c5

)2
.

Let Hi be the sum of the bounds, that is,

Hi(ω) = c1|yi,i,1| + c2 + c3 + c4
(|yi,i,1| + c5

)2
.

By the mean value theorem, |hi(ω, θ) − hi(θ
′,ω)| = |(θ − θ ′)T∇hi(ω, θ̃)| ≤ ‖θ − θ ′‖Hi for

some θ̃ between θ and θ ′. That is, hi is Hi-Lipschitz on B̄ε(θ
0). That Hi is an envelope

for hi follows from noting that hi(ω, θ0) = 0 so by taking θ ′ = θ0 in the previous calcula-
tion, |hi(ω, θ)| ≤ Hi‖θ − θ0‖ ≤ Hi on B̄ε(θ

0). That supi E(Hk
i ) < ∞ for every k > 0 and

supi P(Hi > K) → 0 as K → ∞ follow from that Yi,i,1 is normally distributed with variance
1 + 2θ0

d , not depending on i, and mean satisfying −‖β0
1‖ ≤ xT

i,iβ
0
1 ≤ ‖β0

1‖. We are now ready
to check the conditions of Lemma A.1.

By the Cauchy–Schwarz inequality and the properties just derived, we have for every fixed
N that

N−1
N∑

i=1

E
[
HiI (Hi > K)

]≤ sup
i

E
[
H 2

i

]
sup

i

P(Hi ≥ K) → 0, K → ∞,

which verifies the first condition.
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For the second condition, note that the derived Lipschitz property gives, for arbitrary h =
(h1(ω, θ), . . . , hN(ω, θ)) and h′ = (h1(ω, θ ′), . . . , hN(ω, θ ′)) in HN,ω:

∥∥h − h′∥∥
1 =

N∑
i=1

∣∣hi(ω, θ) − hi

(
ω,θ ′)∣∣

= ∥∥θ − θ ′∥∥‖H‖1.

Thus, if we cover ∂Bε(θ
0) with ε-balls with centers θj , j = 1, . . . ,M , then the corresponding

L1 balls in R
N of radius ε‖H‖1 with centers

hj = (
h1
(
ω,θj ), . . . , hN

(
ω,θj ))

cover HN,ω. This is so because for every θ ∈ ∂Bε(θ
0) there is a θj such that ‖θ −θj‖ ≤ ε, and

hence by the Lipschitz property ‖h(ω, θ) − h(ω, θj )‖1 ≤ ‖H‖1ε. Thus, C(ε‖H‖1,HN,ω,‖ ·
‖1) ≤ C(ε, ∂Bε(θ

0),‖ · ‖). Since the covering number C(ε, ∂Bε(θ
0),‖ · ‖) is constant in N ,

the second condition of Lemma A.1 is verified for A1 and W(1).
The arguments for A2 and W(2) are similar, redefining hi(ω, θ) with Yi,i,1 replaced by

Y1,1,2, taking A2 in place of A1, and so on. We need only prove the existence of envelopes
H1, . . . ,HN with the desired properties. Using that |yi,j,2 −c′(ηi,2,1)]| ≤ 1 and that fθ (yi,i,2 |
u)fθ (u)/fθ (yi,i,2) = fθ (u | yi,i,2), one gets

∥∥∇β2hi(ω, θ)
∥∥=

∥∥∥∥ 1

fθ (yi,i,2)

∫
fθ (yi,i,2 | u)fθ (u)

[
yi,i,2 − c′(ηi,j,2)

]
xi,i du

∥∥∥∥
≤ ‖xi,i‖ ≤ 1.

Using that U
(1)
i and U

(2)
j are the only random effects entering the linear predictor ηi,j,2, and

that fθ (yi,j,2 | u) ≤ 1,

∣∣∇θd
hi(ω, θ)

∣∣≤ 1

2θdfθ (yi,i,2)

∫
fθ

(
u

(1)
i , u

(2)
j

)((u
(1)
i )2 + (u

(2)
j )2

θd

)
du + 1

θd

= 1

θdfθ (yi,j,2)
+ 1

θd

.

Due to continuity and compactness, the quantity in the last line attains its supremum on
B̄ε(θ

0). This maximum is finite for both yi,i,2 = 1 and yi,i,2 = 0 since the marginal success
probability cannot be one or zero on interior points of �. Thus, on B̄ε(θ

0), ‖∇hi(ω, θ)‖ is
bounded by a constant, say H , the largest needed for the two cases yi,i,2 = 0 and yi,i,2 = 1. By
setting Hi = H , i = 1, . . . ,N , we have envelopes with the right properties and this completes
the proof of point 2.

Finally, we prove point 3. Consider without loss of generality the first subset and subcollec-
tion. For economical notation, we omit dependence on the subcollection and write LN(θ) =
LN(θ;W(1)) and �N(θ) = �N(θ;W(1)). Point 1 gives that supθ∈A1

E[�N(θ)] < −3ε for
some ε > 0 and all large enough N . Assuming that N is large enough that this holds, we get

P
(
eεN sup

θ∈A1

LN(θ) > e−εN
)

≤ P
(
N−1 sup

θ∈A1

�N(θ) > ε + sup
θ∈A1

E
[
�N(θ)

])

≤ P
(
N−1 sup

θ∈A1

∣∣�N(θ) − E
[
�N(θ)

]∣∣> ε
)
,

which vanishes as N → ∞ by point 2. �
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