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We provide statistical guarantees for a family of variational approxima-
tions to Bayesian posterior distributions, called α-VB, which has close con-
nections with variational approximations of tempered posteriors in the liter-
ature. The standard variational approximation is a special case of α-VB with
α = 1. When α ∈ (0,1], a novel class of variational inequalities are developed
for linking the Bayes risk under the variational approximation to the objective
function in the variational optimization problem, implying that maximizing
the evidence lower bound in variational inference has the effect of minimizing
the Bayes risk within the variational density family. Operating in a frequen-
tist setup, the variational inequalities imply that point estimates constructed
from the α-VB procedure converge at an optimal rate to the true parameter in
a wide range of problems. We illustrate our general theory with a number of
examples, including the mean-field variational approximation to (low)-high-
dimensional Bayesian linear regression with spike and slab priors, Gaussian
mixture models and latent Dirichlet allocation.

1. Introduction and preliminaries. Variational inference [22, 34] is a widely used tool
for approximating complicated probability densities, especially those arising as posterior dis-
tributions from complex hierarchical Bayesian models. It provides an alternative strategy to
Markov chain Monte Carlo (MCMC, [14, 18]) sampling by turning the sampling/inference
problem into an optimization problem, where a closest member, relative to the Kullback–
Leibler (KL) divergence, in a family of approximate densities is picked out as a proxy to the
target density. Variational inference has found its success in a variety of contexts, especially
in models involving latent variables, such as Hidden Markov models [26], graphical models
[4, 34], mixture models [13, 20, 31] and topic models [9, 11] among others. See the recent
review paper [10] by Blei et al. for a comprehensive introduction to variational inference.

The popularity of variational methods can be largely attributed to their computational ad-
vantages over MCMC. It has been empirically observed in many applications that variational
inference operates orders of magnitude faster than MCMC for achieving the same approxi-
mation accuracy. Moreover, compared to MCMC, variational inference tends to be easier to
scale to big data due to its inherent optimization nature, and can take advantage of modern
optimization techniques such as stochastic optimization [23, 24] and distributed optimiza-
tion [1]. However, unlike MCMC that is guaranteed to produce (almost) exact samples from
the target density for ergodic chains [29], variational inference does not enjoy such general
theoretical guarantee.

Several threads of research have been devoted to characterize statistical properties of the
variational proxy to the true posterior distribution; refer to Section 5.2 of [10] for a rela-
tively comprehensive survey of the theoretical literature on variational inference until around
2017; we discuss more recent work paralleling ours in a subsequent paragraph. Almost all
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of these earlier studies are conducted in a case-by-case manner by either explicitly analyz-
ing the fixed point equation of the variational optimization problem, or directly analyzing
the iterative algorithm for solving the optimization problem. In addition, these analyzes re-
quire certain structural assumptions on the priors such as conjugacy, and is not applicable to
broader classes of priors.

This article studies first-order statistical optimality properties of a class of variational ap-
proximations, called α-VB, in a unified framework. The class of approximations introduces
a fixed temperature parameter α inside the usual VB objective function which controls the
relative tradeoff between model-fit and prior regularization. The usual VB approximation is
retained as a special case corresponding to α = 1. The general α-VB procedure inherits all
the computational tractability and scalability from the α = 1 case, and implementation-wise
only requires minor modifications to existing variational algorithms such as the coordinate
ascent variational inference (CAVI) algorithm [7, 10]; see the Supplementary Material [40]
for specific examples. In the absence of latent variables, the α-VB approximation is identical
to the variational approximation to tempered posteriors considered in [2, 3] and references
therein. The α-VB objective function considered here provides a natural extension to their
tempered variational approximation to models involving latent variables.

During the last year, there has been a surge of interest in the theoretical understanding
of variational Bayes procedures. The reviewers directed our attention to the very interesting
aforementioned preprints [2, 3] on the theoretical properties of the variational approxima-
tion to tempered posteriors. Through a number of examples, [2] demonstrate the applicabil-
ity of their general theory dictating optimal first-order frequentist risk behavior of the tem-
pered variational approximation. While this article was under review, we also came across the
preprint [42] obtaining novel contraction results for the usual variational approximation (i.e.,
α = 1) in models without latent variables. The main contribution of our article which sepa-
rates itself from these recent works is its ability to handle latent variable models. On the other
hand, [2] provide risk bounds under model misspecification and also combine their statistical
bounds with algorithmic convergence in a particular case, none of which is considered here.
Zhang and Gao [42] obtain an interesting connection between variational approximations and
empirical Bayes procedures in the Gaussian sequence model, and provide a very interesting
example where the variational approximation contracts faster than the true posterior.

For α ∈ (0,1], we develop novel variational inequalities for the Bayes risk under the vari-
ational solution. These variational inequalities link the Bayes risk with the α-VB objective
function, implying that maximizing the evidence lower bound has the effect of minimizing
the Bayes risk within the variational density family. A crucial upshot of this analysis is that
point estimates constructed from the variational posterior concentrate at the true parameter at
the same rate as those constructed from the actual posterior for a variety of problems. There is
now a well-developed literature on the frequentist concentration properties of posterior distri-
butions in nonparametric problems; refer to [30] for a detailed review, and the present paper
takes a step toward developing similar general-purpose theoretical guarantees for variational
solutions. We applied our theory to a number of examples where VB is commonly used, in-
cluding mean-field variational approximation to high-dimensional Bayesian linear regression
with spike and slab priors, Gaussian mixture models and latent Dirichlet allocation.

The α < 1 case is of particular interest as the major ingredient of the variational inequality
involves the prior mass assigned to appropriate Kullback–Leibler neighborhoods of the truth
which can be bounded in a straightforward fashion in the aforesaid models and beyond. The
variational inequalities for the α < 1 case do not immediately extend to the α = 1 case under
a simple limiting operation, and require a separate treatment under stronger assumptions. In
particular, we make use of additional testability assumptions [16] on the likelihood function
detailed in Section 3.2.
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It is a well-known fact [36, 38] that the covariance matrices from the variational approx-
imations are typically “too small” compared with those for the sampling distribution of the
maximum likelihood estimator, which combined with the Bernstein–von Mises theorem [32]
implies that the variational approximation may not converge to the true posterior distribution.
This fact combined with our result illustrate the landscape of variational approximation—
minimizing the KL divergence over the variational family forces the variational distribution
to concentrate around the truth at the optimal rate (due to the heavy penalty on the tails in the
KL divergence); however, the local shape of the obtained density function around the truth
can be far away from that of the true posterior due to mismatch between the distributions
in the variational family and the true posterior. Overall, our results reveal that concentration
of the posterior measure is not only useful in guaranteeing desirable statistical properties,
but also has computational benefits in certifying consistency and concentration of variational
approximations.

In the remainder of this section, we introduce key notation used in the paper and provide
necessary background on variational inference.

1.1. Notation. We briefly introduce notation that will be used throughout the paper.
Let h(P ‖ Q) = (

∫
(
√

dP/dλ − √
dQ/dλ)2 dλ)1/2 and D(P ‖ Q) = ∫

log(dP/dQ)dP

denote the Hellinger distance and Kullback–Leibler divergence, respectively, between two
probability measures P and Q that have Radon–Nikodym derivatives dP/dλ and dQ/dλ

relative to a common dominating measure λ. Note that the value of the Hellinger dis-
tance does not depend on the choice of λ. We define an additional discrepancy measure
V (P ‖ Q) = ∫

log2(dP/dQ)dP , which will be referred to as the V -divergence. For a set
A, we use the notation IA to denote its indicator function. For any vector μ and positive
semidefinite matrix �, we use N (μ,�) to denote the normal distribution with mean μ and
covariance matrix �, and use N (θ;μ,�) to denote its pdf at θ .

For any α ∈ (0,1), let

Dα(P ‖ Q) = 1

α − 1
log

∫ (
dP

dQ

)α

dQ(1.1)

denote the Rényi divergence of order α. Jensen’s inequality implies that Dα(P ‖ Q) ≥ 0
for any α ∈ (0,1), and the equality holds if and only if P = Q. The Hellinger distance can
be related with the α-divergence with α = 1/2 by D1/2(P ‖ Q) = −2 log{1 − (1/2)h2(P ‖
Q)} ≥ h2(P ‖ Q) using the inequality log(1 + t) < t for t > −1. More details and properties
of the α-divergence can be found in [33]. We will also interchangeably use notation h(p ‖
q), D(p ‖ q), V (p ‖ q) and Dα(p ‖ q) to denote these discrepancy measures when density
functions p = dP/dλ and q = dQ/dλ are clear from the context.

1.2. Review of variational inference. Suppose we have observations Yn = (Y1, . . . , Yn) ∈
Y n with n denoting the sample size. Let P(n)

θ be the distribution of Yn given parameter

θ ∈ � that admits a density p
(n)
θ relative to a common dominating measure. We will also

interchangeably use P(Yn|θ) and p(Yn|θ) to denote P
(n)
θ and its density function (likelihood

function) p
(n)
θ . For example, when Yn is discrete (continuous) and the common dominat-

ing measure is the counting (Lebesgue) measure, p
(n)
θ corresponds to the probability mass

(density) function of Yn given θ . Assume additionally that the likelihood p(Yn|θ) can be
represented as

p
(
Yn|θ)=∑

sn

p
(
Yn|Sn = sn, θ

)
p
(
Sn = sn|θ),
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where Sn denotes a collection of latent or unobserved variables; the superscript n signifies the
possible dependence of the number of latent variables on n; for example, when there are ob-
servation specific latent variables. In certain situations, the latent variables may be introduced
for purely computational reasons to simplify an otherwise intractable likelihood, such as the
latent cluster indicators in a mixture model. Alternatively, a complex probabilistic model
p(Yn|θ) may itself be defined in a hierarchical fashion by first specifying the distribution of
the data given latent variables and parameters, and then specifying the latent variable dis-
tribution given parameters; examples include the latent Dirichlet allocation and many other
prominent Bayesian hierarchical models. For ease of presentation, we have assumed discrete
latent variables in the above display and continue to do so subsequently, although our devel-
opment seamlessly extends to continuous latent variables by replacing sums with integrals;
further details are provided in a Supplementary Material [40].

Let Pθ denote a prior distribution on θ with density function pθ , and denote Wn =
(θ, Sn) ∈ W n. In a Bayesian framework, all inference is based on the augmented posterior
density p(Wn|Yn) given by

p
(
Wn|Yn)= p

(
θ, Sn|Yn)∝ p

(
Yn|θ, Sn)p(Sn|θ)pθ(θ).(1.2)

In many cases, p(Wn|Yn) can be inconvenient for conducting direct analysis due to its in-
tractable normalizing constant and expensive to sample from due to the slow mixing of stan-
dard MCMC algorithms. Variational inference aims to bypass these difficulties by turning
the inference problem into an optimization problem, which can be solved by using iterative
algorithms such as coordinate descent [7] and alternating minimization.

Let � denote a prespecified family of density functions over W n that can be either param-
eterized by some “variational parameters,” or required to satisfy some structural constraints
(see below for examples of �). The goal of variational inference is to approximate this con-
ditional density p(Wn|Yn) by finding the closest member of this family in KL divergence to
the conditional density p(Wn|Yn) of interest, that is, computing the minimizer

q̂Wn := argmin
qWn∈�

D
[
qWn(·) ‖ p

(·|Yn)]
= argmin

qWn∈�

{
−
∫
W n

qWn

(
wn) log

p(wn|Yn)

qWn(wn)
dwn

}
(1.3)

= argmin
qWn∈�

{
−
∫
W n

qWn

(
wn) log

p(Yn|wn)pWn(wn)

qWn(wn)
dwn

︸ ︷︷ ︸
L(qWn)

}
,

where the last step follows by using Bayes rule and the fact that the marginal density p(Yn)

does not depend on Wn and qWn . The function L(qWn) inside the argmin-operator above
(without the negative sign) is called the evidence lower bound (ELBO, [10]) since it provides
a lower bound to the log evidence logp(Yn),

logp
(
Yn)= L(qWn) + D

[
qWn(·) ‖ p

(·|Yn)]≥ L(qWn),(1.4)

where the equality holds if and only if qWn = p(·|Yn). The decomposition (1.4) provides
an alternative interpretation of variational inference to the original derivation from Jensen’s
inequality [22]—minimizing the KL divergence over the variational family � is equivalent to
maximizing the ELBO over �. When � is composed of all densities over W n, this variational
approximation q̂Wn exactly recovers p(Wn|Yn). In general, the variational family � is chosen
to balance between computational tractability and approximation accuracy. Some common
examples of � are provided below.
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EXAMPLE (Exponential variational family). When there is no latent variable and Wn =
θ ∈ � corresponds to the parameter in the model, a popular choice of the variational family
is an exponential family of distributions. Among the exponential variational families, the
Gaussian variational family, qθ (θ;μ,�) ≡ N (θ;μ,�) for θ ∈ R

d , is the most widely used
owing to the Bernstein–von Mises theorem (Section 10.2 of [32]), stating that for regular
parametric models, the posterior distribution converges to a Gaussian limit relative to the total
variation metric as the sample size tends to infinity. There are also some recent developments
by replacing the single Gaussian with a Gaussian mixture as the variational family to improve
finite-sample approximation [43], which is useful when the posterior distribution is skewed
or far away from Gaussian for the given sample size.

EXAMPLE (Mean-field variational family). Suppose that Wn can be decomposed into m

components (or blocks) as Wn = (W1,W2, . . . ,Wm) for some m > 1, where each component
Wj ∈ Wj can be multidimensional. The mean-field variational family �MF is composed of all
density functions over W n =∏m

j=1 Wj that factorizes as

qWn

(
wn)= m∏

j=1

qWj
(wj ), wn = (w1, . . . ,wm) ∈ W n,

where each variational factor qWj
is a density function over Wj for j = 1, . . . ,m. A natural

mean-field decomposition is to let qWn(wn) = qθ (θ)qSn(sn), with qSn often further decom-
posed as qSn(sn) =∏n

i=1 qSi
(si).

Note that we have not specified the parametric form of the individual variational factors,
which are determined by properties of the model—in some cases, the optimal qWj

is in
the same parametric family as the conditional distribution of Wj given the parameter. The
corresponding mean-field variational approximation q̂Wn , which is necessarily of the form∏m

j=1 q̂Wj
(wj ), can be computed via the coordinate ascent variational inference (CAVI) al-

gorithm [7, 10] which iteratively optimizes each variational factor keeping others fixed at
their present value and resembles the EM algorithm in the presence of latent variables.

The mean-field variational family can be further constrained by restricting each factor qWj

to belong to a parametric family, such as the exponential family in the previous example. In
particular, it is a common practice to restrict the variational density qθ of the parameter into a
structured family (e.g., the mean-field family if θ is multidimensional), which will be denoted
by �θ in the sequel.

The rest of the paper is organized as follows. In Section 2, we introduce the α-VB ob-
jective function and relate it to usual VB. Section 3 presents our general theoretical results
concerning finite sample risk bounds for the α-VB solution. In Section 4, we apply the the-
ory to concrete examples. We conclude with a discussion in Section 5. All proofs and some
additional discussions are provided in the Supplementary Material [40], which also contains
a detailed simulation study.

2. The α-VB procedure. Before introducing the proposed family of objective functions,
we first represent the KL term D[qWn(·) ‖ p(·|Yn)] in a more convenient form which provides
intuition into how VB works in the presence of latent variables and aids our subsequent
theoretical development.

2.1. A further decomposition of the ELBO. To aid our subsequent development, we in-
troduce some additional notation and make some simplifying assumptions. We decompose
θ = (μ,π), with the assumption that the joint distribution of (Y n, Sn) conditional on θ is
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expressed as p(Yn,Sn = sn|θ) = p(Yn|Sn = sn,μ) × p(Sn = sn|π). In other words, μ is
the parameter characterizing the conditional distribution P(Yn|Sn,μ) of the observation Yn

given latent variable Sn, and πsn characterizes the distribution P(Sn|π) of the latent vari-
ables. Denote p(Sn = sn|π) by πsn . When Sn is discrete taking values in a countable set Cn,
π = {πsn : sn ∈ Cn}. We shall also assume the mean-field decomposition

qWn

(
wn)= qθ (θ)qSn

(
sn)(2.1)

throughout, and let � = �θ × �Sn denote the class of such product variational distributions.
When necessary subsequently, we shall further assume qSn(sn) =∏n

i=1 qSi
(si) and qθ (θ) =

qμ(μ)qπ(π), which however is not immediately necessary for this subsection.
The KL divergence D[qWn(·) ‖ p(·|Yn)] in (1.3) involves both parameters and latent vari-

ables. Separating out the KL divergence for the parameter part leads to the equivalent repre-
sentation

D
[
qWn(·) ‖ p

(·|Yn)]
= logp

(
Yn)+ D

(
qθ ‖ pθ

)
−
∫
�

[∑
sn

qSn

(
sn) log

p(Yn|μ, sn)πsn

qSn(sn)

]
︸ ︷︷ ︸

	̂n(θ)

qθ (dθ).
(2.2)

Observe that, using concavity of x �→ logx and Jensen’s inequality,

logp
(
Yn|θ)= log

[∑
sn

qSn

(
sn)p(Yn|μ, sn)πsn

qSn(sn)

]

≥∑
sn

qSn

(
sn) log

p(Yn|μ, sn)πsn

qSn(sn)
.

The quantity 	̂n(θ) in (2.2) can therefore be recognized as an approximation (from below)
to the log likelihood 	n(θ) := logp(Yn|θ) in terms of the latent variables. Define an average
Jensen gap 
J due to the variational approximation to the log likelihood,


J (qθ , qSn) =
∫
�

[
	n(θ) − 	̂n(θ)

]
qθ (dθ) ≥ 0.

With this, write the KL divergence D[qWn(·) ‖ p(·|Yn)] as

D
[
qWn(·) ‖ p

(·|Yn)]
= −

∫
�

	n(θ)qθ (dθ) + 
J (qθ , qSn) + D
(
qθ ‖ pθ

)+ logp
(
Yn),(2.3)

which splits as a sum of three terms: an integrated (w.r.t. the variational distribution) negative
log likelihood, the KL divergence between the variational distribution qθ and the prior pθ

for θ , and the Jensen gap 
J due to the latent variables. In particular, the role of the latent
variable variational distribution qSn is conveniently confined to 
J .

Another view of the above is an equivalent formulation of the ELBO decomposition (1.4),

logp
(
Yn)= L(qWn) + 
J (qθ , qSn) + D

[
qθ (θ) ‖ p

(
θ |Yn)],(2.4)

which readily follows since

D
[
qθ (θ) ‖ p

(
θ |Yn)]= −

∫
�

	n(θ)qθ (dθ) + D
(
qθ ‖ pθ

)
.

Thus, in latent variable models, maximizing the ELBO L(qWn) is equivalent to minimizing
a sum of the Jensen gap 
J and the KL divergence between the variational density and the
posterior density of the parameters. When there is no likelihood approximation with latent
variables, 
J = 0.
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2.2. The α-VB objective function. Here and in the rest of the paper, we adopt the fre-
quentist perspective by assuming that there is a true data generating model P(n)

θ∗ that gen-
erates the data Yn, and θ∗ will be referred to as the true parameter, or simply truth. Let
	n(θ, θ∗) = 	n(θ) − 	n(θ

∗) be the log-likelihood ratio. Define

�n(qθ , qSn) = −
∫
�

	n

(
θ, θ∗)qθ (dθ) + 
J (qθ , qSn) + D

(
qθ ‖ pθ

)
,(2.5)

and observe that �n differs from the KL divergence D[qWn(·) ‖ p(·|Yn)] in (2.3) only by
	n(θ

∗) which does not involve the variational densities. Hence, minimizing D[qWn(·) ‖
p(·|Yn)] is equivalent to minimizing �n(qθ , qSn). We note here that the introduction of the
	n(θ

∗) term is to develop theoretical intuition and the actual minimization does not require
the knowledge of θ∗.

The objective function �n in (2.5) elucidates the tradeoff between model-fit and fidelity
to the prior underlying a variational approximation, which is akin to the classical bias-
variance tradeoff for shrinkage or penalized estimators. The model-fit term consists of two
constituents: the first term is an averaged (with respect to the variational distribution) log-
likelihood ratio which tends to get small as the variational distribution qθ places more mass
near the true parameter θ∗, while the second term is the Jensen gap 
J due to the variational
approximation with the latent variables. On the other hand, the regularization or penalty term
D(qθ ||pθ) prevents overfitting to the data by constricting the KL divergence between the
variational solution and the prior.

In this article, we study a wider class of variational objective functions �n,α indexed by a
scalar parameter α ∈ (0,1] which encompass the usual VB,

(2.6) �n,α(qθ , qSn) = −
∫
�

	n

(
θ, θ∗)qθ (dθ) + 
J (qθ , qSn)︸ ︷︷ ︸

model fit

+α−1D
(
qθ ‖ pθ

)︸ ︷︷ ︸
regularization

,

and define the α-VB solution as

(q̂θ,α, q̂Sn,α) = argmin
(qθ ,qSn )∈�

�n,α(qθ , qSn).(2.7)

Observe that the α-VB criterion �n,α differs from �n only in the regularization term, where
the inverse temperature parameter α controls the amount of regularization, with smaller α

implying a stronger penalty. When α = 1, �n,α reduces to the usual variational objective
function �n in (2.5), and we shall denote the solution of (2.7) by q̂θ and q̂Sn as before.
As we shall see in the sequel, the introduction of the temperature parameter α substantially
simplifies the theoretical analysis and allows one to certify (near-)minimax optimality of the
α-VB solution for α < 1 under only a prior mass condition, whereas analysis of the the usual
VB solution (α = 1) requires more intricate testing arguments.

The α-VB solution can also be interpreted as the minimizer of a certain divergence func-
tion between the product variational distribution qθ (θ) × qSn(sn) and the joint α-fractional
posterior distribution [5] of (θ, Sn),

Pα

(
θ ∈ B, sn|Yn)= ∫

B[p(Yn|μ, sn)πsn]αpθ (θ) dθ∫
�

∑
sn[p(Yn|μ, sn)πsn]αpθ (θ) dθ

,(2.8)

which is obtained by raising the joint likelihood of (θ, sn) to the fractional power α, and
combining with the prior pθ using Bayes rule. We shall use pα(·|Yn) to denote the fractional
posterior density. The fractional posterior is a specific example of a Gibbs posterior [21] and
shares a nice coherence property with the usual posterior when viewed as a mechanism for
updating beliefs [8].
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PROPOSITION 2.1 (Connection with fractional posteriors). The α-VB solution (q̂θ,α,

q̂Sn,α) satisfy

(q̂θ,α, q̂Sn,α) = argmin
(qθ ,qSn)∈�

[
D
[
qWn(·) ‖ pα

(·|Yn)]+ (1 − α)H(qSn)
]
,

where H(qSn) = −∑
sn qSn(sn) logqSn(sn) is the entropy of qSn , and pα(·|Yn) is the joint

α-fractional posterior density of wn = (θ, sn).

The proof of Proposition 2.1 is straightforward, and hence omitted. The entropy term
H(qSn) encourages the latent-variable variational density qSn to be concentrated to the uni-
form distribution, in addition to minimizing the KL divergence between qWn(·) and pα(·|Yn).
In particular, if there are no latent variables, the entropy term disappears and the objective
function reduces to a KL divergence between qθ and pα(θ |Yn).

We conclude this section by remarking that the additive decomposition of the model-fit
term in (2.6) provides a peak into why mean-field approximations work for latent variable
models, since the roles of the variational density qSn for the latent variables and qθ for the
model parameters are decoupled. Roughly speaking, a good choice of qSn should aim to make
the Jensen gap 
J small, while the choice of qθ should balance the integrated log-likelihood
ratio and the penalty term. This point is crucial for the theoretical analysis.

3. Variational risk bounds for α-VB. In this section, we investigate concentration
properties of the α-VB posterior under a frequentist framework assuming the existence of
a true data generating parameter θ∗. We first focus on the α < 1 case, and then separately
consider the α = 1 case. The main take-away message from our theoretical results below is
that under fairly general conditions, the α-VB procedure concentrates at the true parameter at
the same rate as the actual posterior, and as a result, point estimates obtained from the α-VB
can provide rate-optimal frequentist estimators. These results thus compliment the empirical
success of VB in a wide variety of models.

We present our results in the form of Bayes risk bounds for the variational distribution.
Specifically, for a suitable loss function r(θ, θ∗), we aim to obtain a high probability (under
the data generating distribution P

(n)
θ∗ ) to the variational risk∫

r
(
θ, θ∗)q̂θ,α(dθ).(3.1)

In particular, if r(·, ·) is convex in its first argument, then the above risk bound immediately
translates into a risk bound for the α-VB point estimate θ̂VB,α = ∫

θq̂θ,α(dθ) using Jensen’s
inequality:

r
(
θ̂VB,α, θ∗)≤ ∫

r
(
θ, θ∗)q̂θ,α(dθ).

Specifically, our goal will be to establish general conditions under which θ̂VB,α concentrates
around θ∗ at the minimax rate for the particular problem.

3.1. Risk bounds for the α < 1 case. We use the shorthand

1

n
D(n)

α

(
θ, θ∗) := 1

n
Dα

[
p

(n)
θ ‖ p

(n)
θ∗
]

to denote the averaged α-divergence between P
(n)
θ and P

(n)
θ∗ . We adopt the theoretical frame-

work of [5] to use this divergence as our loss function r(θ, θ∗) for measuring the closeness
between any θ ∈ � and the truth θ∗. Note that in case of i.i.d. observations, this averaged
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divergence n−1D
(n)
α (θ, θ∗) simplifies to Dα[pθ ‖ pθ∗], which is stronger than the squared

Hellinger distance h2[pθ ‖ pθ∗] between pθ and pθ∗ for any fixed α ∈ [1/2,1).
Our first main result provides a general finite-sample upper bound to the variational Bayes

risk (3.1) for the above choice of r(θ, θ∗).

THEOREM 3.1 (Variational risk bound). Recall the α-VB objective function �n,α(qθ ,

qSn) from (2.6). For any ζ ∈ (0,1), it holds with P
n
θ∗ probability at least (1 − ζ ) that for any

probability measure qθ ∈ �θ with qθ � pθ and any probability measure qSn ∈ �Sn on Sn,∫ 1

n
D(n)

α

(
θ, θ∗)q̂θ,α(θ) dθ ≤ α

n(1 − α)
�n,α(qθ , qSn) + 1

n(1 − α)
log(1/ζ ).

Here and elsewhere, the probability statement is uniform over all (qθ , qSn) ∈ �. Theo-
rem 3.1 links the variational Bayes risk for the α-divergence to the objective function �n,α

in (2.6). As a consequence, minimizing �n,α in (2.6) has the same effect as as minimizing
an upper bound on the variational Bayes risk. To apply Theorem 3.1 to various problems,
we now discuss strategies to further analyze and simplify �n,α under appropriate structural
constraints of �θ and �Sn . To that end, we make some simplifying assumptions.

First, we assume a further mean-field decomposition qSn(sn) = ∏n
i=1 qSi

(si) for the la-
tent variables Sn, where each factor qSi

is restriction-free. Second, the inconsistency of the
mean-field approximation for state-space models proved in [35] indicates that this mean-
field approximation for the latent variables may not generally work for nonindependent ob-
servations with nonindependent latent variables. For this reason, we assume that the ob-
servation latent variable pair (Si, Yi) are mutually independent across i = 1,2, . . . , n. In
fact, we assume that (Si, Yi) are i.i.d. copies of (S,Y ) whose density function is given
by p(S,Y |μ,π) = p(Y |S,μ)p(S|π). Following earlier notation, let πS = p(S|π) denote
the probability mass function of the i.i.d. discrete latent variables {Si}, with the parame-
ter π = (π1, π2, . . . , πK) residing in the K-dim simplex SK = {π ∈ [0,1]K : ∑k πk = 1}.
Finally, we assume the variational family �θ of the parameter decomposes into �μ ⊗ SK ,
where �μ denotes variational family for parameter μ.

Let p(Y |θ) = ∑K
s=1 πsp(Y |θ, S = s) denote the marginal probability density func-

tion of the i.i.d. observations {Yi}. The i.i.d. assumption implies a simplified structure
of various quantities encountered before, for example, πSn = ∏n

i=1 πsi , p(Yn,Sn|μ) =∏n
i=1 πsip(Yi |μ,Si), and p(Yn|θ) = ∏n

i=1 p(Yi |θ). Moreover, under these assumptions,

n−1D
(n)
α (θ, θ∗) = Dα[p(·|θ) ‖ p(·|θ∗)].

As discussed in the previous subsection, the decoupling of the roles of qθ and qSn in the
model fit term aid bounding �n,α . Specifically, we first choose a q̃Sn which controls the
Jensen gap 
J , and then make a choice of qθ which controls �n,α(qθ , q̃Sn). The choice of
qθ requires a delicate balance between placing enough mass near θ∗ and controlling the KL
divergence from the prior.

For a fixed qθ , if we choose qSn to be the full conditional distribution of Sn given θ , that
is,

qSn

(
sn|θ)= n∏

i=1

qSi
(si |θ) =

n∏
i=1

πsip(Yi |μ, si)

p(Yi |θ)
, sn ∈ {1,2, . . . ,K}n,

then the normalizing constant of qSi
(·|θ) is

∑
si

πsip(Yi |μ,Si) = p(Yi |θ), and as a result, the
Jensen gap 
J = 0. The mean-field approximation precludes us from choosing qSn depen-
dent on θ , and hence the Jensen gap cannot be made exactly zero in general. However, this
naturally suggests replacing θ by θ∗ in the above display and choosing q̃Si

∝ π∗
si
p(Yi |μ∗, Si).

This leads us to the following corollary.
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COROLLARY 3.2 (i.i.d. observations). It holds with P
n
θ∗ probability at least (1 − ζ ) that

for any probability measure qθ ∈ �θ with qθ � pθ ,∫ {
Dα

[
p(·|θ) ‖ p

(·|θ∗)]}q̂θ,α(θ) dθ

≤ α

n(1 − α)
�n,α(qθ , q̃Sn) + 1

n(1 − α)
log(1/ζ ),

= α

n(1 − α)

[
−
∫
�

n∑
i=1

∑
si

q̃Si
(si) log

p(Yi |μ, si)πsi

p(Yi |μ∗, si)π∗
si

qθ (dθ)

+ D(qθ ‖ pθ)

α
+ log(1/ζ )

α

]
,

(3.2)

where q̃Sn is the probability distribution over Sn defined as

q̃Sn

(
sn)= n∏

i=1

q̃Si
(si) =

n∏
i=1

π∗
si
p(Yi |μ∗, si)
p(Yi |θ∗)

, sn ∈ {1,2, . . . ,K}n.(3.3)

The second line of (3.2) follows from the first since


J (qθ , q̃Sn) = −
∫
�

n∑
i=1

∑
si

q̃Si
(si) log

p(Yi |μ, si)πsi

p(Yi |μ∗, si)π∗
si

qθ (dθ)

+
∫

	n

(
θ, θ∗)qθ (dθ).

After choosing q̃Sn as (3.3) in Corollary 3.2, we can make the first term in the right-hand
side of (3.2) small by choosing the variational factor qθ of θ concentrated around θ∗. In the
rest of this subsection, we will apply Corollary 3.2 to derive more concrete variational Bayes
risk bounds under some further simplifying assumptions.

As a first application, assume there is no latent variable in the model, that is, Wn = θ = μ.
As discussed before, the α-VB solution in this case coincides with the nearest KL point to the
α-fractional posterior of the parameter. A reviewer pointed out a recent preprint by Alquier
and Ridgway [2] where they exploit risk bounds for fractional posteriors developed in [5]
to analyze tempered posteriors and their variational approximations, which coincides with
the α-VB solution when Wn = θ . The following Theorem 3.3 arrives at a similar conclusion
to Corollary 2.3 of [2]. We reiterate here that our main motivation is models with latent
variables not considered in [2], and Theorem 3.3 follows as a corollary of our general result
in Theorem 3.1.

THEOREM 3.3 (No latent variable). It holds with P
n
θ∗ probability at least (1 − ζ ) that for

any probability measure qθ ∈ �θ with qθ � pθ ,∫ {
Dα

[
p(·|θ) ‖ p

(·|θ∗)]}q̂θ,α(θ) dθ

= α

n(1 − α)

[
−
∫
�

log
p(Yn|θ)

p(Y n|θ∗)
qθ (θ) dθ + D(qθ ‖ pθ)

α
+ log(1/ζ )

α

]
.

(3.4)

We will illustrate some particular choices of qθ for typical variational families �� in the
examples in Section 4.
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As a second application, we consider a special case when �θ is restriction-free, which is an
ideal example for conveying the general idea of how to choose qθ to control the upper bound
in (3.2). To that end, define two KL neighborhoods around (π∗,μ∗) with radius (επ , εμ) as

Bn

(
π∗, επ

)= {
D
(
π∗ ‖ π

)≤ ε2
π ,V

(
π∗ ‖ π

)≤ ε2
π

}
,

Bn

(
μ∗, εμ

)= {
sup

s
D
[
p
(·|μ∗, s

) ‖ p(·|μ, s)
]≤ ε2

μ,

sup
s

V
[
p
(·|μ∗, s

) ‖ p(·|μ, s)
]≤ ε2

μ

}
,

(3.5)

where we used the shorthand D(π∗ ‖ π) =∑
s π∗

s log(π∗
s /πs) to denote the KL divergence

between categorical distributions with parameters π∗ ∈ SK and π ∈ SK in the K-dim simplex
SK . By choosing qθ as the restriction of pθ into Bn(π

∗, επ) × Bn(μ
∗, εμ), we obtain the

following theorem. Here, we make the assumption of independent priors on μ and π , that is,
pθ = pμ ⊗ pπ , to simplify the presentation.

THEOREM 3.4 (Parameter restriction-free). For any fixed (επ , εμ) ∈ (0,1)2 and D > 1,

with P
(n)
θ∗ probability at least 1 − 5/{(D − 1)2n(ε2

π + ε2
μ)}, it holds that∫ {

Dα

[
p(·|θ) ‖ p

(·|θ∗)]}q̂θ,α(dθ)

≤ Dα

1 − α

(
ε2
π + ε2

μ

)
+
{
− 1

n(1 − α)
logPπ

[
Bn

(
π∗, επ

)]}

+
{
− 1

n(1 − α)
logPμ

[
Bn

(
μ∗, εμ

)]}
.

(3.6)

Although the results in this section assume discrete latent variables, similar results can be
seamlessly obtained for continuous latent variables; see the Supplementary Material [40] for
more details. We will apply this theorem for analyzing mean-field approximations for the
Gaussian mixture model and the latent Dirichlet allocation in Section 4.

Observe that the variational risk bound in Theorem 3.4 depends only on prior mass as-
signed to appropriate KL neighborhoods of the truth. This renders an application of Theo-
rem 3.4 to various practical problems particularly straightforward. As we shall see in the next
subsection, the α = 1 case, that is, the regular VB, requires more stringent conditions involv-
ing the existence of exponentially consistent tests to separate points in the parameter space.
The testing condition is even necessary for the actual posterior to contract; see, for example,
[5], and hence one cannot avoid the testing assumption for its usual variational approxima-
tion. Nevertheless, we show below that once the existence of such tests can be verified, the
regular VB approximation can also be shown to contract optimally.

3.2. Risk bounds for the α = 1 case. We consider any loss function r(θ, θ∗) satisfying
the following assumption.

ASSUMPTION T (Statistical identifiability). For some εn > 0 and any ε ≥ εn, there exists
a sieve set Fn,ε ⊂ � and a test function φn,ε : Yn → [0,1] such that

Pθ

(
Fc

n,ε

)≤ e−cnε2
,(3.7)

Eθ∗[φn,ε] ≤ e−cnε2
n,(3.8)

Eθ [1 − φn,ε] ≤ e−cnr(θ,θ∗) ∀θ ∈ Fn,ε satisfies r
(
θ, θ∗)≥ ε2.(3.9)
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Roughly speaking, the sieve set Fn,ε can be viewed as the effective support of the prior
distribution at sample size n, and εn the contraction rate of the usual posterior distribution.
The first condition (3.7) allows us to focus attention to this important region in the parameter
space that is not too large, but still possesses most of the prior mass. The last two condi-
tions (3.8) and (3.9) ensure the statistical identifiability of the parameter under the loss r(·, ·)
through the existence of a test function φn,ε , and require a sufficiently fast decay of the Type
I/II error. In the case when � is compact and r(θ, θ ′) = h2(θ ‖ θ∗) is the squared Hellinger
distance between pθ and pθ∗ , such a test φn,ε always exists [17]. A similar set of assumptions
are used for showing the concentration of the usual posterior (e.g., see [16] and [17]), with the
existence of such sieve sets and test functions verified for numerous model-prior combina-
tions. The only difference in our case is that Assumption T requires the existence of the pair
(Fn,ε, φn,ε) for all ε ≥ εn, not just at ε = εn. However, this extra requirement appears mild
since in most cases a construction of (Fn,ε, φn,ε) at ε = εn naturally extends to any ε ≥ εn.

Our main result for the usual VB (α = 1) provides a finite-sample upper bound to the
variational Bayes risk for any loss function r(θ, θ∗) satisfying Assumption T. Here, we use
Qθ to denote the probability distribution associated with any member qθ in the variational
density family �.

THEOREM 3.5. Under Assumption T, for any ε ≥ εn, we have that with P
(n)
θ∗ probability

at least 1 − 2e−cnε2
n/2, it holds that for any probability measure qθ ∈ �θ with qθ � pθ and

any probability measure qSn ∈ �Sn on Sn that

1

n

[
Q̂θ

(
Fc

n,ε

)
log

Q̂θ (Fc
n,ε)

Pθ (Fc
n,ε)

+ (
1 − Q̂θ

(
Fc

n,ε

))
log

1 − Q̂θ (Fc
n,ε)

1 − Pθ(Fc
n,ε)

]

+ c

∫
θ∈Fn,ε,r(θ,θ∗)≥ε2

r
(
θ, θ∗)q̂θ (θ) dθ

≤ 1

n
�n(qθ , qSn) + cε2

n

2
+ log 2

n
.

(3.10)

The first term on the left-hand side of inequality (3.10) relates the variational comple-
mentary probability Q̂θ (Fc

n,ε) to the prior complementary probability Pθ(Fc
n,ε). As a con-

sequence, an upper bound of this term controls the remainder variational probability mass
outside the sieve Fn,ε . The second term

∫
θ∈Fn,ε,r(θ,θ∗)≥ε2 r(θ, θ∗)q̂θ (θ) dθ in (3.10) is the

variational Bayes risk over the intersection between Fn,ε and the set of all θ such that the
loss r(θ, θ∗) is at least ε2.

In [28], we proved a risk bound for the α = 1 case under the much stronger assumption of
a compact parameter space and the existence of a global test φn with type-I and II error rates
bounded above by e−Cnε2

n . Under those assumptions, the result in [28] can be recovered from
our more general result in Theorem 3.5 by setting Fn,ε = �, and φn,ε = φn; the global test,
for all ε. Such stronger assumptions usually hold when the parameter space � is a compact
subset of the Euclidean space; however, in other cases such as unbounded parameter spaces or
infinite dimensional functional spaces, such a global test function φn may not exist, signifying
the necessity of Theorem 3.5.

Similar to the development for α < 1, we can further simplify �n by introducing more
assumptions. Due to the space constraint, we only provide a counterpart of Theorem 3.4 under
the assumptions made therein. Recall the definition of two KL neighborhoods Bn(π

∗, ε) and
Bn(μ

∗, ε) defined in (3.5).

ASSUMPTION P (Prior concentration). There exists some constant C > 0 such that

Pθ

(
Bn

(
π∗, εn

))≥ exp
(−Cnε2

n

)
and Pθ

(
Bn

(
μ∗, εn

))≥ exp
(−Cnε2

n

)
.
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Under Assumptions T and P, Theorem 3.5 leads to a high probability bound on the varia-
tional Bayes risk for loss r(θ, θ∗), as summarized in the following theorem.

THEOREM 3.6 (Parameter restriction-free). Under Assumptions T and P, it holds with
P

(n)
θ∗ probability at least 1 − 3/{(D − 1)2nε2

n} that for any ε ∈ [εn, e
c′nε2

n] (for some constant
c′ > 0),

Q̂θ

(
r
(
θ, θ∗)≥ ε2)≤ C1

ε2
n

ε2 .

In particular, this implies for any R < e2c′nε2
n ,∫

θ :r(θ,θ∗)≤R
r
(
θ, θ∗)q̂θ (θ) dθ ≤ C3ε

2
n

(
1 + log(R/εn)

)
.

In particular, if the sequence {εn : n ≥ 1} satisfies nε2
n → ∞, then selecting ε = √

Mnεn

for Mn → ∞ (Mn ≤ ε
−1/2
n ) leads to the asymptotic variational posterior concentration:

Q̂θ

(
r
(
θ, θ∗)≤ Mnε

2
n

)→ 1 in probability, as n → ∞.

The extra truncation r(θ, θ∗) ≤ R in the variational risk bound in the theorem is due to the
quadratic decay of our upper bound to Q̂θ (r(θ, θ∗) ≥ ε2). Since the risk upper bound only
has a logarithmic dependence on the truncation level R, one can simply set it at a fixed
large number to ensure an order O(ε2

n) risk bound in practice. In fact, this truncation can
be eliminated under a stronger assumption (as in [28]) that there is a global test function
φn : Yn → [0,1], such that the type I error bound (3.8) holds, and the following type II error
bound holds for all θ ∈ � satisfying r(θ, θ∗) ≥ ε2

n,

Eθ [1 − φn] ≤ e−cnr(θ,θ∗).

This can be seen from Theorem 3.5 by setting Fn = � and ε = εn in inequality (3.10), which
implies

c

∫
�

r
(
θ, θ∗)q̂θ (θ) dθ ≤ cε2

n + c

∫
r(θ,θ∗)≥ε2

n

r
(
θ, θ∗)q̂θ (θ) dθ

≤ 1

n
�n(qθ , qSn) + 3cε2

n

2
+ log 2

n
.

3.3. α-VB using stronger divergences. In this subsection, we consider an extension of
our theoretical development for α-VB where the KL divergence in the objective function
is replaced by a stronger divergence D̄[p ‖ q] ≥ D[p ‖ q], for example, χ2 divergence and
Rényi divergence [25], and the corresponding variational approximation

q̄Wn := argmin
qWn∈�

D̄
[
qWn(·) ‖ p

(·|Yn)].
As another example, in some applications of variational inference [43], the minimization of
the KL divergence over the variational density qWn to the conditional density p(Wn|Yn)

may not admit a closed-form updating formula, and some surrogate ELBO L̄(qWn) as a
lower bound to the ELBO L(qWn) is employed. Under the perspective of ELBO decom-
position (1.4), this replacement is equivalent to using a stronger divergence

D̄
[
qWn ‖ p

(·|Yn)] := logp
(
Yn)− L̄(qWn) ≥ D

[
qWn ‖ p

(·|Yn)].
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The following theorem provides a variational Bayes risk upper bound to q̄θ . To simplify
the presentation, the theorem is stated for the α < 1 case, although extension to α = 1 is
straightforward. Define the equivalent objective function

�̄α(qθ , qSn) = �n,α(qθ , qSn) + (
D̄
[
qWn ‖ p

(·|Yn)]− D
[
qWn ‖ p

(·|Yn)]),
and the corresponding α-VB solution q̄θ,α = argminqWn∈� �̄α(qθ , qSn). When D̄ is the KL
divergence D, objective function �̄α reduces to the �n,α in (2.6).

THEOREM 3.7. For any ζ ∈ (0,1), it holds with P
n
θ∗ probability at least (1 − ζ ) that for

any probability measure qθ ∈ �θ with qθ � pθ and any probability measure qSn ∈ �Sn on
Sn, ∫ 1

n
D(n)

α

(
θ, θ∗)q̄θ,α(dθ) ≤ α

n(1 − α)
�̄α(qθ , qSn) + 1

n(1 − α)
log(1/ζ ).

This theorem provides a simple replacement rule for α-VB—if the α-VB objective func-
tion �n,α is replaced with a upper bound �̄α , then a variational Bayes risk bound obtained
by replacing �n,α with the upper bound �̄α holds. We apply this replacement rule to ob-
tain a minimax variational risk bound in the mixture of Gaussian variational approximation
example provided in Section S6 of the Supplementary Material [40].

4. Applications. In this section, we apply our theory in Section 3 to concrete examples:
mean-field approximation to (low) high-dimensional Bayesian linear regression, mean-field
approximation to Gaussian mixture models and mean-field approximation to latent Dirichlet
allocation. To simplify the presentation, all results are stated for α-VB with α < 1 and the α

subscript in q̂θ,α is dropped. Extensions to the α = 1 case are discussed in the Supplementary
Material [40]. We point out here that the Hellinger risk bounds in Corollaries 4.1–4.4 may
actually depend on the unknown true parameter θ∗. The dependence is suppressed using �
notation for clarity of exposition.

EXAMPLE (Mean-field approximation to low-dimensional Bayesian linear regression).
Consider the following Bayesian linear model:

Yn = Xβ + w, w ∼ N
(
0, σ 2In

)
,(4.1)

where Yn ∈ R
n is the n-dim response vector, X ∈ R

n×d the design matrix, β ∈ R
d the un-

known regression coefficient vector of interest and σ the noise level. In this example, we
consider the low-dimensional regime where d � n, and focus on independent prior pβ ⊗ pσ

for parameter pair θ = (β, σ ) for technical convenience (the result also applies to noninde-
pendent priors).

We apply the mean-field approximation by using the following variational family:

q(β,σ ) = qβ(β)qσ (σ )

to approximate the joint α-fractional posterior distribution of θ = (β, σ ) with q̂θ = q̂β ⊗ q̂σ .
This falls into our framework when there is no latent variable and Wn = θ . Computational-
wise, a normal prior for θ and an inverse gamma prior for σ 2 are attractive since they are
“conjugate” priors—the resulting variational densities q̂β and q̂σ still fall into the same para-
metric families. An application of Theorem 3.3 leads to the following result.
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COROLLARY 4.1. Assume that the prior density is continuous, and thick around the
truth θ∗ = (β∗, σ ∗), that is, pθ(θ

∗) > 0 and pσ (σ ∗) > 0. If d/n → 0 as n → ∞, then with
probability tending to one as n → ∞,{∫

h2[p(·|θ) ‖ p
(·|θ∗)]q̂θ (θ) dθ

}1/2
�
√

d

nmin{α,1 − α} log(dn).

The convergence rate of O(
√

n−1 d log(dn)) under the Hellinger distance implies that the

α-VB estimator β̂VB,α = ∫
βq̂β(β) dβ converges toward β∗ relative to the 	2 norm at rate√

n−1 d log(dn) (under the condition that n−1XT X has minimal eigenvalue bounded away

from zero), which is the minimax rate up to logarithm factors. A similar n−1/2 convergence
rate has been obtained in [41] by directly analyzing the stationary point of an alternating
minimization algorithm. However, their analysis requires the closed-form updating formula
based on a conjugate normal prior for β and an inverse gamma prior for σ 2, and may not
be applicable to other priors. On the other hand, Corollary 4.1 only requires the minimal
conditions of prior thickness and continuity.

EXAMPLE (Mean-field approximation to high-dimensional Bayesian linear regression
with spike and slab priors). In this example, we continue to consider the Bayesian linear
model (4.1), but we are interested in the high-dimensional regime where d � n. Following
standard practice to make sparsity assumptions in the d � n regime, let s � n denote the
sparsity level, that is, the number of nonzero coefficients, of the true regression parameter
β∗.

We consider the popularly used spike and slab priors [15] on β . Following [15], we in-
troduce a latent indicator variable zj = I (βj �= 0) for each βj to indicate whether the j th
covariate Xj is included in the model, and call z = (z1, . . . , zd) ∈ {0,1}d the latent indicator
vector. We use the notation βz to denote the vector of nonzero components of β selected by
z, that is, βz = (βj : zj = 1). Consider the following sparsity inducing hierarchical prior pβ,z

over (β, z):

zj
iid∼ 1

d
δ1 +

(
1 − 1

d

)
δ0, j = 1, . . . , d,

βz|z ∼ pβ|z and σ ∼ pσ ,

(4.2)

where the prior probability of {zj = 1} is chosen as d−1 so that on an average only O(1)

covariates are included in the model. Let z∗ denote the indicator vector associated with the
truth β∗.

By viewing the latent variable indicator vector z as a parameter, we apply the block mean-
field approximation [12] by using the family

q(β,σ, z) = qσ (σ )

d∏
j=1

qzj ,βj
(zj , βj )

to approximate the joint α-fractional posterior distribution of θ = (β, σ, z) with q̂θ (θ) =
q̂σ (σ )

∏d
j=1 q̂zj ,βj

(zj , βj ). Although we have a high-dimensional latent variable vector z, the
latent variable is associated with the parameter β , and not with the observation Yn. Conse-
quently, this variational approximation still falls into our framework without latent variable,
that is, Wn = θ = (z, β) and 
J ≡ 0. It turns out that the spike and slab prior with Gaus-
sian slab is particularly convenient for computation—it is “conjugate” in that the resulting
variational approximation falls into the same spike and slab family [12]. An application of
Theorem 3.3 leads to the following result.
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COROLLARY 4.2. Suppose pβ|z∗ is continuous and thick at β∗
z∗ , and pσ is continuous

and thick at σ ∗. If s logd/n → 0 as n → ∞, then it holds with probability tending to one as
n → ∞ that {∫

h2[p(·|θ) ‖ p
(·|θ∗)]q̂θ (θ) dθ

}1/2
�
√

s

nmin{α,1 − α} log(dn).

Corollary 4.2 implies a convergence rate
√

n−1s log(dn) of the variational-Bayes estima-

tor β̂VB,α under the restricted eigenvalue condition [6], which is the minimax rate up to log
terms for high-dimensional sparse linear regression. To our knowledge, [27] is the only litera-
ture that studies the mean-field approximation to high-dimensional Bayesian linear regression
with spike and slab priors. They show estimation consistency by directly analyzing an iter-
ative algorithm for solving the variational optimization problem with α = 1 and a specific
prior. As before, Corollary 4.2 holds under very mild conditions on the prior and does not
rely on having closed-form updates of any particular algorithm.

Here, we considered the block mean-field instead of the full mean-field approximation
which further decomposes qzj ,βj

into qzj
⊗qβj

. In fact, the latter resembles a ridge regression
estimator, and the KL term α−1D(qθ ‖ pθ) appearing in the upper bound in (3.2) cannot attain

the minimax order
√

n−1s logd .

EXAMPLE (Mean-field approximation to Gaussian mixture model). Suppose the true
data generating model is the d-dimensional Gaussian mixture model with K components,

Y ∼
K∑

k=1

πkN (μk, Id),

where μk ∈R
d is the mean vector associated with the kth component and π = (π1, . . . , πK) ∈

SK is the mixing probability. Here, for simplicity we assume the covariance matrix of
each Gaussian component to be Id . μ = (μ1, . . . ,μK) and π together forms the parame-
ter θ = (μ,π) of interest. By data augmentation, we can rewrite the model into the following
hierarchical form by introducing the latent class variable S:

S ∼ Categorical(π1, π2, . . . , πK), Y |S = s ∼ N (μs, Id).

Let Yn = (Y1, . . . , Yn) be n i.i.d. copies of Y with parameter θ∗ = (μ∗, π∗), and Sn =
(S1, . . . , Sn) ∈ {1, . . . ,K}n denote the corresponding latent variables. For simplicity, we as-
sume that independent prior pμ ⊗ pπ are specified for (μ,π).

We apply the mean-field approximation by using the family of density functions of the
form

q
(
π,μ,Sn)= qπ(π)qμ(μ)qSn

(
sn)= qπ(π)qμ(μ)

n∏
i=1

qSi
(si)

to approximate the joint α-fractional posterior distribution of (π,μ,Sn), producing the α-
mean-field approximation q̂θ ⊗ q̂Sn , where (q̂θ , q̂Sn) are defined in (2.7). This variational
approximation fits into the framework of Theorem 3.4. Therefore, an application of this the-
orem leads to the following result.

COROLLARY 4.3. Suppose the prior densities pμ and pπ are thick and continuous at
μ∗ and π∗ respectively. If dK/n → 0 as n → ∞, then it holds with probability tending to
one as n → ∞ that{∫

h2[p(·|θ) ‖ p
(·|θ∗)]q̂θ (θ) dθ

}1/2
�
√

dK

nmin{α,1 − α} log(dn).
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As a related result, [37] show that the with proper initialization, the coordinate descent
algorithm for solving the variational optimization problem (2.7) with α = 1 under conjugate
priors converges to a local minimum that is O(n−1) away from the maximum likelihood es-
timate of (μ,π) by directly analyzing the algorithm using the contraction mapping theorem.
Our current analysis opens the door for analyzing the optimization algorithms using a broader
class of mixture models beyond Gaussians.

EXAMPLE (Mean-field approximation to latent Dirichlet allocation). As our final exam-
ple, we consider Latent Dirichlet allocation (LDA, [11]), a conditionally conjugate proba-
bilistic topic model [9] for uncovering the latent “topics” contained in a collection of docu-
ments. LDA treats documents as containing multiple topics, where a topic is a distribution
over words in a vocabulary. Following the notation of [19], let K be a specific number of
topics and V the size of the vocabulary. LDA defines the following generative process:

1. For each topic in k = 1, . . . ,K ,
(a) draw a distribution over words βk ∼ DirV (ηβ).

2. For each document in d = 1, . . . ,D,
(a) draw a vector of topic proportions γd ∼ DirK(ηγ ).
(b) For each word in n = 1, . . . ,N ,

i. draw a topic assignment zdn ∼ multi(γd), then
ii. draw a word wdn ∼ multi(βzdn

).

Here, ηβ ∈ R+ is a hyperparameter of the symmetric Dirichlet prior on the topics β , and
ηγ ∈ R

K+ are hyperparameters of the Dirichlet prior on the topic proportions for each docu-
ment. zdn ∈ {1, . . . ,K} is the latent class variable over topics where zdn = k indicates the nth
word in document d is assigned to the kth topic. Similarly, wdn ∈ {1, . . . , V } is the latent class
variable over the words in the vocabulary where wdn = v indicates that the nth word in doc-
ument d is the vth word in the vocabulary. To facilitate adaptation to sparsity using Dirichlet
distributions when V,K � 1, we choose ηβ = 1/V c and ηγ = 1/Kc for some fixed number
c > 1 [39].

To apply our theory, we first identify all components in the model. For simplicity, we
view N as the sample size, and D as the “dimension” of the parameters in the model. Under
our vanilla notation, we are interested in learning parameters θ = (π,μ), with π = {γd :
d = 1, . . . ,D} and μ = {βk : k = 1, . . . ,K}, from the posterior distribution P(π,μ, z|Yn),
where SN = {Sn : n = 1, . . . ,N} with Sn = {zdn : d = 1, . . . ,D} are latent variables, and
YN = {Yn : n = 1, . . . ,N} with Yn = {wdn : d = 1, . . . ,D} are the data, and the priors for
(π,μ) are independent Dirichlet distributions DirK(ηγ ) and DirV (ηβ) whose densities are
denoted by pπ and pμ. The conditional distribution p(YN |μ,SN) of the observation given
the latent variable is

(wdn|μ,zdn) ∼ multi(βzdn
), d = 1, . . . ,D and n = 1, . . . ,N.

Finally, the α-mean-field approximation considers using the family of probability density
functions of forms

q
(
μ,π,SN )= qπ(π)qμ(μ)

N∏
n=1

qSn(Sn)

=
K∏

k=1

qβk
(βk)

D∏
d=1

(
qγd

(γd)

N∏
n=1

qzdn
(zdn)

)

to approximate the joint α-fractional posterior of (μ,π,SN). Since for LDA, each observa-
tion Yn is composed of D independent observations, it is natural to present the variational in-
equality with the original loss function Dα[p(·|θ) ‖ p(·|θ∗)] =∑D

d=1 Dα[pd(·|θ) ‖ pd(·|θ∗)]
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rescaling by a factor of D−1, where pd(·|θ) denotes the likelihood function of the dth obser-
vation wdn in Yn. We make the following assumption.

ASSUMPTION S (Sparsity and regularity condition). Suppose for each k, β∗
k is dk � V

sparse, and for each d , γ ∗
d is ed � K sparse. Moreover, there exists some constant δ0 > 0,

such that each nonzero component of β∗
k or γ ∗

d is at least δ0.

COROLLARY 4.4. Under Assumption S, it holds with probability at least 1 − C/

(N
∑D

d=1 ε2
γd

+ N
∑K

k=1 ε2
βk

) that∫ {
D−1Dα

[
p(·|θ) ‖ p

(·|θ∗)]}q̂θ (θ) dθ

� α

1 − α

{
1

D

D∑
d=1

ε2
γd

+ 1

D

K∑
k=1

ε2
βk

}

+ 1

N(1 − α)

{
1

D

D∑
d=1

ed log
K

εγd

+ 1

D

K∑
k=1

dk log
V

εβk

}
,

for any εγ = (εγ1, . . . , εγd
) and εβ = (εβ1, . . . , εβK

). Therefore, if (
∑D

d=1 ed + ∑K
k=1 dk)/

(DN) → 0 as N → ∞, then it holds with probability tending to one that as N → ∞,{∫
D−1h2[p(·|θ) ‖ p

(·|θ∗)]q̂θ (θ) dθ

}1/2

�

√√√√ ∑D
d=1 ed

DN min{α,1 − α} log(DKN) +
∑K

k=1 dk

DN min{α,1 − α} log(KV N).

Corollary 4.4 implies estimation consistency as long as the “effective” dimensionality∑D
d=1 ed + ∑K

k=1 dk of the model is o(DN) as the “effective sample size” DN → ∞. In
addition, the upper bound depends only logarithmically on the vocabulary size V due to the
sparsity assumption.

5. Discussion. The primary motivation behind this work is to investigate whether point
estimates obtained from mean-field or other variational approximations to a Bayesian pos-
terior enjoy the same statistical accuracy as those obtained from the true posterior, and we
answer the question in the affirmative for a wide range of statistical models. To that end, we
have analyzed a class of variational objective functions indexed by a temperature parameter
α ∈ (0,1], with α = 1 corresponding to the usual VB, and obtained risk bounds for the vari-
ational solution which can be used to show (near) minimax optimality of variational point
estimates. Our theory was applied to a number of examples, including the mean-field approx-
imation to Bayesian linear regression with and without variable selection, Gaussian mixture
models, latent Dirichlet allocation and (mixture of) Gaussian variational approximation in
regular parametric models. This broader class of objective functions can be fitted in practice
with no additional difficulty compared to the usual VB. Hence, the proposed framework leads
to a class of efficient variational algorithms with statistical guarantees.

The theory for the α < 1 and the α = 1 (usual VB) case lead to interesting contrasts. For
α < 1, a prior mass condition suffices to establish the risk bounds for the Hellinger (and
more generally, Rényi divergences). However, the α = 1 case requires additional conditions
to be verified. When all conditions are met, there is no difference in terms of the rate of
convergence for α < 1 versus α = 1. Hence, from a practical standpoint, the procedure with
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α < 1 leads to theoretical guarantees with verification of fewer conditions. A comparison of
second-order properties is left as a topic for future research, as is extension to models with
dependent latent variables.
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