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We study the fundamental limits of detecting the presence of an additive
rank-one perturbation, or spike, to a Wigner matrix. When the spike comes
from a prior that is i.i.d. across coordinates, we prove that the log-likelihood
ratio of the spiked model against the nonspiked one is asymptotically nor-
mal below a certain reconstruction threshold which is not necessarily of a
“spectral” nature, and that it is degenerate above. This establishes the max-
imal region of contiguity between the planted and null models. It is known
that this threshold also marks a phase transition for estimating the spike: the
latter task is possible above the threshold and impossible below. Therefore,
both estimation and detection undergo the same transition in this random ma-
trix model. Further information on the performance of the optimal test is also
provided. Our proofs are based on Gaussian interpolation methods and a rig-
orous incarnation of the cavity method, as devised by Guerra and Talagrand
in their study of the Sherrington–Kirkpatrick spin-glass model.

1. Introduction. Spiked models, which are distributions over matrices of the form “sig-
nal + noise,” have been a mainstay in the statistical literature since their introduction by
Johnstone (2001) as models for the study of high-dimensional principal component analy-
sis. Spectral properties of these models have been extensively studied, in particular in ran-
dom matrix theory, where they are known as deformed ensembles (Péché (2014)). Land-
mark investigations in this area (Baik, Ben Arous and Péché (2005), Baik and Silverstein
(2006), Péché (2006), Féral and Péché (2007), Capitaine, Donati-Martin and Féral (2009),
Bai and Yao (2012, 2008)) have established the existence of a spectral threshold above
which the top eigenvalue detaches from the bulk of eigenvalues and becomes informa-
tive about the spike, and below which the top eigenvalue bears no information. Estima-
tion using the top eigenvector undergoes the same transition, where it is known to “lose
track” of the spike below the spectral threshold (Benaych-Georges and Nadakuditi (2011),
Johnstone and Lu (2009), Nadler (2008), Paul (2007)). Although these spectral analyses
have provided many insights, as have analyses based on more thoroughgoing usage of spec-
tral data and/or more advanced optimization-based procedures (see Amini and Wainwright
(2009), Berthet and Rigollet (2013), Dobriban (2017), Ledoit and Wolf (2002) and refer-
ences therein), they do not characterize the fundamental limits of estimating the spike, or
detecting its presence, from the observation of a sample matrix. Important progress on the
detection problem was made by Onatski, Moreira and Hallin (2013, 2014) and Johnstone
and Onatski (2015), who considered the spiked covariance model for a uniformly distributed
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unit norm spike, and studied the asymptotics of the likelihood ratio (LR) of a spiked al-
ternative against a spherical null. They showed asymptotic normality of the log-LR be-
low the spectral threshold (also known as the BBP threshold, after Baik, Ben Arous and
Péché (2005) in this setting), while it is degenerate, that is, exponentially small (large) un-
der the null (alternative), above it. Their proof is intrinsically tied to the assumption of a
spherical prior since it relies on the rotational symmetry of the model to express the LR
exclusively in terms of the spectrum, the joint distribution of which is available in closed
form.

We focus in this paper on the spiked Wigner model, which is the following symmetric
random matrix model:

(1) Y =
√

λ

N
x∗x∗� + W ,

where Wij = Wji ∼ N (0,1) and Wii ∼ N (0, σ 2), σ > 0, are independent for all 1 ≤ i ≤ j ≤
N . The spike vector x∗ ∈ R

N represents the signal to be recovered, or its presence detected.
We assume that the entries x∗

i of the spike are i.i.d. from a prior distribution Px on R

having bounded support. The parameter λ ≥ 0 plays the role of the signal-to-noise ratio, and
the scaling by

√
N is such that the signal and noise components of the observed data are

of comparable magnitudes. Upon observing Y , we want to test whether λ > 0 or λ = 0. We
moreover want to understand the performance of the likelihood ratio test, which minimizes
the sum of the Type-I and Type-II errors by the Neyman–Pearson lemma.

The testing problem becomes more subtle in our setting, where the spike comes from a
product prior, since it is not clear that one does not lose power by discarding the eigenvec-
tors of Y . In fact, this situation presents a richer phenomenology: while the spherical case
is characterized by the behavior of the spectrum, and the spectral threshold separates the
regions of convergence and degeneracy of the LR, there are priors Px in the i.i.d. case for
which the spectral threshold loses its information-theoretic relevance. These priors exhibit a
more subtle phase transition that happens strictly before the spike manifests its presence in
the spectrum. A desire to understand this phenomenon is the main impetus for the present
work.

This transition was discovered by Lesieur, Krzakala and Zdeborová (2015) while studying
the estimation problem in the context of sparse PCA. Perry et al. (2018) and Banks et al.
(2017) proved the possibility of both estimation and asymptotically certain—we will say
“strong”—detection below the spectral threshold for certain sparse priors. However, their
techniques—which are based on careful conditioning of the second moment of the LR—are
not able to determine the phase transition threshold, the explicit form of which was conjec-
tured by Lesieur et al.

Our contribution is to rigorously pin down this phase transition for the detection problem.
We prove asymptotic normality of the log-LR below a certain reconstruction threshold λc and
degeneracy above it. This allows us to show mutual contiguity of the null and the alternative
below λc and to derive formulas for the Type-I and Type-II errors of the LR test, as well as the
KL divergence and total variation distance, between the null and alternative. Our approach re-
poses on seminal work by Guerra and Talagrand in their study of the Sherrington–Kirkpatrick
(SK) spin-glass model.

The paper is organized as follows: Section 2 sets up the problem, Section 3 contains our
main results on LR fluctuations and the limits of detection, Section 4 provides background
on essential concepts from spin-glass theory that are necessary for the proof, and Sections 5,
6 and 7 are devoted to the detailed proofs.
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2. The LR, the RS formula and the reconstruction threshold.

2.1. The LR. We denote by Pλ the joint probability law of the observations, Y = {Yij :
1 ≤ i ≤ j ≤ N}, as per (1) and we define the likelihood ratio or Radon–Nikodym derivative
of Pλ with respect to P0 as

(2) L(·;λ) ≡ dPλ

dP0
.

Conditioning on x∗ and using the Gaussianity of W yields the formula

(3)

L(Y ;λ) =
∫

exp

(∑
i<j

√
λ

N
Yijxixj − λ

2N
x2
i x2

j

+ 1

σ 2

N∑
i=1

√
λ

N
Yiix

2
i − λ

2N
x4
i

)
dP N

x (x),

for any fixed Y . Define the free energy of the planted model Pλ as

(4) fN := 1

N
EPλ

logL(Y ;λ) = 1

N
DKL(Pλ,P0),

where DKL is the Kullback–Leibler divergence between probability measures. The recon-
struction threshold λc is defined as the largest positive number below which the limit of fN

vanishes. This latter limit, referred to as the replica-symmetric (RS) formula, provides a full
characterization of the limits of estimating the spike with nontrivial accuracy (Barbier et al.
(2016), Lelarge and Miolane (2019)).

2.2. The RS formula. For r ≥ 0, consider the function

(5) ψ(r) := Ex∗,z log
∫

exp
(√

rzx + rxx∗ − r

2
x2
)

dPx(x),

where z ∼ N (0,1), and x∗ ∼ Px. This is the KL divergence between the distributions of the
random variables y = √

rx∗ + z and z. We define the replica-symmetric potential

(6) F(λ, q) := ψ(λq) − λq2

4
,

and the replica-symmetric formula

(7) φRS(λ) := sup
q≥0

F(λ, q).

A central result in this context, which was conjectured by Lesieur, Krzakala and Zdeborová
(2015), and then proved in a sequence of papers (Barbier et al. (2016), Deshpande, Abbé
and Montanari (2016), El Alaoui and Krzakala (2018), Krzakala, Xu and Zdeborová (2016),
Lelarge and Miolane (2019)), is that free energy fN converges to the RS formula for all
λ ≥ 0:

(8) fN −→ φRS(λ).

In particular, the limit is independent of σ , that is, it is insensitive to (Yii)
N
i=1.

The values of q that maximize the RS potential and their properties play an important
role. Lelarge and Miolane (2019) proved that the map q �→ F(λ, q) has a unique maximizer
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q∗ = q∗(λ) for all λ ∈D where D = R+ \ countable set. Moreover, they showed that the map
λ ∈ D �→ q∗(λ) is nondecreasing, and

(9) lim
λ→0
λ∈D

q∗(λ) = EPx[X]2 and lim
λ→∞
λ∈D

q∗(λ) = EPx

[
X2],

where X ∼ Px. One can interpret the value q∗(λ) as the best overlap an estimator θ̂ (Y ) based
on observing Y can have with the spike x∗. Indeed, Lelarge and Miolane also showed that
the squared overlap ( 1

N
x�x∗)2 between the spike x∗ and a random draw x from the posterior

Pλ(·|Y ) concentrates about q∗(λ)2.

2.3. The reconstruction threshold. The first limit in (9) shows that when the prior Px is
not centered, it is always possible to have a nonzero overlap with x∗ (just by guessing at
random from the prior). An interesting situation then is when the prior has zero mean. Since
q∗ is a nondecreasing function of λ, it is useful to define the critical value of λ below which
a nonzero overlap with x∗ is impossible:

(10)
λc := sup

{
λ > 0 : q∗(λ) = 0

}
= sup

{
λ > 0 : φRS(λ) = 0

}
.

The second equality follows by the a.e. uniqueness of the maximizer q∗. We refer to λc as
the reconstruction threshold. The next lemma establishes a natural bound on λc.

LEMMA 1. We have λc · (EPx[X2])2 ≤ 1.

PROOF. Indeed, assume that Px is centered, and let λ > (E[X2])−2. Since ψ ′(0) =
1
2 EPx[X]2 = 0 and ψ ′′(0) = 1

2(EPx[X2])2, we see that ∂qF (λ,0) = 0 and ∂2
qF (λ,0) =

λ
2 (λEPx[X2]2 − 1) > 0. So q = 0 cannot be a maximizer of F(λ, ·). Therefore, q∗(λ) > 0
and λ ≥ λc. �

The importance of Lemma 1 stems from the fact that the value (EPx[X2])−2 is the spectral
threshold previously discussed. Above this value, the first eigenvalue of the matrix Y detaches
from the bulk (Capitaine, Donati-Martin and Féral (2009), Féral and Péché (2007), Péché
(2006)). This value also marks the limit below which the first eigenvector of Y captures no
information about the spike x∗ (Benaych-Georges and Nadakuditi (2011)). The inequality in
Lemma 1 can be strict or turn into equality depending on the prior Px. For instance, there is
equality if the prior is Gaussian or Rademacher—so that the first eigenvector overlaps with
the spike as soon as estimation becomes possible at all—and strict inequality in the case
of the (sufficiently) sparse Rademacher prior Px = ρ

2 δ−1/
√

ρ + (1 − ρ)δ0 + ρ
2 δ+1/

√
ρ . More

precisely, there exists a value

ρ∗ = inf
{
ρ ∈ (0,1) : ψ ′′′(0) < 0

} ≈ 0.092,

such that λc = 1 for ρ ≥ ρ∗, and λc < 1 for ρ < ρ∗. In the latter case, the spectral approach
to estimating x∗ fails for λ ∈ (λc,1), and it is believed that no polynomial time algorithm
succeeds in this region (Banks et al. (2017), Krzakala, Xu and Zdeborová (2016), Lesieur,
Krzakala and Zdeborová (2015)).

3. Fluctuations below the reconstruction threshold. In this section, we study the be-
havior of logL. It can be seen by a standard concentration-of-measure argument that for all
λ > 0, logL(Y ;λ) concentrates about its expectation with fluctuations of order

√
N . While

this bound is likely to be of the right order above λc, it is very pessimistic below λc. Indeed,
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we will show that the fluctuations are of constant order with a Gaussian limiting law in this
regime. This behavior of unusually small fluctuations is often referred to as “superconcentra-
tion.” We refer to Chatterjee (2014) for more on this topic. Throughout the rest of the paper,
except in Section 8, we discard the diagonal terms Yii from the observations: we formally
take σ = +∞ in (3). (See the Remark below.)

THEOREM 2. Assume that the prior Px is centered, has unit variance and bounded sup-
port. Also, let σ = +∞. For all λ < λc,

logL(Y ;λ) � N
(
±1

4

(− log(1 − λ) − λ
)
,

1

2

(− log(1 − λ) − λ
))

,

where the plus sign holds under the alternative Y ∼ Pλ and the minus sign under the null
Y ∼ P0. The symbol “�” denotes convergence in distribution as N → ∞.

REMARK. The assumption σ = +∞ is only for convenience; its removal does not pose
any additional technical difficulties. When the diagonal is kept, the limiting Gaussian is still
of the form N (±μ,2μ), but now μ = 1

4(− log(1 − λ) − λ)(1 + κ
σ 2 ) + λ

2σ 2 , κ = EPx[X3]2.
We refer to Section 8 for a discussion of how this adjusted formula would appear in the proof.

We point out that a result of this form was originally proved in the case of the Sherrington–
Kirkpatrick (SK) model: Aizenman, Lebowitz and Ruelle (1987) showed that the log-
partition function of this model has Gaussian fluctuations in the “high temperature” regime
(which corresponds to λ small enough.) In fact, Theorem 2, if specialized to the Rademacher
prior Px = 1

2δ+1 + 1
2δ−1, reduces to their result (with λc = 1) since the LR L is equal to the

partition function of the SK model in that case.
Our result has a parallel in the work of Johnstone and Onatski (2015), Onatski, Moreira

and Hallin (2013, 2014), who focused on spherical priors and studied the likelihood ratio of
the joint eigenvalue densities under the spiked covariance model, showing its asymptotic nor-
mality below the spectral threshold. We also note that similar fluctuation results were recently
proved by Baik and Lee (2016, 2017) for a spherical model where one integrates over the uni-
form measure on the sphere in the definition of L. Their model, due to its integrable nature, is
amenable to analysis using tools from random matrix theory. The authors are thus able to also
analyze a “low temperature” regime (absent from our problem) where the fluctuations are no
longer Gaussian but given by the Tracy–Widom law. However, their techniques seem to be
restricted to the spherical case. Closer to our setting is the recent work of Banerjee and Ma
(2018) (see also Banerjee (2018)) who use a precisely conditioned second-moment argument
to show asymptotic normality of similar log-likelihood ratios. However, this technique, in its
current state, is not able to achieve the optimal threshold λc.

3.1. Limits of strong and weak detection. Consider the problem of deciding whether an
array of observations Y = {Yij : 1 ≤ i < j ≤ N} is likely to have been generated from Pλ for
a fixed λ > 0 or from P0. Let us denote by H 0 : Y ∼ P0 the null hypothesis and H λ : Y ∼ Pλ

the alternative hypothesis. We consider two formulations of this problem: one would like to
construct a sequence of measurable tests T : RN(N−1)/2 �→ {0,1} that returns 0 for H 0 and 1
for H λ, for which either

lim
N→∞Pλ

(
T (Y ) = 0

)∨ P0
(
T (Y ) = 1

) = 0,(11)

or less stringently, the total misclassification error or risk,

(12) err(T ) := Pλ

(
T (Y ) = 0

)+ P0
(
T (Y ) = 1

)
,

is minimized among all possible tests T .
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Strong detection. Using a second-moment argument (based on the computation of a trun-
cated version of EL(Y ;λ)2), Banks et al. (2017) and Perry et al. (2018) showed that Pλ and
P0 are mutually contiguous when λ < λ0, where the latter quantity equals λc for some priors
Px while it is suboptimal for others (e.g., the sparse Rademacher case; see further discus-
sion below). It is easy to see that contiguity implies impossibility of strong detection since,
for instance, if P0(T (Y ) = 1) → 0 then Pλ(T (Y ) = 0) → 1. Here, we show that Theorem 2
provides a more powerful approach to contiguity.

COROLLARY 3. Assume the prior Px is centered, has unit variance and bounded sup-
port. Then for all λ < λc, Pλ and P0 are mutually contiguous.

PROOF. A consequence of Theorem 2 is that if dPλ
dP0

�U under P0 along some subse-
quence and for some random variable U , then by the continuous mapping theorem we neces-
sarily have U = expN (−μ,2μ), where μ = 1

4(− log(1 − λ) − λ). We have Pr(U > 0) = 1,
and EU = 1. We now conclude using Le Cam’s first lemma in both directions (Lemma 6.4
or Example 6.5, van der Vaart (1998)). �

This approach allows one to circumvent second-moment computations which are not guar-
anteed to be tight in general, and necessitate careful and prior-specific conditioning that trun-
cates away problematic atypical events. On the other hand, we prove (at the end of Section 7)
that strong detection is possible above λc.

PROPOSITION 4. Let λ > λc. If Y ∼ Pλ, then 1
N

logL(Y ;λ) > 0 with probability ap-

proaching one as N → +∞. On the other hand, if Y ∼ P0 then 1
N

logL(Y ;λ) ≤ 0 with
probability approaching one as N → +∞. Therefore, Pλ and P0 are mutually orthogonal
above λc.

REMARK. It is tempting to believe that lim 1
N
EP0 logL(Y ;λ) < 0 above λc (the high-

probability statement is a consequence of concentration), but we do not know of a simple
proof of this. One can show, following Guerra (2003), that there is a nonincreasing sequence
of thresholds (λk)k≥1—each one corresponding to the point where the so-called “k-RSB”
interpolation bound dips below zero—such that the above limit is strictly negative above
λ∞ = limλk . By our contiguity argument, it is necessarily true that λ∞ ≥ λc. Equality would
follow if one can show overlap convergence (the analogue of Theorem 10 with R1,2 replacing
R1,∗) for all λ < λ∞ under the null model P0, but this goes beyond the scope of this paper.

We note that in the case of the sparse Rademacher prior, Px = ρ
2 δ−1/

√
ρ + (1 − ρ)δ0 +

ρ
2 δ+1/

√
ρ , we have λc = 1 if ρ ≥ ρ∗ ≈ 0.092 and λc < 1 otherwise. Corollary 3 and Proposi-

tion 4 exactly pin down the regime of contiguity, thus closing the gaps in the results of Banks
et al. (2017) and Perry et al. (2018). The behavior at the exact critical value λ = λc is left
open.

Weak detection. We have seen that strong detection is possible if and only if λ > λc. It is
then natural to ask whether weak detection is possible below λc; that is, is it possible to test
with accuracy better than that of a random guess below the reconstruction threshold? The
answer is yes, and this is another consequence of Theorem 2. More precisely, the optimal test
minimizing the risk (12) is the likelihood ratio test which rejects the null hypothesis H 0 (i.e.,
returns “1”) if L(Y ;λ) > 1, and its error is

(13) err∗(λ) = Pλ

(
L(Y ;λ) ≤ 1

)+ P0
(
L(Y ;λ) > 1

) = 1 − DTV(Pλ,P0).
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FIG. 1. Plots of formulas (14) and (15).

One can readily deduce from Theorem 2 the Type-I and Type-II errors of the likelihood ratio
test. By symmetry of the means of the limiting Gaussians, the errors P0(logL(Y ;λ) > 0)

and Pλ(logL(Y ;λ) ≤ 0) converge to a common limit 1
2erfc(

√
μ

2 ) for all λ < λc, where

μ = 1
4(− log(1 − λ) − λ) and erfc(x) = 2√

π

∫∞
x e−t2

dt is the complementary error func-

tion. Therefore, one obtains the following formula for err∗(λ) and the total variation distance
between Pλ and P0 (plotted in Figure 1).

COROLLARY 5. For all λ < λc (and σ = +∞), we have

(14) lim
N→∞ err∗(λ) = 1 − lim

N→∞DTV(Pλ,P0) = erfc
(

1

4

√
− log(1 − λ) − λ

)
.

Moreover, the proof of Theorem 2 allows us to obtain a formula for the KL divergence
between Pλ and P0 below the reconstruction threshold λc (see Figure 1).

COROLLARY 6 (of the proof). Assume the prior Px is centered, is of unit variance and
has bounded support (and σ = +∞.) Then for all λ < λc,

(15) lim
N→∞DKL(Pλ,P0) = 1

4

(− log(1 − λ) − λ
)
.

Note that the above formulas are only valid up to λc. When λc < 1, TV and KL both witness
an abrupt discontinuity at λc to 1 and ∞, respectively. When λc = 1, then the behavior is more
smooth with an asymptote at 1.

4. Replicas, overlaps, Gibbs measures and Nishimori.

4.1. Important notions. A crucial component of the proof of our main results is the un-
derstanding of the convergence of the overlap x�x∗/N , where x is drawn from Pλ(·|Y ), to
its limit q∗(λ). By Bayes’ rule, we see that

(16) dPλ(x|Y ) = e−H(x) dP N
x (x)∫

e−H(x) dP N
x (x)

,

where H is the Hamiltonian (recall that σ = +∞)

(17) −H(x) := ∑
i<j

√
λ

N
Yijxixj − λ

2N
x2
i x2

j .
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From the equations (3) and (4), it is straightforward to see that

fN = 1

N
EPλ

log
∫

e−H(x) dP N
x (x).

This provides another way of interpreting fN as the expected log-partition function (or nor-
malizing constant) of the posterior Pλ(·|Y ). For an integer n ≥ 1 and f : (RN)n+1 �→ R, we
define the Gibbs average of f w.r.t. H as

(18)

〈
f
(
x(1), . . . ,x(n),x∗)〉
:=

∫
f (x(1), . . . ,x(n),x∗)∏n

l=1 e−H(x(l)) dP N
x (x(l))

(
∫

e−H(x) dP N
x (x))n

.

This is simply the average of f with respect to Pλ(·|Y )n. The variables x(l), l = 1, . . . , n,
are called replicas, and are interpreted as random variables drawn independently from the
posterior. When n = 1, we simply write f (x,x∗) instead of f (x(1),x∗). Throughout this
paper, we use the following notation: for l, l′ = 1, . . . , n,∗, we let

Rl,l′ := x(l) · x(l′) = 1

N

N∑
i=1

x
(l)
i x

(l′)
i .

4.2. The Nishimori property under Pλ. The fact that the Gibbs measure 〈·〉 is a posterior
distribution (16) has far-reaching consequences. A crucial implication is that the n+ 1-tuples
(x(1), . . . ,x(n+1)) and (x(1), . . . ,x(n),x∗) have the same law under EPλ

〈·〉. To see this, let us
perform the following experiment:

1. Construct x∗ ∈ R
N by independently drawing its coordinates from Px.

2. Construct Y as Yij =
√

λ
N

x∗
i x∗

j + Wij , where Wij ∼ N (0,1) are all independent for
i < j . (Therefore, Y is distributed according to Pλ.)

3. Draw n + 1 independent random vectors (x(l))n+1
l=1 from Pλ(x ∈ ·|Y ).

We have by the tower property of expectations Eψ(Y ,x(1), . . . ,x(n),x∗) = E[E[ψ(Y ,x(1),

. . . ,x(n),x∗)|Y ]] = Eψ(Y ,x(1), . . . ,x(n),x(n+1)) for any measurable real-valued function
ψ . Therefore, the following equality of joint laws holds:

(19)
(
Y ,x(1), . . . ,x(n),x(n+1)) d= (

Y ,x(1), . . . ,x(n),x∗).
This implies in particular that under the alternative Pλ, the overlaps R1,∗ between a replica
and the spike have the same distribution as the overlap R1,2 between two replicas. The latter
is a very important property of the planted model Pλ, which is usually named after Nishimori
(2001) in spin-glass theory. Property (19) substantially simplifies important technical argu-
ments that are otherwise very difficult to conduct under the null. A recurring example in
our context is the following: to prove the convergence of the overlap between two replicas,
E〈R2

1,2〉 → 0, it suffices to prove E〈R2
1,∗〉 → 0 since the two quantities are equal.

5. Proof of LR fluctuations. In this section, we prove Theorem 2. It suffices to prove
the fluctuations under one of the hypotheses. Fluctuations under the remaining one come for
free as a consequence of Le Cam’s third lemma (van der Vaart (1998), Theorem 6.6). We
choose to treat the planted case Y ∼ Pλ. The reason is that it is easier to deal with the planted
model, due to the Nishimori property (19).
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5.1. Fluctuations under Pλ. In this section, we prove Gaussian fluctuations of logL

through the convergence of its characteristic function. Let i2 = −1 and s ∈ R be fixed. For λ

and Y ∼ Pλ, let

φN(λ) = EPλ

[
eis logL(Y ;λ)].

THEOREM 7. For all λ < λc and s ∈ R, there exists a constant K = K(λ, s) < ∞ such
that ∣∣φN(λ) − e(is−s2)μ

∣∣ ≤ K√
N

,

where μ = 1
4(− log(1 − λ) − λ).

The map s �→ e(is−s2)μ is the characteristic function of N (μ,2μ).

LEMMA 8. For all λ ≥ 0,

φ′
N(λ) = is − s2

4
E
[(

N
〈
R2

1,∗
〉− 〈

x2
Nx∗2

N

〉)
eis logL].(20)

PROOF. By differentiation with respect to λ, we obtain

φ′
N(λ) = isE

[(
d

dλ
logL

)
eis logL

]
= isE

[〈
− d

dλ
H(x)

〉
eis logL

]
,

where the Hamiltonian H is given in (17). Since Y ∼ Pλ, we can write more explicitly

−H(x) = ∑
i<j

√
λ
N

Wijxixj + λ
N

xixjx
∗
i x∗

j − λ
2N

x2
i x2

j . Therefore,

(21)

φ′
N(λ) = is

∑
i<j

1

2
√

λN
E
[〈Wijxixj 〉eis logL]− 1

2N
E
[〈
x2
i x2

j

〉
eis logL]

+ is
∑
i<j

1

N
E
[〈
xixjx

∗
i x∗

j

〉
eis logL].

Now we perform Gaussian integration by parts with respect to each variable Wij and obtain

1

2
√

λN
E
[〈Wijxixj 〉eis logL] = 1

2N
E
[〈
x2
i x2

j

〉
eis logL]− 1

2N
E
[〈xixj 〉2eis logL]

+ is

2N
E
[〈xixj 〉2eis logL].

Plugging this into (21) and rearranging, we obtain

(22)
φ′

N(λ) = − is + s2

4
E
[(

N
〈
R2

1,2
〉− 〈

x2
N

〉2)
eis logL]

+ is

2
E
[(

N
〈
R2

1,∗
〉− 〈

x2
Nx∗2

N

〉)
eis logL].

Since we are under the planted model Pλ and eis logL depends only on Y , we can use the
Nishimori property (19) to replace R1,2 and x

(1)
N x

(2)
N by R1,∗ and xNx∗

N , respectively, in the
first term in (22). �

The derivative involves the average E[(N〈R2
1,∗〉 − 〈x2

Nx∗2
N 〉)eis logL]. A crucial step in the

argument is to show that eis logL and its prefactor in the above expression are asymptotically
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independent, so that one can split the expectation of the product into the product of the ex-
pectations. More precisely, one should expect the quantities N〈R2

1,∗〉 and 〈x2
Nx∗2

N 〉 to tightly
concentrate about some deterministic values when λ < λc, such that the right-hand side in
(20) is a multiple of E[eis logL] = φN(λ). We will then be left with a simple differential equa-

tion whose solution is s �→ e(is−s2)μ.

PROPOSITION 9. For all λ < λc and s ∈ R, there exists K = K(λ, s) < ∞ such that

E
[(

N
〈
R2

1,∗
〉− 〈

x2
Nx∗2

N

〉)
eis logL] = λ

1 − λ
E
[
eis logL]+ δ,

where |δ| ≤ K(s,λ)/
√

N .

From here, we can prove the convergence of φN by integrating the differential equation
given in Lemma 8.

PROOF OF THEOREM 7. Plugging the result of Proposition 9 into Lemma 8 yields

φ′
N(λ) = is − s2

4

λ

1 − λ
φN(λ) + δ,

where |δ| ≤ K(s,λ)/
√

N . Since φN(0) = 1 and the primitive of λ �→ λ
1−λ

is λ �→ −λ −
log(1 − λ), integrating w.r.t. λ yields the result. �

PROOF OF COROLLARY 6. We prove the convergence of DKL(Pλ,P0). By differentiation
and use of the Nishimori property (19), we have

d

dλ
EPλ

logL(Y ;λ) = −1

4
E
[(

N
〈
R2

1,2
〉− 〈

x2
N

〉2)]+ 1

2
E
[(

N
〈
R2

1,∗
〉− 〈

x2
Nx∗2

N

〉)]
= 1

4
E
[(

N
〈
R2

1,∗
〉− 〈

x2
Nx∗2

N

〉)]
.

Now we use Proposition 9 with s = 0, and integrate w.r.t. λ to conclude. �

It remains to prove Proposition 9. This will require the deployment of techniques from the
theory of mean-field spin glasses.

5.2. Sketch of proof of Proposition 9. The idea is to show self-consistency relations
among the quantities of interest. Namely, we will prove that for all λ < 1,

(23) N E
[〈
R2

1,∗
〉
eis logL] = 1

1 − λ
E
[〈
x2
Nx∗2

N

〉
eis logL]+ δ,

and

(24) E
[〈
x2
Nx∗2

N

〉
eis logL] = E

[
eis logL]+ δ,

where in both cases

|δ| ≤ K(λ)N E
〈|R1,∗|3〉.

Next, we need to prove the convergence of the third moment of the overlap R1,∗ under E〈·〉
at an optimal rate of O(1/N3/2):

THEOREM 10. For all λ < λc, there exists a constant K = K(λ) < ∞ such that

E
〈
R4

1,∗
〉≤ K

N2 .
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This will allow us to conclude that |δ| ≤ K(λ)/
√

N . It is interesting to note that while the
self-consistent (or cavity) equations (23) and (24) hold for all λ < 1, the convergence of the
overlap toward zero is only true up to λc.

6. Proof of asymptotic decoupling. We proceed to the proof of Proposition 9. As ex-
plained earlier, the argument is in two stages. We first prove (23) then (24).

6.1. Preliminary bounds. We make repeated use of interpolation arguments in our
proofs. We state here a few elementary lemmas that we will invoke several times. We de-
note the overlaps between replicas where the last variable xN is deleted by a superscript “−”:

R−
l,l′ =

1

N

N−1∑
i=1

x
(l)
i x

(l′)
i .

Let {Ht : t ∈ [0,1]} be a family of interpolating Hamiltonians. We let 〈·〉t denote the corre-
sponding Gibbs average, similar to (18). Following Talagrand’s notation, we write

νt (f ) := E〈f 〉t ,
for a generic function f of n replicas x(l), l = 1, . . . , n. We abbreviate ν1 by ν. The main
tool we use is the following interpolation that isolates the last variable xN from the rest of the
system:

(25)

−Ht(x) := ∑
1≤i<j≤N−1

√
λ

N
Wijxixj + λ

N
xix

∗
i xj x

∗
j − λ

2N
x2
i x2

j

+
N−1∑
i=1

√
λt

N
WiNxixN + λt

N
xix

∗
i xNx∗

N − λt

2N
x2
i x2

N.

At t = 1, we have Ht = H , and at t = 0 the variable xN decouples from the rest of the
variables. Moreover, the Nishimori property (19) is still valid under 〈·〉t : the last column of

Y simply becomes (
√

λt
N

x∗
i x∗

N + WiN)N−1
i=1 .

LEMMA 11. Let f be a function of n replicas x(1), . . . ,x(n) and x∗. Then

ν′
t (f ) = λ

2

∑
1≤l �=l′≤n

νt

(
R−

l,l′y
(l)y(l′)f

)− λn

n∑
l=1

νt

(
R−

l,n+1y
(l)y(n+1)f

)

+ λn

n∑
l=1

νt

(
R−

l,∗y
(l)y∗f

)− λnνs

(
R−

n+1,∗y
(n+1)y∗f

)
+ λ

n(n + 1)

2
νt

(
R−

n+1,n+2y
(n+1)y(n+2)f

)
,

where we have written y = xN .

PROOF. The computation relies on Gaussian integration by parts; see Talagrand ((2011a),
Lemma 1.6.3), for the details of a similar computation. �

LEMMA 12. If f is a bounded nonnegative function, then for all t ∈ [0,1],
νt (f ) ≤ K(λ,n)ν(f ).
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PROOF. Since the variables and the overlaps are all bounded, using Lemma 11 we have
for all t ∈ [0,1], ∣∣ν′

t (f )
∣∣ ≤ K(λ,n)νt (f ).

Then we conclude using Grönwall’s lemma. �

6.2. The cavity method. In its essence, the cavity method amounts to removing one vari-
able from the system—in a manner akin to leave-one-out methods in statistics—and ana-
lyzing the influence of the remaining variables on the variable that has been removed. It
was initially introduced to solve certain models of spin glasses (Mézard, Parisi and Virasoro
(1987)), and was developed into a rigorous probabilistic theory by Talagrand (2011a, 2011b).
To make use of the cavity method, we isolate the N th variable from the rest (without loss of
generality, by symmetry among the variables xi ) and compute

E
[(

N
〈
R2

1,∗
〉− 〈

x2
Nx∗2

N

〉)
eis logL]= N E

[〈
xNx∗

NR−
1,∗

〉
eis logL].

Let

X(t) := exp
(
is log

∫
e−Ht(x) dP N

x (x)

)
,

where Ht is defined in (25). Note that we have X(1) = eis logL. We now consider the inter-
polative function

ϕ(t) := N E
[〈
xNx∗

NR−
1,∗

〉
tX(t)

]
.

Our strategy is approximate ϕ(1) by ϕ(0) + ϕ′(0) via a Taylor expansion, which requires is
to control the second derivative ϕ′′. Notice that since the last variable decouples from the rest
of the system at t = 0, we have

ϕ(0) = N E
[〈
xNx∗

N

〉
0

] ·E[〈R−
1,∗

〉
0X(0)

]
= N EPx[X]2 ·E[〈R−

1,∗
〉
0X(0)

] = 0.

The latter equality holds because Px is centered. Next, a bit of algebra (similar to Lemma 11)
shows that the derivative ϕ′(t) is a linear combination of terms of the form

(26) λN E
[〈
xNx∗

Nx
(a)
N x

(b)
N R−

1,∗R
−
a,b

〉
tX(t)

]
,

where (a, b) ∈ {(1,∗), (2,∗), (1,2), (2,3)}. We see that at t = 0, if the above expression
involves a variable x

(a)
N of degree 1 then this term vanishes. Therefore, the only remaining

term is the one where (a, b) = (1,∗). Therefore,

(27)

ϕ′(0) = λN E
[〈
x2
Nx∗2

N

〉
0

] ·E[〈(R−
1,∗

)2〉
0X(0)

]
= λN EPx

[
X2]2 ·E[〈(R−

1,∗
)2〉

0X(0)
]

= λN E
[〈(

R−
1,∗

)2〉
0X(0)

]
.

The last equality holds because Px has unit variance. Now we turn to ϕ′′(t). Taking another
derivative generates monomials of degree three in the overlaps and the last variable, so ϕ′′(t)
is a linear combination of terms

(28) λ2N E
[〈
xNx∗

Nx
(a)
N x

(b)
N x

(c)
N x

(d)
N R−

1,2R
−
a,bR

−
c,d

〉
tX(t)

]
,

where (a, b, c, d) range over a finite set of combinations. Our goal is to bound the second
derivative independently of t , so that we are able to use Taylor’s approximation

(29)
∣∣ϕ(1) − ϕ(0) − ϕ′(0)

∣∣ ≤ sup
0≤t≤1

∣∣ϕ′′(t)
∣∣.
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Since Px has bounded support and |X(t)| = 1, Hölder’s inequality and the Nishimori property
imply that (28) is bounded in modulus by

λNK E
[〈∣∣R−

1,2R
−
a,bR

−
c,d

∣∣〉
t

] ≤ λNK E
[〈∣∣R−

1,∗
∣∣3〉

t

]1/3
.

Using Lemma 12 and the convergence of the fourth moment, Theorem 10, we have

E
〈∣∣R−

1,∗
∣∣3〉

t ≤ K(λ)E
〈(
R−

1,∗
)4〉3/4 ≤ K(λ)

N3/2 .

Therefore, by the above estimates we have

(30) sup
0≤t≤1

∣∣ϕ′′(t)
∣∣ ≤ K(λ)√

N
.

Now, our next goal is to prove

(31)
∣∣ϕ′(0) − λN E

[〈
R2

1,∗
〉
eis logL]∣∣ ≤ K(λ)√

N
.

We consider the function

ψ(t) := λN E
[〈(

R−
1,∗

)2〉
tX(t)

]
.

Observe that (27) tells us that ψ(0) = ϕ′(0). On the other hand,∣∣ψ(1) − λN E
[〈
R2

1,∗
〉
eis logL]∣∣ ≤ 2λE

〈∣∣R−
1,∗xNx∗

N

∣∣〉+ λ

N
E
〈(
xNx∗

N

)2〉
.

By boundedness of the prior, the first term in the RHS is bounded by

K(λ)E
〈∣∣R−

1,∗
∣∣〉≤ K(λ)/

√
N,

and the second term is bounded by K(λ)/N . So it suffices to show that

sup
0≤t≤1

∣∣ψ ′(t)
∣∣ ≤ K(λ)√

N
.

Similar to ϕ, the derivative of ψ is a sum of terms of the form

λ2N E
[〈
x

(a)
N x

(b)
N

(
R−

1,∗
)2

R−
a,b

〉
tX(t)

]
.

It is clear that the same method used to bound ϕ′′ (the generic term of which is (28)) also
works in this case, so we obtain the desired bound on ψ ′. Finally, using (29), (30) and (31),
we obtain

N E
[〈
R2

1,∗
〉
eis logL]−E

[〈
x2
Nx∗2

N

〉
eis logL] = λN E

[〈
R2

1,∗
〉
eis logL]+ δ,

where |δ| ≤ K(λ)/
√

N . This is equivalent to (23) and closes the first stage of the argument.
Now we need to show that

E
[〈
x2
Nx∗2

N

〉
eis logL] = E

[
eis logL]+ δ.

We similarly consider the function ψ(t) = E[〈x2
Nx∗2

N 〉tX(t)]. We have

ψ(0) = E
[〈
x2
Nx∗2

N

〉
0

] ·E[X(0)
] = EPx

[
X2]2 ·E[X(0)

] = E
[
X(0)

]
.

The derivative of ψ is a sum of term of the form

λE
[〈
x2
Nx∗2

N x
(a)
N x

(b)
N R−

a,b

〉
tX(t)

]
.

By our earlier argument, |ψ ′(t)| ≤ K(λ)/
√

N for all t , so that∣∣ψ(1) −E
[
X(0)

]∣∣≤ K(λ)√
N

.

It remains to show that |E[X(0)] −E[X(1)]| ≤ K/
√

N , and this is done in exactly the same
way: by bounding the derivative of t �→ E[X(t)]. This yields (24) and concludes the proof.
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7. Overlap convergence. In this section, we prove Theorem 10 on the convergence of
the overlaps to zero under Pλ, and below λc. At a high level, we will first prove that the
overlap R1,∗ converges in probability to zero under E〈·〉: for all ε > 0,

(32) E
〈
1
{|R1,∗| ≥ ε

}〉≤ Ke−cN .

This will be achieved via two interpolation bounds combined with concentration of measure.
The way the argument works is roughly as follows: for a fixed q we have

E
〈
1{R1,∗ � q}〉 = E

∫
1{R1,∗ � q}e−H(x) dP N

x (x)∫
e−H(x) dP N

x (x)

= E
exp{N × 1

N
log

∫
1{R1,∗ � q}e−H(x) dP N

x (x)}
exp{N × 1

N
log

∫
e−H(x) dP N

x (x)} .

We invoke concentration-of-measure arguments to show that the logarithmic terms in the
numerator and the denominator are close to their expectations, hence we obtain

E
〈
1{R1,∗ � q}〉 � exp

{
N
(
fN(q) − fN

)}
,

where fN(q) = 1
N
E log

∫
1{R1,∗ � q}e−H(x) dP N

x (x) and fN is the unconstrained free en-
ergy (with no indicator). It is now apparent that R1,∗ is exponentially unlikely to take values
q such that fN(q) < fN . It remains to lower bound fN and upper bound fN(q) by quantities
that preserve a strict inequality for all q �= 0. These quantities will naturally be the replica-
symmetric formula φRS(λ) and the replica-symmetric potential F(λ, q) respectively, and the
proof relies on Guerra’s interpolation method.

Next, this convergence in probability is boosted to a statement of convergence of the sec-
ond moment: E〈R2

1,∗〉 ≤ K
N

, which is in turn boosted to a statement of convergence of the

fourth moment: E〈R4
1,∗〉 ≤ K

N2 . The apparent recursive nature of this argument is a feature of
the cavity method: one can control higher-order quantities once one knows how to control
low-order ones and control certain error terms. We now present the interpolation bounds and
then prove (32). The cavity arguments which allow us to convert this to convergence of mo-
ments are presented in the Supplementary Material (El Alaoui, Krzakala and Jordan (2020)),
since they are very similar to the arguments already presented in Section 6.

7.1. Guerra’s interpolation bound. We present the interpolation method of Guerra
(2001); a main tool in our arguments.

PROPOSITION 13. Recall fN = 1
N
EPλ

logL(Y ;λ). For all λ ≥ 0, there exist K > 0 such
that

fN ≥ sup
q≥0

F(λ, q) − K

N
= φRS(λ) − K

N
.

PROOF. Consider the family of interpolating Hamiltonians,

(33)

−Ht(x) := ∑
i<j

√
tλ

N
Wijxixj + tλ

N
xix

∗
i xj x

∗
j − tλ

2N
x2
i x2

j

+
N∑

i=1

√
(1 − t)rzixi + (1 − t)rxix

∗
i − (1 − t)r

2
x2
i ,

where the zi’s are i.i.d. standard Gaussian r.v.’s independent of everything else, and r =
λq∗(λ). We similarly define the Gibbs average 〈·〉t as in (18) where H is replaced by Ht .
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Note that the Nishimori property (19) is preserved under 〈·〉t for all t ∈ [0,1]. Indeed, the
interpolation is constructed in such a way that 〈·〉t is the posterior distribution of the signal
x∗ given the augmented set of observations⎧⎪⎪⎨⎪⎪⎩

Yij =
√

tλ

N
x∗
i x∗

j + Wij , 1 ≤ i < j ≤ N,

yi = √
(1 − t)rx∗

i + zi, 1 ≤ i ≤ N,

(34)

which can be interpreted as having side information about x∗ from a scalar Gaussian channel
with r = λq∗(λ). Now we consider the interpolating free energy

(35) ϕ(t) := 1

N
E log

∫
e−Ht(x) dP N

x (x).

We see that ϕ(1) = fN and ϕ(0) = ψ(λq). This function is differentiable in t , and by differ-
entiation, we have

ϕ′(t) = 1

N
E

〈
−dHt(x)

dt

〉
t

= 1

N
E

〈
− λ

2N

∑
i<j

x2
i x2

j + 1

2

√
λ

tN

∑
i<j

Wijxixj + λ

N

∑
i<j

xix
∗
i xj x

∗
j

〉
t

+ 1

N
E

〈
λq

2

N∑
i=1

x2
i − 1

2

√
λq

1 − t

N∑
i=1

zixi − λq

N∑
i=1

xix
∗
i

〉
t

.

Now we use Gaussian integration by parts to eliminate the variables Wij and zi . The details
of this computation are explained extensively in many sources (see, e.g., Krzakala, Xu and
Zdeborová (2016), Lelarge and Miolane (2019), Talagrand (2011a)). We get

ϕ′(t) = − λ

2N2 E

〈∑
i<j

x
(1)
i x

(1)
j x

(2)
i x

(2)
j

〉
t

+ λ

N2 E

〈∑
i<j

xix
∗
i xj x

∗
j

〉
t

+ λq

2N
E

〈
N∑

i=1

x
(1)
i x

(2)
i

〉
t

− λq

N
E

〈
N∑

i=1

xix
∗
i

〉
t

.

Completing the squares yields

(36)

ϕ′(t) = −λ

4
E
〈(
x(1) · x(2) − q

)2〉
t + λ

4
q2 + λ

4N2

N∑
i=1

E
〈
x

(1)
i

2
x

(2)
i

2〉
t

+ λ

2
E
〈(
x · x∗ − q

)2〉
t − λ

2
q2 − λ

2N2

N∑
i=1

E
〈
xi

2x∗
i

2〉
t .

The first line in the above expression involves overlaps between two independent replicas,
while the second one involves overlaps between one replica and the planted solution. Using
the Nishimori property, the derivative of ϕ can be written as

(37) ϕ′(t) = λ

4
E
〈
(R1,∗ − q)2〉

t − λ

4
q2 − λ

4N
E
〈
xN

2x∗
N

2〉
t .

The last term follows by symmetry between variables. We finish the argument by noting that
E〈(R1,∗ − q)2〉t ≥ 0, and the product xN

2x∗
N

2 is bounded. We then integrate with respect to
time to obtain the result. �
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7.2. Guerra’s interpolation at fixed overlap. Let us first introduce the so-called Franz–
Parisi (FP) potential (Franz and Parisi (1995, 1998)). For x∗ ∈ R

N fixed, m ∈ R \ {0} and
ε > 0 define the set

A =
{
R1,∗ ∈ [m,m + ε) if m > 0,

R1,∗ ∈ (m − ε,m] if m < 0.

Now define the FP potential as

(38) �ε

(
m,x∗) := 1

N
EW log

∫
1{x ∈ A}e−H(x) dP N

x (x),

where the expectation is only over the Gaussian disorder W . This is the free energy of a
subsystem of configurations having an overlap close to a fixed value m with the planted
signal x∗.

For r ≥ 0 and s ∈ R, we let

(39) ψ̂(r, s) := Ez log
∫

exp
(√

rzx + sx − r

2
x2
)

dPx(x)

and

(40)

�ψ(r, s) := Ex∗ ψ̂
(
r, sx∗)

= Ex∗,z log
∫

exp
(√

rzx + sxx∗ − r

2
x2
)

dPx(x).

We see that �ψ(r, r) = ψ(r), but unlike ψ , the function �ψ does not have an interpretation
as the KL between two distributions. The next lemma states a key property of this function
that will be useful later on (see the Supplementary Material (El Alaoui, Krzakala and Jordan
(2020)) for the proof).

LEMMA 14. For all r ≥ 0, �ψ(r,−r) ≤ �ψ(r, r).

Additionally, for x∗ ∈ R
N fixed, we define the function

F̂ (λ,m,q) := 1

N

N∑
i=1

ψ̂
(
λq,λmx∗

i

)− λ

2
m2 + λ

4
q2.

Recall that Ex∗ F̂ (λ, q, q) is the RS potential F(λ, q) from (6).

PROPOSITION 15. Fix m ∈ R, ε > 0 and λ ≥ 0. There exist constants K = K(λ) > 0
such that

�ε

(
m;x∗) ≤ F̂

(
λ, |m|,m)+ λε2

2
+ K

N
.

PROOF. To obtain a bound on �ε(m;x∗) we use the interpolation method with Hamil-
tonian

−Ht(x) := ∑
i<j

√
tλ

N
Wijxixj + tλ

N
xix

∗
i xj x

∗
j − tλ

2N
x2
i x2

j

+
N∑

i=1

√
(1 − t)λ|m|zixi + (1 − t)λmxix

∗
i − (1 − t)λ|m|

2
x2
i .
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by varying t ∈ [0,1]. The r.v.’s W , z are all i.i.d. standard Gaussians independent of every-
thing else. We define

ϕ(t) := 1

N
EW ,z log

∫
1{x ∈ A}e−Ht (x) dP N

x (x).

We compute the derivative w.r.t. t , and use Gaussian integration by prts to obtain

ϕ′(t) = −λ

4
E
〈(
R1,2 − |m|)2〉

t + λt

4
|m|2 + λ

4N2

N∑
i=1

E
〈
x

(1)
i

2
x

(2)
i

2〉
t

+ λ

2
E
〈
(R1,∗ − m)2〉

t − λ

2
m2 − λ

2N2

N∑
i=1

E
〈
xi

2x∗
i

2〉
t ,

where 〈·〉t is the Gibbs average w.r.t. the Hamiltonian −Ht(x) + log1{x ∈ A}. A few things
now happen. Notice that the planted term (first term in the second line) is trivially smaller
than λε2/2 due to the overlap restriction. Moreover, the last terms in both lines are of order
1/N since the variables xi are bounded. The first term in the first line, which involves the
overlap between two replicas, is more challenging. What makes this term difficult to control
is that the Gibbs measure 〈·〉t no longer satisfies the Nishimori property due to the overlap
restriction, so the overlap between two replicas no longer has the same distribution as the
overlap of one replica with the planted spike. Fortunately, this term is always nonpositive so
we can ignore it altogether and obtain an upper bound:

ϕ′(t) ≤ −λ

4
m2 + λε2

2
+ λK

N
.

Integrating over t , we get

�ε

(
m;x∗)≤ ϕ(0) − λ

4
m2 + λε2

2
+ λK

N
.

Finally, by dropping the indicator, we have

ϕ(0) = 1

N
Ez log

∫
1{x ∈ A}e−H0(x) dP N

x (x)

≤ 1

N
Ez log

∫
e−H0(x) dP N

x (x)

= 1

N

N∑
i=1

Ez log
∫

exp
(√

λ|m|zxi + λmxx∗
i − λ|m|

2
x2
)

dPx(x)

= 1

N

N∑
i=1

ψ̂
(
λ|m|, λmx∗

i

)
.

�

7.3. Convergence in probability of the overlaps. As explained earlier, Propositions 13
and 15 imply convergence in probability of the overlaps.

PROPOSITION 16. For all λ < λc and ε > 0, there exist constants K = K(λ, ε) ≥ 0,
c = c(λ, ε,Px) ≥ 0 such that

E
〈
1
{|R1,∗| ≥ ε

}〉≤ Ke−cN .
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To prove the above proposition, we first show that the partition function of the model en-
joys sub-Gaussian concentration on a logarithmic scale. This is an elementary consequence of
two classical concentration-of-measure results: concentration of Lipschitz functions of Gaus-
sian random variables, and concentration of convex Lipschitz functions of bounded random
variables.

LEMMA 17. Fix x∗ ∈ R
N and let A be a Borel subset of RN . Define the random variable

Z :=
∫
A

e−H(x) dP N
x (x),

where the randomness comes from the Gaussian disorder W . There exists a constant K > 0
depending on λ and Px such that for all u ≥ 0,

Pr
(| logZ −E logZ| ≥ Nu

)≤ 2e−Nu2/K.

PROOF. We notice that the map W �→ 1
N

logZ is Lipschitz with constant K
√

λ
N

for every

x∗ ∈ R
N . Then we invoke the Borell–Tsirelson–Ibragimov–Sudakov inequality of concentra-

tion of Lipschitz functions of Gaussian r.v.’s. See Boucheron, Lugosi and Massart (2013). �

LEMMA 18. Define the random variable

f := 1

N
EW log

∫
e−H(x) dP N

x (x),

where the randomness comes from the planted vector x∗. There exist a constant K > 0 de-
pending on λ and Px such that for all u ≥ 0,

Pr
(|f−Ef| ≥ u

) ≤ 2e−Nu2/K.

PROOF. We notice that the map x∗ �→ f is Lipschitz with constant K λ√
N

and convex.

Moreover, the coordinates x∗
i are bounded. We then invoke Talagrand’s inequality on the

concentration of convex Lipschitz functions of bounded r.v.’s. See Boucheron, Lugosi and
Massart (2013). �

LEMMA 19. There exists a constant K > 0 depending on λ, m and Px such that for all
u ≥ 0,

Pr

(∣∣∣∣∣
N∑

i=1

ψ̂
(
λ|m|, λmx∗

i

)− �ψ(
λ|m|, λm

)∣∣∣∣∣ ≥ Nu

)
≤ 2e−Nu2/K.

PROOF. Since |∂sψ̂(r, sx∗)| ≤ K2, |∂rψ̂(r, sx∗)| ≤ K2/2 and ψ̂(0,0) = 0, where K is a
bound on the radius of the support of Px , we have |ψ̂(r, sx∗)| ≤ K2(r/2 + s). The claim now
follows from Hoeffding’s inequality. �

PROOF OF PROPOSITION 16. For ε, ε′ > 0, we can write the decomposition

E
〈
1
{|R1,∗| ≥ ε

}〉 = ∑
l≥0

E
〈
1
{
R1,∗ − ε ∈ [lε′, (l + 1)ε′)

}〉
+∑

l≥0

E
〈
1
{−R1,∗ − ε ∈ [lε′, (l + 1)ε′)

}〉
,
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where the integer index l ranges over a finite set of size ≤ K/ε′ since the prior Px has
bounded support. We will only treat the first sum in the above expression since the argument
extends trivially to the second sum.

Let A = {R1,∗ − ε ∈ [lε′, (l + 1)ε′)} and write

(41) E
〈
1{x ∈ A}〉 = Ex∗ EW

[∫
A e−H(x) dP N

x (x)∫
e−H(x) dP N

x (x)

]
.

By virtue of Lemma 17, the two quantities in this fraction enjoy sub-Gaussian concentration
on a logarithmic scale over the Gaussian disorder. For any given l and u ≥ 0, we simultane-
ously have

1

N
log

∫
e−H(x) dP N

x (x) ≥ 1

N
EW log

∫
e−H(x) dP N

x (x) − u,

and

1

N
log

∫
A

e−Ht(x) dP N
x (x) ≤ 1

N
EW log

∫
A

e−Ht(x) dP N
x (x) + u

= �ε′
(
ε + lε′;x∗)+ u,

with probability at least 1 − 2e−Nu2/K . On the complement of this event, we simply bound
the fraction in (41) by 1. Combining the above bounds, we obtain

E
〈
1{x ∈ A}〉 ≤ 2e−Nu2/K +Ex∗

[
eN(�+2u)],

where

� = �ε′
(
m;x∗)− 1

N
EW log

∫
e−H(x) dP N

x (x),

with m = ε + lε′. By Proposition 15, �ε′ is upper bounded by a quantity that concentrates
over the randomness of x∗. We use Lemma 18 and Lemma 19 in the same way we used
Lemma 17: for u′ ≥ 0, we simultaneously have

�ε′
(
m;x∗) ≤ F

(
λ, |m|,m)+ λε2

2
+ λK

N
+ u′,

and

1

N
EW log

∫
e−H(x) dP N

x (x) ≥ fN − u′,

with probability at least 1 − 4e−Nu′2/K , where

fN = EW ,x∗ log
∫

e−H(x) dP N
x (x) = EPλ

logL(Y ;λ).

Moreover, by Lemma 14, we have F(λ, |m|,m) ≤ F(λ, |m|, |m|) ≡ F(λ,m). Therefore,

Ex∗
[
eN�] ≤ exp

(
N
(
F
(
λ, |m|)− fN + 2u′))+ 4e−Nu′2/K.

The second term is obtained by considering the low-probability complement event and noting
that � ≤ 0. Now, by Proposition 13, fN ≥ supq F (λ, q) − K/N . When λ < λc, q = 0 is
the unique maximizer of the RS potential. Therefore, F(λ, |m|) − fN < −c(ε) < 0 for all
|m| > ε. We obtain

E
〈
1{x ∈ A}〉 ≤ 2e−Nu2/K + 4e−Nu′2/K+2Nu + eN(−c(ε)+2u+2u′).
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Finally, adjusting the parameters u, u′ yields the desired result (e.g., u′ = c(ε)/3 and u =
c(ε)2/36 ∧ c(ε)/9). �

PROOF OF PROPOSITION 4. Here, we prove possibility of strong detection above λc.
From Proposition 13, we know that lim 1

N
EPλ

logL ≥ φRS(λ) > 0 for λ > λc. On the other
hand, EP0 logL ≤ 0 by Jensen’s inequality. Now it remains to argue that 1

N
logL concentrates

about its expectation under both Pλ and P0. This is a consequence of Lemmas 17 and 18: we
have, for all u ≥ 0,

Pλ(logL −EPλ
logL ≤ −Nu) ∨ P0(logL −EP0 logL ≥ Nu) ≤ 4e−Nu2/K.

This concludes the proof. (Note also that the tail decays fact enough to insure almost-sure
convergence via the Borel–Cantelli lemma.) �

8. When the diagonal is not discarded. When the variance of the diagonal noise entries
Wii is kept finite, one has to keep track of the contribution of the diagonal part d(x) =
1
σ 2

∑N
i=1

√
λ
N

Yiix
2
i − λ

2N
x4
i of the Hamiltonian. In this case, the derivative of the characteristic

function φN(λ) of the log-LR w.r.t. λ displayed in Lemma 8 has an additional term:

φ′
N(λ) = is − s2

4
E
[(

N
〈
R2

1,∗
〉− 〈

x2
Nx∗2

N

〉)
eis logL]+ is − s2

2σ 2 E
[〈
x2
Nx∗2

N

〉
eis logL].

The cavity computations performed in Section 6 also need to be altered in a minor way: in
the interpolation argument separating the last variable xN from the rest of the variables, we
also have to make d(x) time-dependent by performing the change of variable λ → λt . As a
result of the computation, equation (23) becomes

(1 − λ)N E
[〈
R2

1,∗
〉
eis logL]= E

[〈
x2
Nx∗2

N

〉
eis logL]+ λκ

σ 2 E
[
eis logL]+ δ,

with |δ| ≤ K/
√

N , κ = EPx[X3]2, while equation (24) remains intact. As a result of these
changes, and the above formula for φ′

N , we get

φ′
N(λ) = is − s2

4

(
1 + λκ/σ 2

1 − λ
− 1

)
φN(λ) + is − s2

2σ 2 φN(λ) + δ,

and this leads to the formula claimed.

9. Conclusions. This paper investigates the fundamental limits of spike detection in the
rank-one spiked Wigner model. We proved that the logarithm of the likelihood ratio has Gaus-
sian fluctuations below the reconstruction threshold λc while it is exponentially large under
the alternative above it. This establishes the maximal region of contiguity between the planted
and null models: namely the open interval (0, λc). This also pins down the performance of the
optimal test, and provides formulae for the Kullback–Leibler and the total variation distances
between the null and planted distributions. An important characteristic of this threshold is
that it is not necessarily related to the spectrum of the observed matrix: there are cases where
λc does not correspond to the point where the signal shows up in the spectrum.

Our proofs repose on the technology developed within spin-glass theory for the study of
the SK model. It is of interest to extend these techniques to other spiked models, notably
spiked covariance models where the perturbation is in the covariance matrix of the data. Par-
tial progress establishing Gaussian fluctuations of the LR in a restricted regime was recently
obtained by a subset of the authors (El Alaoui and Jordan (2018)). Reaching the optimal
threshold—a conjectural formula of which is provided in this recent paper—remains an in-
teresting problem.
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SUPPLEMENTARY MATERIAL

Supplement to “Fundamental limits of detection in the spiked Wigner model” (DOI:
10.1214/19-AOS1826SUPP; .pdf). This supplement (El Alaoui, Krzakala and Jordan (2020))
contains the proof of convergence of the moments of the overlap R1,∗ thereby completing the
proof of Theorem 10, and the proof of Lemma 14.
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