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MODEL-ASSISTED INFERENCE FOR TREATMENT EFFECTS USING
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Consider the problem of estimating average treatment effects when a
large number of covariates are used to adjust for possible confounding
through outcome regression and propensity score models. We develop new
methods and theory to obtain not only doubly robust point estimators for
average treatment effects, which remain consistent if either the propensity
score model or the outcome regression model is correctly specified, but also
model-assisted confidence intervals, which are valid when the propensity
score model is correctly specified but the outcome model may be misspeci-
fied. With a linear outcome model, the confidence intervals are doubly robust,
that is, being also valid when the outcome model is correctly specified but the
propensity score model may be misspecified. Our methods involve regular-
ized calibrated estimators with Lasso penalties but carefully chosen loss func-
tions, for fitting propensity score and outcome regression models. We provide
high-dimensional analysis to establish the desired properties of our methods
under comparable sparsity conditions to previous results, which give valid
confidence intervals when both the propensity score and outcome models are
correctly specified. We present simulation studies and an empirical applica-
tion which demonstrate advantages of the proposed methods compared with
related methods based on regularized maximum likelihood estimation. The
methods are implemented in the R package RCAL.

1. Introduction. For observational studies, causal inference involves statistical model-
ing and estimation of population properties and associations from empirical data under struc-
tural assumptions (e.g., Tsiatis (2006)). In particular, as the main problem to be tackled in the
paper, estimation of average treatment effects typically requires building and fitting outcome
regression or propensity score models (e.g., Tan (2007)). The fitted outcome regression func-
tions or propensity scores can then be used in various estimators for the average treatment
effects, notably inverse probability weighted (IPW) estimators or augmented IPW estimators
(Robins, Rotnitzky and Zhao (1994)).

A conventional approach for propensity score estimation (Rosenbaum and Rubin (1984))
involves fitting a propensity score model (often logistic regression) by maximum likelihood,
check covariate balance, and then modify and refit the propensity score model until reason-
able balance is achieved. However, this approach depends on ad hoc choices of what variables
are included and whether nonlinear terms or interactions are used among others. The situa-
tion can be especially challenging when there are a large number of potentially confounding
variables (or covariates) that need to be considered in outcome regression or propensity score
models. In addition, another statistical issue is that uncertainty from the iterative process of
model selection is complicated and often ignored in subsequent inference (i.e., confidence
intervals or hypothesis testing) about treatment effects.
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In this article, we develop new methods and theory for fitting logistic propensity score
models and generalized linear outcome models, and then using the fitted values in augmented
IPW estimators to estimate average treatment effects in high-dimensional settings where the
number of covariate functions p is close to or even greater than the sample size n. There are
two main elements in our approach. First, we employ regularized estimation with a Lasso
penalty (Tibshirani (1996)) when fitting the outcome regression and propensity score models
to deal with the large number of covariates under a sparsity assumption that only a small
but unknown subset (relative to the sample size) of covariates are associated with nonzero
coefficients in the propensity score and outcome regression models. Second, we carefully
choose the loss functions for regularized estimation, different from least squares or maxi-
mum likelihood, such that the resulting augmented IPW estimator and Wald-type confidence
intervals possess the following properties (G1) and at least one of (G2)–(G3) under suitable
conditions:

(G1) The point estimator is doubly robust, that is, remains consistent if either the propen-
sity score model or the outcome regression model is correctly specified.

(G2) The confidence intervals are valid if the propensity score model is correctly specified
but the outcome regression model may be misspecified.

(G3) The confidence intervals are valid if the outcome regression model is correctly spec-
ified but the propensity score model may be misspecified.

If either property (G2) or (G3) is satisfied, then the confidence intervals are said to be model-
assisted, borrowing the terminology from the survey literature (Särndal, Swensson and Wret-
man (1992)). If properties (G2)–(G3) are satisfied, then the confidence intervals are doubly
robust.

Combining the two foregoing elements leads to a regularized calibrated estimator, denoted
by γ̂ 1

RCAL, for the coefficients in the propensity score model and a regularized weighted likeli-
hood estimator, denoted by α̂1

RWL, for the coefficients in the outcome model within the treated
subjects. See the loss functions in (12) and (14) or (53). The regularized calibrated estimator
γ̂ 1

RCAL has recently been proposed in Tan (2017) as an alternative to the regularized maxi-
mum likelihood estimator for fitting logistic propensity score models, regardless of outcome
regression models. As shown in Tan (2017), minimization of the underlying expected calibra-
tion loss implies reduction of not only the expected likelihood loss for logistic regression but
also a measure of relative errors of limiting propensity scores that controls the mean squared
errors of IPW estimators, when the propensity score model may be misspecified. In a com-
plementary manner, our work here shows that γ̂ 1

RCAL can be used in conjunction with α̂1
RWL

to yield an augmented IPW estimator with valid confidence intervals if the propensity score
model is correctly specified but the outcome regression model may be specified.

We provide high-dimensional analysis of the regularized weighted likelihood estima-
tor α̂1

RWL and the resulting augmented IPW estimator with possible model misspecifica-
tion, while building on related results on convergence of γ̂ 1

RCAL to a target value γ̄ 1
CAL

in Tan (2017). In particular, a new strategy is developed to tackle the technical issue that
the weighted likelihood loss for α̂1

RWL is defined depending on the estimator γ̂ 1
RCAL. As

a result, we obtain the convergence of α̂1
RWL to a target value ᾱ1

WL in the L1 norm at
the rate (|Sγ | + |Sα1 |){log(p)/n}1/2 and the associated Bregman divergence at the rate
(|Sγ | + |Sα1 |) log(p)/n under comparable conditions to those for high-dimensional analy-
sis of standard Lasso estimators (e.g., Bühlmann and van de Geer (2011)), where |Sγ | or
|Sα1 | denotes the size of nonzero elements in γ̄ 1

CAL or respectively ᾱ1
WL. Furthermore, we es-

tablish an asymptotic expansion of the augmented IPW estimator based on γ̂ 1
RCAL and α̂1

RWL,
and show that property (G1) is achieved provided (|Sγ | + |Sα1 |)(logp)1/2 = o(n1/2) and
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property (G2) is achieved provided (|Sγ | + |Sα1 |)(logp) = o(n1/2) with a nonlinear out-
come model. With a linear outcome model, we obtain stronger results: property (G1) is
achieved provided (|Sγ | + |Sα1 |) log(p) = o(n) and both (G2) and (G3) are achieved pro-
vided (|Sγ | + |Sα1 |) log(p) = o(n1/2). These sparsity conditions are as weak as in previous
works (e.g., Belloni, Chernozhukov and Hansen (2014); van de Geer et al. (2014)).

Related works. We compare and connect our work with related works in several ar-
eas. Nonpenalized calibrated estimation for propensity score models have been studied,
sometimes independently (re)derived, in causal inference, missing-data problems and sur-
vey sampling (e.g., Folsom (1991); Tan (2010); Graham, De Xavier Pinto and Egel (2012);
Hainmueller (2012); Imai and Ratkovic (2014); Kim and Haziza (2014); Vermeulen and
Vansteelandt (2015); Chan, Yam and Zhang (2016)). The nonpenalized version of the estima-
tor α̂1

RWL for outcome regression models have also been proposed in Kim and Haziza (2014)
and Vermeulen and Vansteelandt (2015), where one of the motivations is to circumvent the
need of accounting for variation of such estimators of nuisance parameters, and hence sim-
plify the computation of confidence intervals based on augmented IPW estimators. Our work
generalizes these ideas to achieve statistical advantages in high-dimensional settings, where
model-assisted or doubly robust confidence intervals would not be obtained without using
regularized calibrated estimation. See Section 3.2 for further discussion.

For high-dimensional causal inference, Belloni, Chernozhukov and Hansen (2014) and
Farrell (2015) employed augmented IPW estimators based on regularized maximum likeli-
hood estimators in outcome regression and propensity score models, and obtained Wald-type
confidence intervals that are valid when both the outcome regression and propensity score
models are correctly specified, provided (|Sγ | + |Sα1 |) log(p) = o(n1/2) or refined rates de-
pending on the product of |Sγ | and |Sα1 |; see Remark 10 later. Our main contribution is
therefore to provide model-assisted or doubly robust confidence intervals for average treat-
ment effects using differently configured augmented IPW estimators. Belloni, Chernozhukov
and Hansen (2014) and Farrell (2015) also advocated post-Lasso refitting to potentially im-
prove finite-sample performance.

Another related work is Athey, Imbens and Wager (2018), where valid confidence intervals
are obtained for the sample treatment effect n−1

1
∑

i:Ti=1{m∗
1(Xi) − m∗

0(Xi)} (different from
population treatment effects), if a linear outcome model is correctly specified. No propensity
score model is explicitly used.

Our work is also connected to the literature of confidence intervals and hypothesis test-
ing for a single or lower-dimensional coefficients in high-dimensional regression models
(Zhang and Zhang (2014); van de Geer et al. (2014); Javanmard and Montanari (2014)).
Model-assisted inference does not seem to be addressed in these works, but can potentially
be developed.

2. Setup. Suppose that {(Yi, Ti,Xi) : i = 1, . . . , n} are independent and identically dis-
tributed observations of (Y,T ,X), where Y is an outcome variable, T is a treatment vari-
able taking values 0 or 1, and X is a d × 1 vector of measured covariates. In the poten-
tial outcomes framework (Splawa-Neyman (1990); Rubin (1974)), let (Y 0, Y 1) be potential
outcomes that would be observed under treatment 0 or 1, respectively. By consistency, as-
sume that Y is either Y 0 if T = 0 or Y 1 if T = 1, that is, Y = (1 − T )Y 0 + T Y 1. There are
two causal parameters commonly of interest: the average treatment effect (ATE), defined as
E(Y 1 − Y 0) = μ1 − μ0 with μt = E(Y t ), and the average treatment effect on the treated
(ATT), defined as E(Y 1 − Y 0|T = 1) = ν1 − ν0 with νt = E(Y t |T = 1) for t = 0,1. For
concreteness, we mainly discuss estimation of μ1 until Section 3.5 to discuss ATE and ATT.

Estimation of ATE is fundamentally a missing-data problem: only one potential outcome,
Y 0

i or Y 1
i , is observed and the other one is missing for each subject i. For identification of

(μ0,μ1) and ATE, we make the following two assumptions throughout:
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(i) Unconfoundedness: T and Y 0 and, respectively, T and Y 1 are conditionally indepen-
dent given X (Rubin (1976));

(ii) Overlap: 0 < π∗(x) < 1 for all x, where π∗(x) = P(T = 1|X = x) is called the
propensity score (PS) (Rosenbaum and Rubin (1983)).

Under these assumptions, (μ0,μ1) and ATE are often estimated by imposing additional
modeling assumptions on the outcome regression function m∗

t (X) = E(Y |T = t,X) or the
propensity score π∗(X) = P(T = 1|X).

Consider a conditional mean model for outcome regression (OR),

E(Y |T = 1,X) = m1(
X;α1) = ψ

{
α1Tg1(X)

}
,(1)

where ψ(·) is an (increasing) inverse link function, g1(x) = {1, g1
1(x), . . . , g1

q(x)}T is a vec-

tor of known functions such as g1(x) = (1, xT)T, and α1 = (α1
0, α1

1, . . . , α
1
q)

T is a vector of
unknown parameters. Throughout, superscript T denotes a transpose, not the treatment vari-
able T . Model (1) can be deduced from a generalized linear model with a canonical link
(McCullagh and Nelder (1989)). Then the average negative log-(quasi-)likelihood function
can be written (after dropping any dispersion parameter) as

�ML
(
α1) = Ẽ

(
T

[−Yα1Tg1(X) + �
{
α1Tg1(X)

}])
,(2)

where �(u) = ∫ u
0 ψ(u′)du′, which is convex in u. Throughout, Ẽ(·) denotes the sample

average. With high-dimensional data, a regularized maximum likelihood estimator, α̂1
RML,

can be defined by minimizing the loss �ML(α1) with the Lasso penalty (Tibshirani (1996)),

�RML
(
α1) = �ML

(
α1) + λ

∥∥α1
1:q

∥∥
1,(3)

where ‖ · ‖1 denotes the L1 norm, α1
1:q = (α1

1, . . . , α1
q)

T excluding α1
0, and λ ≥ 0 is a tuning

parameter. The resulting estimator of μ1 is then

μ̂1
OR = Ẽ

{
m̂1

RML(X)
} = 1

n

n∑
i=1

m̂1
RML(Xi),

where m̂1
RML(X) = m1(X; α̂1

RML), the fitted outcome regression function. Various theoretical
results have been obtained on Lasso estimation in sparse, high-dimensional regression (e.g.,
Bühlmann and van de Geer (2011)). If model (1) is correctly specified, then it can be shown
under suitable conditions that ‖α̂1

RML −α1∗‖1 = Op(1)‖α1∗‖0{log(q)/n}1/2 and μ̂1
OR = μ1 +

Op(1){‖α1∗‖0 log(q)/n}1/2, where α1∗ is the true value for model (1) such that m∗
1(X) =

m1(X;α1∗) and ‖α1∗‖0 is the size of nonzero elements in α1∗.
Alternatively, consider a propensity score (PS) model

P(T = 1|X) = π(X;γ ) = 

{
γ Tf (X)

}
,(4)

where 
(·) is an inverse link function, f (x) = {1, f1(x), . . . , fp(x)}T is a vector of known
functions such as g1(x) = (1, xT)T, and γ = (γ0, γ1, . . . , γp)T is a vector of unknown pa-
rameters. For concreteness, assume that model (4) is logistic regression with π(X;γ ) =
[1 + exp{−γ Tf (X)}]−1, and hence the average negative log-likelihood function is

�ML(γ ) = Ẽ
[
log

{
1 + eγ Tf (X)} − T γ Tf (X)

]
.(5)

To handle high-dimensional data, a Lasso penalized maximum likelihood estimator, γ̂RML, is
defined by minimizing the objective function

�RML(γ ) = �ML(γ ) + λ‖γ1:p‖1,(6)
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where γ1:p = (γ1, . . . , γp)T excluding γ0, and λ ≥ 0 is a tuning parameter. The fitted propen-
sity score is then π̂RML(X) = π(X; γ̂RML). A (ratio) inverse probability weighted (IPW) es-
timator for μ1 is

μ̂1
rIPW(π̂RML) = Ẽ

{
T Y

π̂RML(X)

}
/Ẽ

{
T

π̂RML(X)

}
.

From previous works (e.g., Bühlmann and van de Geer (2011)), if model (4) is cor-
rectly specified, then it can be shown under suitable conditions that ‖γ̂RML − γ ∗‖1 =
Op(1)‖γ ∗‖0{log(p)/n}1/2 and μ̂1

rIPW(π̂RML) = μ1 + Op(1){‖γ ∗‖0 log(p)/n}1/2, where γ ∗
is the true value for model (4) such that π∗(X) = π(X;γ ∗) and ‖γ ∗‖0 is the size of nonzero
elements in γ ∗.

To attain consistency for μ1, the estimator μ̂1
OR or μ̂1

rIPW(π̂RML) relies on correct speci-
fication of OR model (1) or PS model (4), respectively. In contrast, there are doubly robust
estimators depending on both OR and PS models in the augmented IPW form (Robins, Rot-
nitzky and Zhao (1994))

μ̂1(
m̂1, π̂

) = Ẽ
{
ϕ

(
Y,T ,X; m̂1, π̂

)}
,

where m̂1(X) and π̂ (X) are fitted values of m∗
1(X) and π∗(X) and

ϕ
(
Y,T ,X; m̂1, π̂

) = T Y

π̂(X)
−

{
T

π̂(X)
− 1

}
m̂1(X).(7)

See Kang and Schafer (2007) and Tan (2010) for reviews in low-dimensional settings.
Recently, in high-dimensional settings, Belloni, Chernozhukov and Hansen (2014) and
Farrell (2015) studied the estimator μ̂1(m̂1

RML, π̂RML), using the fitted values m̂1
RML(X) and

π̂RML(X) from Lasso penalized estimation or similar methods. Their results are mainly of
two types. The first type shows double robustness: μ̂1(m̂1

RML, π̂RML) remains consistent if
either OR model (1) or PS model (4) is correctly specified. The second type establishes valid
confidence intervals: μ̂1(m̂1

RML, π̂RML) admits the usual influence function,

μ̂1(
m̂1

RML, π̂RML
) = Ẽ

{
ϕ

(
Y,T ,X;m1∗, π∗)} + op

(
n−1/2)

,(8)

if both OR model (1) and PS model (4) are correctly specified. In general, the latter re-
sult requires a stronger sparsity condition than in consistency results only. For example, it
is assumed that {‖α1∗‖0 + ‖γ ∗‖0} log(p) = o(n1/2) in Belloni, Chernozhukov and Hansen
(2014).

3. Theory and methods.

3.1. Overview. A limitation of existing high-dimensional methods discussed in Section 2
is that valid confidence intervals based on μ̂1(m̂1

RML, π̂RML) is obtained only under the as-
sumption that both OR model (1) and PS model (4) are correctly specified, even though the
point estimator μ̂1(m̂1

RML, π̂RML) is doubly robust, that is, remains consistent if either OR
model (1) or PS model (4) is correctly specified. To fill this gap, we develop new point esti-
mators and confidence intervals for μ1, depending on a propensity score model and an out-
come regression model, such that properties (G1) and at least one of (G2)–(G3) are attained
as described in Section 1.

To illustrate main ideas, consider a logistic propensity score model (4) and a linear out-
come regression model,

E(Y |T = 1,X) = m1(
X;α1) = α1Tf (X),(9)
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that is, model (1) with the identity link and the vector of covariate functions g1(X) taken to
be the same as f (X) in model (4) (hence q = p). This condition can be satisfied possibly
after enlarging model (1) or (4) to reach the same dimension. Our point estimator of μ1 is

μ̂1(
m̂1

RWL, π̂1
RCAL

) = Ẽ
{
ϕ

(
Y,T ,X; m̂1

RWL, π̂1
RCAL

)}
,(10)

where ϕ(·) is defined in (7), π̂1
RCAL(X) = π(X; γ̂ 1

RCAL), m̂1
RWL(X) = m1(X; α̂1

RWL), and
γ̂ 1

RCAL and α̂1
RWL are defined as follows. The estimator γ̂ 1

RCAL is a regularized calibrated
estimator of γ from Tan (2017), defined as a minimizer of the Lasso penalized objective
function,

�RCAL(γ ) = �CAL(γ ) + λ‖γ1:p‖1,(11)

where λ ≥ 0 is a tuning parameter and �CAL(γ ) is the calibration loss,

�CAL(γ ) = Ẽ
{
T e−γ Tf (X) + (1 − T )γ Tf (X)

}
.(12)

The estimator α̂1
RWL is a regularized weighted least-squares estimator of α1, defined as a

minimizer of

�RWL
(
α1; γ̂ 1

RCAL
) = �WL

(
α1; γ̂ 1

RCAL
) + λ

∥∥α1
1:p

∥∥
1,(13)

where �WL(α1; γ̂ 1
RCAL) is the weighted least-squares loss,

�WL
(
α1; γ̂ 1

RCAL
) = Ẽ

[
T

1 − π̂1
RCAL(X)

π̂1
RCAL(X)

{
Y − α1Tf (X)

}2
]
/2,(14)

and λ ≥ 0 is a tuning parameter. That is, the observations in the treated group are weighted
by {1 − π̂1

RCAL(Xi)}/π̂1
RCAL(Xi), which differs slightly from the commonly used inverse

propensity score weight 1/π̂1
RCAL(Xi).

There are simple and interesting interpretations of the preceding estimators. By the
Karush–Kuhn–Tucker condition for minimizing (11), the fitted propensity score π̂1

RCAL(X)

satisfies

1

n

n∑
i=1

Ti

π̂1
RCAL(Xi)

= 1,(15)

1

n

∣∣∣∣∣
n∑

i=1

Tifj (Xi)

π̂1
RCAL(Xi)

−
n∑

i=1

fj (Xi)

∣∣∣∣∣ ≤ λ, j = 1, . . . , p,(16)

where equality holds in (16) for any j such that the j th estimate (γ̂ 1
RCAL)j is nonzero. Equa-

tion (15) shows that the inverse probability weights, 1/π̂1
RCAL(Xi) with Ti = 1, sum to the

sample size n, whereas equation (16) implies that the weighted average of each covariate
fj (Xi) over the treated group may differ from the overall average of fj (Xi) by no more than
λ. The Lasso penalty is used to induce the box constraints on the gradient of �CAL(γ ) instead
of setting the gradient to 0.

By the Karush–Kuhn–Tucker condition for minimizing (13), the fitted outcome regression
function m̂1

RWL(X) satisfies

1

n

n∑
i=1

Ti

1 − π̂1
RCAL(Xi)

π̂1
RCAL(Xi)

{
Yi − m̂1

RWL(Xi)
} = 0,(17)

1

n

∣∣∣∣∣
n∑

i=1

Ti

1 − π̂1
RCAL(Xi)

π̂1
RCAL(Xi)

{
Yi − m̂1

RWL(Xi)
}
fj (Xi)

∣∣∣∣∣ ≤ λ, j = 1, . . . , p,(18)
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where equality holds in (18) for any j such that the j th estimate (α̂1
RWL)j is nonzero. Equation

(17) implies that by simple calculation, the estimator μ̂1(m̂1
RWL, π̂1

RCAL) can be recast as

μ̂1(
m̂1

RWL, π̂1
RCAL

) = Ẽ

[
m̂1

RWL(X) + T

π̂1
RCAL(X)

{
Y − m̂1

RWL(X)
}]

= Ẽ
{
T Y + (1 − T )m̂1

RWL(X)
}
,

(19)

which takes the form of linear prediction estimators known in the survey literature (e.g.,
Särndal, Swensson and Wretman (1992)): Ẽ{T Y + (1 − T )m̂1(X)} for some fitted out-
come regression function m̂1(X). As a consequence, μ̂1(m̂1

RWL, π̂1
RCAL) always falls within

the range of the observed outcomes {Yi : Ti = 1, i = 1, . . . , n} and the predicted values
{m̂1

RWL(Xi) : Ti = 0, i = 1, . . . , n}. This boundedness property is not satisfied by the esti-
mator μ̂1(m̂1

RML, π̂1
RML).

We provide a high-dimensional analysis of the estimator μ̂1(m̂1
RWL, π̂1

RCAL) in Section 3.3,
allowing for possible model misspecification. Our main result shows that under suitable con-
ditions, the estimator μ̂1(m̂1

RWL, π̂1
RCAL) admits the asymptotic expansion

μ̂1(
m̂1

RWL, π̂1
RCAL

) = Ẽ
{
ϕ

(
Y,T ,X; m̄1

WL, π̄1
CAL

)} + op

(
n−1/2)

,(20)

where π̄1
CAL(X) = π(X; γ̄ 1

CAL), m̄1
WL(X) = m1(X; ᾱ1

WL) and γ̄ 1
CAL and ᾱ1

WL are defined as
follows. With possible model misspecification, the target value γ̄ 1

CAL is defined as a minimizer
of the expected calibration loss

E
{
�CAL(γ )

} = E
{
T e−γ Tf (X) + (1 − T )γ Tf (X)

}
.

If model (4) is correctly specified, then π̄1
CAL(X) = π∗(X). Otherwise, π̄1

CAL(X) may differ
from π∗(X). The target value ᾱ1

WL is defined as a minimizer of the expected loss

E
{
�WL

(
α1; γ̄ 1

CAL
)} = E

[
T

1 − π̄1
CAL(X)

π̄1
CAL(X)

{
Y − α1Tf (X)

}2
]
/2.

If model (9) is correctly specified, then m̄1
WL(X) = m∗

1(X). But m̄1
WL(X) may in general

differ from m∗
1(X). The following result can be deduced from Theorems 3 and 4. Suppose

that the Lasso tuning parameter is specified as λ = A
†
0{log(p)/n}1/2 for γ̂ 1

RCAL and λ =
A

†
1{log(p)/n}1/2 for α̂1

RWL, with some constants A
†
0 and A

†
1. Denote Sγ = {0}∪{j : γ̄ 1

CAL,j �=
0, j = 1, . . . , p} and Sα1 = {0} ∪ {j : ᾱ1

WL,j �= 0, j = 1, . . . , p}.
PROPOSITION 1. Suppose that Assumptions 1 and 2 hold as in Section 3.3, and (|Sγ | +

|Sα1 |) log(p) = o(n1/2). Then for γ̂ 1
RCAL and α̂1

RWL with sufficiently large constants A
†
0 and

A
†
1, asymptotic expansion (20) is valid. Moreover, if either logistic PS model (4) or linear OR

model (9) is correctly specified, then π̄1
CAL(x) ≡ π∗(x) or, respectively, m̄1

WL(x) ≡ m1∗(x),
and the following results hold:

(i) n1/2{μ̂1(m̂1
RWL, π̂1

RCAL) − μ1} →D N(0,V ), where V = var{ϕ(Y,T ,X; m̄1
WL,

π̄1
CAL)};

(ii) a consistent estimator of V is

V̂ = Ẽ
[{

ϕ
(
Y,T ,X; m̂1

RWL, π̂1
RCAL

) − μ̂1(
m̂1

RWL, π̂1
RCAL

)}2];
(iii) an asymptotic (1 − c) confidence interval for μ1 is μ̂1(m̂1

RWL, π̂1
RCAL) ± zc/2

√
V̂ /n,

where zc/2 is the (1 − c/2) quantile of N(0,1).

That is, a doubly robust confidence interval for μ1 is obtained.
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REMARK 1. We discuss two implications of Proposition 1. First, the estimator μ̂1(m̂1
RWL,

π̂1
RCAL) is also locally efficient, that is, achieves the semiparametric efficiency bound,

n−1 var{ϕ(Y,T ,X;m1∗, π∗)}, for estimation of μ1 (Hahn (1998)), when both models (4) and
(9) are correctly specified, because in this case π̄1

CAL(x) ≡ π∗(x) and m̄1
WL(x) ≡ m1∗(x).

Second, the results (i)–(iii) hold uniformly over all data-generating processes subject to the
assumptions stated, which are much weaker than those needed for perfect model selection
by Lasso-type methods (Bühlmann and van de Geer (2011)). Therefore, our method pro-
vides uniformly valid inference similarly as in Belloni, Chernozhukov and Hansen ((2014),
Corollary 1).

3.2. On construction of estimators. We point out basic ideas underlying the construc-
tion of the estimators γ̂ 1

RCAL and α̂1
RWL such that the estimator μ̂1(m̂1

RWL, π̂1
RCAL) satisfies

asymptotic expansion (20), even with model misspecification. The discussion is heuristic
here, and formal theory is presented in Sections 3.3 and 3.4. In general, let α̂1 be some esti-
mator of α1 in model (1), which is assumed to converge in probability to a limit ᾱ1. Denote
m̂1(X) = m1(X; α̂1) and m̄1(X) = m1(X; ᾱ1). Similarly, let γ̂ be some estimator of γ in
model (4), which is assumed to converge in probability to a limit γ̄ . Denote π̂(X) = π(X; γ̂ )

and π̄(X) = π(X; γ̄ ).
Consider a Taylor expansion of μ̂1(m̂1, π̂):

μ̂1(
m̂1, π̂

) = μ̂1(
m̄1, π̄

) + �1 + �2 + op

(
n−1/2)

,(21)

with

�1 = (
α̂1 − ᾱ1)T × ∂

∂α1 Ẽ
{
ϕ

(
Y,T ,X;α1, γ

)}∣∣∣∣
(α1,γ )=(ᾱ1,γ̄ )

,

�2 = (γ̂ − γ̄ )T × ∂

∂γ
Ẽ

{
ϕ

(
Y,T ,X;α1, γ

)}∣∣∣∣
(α1,γ )=(ᾱ1,γ̄ )

,

where ϕ(Y,T ,X;α1, γ ) = ϕ(Y,T ,X;m1(·;α1),π(·;γ )) from (7), and the remainder is
taken to be op(n−1/2) under suitable conditions. The term �1 or �2 represents part of the
variation of μ̂1(m̂1, π̂) caused by the deviation of m̂1(X) from the limit m̄1(X) or, respec-
tively, that of π̂(X) from the limit π̄ (X). With model misspecification, the two terms, �1 and
�2, are in general no smaller than Op(n−1/2), in low- and high-dimensional settings. This is
because α̂1 − ᾱ1 and γ̂ − γ̄ are at least Op(n−1/2) and the second terms in �1 and �2 may
not vanish in probability. Therefore, in order that �1 = op(n−1/2), �2 = op(n−1/2), and (21)
gives

μ̂1(
m̂1, π̂

) = μ̂1(
m̄1, π̄

) + op

(
n−1/2)

,(22)

it seems necessary that the second terms in �1 and �2 should be op(1) (i.e., vanish in prob-
ability), and their population versions should satisfy

∂

∂α1 E
{
ϕ

(
Y,T ,X;α1, γ

)}∣∣∣∣
(α1,γ )=(ᾱ1,γ̄ )

= 0,(23)

∂

∂γ
E

{
ϕ

(
Y,T ,X;α1, γ

)}∣∣∣∣
(α1,γ )=(ᾱ1,γ̄ )

= 0.(24)

These conditions (23) and (24) are known to be sufficient for (22) to hold, under additional
regularity conditions in low-dimensional settings (Kim and Haziza (2014); Vermeulen and
Vansteelandt (2015)). As discussed below, such orthogonality conditions are also key to the
construction of our regularized estimators γ̂ 1

RCAL and α̂1
RWL in high-dimensional settings.
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We now examine implications of (23)–(24) in the concrete situation of Section 3.1. For the
linear OR model (9), �1 reduces to

�1 = (
α̂1 − ᾱ1)T × Ẽ

[{
1 − T

π̄(X)

}
f (X)

]
.(25)

For the logistic PS model (4), �2 reduces to

�2 = −(γ̂ − γ̄ )T × Ẽ

[
T

1 − π̄ (X)

π̄(X)

{
Y − m̄1(X)

}
f (X)

]
.(26)

Then conditions (23) and (24) become

E

[{
1 − T

π̄(X)

}
f (X)

]
= 0,(27)

E

[
T

1 − π̄(X)

π̄(X)

{
Y − m̄1(X)

}
f (X)

]
= 0.(28)

The validity of conditions (27)–(28) depends on whether models (4) and (9) are correctly
specified and how the estimators (α̂1, γ̂ ) are constructed.

If models (4) and (9) are correctly specified, then conditions (23)–(24) or (27)–(28) are
satisfied for any consistent estimators (α̂1, γ̂ ) such that, in the limit, m1(X; ᾱ1) = m∗1(X) =
E(Y |T = 1,X) and π(X; γ̄ ) = π∗(X) = P(T = 1|X), including the regularized maximized
likelihood estimators (α̂1

RML, γ̂RML). In this case, conditions (23)–(24) can be expressed as

∂

∂α1 E
{
ϕ

(
Y,T ,X;α1, γ

)}∣∣∣∣
(α1,γ )=(α∗1,γ ∗)

= 0,(29)

∂

∂γ
E

{
ϕ

(
Y,T ,X;α1, γ

)}∣∣∣∣
(α1,γ )=(α∗1,γ ∗)

= 0,(30)

where α1∗ and γ ∗ are the true values such that m1(X;α1∗) = m1∗(X) and π(X;γ ∗) =
π∗(X). While conditions (23)–(24) in general depend on the estimators (α̂1, γ̂ ) through their
limits (ᾱ1, γ̄ ), such dependency is suppressed in (29)–(30) because (ᾱ1, γ̄ ) is assumed to
coincide with (α1∗, γ ∗) under correctly specified models. The identities (29) and (30) are
known to hold for the AIPW estimating function ϕ(·) as a consequence of its double ro-
bustness (Robins and Rotnitzky (2001)). Moreover, the relationship (29)–(30) is called an
orthogonality property and exploited by Belloni, Chernozhukov and Hansen (2014) to estab-
lish asymptotic expansion (8) for the estimator μ̂1(m̂1

RML, π̂RML), under correctly specified
models in high-dimensional settings.

If, however, PS model (4) or OR model (9) is misspecified, then condition (27) or, respec-
tively, (28) is in general violated, and hence asymptotic expansion (22) may no longer hold,
for example, for the standard estimators (α̂1

RML, γ̂ 1
RML). In this context, the estimators γ̂ 1

RCAL
and α̂1

RWL are constructed with loss functions �CAL(γ ) and �WL(α1;γ ) in (12) and (14) such
that

∂

∂γ
�CAL(γ ) = ∂

∂α1 Ẽ
{
ϕ

(
Y,T ,X;α1, γ

)}
(31)

= Ẽ

[{
1 − T

π(X;γ )

}
f (X)

]
,

∂

∂α1 �WL
(
α1;γ ) = ∂

∂γ
Ẽ

{
ϕ

(
Y,T ,X;α1, γ

)}
(32)

= −Ẽ

[
T

1 − π(X;γ )

π(X;γ )

{
Y − α1Tf (X)

}
f (X)

]
.
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As a result, conditions (27) and (28) are satisfied by π̄1
CAL(X) = π(X; γ̄ 1

CAL) and m̄1
WL(X) =

m1(X; ᾱ1
WL), where γ̄ 1

CAL and ᾱ1
WL are, respectively, the probability limits of γ̂ 1

RCAL and
α̂1

RWL, defined as minimizers of the expected loss E{�CAL(γ )} and E{�WL(α1; γ̄ 1
CAL)}. From

(27) and (28), the second terms in (25) and (26) can be Op({log(p)/n}1/2) in the supre-
mum norms under sub-Gaussian errors. Moreover, it can be shown that ‖γ̂ 1

RCAL − γ̄ 1
CAL‖1 =

Op(1)|Sγ |{log(p)/n}1/2 and ‖α̂1
RWL − ᾱ1

WL‖1 = Op(1)(|Sγ | + |Sα1 |){log(p)/n}1/2, as
demonstrated in Theorems 1 and 2 later. Consequently, the products �1 and �2 in (25) and
(26) can be Op(1)(|Sγ | + |Sα1 |) log(p)/n, which becomes op(n−1/2), and hence asymptotic
expansion (20) holds provided (|Sγ | + |Sα1 |) log(p) = o(n1/2) as stated in Proposition 1.

The estimator γ̂ 1
RCAL is called a regularized calibrated estimator of γ (Tan (2017)), because

in the extreme case of λ = 0, equations (15)–(16) reduce to calibration equations, which can
be traced to Folsom (1991) in the survey literature. Although such equations are intuitively
appealing, the preceding discussion shows that γ̂ 1

RCAL can also be derived to reduce the vari-
ation associated with estimation of α1 from linear OR model (9) for the estimator μ̂1(m̂1, π̂),
when PS model (4) may be misspecified. Similarly, α̂1

RWL is constructed to reduce the varia-
tion associated with estimation of γ from logistic PS model (4) for the estimator μ̂1(m̂1, π̂),
when OR model (9) may be misspecified. By extending the meaning of calibrated estimation,
we call α̂1

RWL a regularized calibrated estimator of α1 against model (4), as well as γ̂ 1
RCAL a

regularized calibrated estimator of γ against model (9), when used to define μ̂1(m̂1, π̂).

REMARK 2. Conditions (23)–(24) were previously used by Kim and Haziza (2014) and
Vermeulen and Vansteelandt (2015) to construct an augmented IPW estimator μ̂1(m̂1, π̂) for
μ1 in low-dimensional settings, where (α̂1, γ̂ ) are nonpenalized, defined by directly setting
(31)–(32) to zero. One of their motivations is to achieve asymptotic expansion (22), and hence
enable simple confidence intervals without the need of correcting for estimation of (α1, γ ). In
the absence of (22), valid confidence intervals can still be derived in low-dimensional settings
by invoking (21) and n−1/2 asymptotic expansions for α̂1 − ᾱ1 and γ̂ − γ̄ with usual influence
functions (White (1982)), allowing for model misspecification. But this influence-function
based approach is not applicable with high-dimensional data. Our work exploits conditions
(23)–(24) to construct the regularized estimators (α̂1

RWL, γ̂ 1
RCAL) and achieve asymptotic ex-

pansion (22) for μ̂1(m̂1
RWL, π̂1

RCAL), so that valid confidence intervals for μ1 can be obtained
in high-dimensional settings.

REMARK 3. Our approach based on (23)–(24) and that of Belloni, Chernozhukov and
Hansen (2014) and Chernozhukov et al. (2018) based on (29)–(30) can be compared as fol-
lows. Both approaches involve use of the doubly robust estimating function ϕ(·), but in dif-
ferent manners. Conditions (23)–(24) amount to requiring orthogonality to hold at whatever
limits (ᾱ1, γ̄ ), which can be achieved by carefully choosing (“calibrating”) the loss functions
for the corresponding estimators. Conditions (29)–(30) can be seen as a special case of (23)–
(24), with (ᾱ1, γ̄ ) at the true values, which can in general be achieved only by consistent
estimators under correctly specified models.

3.3. Theory with linear outcome regression. In this section, we assume that linear out-
come model (9) is used together with logistic propensity score model (4), and develop the-
oretical results for the proposed estimator μ̂1(m̂1

RWL, π̂1
RCAL) in high-dimensional settings.

There are several technical issues we need to address in high-dimensional analysis, includ-
ing how to handle the dependency of the estimator α̂1

RWL on γ̂ 1
RCAL, and what condition is

required on the sparsity sizes of γ̄ 1
CAL and ᾱ1

WL.
First, we describe relevant results from Tan (2017) on the regularized calibrated estimator

γ̂ 1
RCAL in model (4). The tuning parameter λ in (11) for defining γ̂ 1

RCAL is specified as λ =
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A0λ0, with a constant A0 > 1 and

λ0 = C1

√
log

{
(1 + p)/ε

}
/n,

where C1 > 0 is a constant depending only on (C0,B0) from Assumption 1 below and 0 <

ε < 1 is a tail probability for the error bound. For example, taking ε = 1/(1 + p) gives
λ0 = C1

√
2 log(1 + p)/n, a familiar rate in high-dimensional analysis.

With possible model misspecification, the target value γ̄ 1
CAL is defined as a minimizer of

the expected calibration loss E{�CAL(γ )} as in Section 3.1. From a functional perspective,
we write �CAL(γ ) = κCAL(γ Tf ), where for a function h(x),

κCAL(h) = Ẽ
[
T e−h(X) + (1 − T )h(X)

]
.

As κCAL(h) is easily shown to be convex in h, the Bregman divergence associated with κCAL
is defined such that for two functions h(x) and h′(x),

DCAL
(
h′, h

) = κCAL
(
h′) − κCAL(h) − 〈∇κCAL(h), h′ − h

〉
,

where h is identified as a vector (h1, . . . , hn) with hi = h(Xi), and ∇κCAL(h) denotes the
gradient of κCAL(h) with respect to (h1, . . . , hn). The following result (Theorem 1) is restated
from Tan ((2017), Corollary 2), where the convergence of γ̂ 1

RCAL to γ̄ 1
CAL is obtained in the

L1 norm ‖γ̂ 1
RCAL − γ̄ 1

CAL‖1 and the symmetrized Bregman divergence

D
†
CAL

(
ĥ1

RCAL, h̄1
CAL

) = DCAL
(
ĥ1

RCAL, h̄1
CAL

) + DCAL
(
h̄1

CAL, ĥ1
RCAL

)
,

where ĥ1
RCAL(X) = γ̂ 1T

RCALf (X) and h̄1
CAL(X) = γ̄ 1T

CALf (X). See Lemma 7 in the Supple-

mentary Material (Tan (2020)) for an explicit expression of D
†
CAL.

For a matrix � with row indices {0,1, . . . , k}, a compatibility condition (Bühlmann and
van de Geer (2011)) is said to hold with a subset S ∈ {0,1, . . . , k} and constants ν0 > 0 and
ξ0 > 1 if ν2

0(
∑

j∈S |bj |)2 ≤ |S|(bT�b) for any vector b = (b0, b1, . . . , bk)
T ∈ R

1+k satisfying
∑
j /∈S

|bj | ≤ ξ0
∑
j∈S

|bj |.(33)

Throughout, |S| denotes the size of a set S. By the Cauchy–Schwarz inequality, this compat-
ibility condition is implied by (hence weaker than) a restricted eigenvalue condition (Bickel,
Ritov and Tsybakov (2009)) such that ν2

0(
∑

j∈S b2
j ) ≤ bT�b for any vector b ∈ R

1+k satisfy-
ing (33).

ASSUMPTION 1. Suppose that the following conditions are satisfied:

(i) maxj=0,1,...,p |fj (X)| ≤ C0 almost surely for a constant C0 ≥ 1;
(ii) h̄1

CAL(X) ≥ B0 almost surely for a constant B0 ∈ R, that is, π(X; γ̄ 1
CAL) is bounded

from below by (1 + e−B0)−1;
(iii) the compatibility condition holds for �γ with the subset Sγ = {0} ∪ {j : γ̄ 1

CAL,j �=
0, j = 1, . . . , p} and some constants ν0 > 0 and ξ0 > 1, where �γ = E[T w(X; γ̄ 1

CAL)f (X) ×
f T(X)] is the Hessian of E{�CAL(γ )} at γ = γ̄ 1

CAL and w(X;γ ) = e−γ Tf (X);
(iv) |Sγ |λ0 ≤ η0 for a sufficiently small constant η0 > 0, depending only on (A0,C0,

ξ0, ν0).

THEOREM 1 (Tan (2017)). Suppose that Assumption 1 holds. Then for A0 > (ξ0 +
1)/(ξ0 − 1), we have with probability at least 1 − 4ε,

D
†
CAL

(
ĥ1

RCAL, h̄1
CAL

) + (A0 − 1)λ0
∥∥γ̂ 1

RCAL − γ̄ 1
CAL

∥∥
1 ≤ M0|Sγ |λ2

0,(34)

where M0 > 0 is a constant depending only on (A0,C0,B0, ξ0, ν0, η0).
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REMARK 4. We provide comments about the conditions involved. First, Assump-
tion 1(iii) can be justified from a compatibility condition for the Gram matrix E{f (X)f T(X)}
in conjunction with additional conditions such as for some constant τ0 > 0,

bTE
{
f (X)f T(X)

}
b ≤ (

bT�γ b
)
/τ0, ∀b ∈ R

1+p.(35)

For example, (35) holds provided that π∗(X) is bounded from below by a positive con-
stant and π(X; γ̄ 1

CAL) is bounded away from 1. But it is also possible that Assumption 1(iii)
is satisfied even if (35) does not hold for any τ0 > 0. Therefore, π(X; γ̄ 1

CAL) may not be
bounded away from 1 under Assumption 1, although it is required to be bounded away
from 0 by Assumption 1(ii). Second, Assumption 1(iv) can be relaxed to only require that
|Sγ |λ2

0 is sufficiently small, albeit under stronger conditions, for example, the variables
f1(X), . . . , fp(X) are jointly (not just marginally) sub-Gaussian (Huang and Zhang (2012);
Negahban et al. (2012)). On the other hand, Assumption 1(iv) is already weaker than the
sparsity condition, |Sγ | log(p) = o(n1/2), which is needed for obtaining valid confidence in-
tervals for μ1 from existing works (Belloni, Chernozhukov and Hansen (2014)) and our later
results.

REMARK 5. For the Hessian �γ , the weight w(X; γ̄ 1
CAL) with γ̄ 1

CAL replaced by γ̂ 1
RCAL

is identical to that used in the weighted least-square loss (14) to define α̂1
RWL, that is,

w(X; γ̂ 1
RCAL) = {1 − π̂1

RCAL(X)}/π̂1
RCAL(X). The Hessian of �CAL(γ ) at γ̄ 1

CAL is also the

same as the Hessian of �WL(α1; γ̄ 1
CAL) in α1. This coincidence is a consequence of the pair

of equations (31)–(32) satisfied by the loss functions �CAL(γ ) and �WL(α1;γ ).

Now we turn to the regularized weighted least-squares estimator α̂1
RWL. We develop a new

strategy of inverting a quadratic inequality to address the dependency of α̂1
RWL on γ̂ 1

RCAL
and establish convergence of α̂1

RWL under similar conditions as needed for Lasso penalized
unweighted least-squares estimators in high-dimensional settings. The error bound obtained,
however, depends on the sparsity size |Sγ | and various constants in Assumption 1.

For theoretical analysis, the tuning parameter λ in (13) for defining α̂1
RWL is specified as

λ = A1λ1, with a constant A1 > 1 and

λ1 = max
{
λ0, e−B0C0

√
8
(
D2

0 + D2
1

)√
log

{
(1 + p)/ε

}
/n

}
,

where 0 < ε < 1 is a tail probability for the error bound, (C0,B0) are from Assumption 1,
and (D0,D1) are from Assumption 2 below. With possible model misspecification, the target
value ᾱ1

WL is defined as a minimizer of the expected loss E{�WL(α1; γ̄ 1
CAL)} as in Section 3.1.

The following result gives the convergence of α̂1
RWL to ᾱ1

WL in the L1 norm ‖α̂1
RWL − ᾱ1

WL‖1
and the weighted (in-sample) prediction error defined as

(36) QWL
(
m̂1

RWL, m̄1
WL; γ̄ 1

CAL
) = Ẽ

[
T w

(
X; γ̄ 1

CAL
){

m̂1
RWL(X) − m̄1

WL(X)
}2]

,

where m̂1
RWL(X) = α̂1T

RWLf (X) and m̄1
WL(X) = ᾱ1T

WLf (X). In fact, QWL(m̂1
RWL, m̄1

WL; γ̄ 1
CAL)

is the symmetrized Bregman divergence between m̂1
RWL(X) and m̄1

WL(X) associated with the
loss κWL(h; γ̄ 1

CAL) = Ẽ[T w(X; γ̄ 1
CAL){Y − h(X)}2]/2. See Section 3.4 for further discus-

sion.

ASSUMPTION 2. Suppose that the following conditions are satisfied:

(i) Y 1 − m̄1
WL(X) is uniformly sub-Gaussian given X: D2

0E(exp[{Y 1 − m̄1
WL(X)}2/

D2
0] − 1|X) ≤ D2

1 for some positive constants (D0,D1);



MODEL-ASSISTED INFERENCE FOR TREATMENT EFFECTS 823

(ii) the compatibility condition holds for �γ with the subset Sα1 = {0} ∪ {j : ᾱ1
WL,j �=

0, j = 1, . . . , p} and some constants ν1 > 0 and ξ1 > 1;
(iii) (1 + ξ1)

2ν−2
1 |Sα1 |λ1 ≤ η1 for a constant 0 < η1 < 1.

THEOREM 2. Suppose that linear outcome model (9) is used, A0 > (ξ0 + 1)/(ξ0 − 1),
A1 > (ξ1 +1)/(ξ1 −1) and Assumptions 1 and 2 hold. If log{(1+p)/ε}/n ≤ 1, then we have
with probability at least 1 − 8ε,

QWL
(
m̂1

RWL, m̄1
WL; γ̄ 1

CAL
) + eη01(A1 − 1)λ1

∥∥α̂1
RWL − ᾱ1

WL
∥∥

1

≤ e4η01ξ−2
2

(
M01|Sγ |λ2

0
) + e2η01ξ2

3
(
ν−2

2 |Sα1 |λ2
1
)
,

(37)

where ξ2 = 1 − 2A1/{(ξ1 + 1)(A1 − 1)} ∈ (0,1], ξ3 = (ξ1 + 1)(A1 − 1), and ν2 = ν1(1 −
η1)

1/2, depending only on (A1, ξ1, ν1, η1), and M01 = (D2
0 + D2

1)(eη01M0 + η02) + (D2
0 +

D0D1)η02, η01 = (A0 − 1)−1M0η0C0, and η02 = (A0 − 1)−2M2
0η0, depending only on

(A0,C0,B0, ξ0, ν0, η0) in Theorem 1 and (D0,D1).

REMARK 6. Assumption 2(ii) is concerned about the same matrix �γ as in Assump-
tion 1(iii), but with the sparsity subset Sα1 from ᾱ1

WL instead of Sγ from γ̄ 1
CAL. The matrix

�γ is also the Hessian of the expected loss E{�WL(α1; γ̄ 1
CAL)} at α1 = ᾱ1

WL, for reasons
mentioned in Remark 5. Assumptions 2(ii)–(iii) are combined to derive a compatibility con-
dition for the sample matrix �̃γ = Ẽ[T w(X; γ̄ 1

CAL)f (X)f T(X)]. Assumption 2(iii) can be
relaxed such that |Sα1 |λ2

1 is sufficiently small under further side conditions, but it is already
weaker than the sparsity condition, |Sα1 | log(p) = o(n1/2), later needed for valid confidence
intervals for μ1. Essentially, the conditions in Assumption 2 are comparable to those for high-
dimensional analysis of standard Lasso estimators (e.g., Bühlmann and van de Geer (2011)).

REMARK 7. One of the key steps in our proof is to upper bound the product
(
α̂1

RWL − ᾱ1
WL

)T
Ẽ

[
T w

(
X; γ̂ 1

RCAL
){

Y − m̄1
WL(X)

}
f (X)

]
,(38)

which involves the estimated weight w(X; γ̂ 1
RCAL). If γ̂ 1

RCAL were replaced by γ̄ 1
CAL, then it

is standard to use the following bound:
(
α̂1

RWL − ᾱ1
WL

)T
Ẽ

[
T w

(
X; γ̄ 1

CAL
){

Y − m̄1
WL(X)

}
f (X)

]
≤ ∥∥α̂1

RWL − ᾱ1
WL

∥∥
1 × ∥∥Ẽ[

T w
(
X; γ̄ 1

CAL
){

Y − m̄1
WL(X)

}
f (X)

]∥∥∞.
(39)

To handle the dependency on γ̂ 1
RCAL, our strategy is to derive an upper bound of the difference

between (38) and (39), depending on QWL(m̂1
RWL, m̄1

WL; γ̄ 1
CAL), which we seek to control.

Carrying this bound leads to a quadratic inequality in QWL(m̂1
RWL, m̄1

WL; γ̄ 1
CAL), which can be

inverted to obtain an explicit bound on QWL(m̂1
RWL, m̄1

WL; γ̄ 1
CAL). The resulting error bound

(37) is of order (|Sγ | + |Sα1 |) log(p)/n, much sharper than could be obtained using other ap-
proaches, for example, directly bounding ‖Ẽ[T w(X; γ̂ 1

RCAL){Y − m̄1
WL(X)}f (X)]‖∞. There

are also similar issues with estimated weights handled in van de Geer et al. (2014) and Belloni
et al. (2018).

Finally, we study the proposed estimator μ̂1(m̂1
RWL, π̂1

RCAL) for μ1, depending on the reg-
ularized estimators γ̂ 1

RCAL and α̂1
RWL from logistic propensity score model (4) and linear out-

come regression model (9). The following result gives an error bound for μ̂1(m̂1
RWL, π̂1

RCAL),
allowing that both models (4) and (9) may be misspecified.
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THEOREM 3. Under the conditions of Theorem 2, if log{(1 +p)/ε}/n ≤ 1, then we have
with probability at least 1 − 10ε,

∣∣μ̂1(
m̂1

RWL, π̂1
RCAL

) − μ̂1(
m̄1

WL, π̄1
CAL

)∣∣
≤ M11|Sγ |λ2

0 + M12|Sγ |λ0λ1 + M13|Sα1 |λ0λ1,
(40)

where M11 = M13 +
√

D2
0 + D2

1eη01(eη01M0/2 + η02), M12 = (A0 − 1)−1M0, M13 =
A0(A1 − 1)−1M1, and M1 is a constant such that the right-hand side of (37) in Theorem 2 is
upper bounded by eη01M1(|Sγ |λ0λ1 + |Sα1 |λ2

1).

Theorem 3 shows that μ̂1(m̂1
RWL, π̂1

RCAL) is doubly robust for μ1 provided (|Sγ | +
|Sα1 |)λ2

1 = o(1), that is, (|Sγ | + |Sα1 |) log(p) = o(n). In addition, Theorem 3 gives the
n−1/2 asymptotic expansion (20) provided n1/2(|Sγ | + |Sα1 |)λ2

1 = o(1), that is, (|Sγ | +
|Sα1 |) log(p) = o(n1/2). To obtain valid confidence intervals for μ1 via the Slutsky theo-
rem, the following result gives the convergence of the variance estimator V̂ to V , as defined
in Proposition 1, allowing that both models (4) and (9) may be misspecified. For notational
simplicity, denote ϕ̂ = ϕ(T ,Y,X; m̂1

RWL, π̂1
RCAL) and ϕ̂c = ϕ̂ − μ̂1(m̂1

RWL, π̂1
RCAL) such that

V̂ = Ẽ(ϕ̂2
c ). Similarly, denote ϕ̄ = ϕ(T ,Y,X; m̄1

WL, π̄1
CAL) and ϕ̄c = ϕ̄ − μ̂1(m̄1

WL, π̄1
CAL)

such that V = E(ϕ̄2
c ).

THEOREM 4. Under the conditions of Theorem 2, if log{(1 +p)/ε}/n ≤ 1, then we have
with probability at least 1 − 10ε,

∣∣Ẽ(
ϕ̂2

c − ϕ̄2
c

)∣∣ ≤ 2M14
{
Ẽ

(
ϕ̄2

c

)}1/2(|Sγ |λ0 + |Sα1 |λ1
)

+ M14
(|Sγ |λ0 + |Sα1 |λ1

)2
,

(41)

where M14 is a positive constant depending only on (A0,C0,B0, ξ0, ν0, η0) in Theorem 1 and
(A1,D0,D1, ξ1, ν1, η1) in Theorem 2. If, in addition, condition (35) holds, then we have with
probability at least 1 − 12ε,

∣∣Ẽ(
ϕ̂2

c − ϕ̄2
c

)∣∣ ≤ 2M15
{
Ẽ

(
ϕ̄2

c

)}1/2(|Sγ |λ0λ1 + |Sα1 |λ2
1
)1/2

+ M15
(|Sγ |λ0λ1 + |Sα1 |λ2

1
)
,

(42)

where M15 is a positive constant, depending on τ0 from (35) as well as (A0,C0,B0, ξ0, ν0, η0)

and (A1,D0,D1, ξ1, ν1, η1).

REMARK 8. Theorem 4 provides two rates of convergence for V̂ under different condi-
tions. Inequality (41) shows that V̂ is a consistent estimator of V , that is, V̂ − V = op(1),
provided (|Sγ | + |Sα1 |)(logp)1/2 = o(n1/2). Technically, consistency of V̂ is sufficient for
applying Slutsky theorem to establish confidence intervals for μ1 in Proposition 1(iii). With
additional condition (35), inequality (42) shows that V̂ achieves the parametric rate of con-
vergence, V̂ − V = Op(n−1/2), provided (|Sγ | + |Sα1 |) log(p) = o(n1/2).

REMARK 9. Combining Theorems 3–4 directly leads to Proposition 1, which gives dou-
bly robust confidence intervals of μ1. In addition, a broader interpretation of robust inference
can be accommodated. All the results, Theorems 1–4, are developed to remain valid in the
presence of misspecification of models (4) and (9), similarly as in classical theory of esti-
mation with misspecified models (e.g., White (1982)). If both models (4) and (9) may be
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misspecified, then μ̂1(m̂1
RWL, π̂1

RCAL)± zc/2

√
V̂ /n is an asymptotic (1 − c) confidence inter-

val for the target value μ̄1 = E(ϕ̄), which in general differs from the true value μ1. The only
effect of models (4) and (9) being correctly specified is to ensure that μ̄1 coincides with μ1.
Such robust estimation of variances is conceptually similar to the fact that White’s (1980)
sandwich variance estimator is valid for the least-squares estimator even when a linear model
may be misspecified. For comparison, the standard estimator μ̂1(m̂1

RML, π̂1
RML) can also be

shown to converge to a target value μ̄1
ML, which by double robustness, coincides with μ1

if either model (4) or (9) is correctly specified, but otherwise differs from μ1. As discussed
in Section 3.2, asymptotic expansion (8) for μ̂1(m̂1

RML, π̂1
RML) is in general invalid, and so

are the associated confidence intervals for μ̄1
ML, unless both models (4) or (9) are correctly

specified.

From the preceding discussion about model robustness, we obtain a direct extension of
Proposition 1, allowing models (4) and (9) to be misspecified by some (small) bias terms,
defined as

bγ = Ẽ1/2[{
1/π̄1

CAL(X) − 1/π∗(X)
}2]

,

bα1 = Ẽ1/2[{
m̄1

WL(X) − m1∗(X)
}2]

.

These bias terms can be linked to those in Belloni, Chernozhukov and Hansen (2014) and
Farrell (2015) by the following bounds (shown in the Supplement):

E
(
b2
γ

) ≤ O(1) inf
γ

E
[{

1/π(X;γ ) − 1/π∗(X)
}2]

,(43)

E
(
b2
α1

) ≤ O(1) inf
α1

E
[{

m1(
X;α1) − m1∗(X)

}2]
,(44)

where O(1) in each inequality depends only on constants (B0,B1) and (B∗
0 ,B∗

1 ) such that
log{π̄1

CAL(X)/(1 − π̄1
CAL(X))} ∈ [B0,B1] almost surely and log{π∗(X)/(1 − π∗(X))} ∈

[B∗
0 ,B∗

1 ] almost surely.

PROPOSITION 2. In addition to Assumptions 1 and 2, suppose that π∗(X) ≥ eB∗
0 /(1 +

eB∗
0 ) almost surely for a constant B∗

0 ∈ R. Then for sufficiently large constants A0 and A1,
∣∣μ̂1(

m̂1
RWL, π̂1

RCAL
) − μ̂1(

m̄1
WL, π∗)∣∣

≤ (|Sγ | + |Sα1 |)Op

(
log(p)/n

) + bγ Op

(
n−1/2) + bγ bα1,

(45)

∣∣μ̂1(
m̂1

RWL, π̂1
RCAL

) − μ̂1(
m1∗, π̄1

CAL
)∣∣

≤ (|Sγ | + |Sα1 |)Op

(
log(p)/n

) + bα1Op

(
n−1/2) + bγ bα1.

(46)

Moreover, if (|Sγ | + |Sα1 |) log(p) = o(n1/2), bγ bα1 = op(n−1/2), and bγ = op(1) or bα1 =
op(1) (or both), then (i)–(iii) in Proposition 1 hold, with π̄1

CAL replaced by π∗ or m̄1
WL re-

placed by m1∗ (or both) in the definition of V .

REMARK 10. For μ̂1(m̂1
RML, π̂1

RML) to admit asymptotic expansion (8), the rate condi-
tion in Farrell ((2015), Corrigendum) amounts to

{|Sγ | log
3
2 +δ(p)/n + b2

γ

} 1
2
{|Sα1 | log

3
2 +δ(p)/n + b2

α1
} 1

2 = op

(
n− 1

2
)

(47)

and |Sα1 | log3/2+δ(p)/n + b2
α1 = op(n−1/2) for some δ > 0. The second condition may be

dropped via cross-fitting in Chernozhukov et al. (2018). If b2
γ and b2

α1 are of no larger
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order than, respectively, |Sα1 | log3/2+δ(p)/n and |Sα1 | log3/2+δ(p)/n, then condition (47)
reduces to |Sγ ||Sα1 | log3+2δ(p) = o(n), which, ignoring log(p) factors, is weaker than
(|Sγ | + |Sα1 |) log(p) = o(n1/2): one of |Sγ | and |Sα1 | can be large while the other is
small enough with the product |Sγ ||Sα1 | small. On the other hand, if bγ or bα1 is rela-
tively large such that |Sα1 |b2

γ or |Sγ |b2
α1 is not op(1), then condition (47) fails, but the

right-hand side of (45) or (46) can be op(n−1/2) provided bγ = op(1) or bα1 = op(1),
bγ bα1 = op(n−1/2), and (|Sγ | + |Sα1 |) log(p) = o(n1/2). This discussion shows the follow-
ing comparison: μ̂1(m̂1

RML, π̂1
RML) leads to valid confidence intervals under weaker sparsity

conditions when both models (4) and (9) are nearly correct, but μ̂1(m̂1
RWL, π̂1

RCAL) allows
valid confidence intervals when either model (4) or (9) is nearly correct.

REMARK 11. Although our theory is developed in high-dimensional, parametric set-
tings, there can be interesting implications in nonparametric settings where, for series esti-
mation, f1(x), . . . , fp(x) are specified as basis functions of x ∈ R

d with the number of terms
p growing with the sample size n. Denote by (m̂1

RML, π̂RML) and (m̂1
RWL, π̂1

RCAL) the cor-
responding series estimators. Assume that m1∗(x) and π∗(x) belong to Hölder classes with
rm1- and rπ -times continuous derivatives. By bias and variance formulas in series estimation
(Newey (1997)), it might be expected from Proposition 2 that

∣∣μ̂1(
m̂1

RWL, π̂1
RCAL

) − μ̂1(
m1∗, π∗)∣∣

≤ {
p/n + (

p−rπ /d + p−rm1/d
)
n−1/2 + p−(rπ+rm1)/d

}
Op(1).

(48)

By choosing p ∝ nd/(rπ+rm1+d) to balance the two terms p/n and p−(rπ+rm1)/d , the right-
hand side of (48) is minimized as Op(n−(rπ+rm1)/(rπ+rm1+d)), which becomes op(n−1/2) if

rπ + rm1

rπ + rm1 + d
>

1

2
that is, rπ + rm1 > d.(49)

As the mean squared errors of π̂RML and m̂1
RML are of order n−2rπ /(2rπ+d) and n−2rm1/(2rm1+d)

for suitable choices of p, respectively, it can be shown similarly as (47) that μ̂1(m̂1
RML, π̂RML)

satisfies asymptotic expansion (8) if n−rπ /(2rπ+d)n−rm1/(2rm1+d)Op(1) = op(n−1/2), that is,

rπ

2rπ + d
+ rm1

2rm1 + d
>

1

2
.(50)

Condition (49) is weaker than (50), because (rπ + rm1)/(rπ + rm1 + d) ≥ rπ/(2rπ + d) +
rm1/(2rm1 +d) by Cauchy–Schwarz inequality, 2/(rπ + rm1 +d) ≤ 1/(2rπ +d)+1/(2rm1 +
d), where equality holds if and only if rπ = rm1. On the other hand, under a weaker condition
than (49), rπ + rm1 > d/2, an estimator of μ1 is developed in Robins et al. (2017) to achieve
asymptotic expansion in the form (8), using higher-order influence functions. We leave further
investigation in this direction to future work.

3.4. Theory with generalized linear outcome models. In this section, we turn to the situa-
tion where a generalized linear model is used for outcome regression together with a logistic
propensity score model, and develop appropriate methods and theory for obtaining confi-
dence intervals for μ1 in high-dimensional settings.

A technical complication compared with the situation of a linear outcome model in Sec-
tion 3.3 is that the orthogonality conditions (23)–(24) with a nonlinear outcome model do
not lead to as simple a pair of estimating functions as (31)–(32), which can be inverted to
define loss functions in γ and α1 sequentially. There are, however, different approaches that
can be used to derive model-assisted confidence intervals, that is, satisfying either property
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(G2) or (G3) described in Section 3.1. For concreteness, we focus on a PS based, OR as-
sisted approach to obtain confidence intervals with property (G2), that is, being valid if the
propensity score model used is correctly specified but the outcome regression model may be
misspecified. See Section 3.5 for further discussion of related issues.

Consider a logistic propensity score model (4) and a generalized linear outcome model
with a canonical link,

E(Y |T = 1,X) = m1(
X;α1) = ψ

{
α1Tf (X)

}
,(51)

that is, model (1) with the vector of covariate functions g1(X) taken to be the same as f (X)

in model (4). This choice of covariate functions can be more justified than in the setting
of Section 3.3, because OR model (51) plays an assisting role when confidence intervals
for μ1 are concerned. Our point estimator of μ1 is μ̂1(m̂1

RWL, π̂1
RCAL) as defined in (10),

where π̂1
RCAL(X) = π(X; γ̂ 1

RCAL) and m̂1
RWL(X) = m1(X; α̂1

RWL). The estimator γ̂ 1
RCAL is

a regularized calibrated estimator of γ from Tan (2017) as in Section 3.3. But α̂1
RWL is a

regularized weighted likelihood estimator of α1, defined as a minimizer of

�RWL
(
α1; γ̂ 1

RCAL
) = �WL

(
α1; γ̂ 1

RCAL
) + λ

∥∥α1
1:p

∥∥
1,(52)

where λ ≥ 0 is a tuning parameter and �WL(α1; γ̂ 1
RCAL) is the weighted likelihood loss as

follows, with w(X;γ ) = {1 − π(X;γ )}/π(X;γ ) = e−γ Tf (X),

(53) �WL
(
α1; γ̂ 1

RCAL
) = Ẽ

(
T w

(
X; γ̂ 1

RCAL
)[−Yα1Tf (X) + �

{
α1Tf (X)

}])
.

The regularized weighted least-squares estimator α̂1
RWL for a linear outcome model in Sec-

tion 3.3 is recovered in the special case of the identity link, ψ(u) = u and �(u) = u2/2.
In addition, the Kuhn–Tucker–Karush condition for minimizing (52) remains the same as
(17)–(18), and hence the estimator μ̂1(m̂1

RWL, π̂1
RCAL) can be put in the prediction form

(19), which ensures the boundedness property that μ̂1(m̂1
RWL, π̂1

RCAL) always falls within
the range of the observed outcomes {Yi : Ti = 1, i = 1, . . . , n} and the predicted values
{m̂1

RWL(Xi) : Ti = 0, i = 1, . . . , n}.
With possible model misspecification, the target value ᾱ1

WL is defined as a minimizer of
the expected loss E{�WL(α1; γ̄ 1

CAL)}. From a functional perspective, we write �WL(α1;γ ) =
κWL(α1Tf ;γ ), where for a function h(x) which may not be in the form α1Tf ,

κWL(h;γ ) = Ẽ
(
T w(X;γ )

[−Yh(X) + �
{
h(X)

}])
.

As κWL(h;γ ) is convex in h by the convexity of �(·), the Bregman divergence associated
with κWL(h;γ ) is defined as

DWL
(
h′, h;γ ) = κWL

(
h′;γ ) − κWL(h;γ ) − 〈∇κWL(h;γ ),h′ − h

〉
,

where ∇κWL(h;γ ) denotes the gradient of κWL(h;γ ) with respect to (h1, . . . , hn) with hi =
h(Xi). The symmetrized Bregman divergence is

(54)
D

†
WL

(
h′, h;γ ) = DWL

(
h′, h;γ ) + DWL

(
h,h′;γ )

= Ẽ
(
T w(X;γ )

[
ψ

{
h′(X)

} − ψ
{
h(X)

}]{
h′(X) − h(X)

})
.

The following result establishes the convergence of α̂1
RWL to ᾱ1

WL in the L1 norm ‖α̂1
RWL −

ᾱ1
WL‖1 and the symmetrized Bregman divergence D

†
WL(ĥ1

RWL, h̄1
WL; γ̄ 1

CAL), where ĥ1
RWL(X) =

α̂1T
RWLf (X) and h̄1

WL(X) = ᾱ1T
WLf (X). In the case of the identity link, ψ(u) = u, the sym-

metrized Bregman divergence D
†
WL(ĥ1

RWL, h̄1
WL; γ̄ 1

CAL) becomes QWL(m̂1
RWL, m̄1

WL; γ̄ 1
CAL)

in (36). Inequality (55) also reduces to (37) in Theorem 2 with the choices C2 = 1 and
C3 = η2 = η3 = 0.
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ASSUMPTION 3. Assume that ψ(·) is differentiable and denote ψ2(u) = dψ(u)/du.
Suppose that the following conditions are satisfied:

(i) ψ2{h̄1
WL(X)} ≤ C1 almost surely for a constant C1 > 0;

(ii) ψ2{h̄1
WL(X)} ≥ C2 almost surely for a constant C2 > 0;

(iii) ψ2(u) ≤ ψ2(u
′)eC3|u−u′| for any (u,u′), where C3 ≥ 0 is a constant.

(iv) C0C3(A1 − 1)−1ξ2
3 ν−2

2 C−1
2 |Sα1 |λ1 ≤ η2 for a constant 0 ≤ η2 < 1 and

C0C3e3η01(A1 − 1)−1ξ−2
2 C−1

2 (M01|Sγ |λ0) ≤ η3 for a constant 0 ≤ η3 < 1, where (η01, ν2,

ξ2, ξ3,M01) are as in Theorem 2.

THEOREM 5. Suppose that Assumptions 1, 2 and 3(ii)–(iv) hold. If log{(1+p)/ε}/n ≤ 1,
then for A0 > (ξ0 +1)/(ξ0 −1) and A1 > (ξ1 +1)/(ξ1 −1), we have with probability at least
1 − 8ε,

D
†
WL

(
m̂1

RWL, m̄1
WL

) + eη01(A1 − 1)λ1
∥∥α̂1

RWL − ᾱ1
WL

∥∥
1

≤ e4η01ξ−2
4

(
M01|Sγ |λ2

0
) + e2η01ξ2

3
(
ν−2

3 |Sα1 |λ2
1
)
,

(55)

where ξ4 = ξ2(1 − η3)
1/2C

1/2
2 , ν3 = ν

1/2
2 (1 − η2)

1/2C
1/2
2 , and (η01, ν2, ξ2, ξ3,M01) are as in

Theorem 2.

REMARK 12. We discuss the conditions involved in Theorem 5. Assumption 3(i) is not
needed, but will be used in later results. Assumption 3(iii), adapted from Huang and Zhang
(2012), is used along with Assumption 1(i) to bound the curvature of D

†
WL(h′, h; γ̄ 1

CAL)

and then with Assumption 3(iv) to achieve a localized analysis when handling a non-
quadratic loss function. Assumption 3(ii) is used for two distinct purposes. First, it
is combined with Assumptions 2(ii)–(iii) to yield a compatibility condition for �̃α =
Ẽ[T w(X; γ̄ 1

CAL)ψ2{h̄1
WL(X)}f (X)f T(X)], which is the sample version of the Hessian of the

expected loss E{�WL(α1; γ̄ 1
CAL)} at α1 = ᾱ1

WL, that is, �α = E[T w(X; γ̄ 1
CAL)ψ2{h̄1

WL(X)} ×
f (X)f T(X)]. Second, Assumption 3(ii) is also used in deriving a quadratic inequality to be
inverted in our strategy to deal with the dependency of α̂1

RWL on γ̂ 1
RCAL as mentioned in

Remark 7. As seen from the proofs in Supplementary Material, similar results as in Theo-
rem 5 can be obtained with Assumption 3(ii) replaced by the weaker condition that for some
constant τ1 > 0,

bT�γ b ≤ (
bT�αb

)
/τ1 ∀b ∈ R

1+p,

provided that the condition on A1 and Assumption 3(iv) are modified accordingly, depending
on τ1. This extension is not pursued here for simplicity.

Now we study the proposed estimator μ̂1(m̂1
RWL, π̂1

RCAL) for μ1, with the regularized esti-
mators γ̂ 1

RCAL and α̂1
RWL obtained using logistic propensity score model (4) and generalized

linear outcome model (51). Theorem 6 gives an error bound for μ̂1(m̂1
RWL, π̂1

RCAL), allowing
that both models (4) and (51) may be misspecified, but depending on additional terms in the
presence of misspecification of model (4). Denote h(X;α1) = α1Tf (X) and for r ≥ 0,

�0(r) = sup
j=0,1,...,p,‖α1−ᾱ1

WL‖1≤r

∣∣∣∣E
[
ψ2

{
h
(
X;α1)}

fj (X)

{
T

π̄1
CAL(X)

− 1
}]∣∣∣∣.

As a special case, the quantity �0(0) is defined as

�1 = sup
j=0,1,...,p

∣∣∣∣E
[
ψ2

{
h̄1

WL(X)
}
fj (X)

{
T

π̄1
CAL(X)

− 1
}]∣∣∣∣.
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By the definition of γ̄ 1
CAL, it holds that E[{T/π̄1

CAL(X) − 1}fj (X)] = 0 for j = 0,1, . . . , p

whether or not model (4) is correctly specified. But �0(r) is in general either zero or positive
respectively if model (4) is correctly specified or misspecified, except in the case of linear
outcome model (9) where �0(r) is automatically zero because ψ2(·) is constant.

THEOREM 6. Suppose that Assumptions 1, 2 and 3 hold. If log{(1 + p)/ε}/n ≤ 1, then
for A0 > (ξ0 + 1)/(ξ0 − 1) and A1 > (ξ1 + 1)/(ξ1 − 1), we have with probability at least
1 − 12ε, ∣∣μ̂1(

m̂1
RWL, π̂1

RCAL
) − μ̂1(

m̄1
WL, π̄1

CAL
)∣∣

≤ M21|Sγ |λ2
0 + M22|Sγ |λ0λ1 + M23|Sα1 |λ0λ1 + η11�0(η11),

(56)

where M21, M22 and M23 are positive constants, depending only on (A0,C0,B0, ξ0, ν0, η0),
(A1,D0,D1, ξ1, ν1, η1), and (C1,C2,C3, η2, η3), η11 = (A1 − 1)−1M2(|Sγ |λ0 + |Sα1 |λ1),
and M2 is a constant such that the right-hand side of (55) is upper bounded by
eη01M2(|Sγ |λ0λ1 + |Sα1 |λ2

1). If, in addition, condition (35) holds, then we have with proba-
bility at least 1 − 14ε,∣∣μ̂1(

m̂1
RWL, π̂1

RCAL
) − μ̂1(

m̄1
WL, π̄1

CAL
)∣∣

≤ M24|Sγ |λ2
0 + M25|Sγ |λ0λ1 + M26|Sα1 |λ0λ1 + η11�1,

(57)

where M24, M25 and M26 are positive constants, similar to M21, M22 and M23, but, in addi-
tion, depending on τ0 from (35).

REMARK 13. Two different error bounds are obtained in Theorem 6. Because �0(η11) ≥
�1, the error bound (57) is tighter than (56), but with the additional condition (35), which
requires that the generalized eigenvalues of �γ relative to the gram matrix E{f (X)f T(X)} is
bounded away from 0. In either case, the result shows that μ̂1(m̂1

RWL, π̂1
RCAL) is doubly robust

for μ1 provided (|Sγ | + |Sα1 |)λ1 = o(1), that is, (|Sγ | + |Sα1 |)(logp)1/2 = o(n1/2). In addi-
tion, the error bounds imply that μ̂1(m̂1

RWL, π̂1
RCAL) admits the n−1/2 asymptotic expansion

(20) provided (|Sγ | + |Sα1 |) log(p) = o(n1/2), when PS model (4) is correctly specified but
OR model (51) may be misspecified, because the term involving �0(η11) or �1 vanishes as
discussed above. Unfortunately, expansion (20) may fail when PS model (4) is misspecified.

Similarly as Theorem 4, the following result establishes the convergence of V̂ to V as
defined in Proposition 1, allowing that both models (4) and (51) may be misspecified.

THEOREM 7. Under the conditions of Theorem 6, if log{(1 +p)/ε}/n ≤ 1, then we have
with probability at least 1 − 12ε,∣∣Ẽ(

ϕ̂2
c − ϕ̄2

c

)∣∣ ≤ 2M27
{
Ẽ

(
ϕ̄2

c

)}1/2{
1 + �0(η11)

}(|Sγ |λ0 + |Sα1 |λ1
)

+ M27
{
1 + �2

0(η11)
}(|Sγ |λ0 + |Sα1 |λ1

)2
,

(58)

where M27 is a positive constant depending only on (A0,C0,B0, ξ0, ν0, η0), (A1,D0,D1, ξ1,

ν1, η1) and (C1,C2,C3, η2, η3). If, in addition, condition (35) holds, then we have with prob-
ability at least 1 − 14ε,

(59)

∣∣Ẽ(
ϕ̂2

c − ϕ̄2
c

)∣∣
≤ 2M28

{
Ẽ

(
ϕ̄2

c

)}1/2{(|Sγ |λ0λ1 + |Sα1 |λ2
1
)1/2 + �1

(|Sγ |λ0 + |Sα1 |λ1
)}

+ M28
{(|Sγ |λ0λ1 + |Sα1 |λ2

1
) + �2

1
(|Sγ |λ0 + |Sα1 |λ1

)2}
,

where M28 is a positive constant, similar to M27 but, in addition, depending on τ0 from (35).
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REMARK 14. Two different rates of convergence are obtained for V̂ in Theorem 7.
Similarly, as discussed in Remark 8, if (|Sγ | + |Sα1 |)(logp)1/2 = o(n1/2), then inequality
(58) implies the consistency of V̂ for V , which is sufficient for applying the Slutsky the-
orem to establish confidence intervals for μ1. With an additional condition (35), inequal-
ity (59) gives a faster rate of convergence of V̂ to V , which is of order n−1/2 provided
(|Sγ | + |Sα1 |) log(p) = o(n1/2).

Combining Theorems 6–7 leads to the following result.

PROPOSITION 3. Suppose that Assumptions 1, 2 and 3 hold, and (|Sγ |+ |Sα1 |) log(p) =
o(n1/2). For sufficiently large constants A0 and A1, if logistic PS model (4) is correctly spec-
ified but OR model (51) may be misspecified, then π̄1

CAL(x) ≡ π∗(x), and (i)–(iii) in Propo-
sition 1 hold. That is, a PS based, OR assisted confidence interval for μ1 is obtained.

REMARK 15. The conclusion of Proposition 3 remains valid if PS model (4) is misspec-
ified but only locally such that �0(η11) = O({log(p)/n}1/2) or �1 = O({log(p)/n}1/2), in

the case of the error bound (56) or (57). Therefore, μ̂1(m̂1
RWL, π̂1

RCAL) ± zc/2

√
V̂ /n can be

interpreted as an asymptotic (1 − c) confidence interval for the target value μ̄1 = E(ϕ̄) if
model (4) is at most locally misspecified but model (51) may be arbitrarily misspecified. It
is an interesting open problem to find broadly valid confidence intervals in the presence of
model misspecification similarly as discussed in Remark 9 when a linear outcome model is
used.

3.5. Further discussion.
Estimation of ATE. Our theory and methods are presented mainly on estimation of μ1, but

they can be directly extended for estimating μ0 and hence ATE, that is, μ1 − μ0. Consider a
logistic propensity score model (4) and a generalized linear outcome model,

E(Y |T = 0,X) = m0
(
X;α0) = ψ

{
α0Tf (X)

}
,(60)

where f (X) is the same vector of covariate functions as in the model (4) and α0 is a vector of
unknown parameters. Our point estimator of ATE is μ̂1(m̂1

RWL, π̂1
RCAL)− μ̂0(m̂0

RWL, π̂0
RCAL),

and that of μ0 is

μ̂0(
m̂0

RWL, π̂0
RCAL

) = Ẽ
{
ϕ

(
Y,1 − T ,X; m̂0

RWL,1 − π̂0
RCAL

)}
,

where ϕ(·) is defined in (7), π̂0
RCAL(X) = π(X; γ̂ 0

RCAL), m̂0
RWL(X) = m0(X; α̂0

RWL), and
γ̂ 0

RCAL and α̂0
RWL are defined as follows. The estimator γ̂ 0

RCAL is defined similarly as γ̂ 1
RCAL,

but with the loss function �CAL(γ ) in (12) replaced by

�0
CAL(γ ) = Ẽ

{
(1 − T )eγ Tf (X) − T γ Tf (X)

}
,

that is, T and γ in �CAL(γ ) are replaced by 1 − T and −γ . The estimator α̂0
RWL is defined

similarly as α̂1
RWL, but with the loss function �WL(·; γ̂ 1

RCAL) in (53) replaced by

�0
WL

(
α0; γ̂ 0

RCAL
) = Ẽ

(
(1 − T )w0(

X; γ̂ 0
RCAL

)[−Yα0Tg0(X) + �
{
α0Tg0(X)

}])
,

where w0(X;γ ) = π(X;γ )/{1−π(X;γ )} = eγ Tf (X). Under similar conditions as in Propo-
sitions 1 and 3, the estimator μ̂0(m̂0

RWL, π̂0
RCAL) admits the asymptotic expansion

(61) μ̂0(
m̂0

RWL, π̂0
RCAL

) = Ẽ
{
ϕ

(
Y,1 − T ,X; m̄0

WL,1 − π̄0
CAL

)} + op

(
n−1/2)

,
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where π̄0
RCAL(X) = π(X; γ̄ 0

RCAL), m̄0
RWL(X) = m0(X; ᾱ0

RWL) and γ̄ 0
RCAL and ᾱ0

RWL are the
target values defined similarly as γ̄ 1

RCAL and ᾱ1
RWL. Then Wald confidence intervals for μ0

and ATE can be derived from (20) and (61) similarly as in Propositions 1 and 3 and shown
to be either doubly robust in the case of linear outcome models, or valid if PS model (4) is
correctly specified but OR models (51) and (60) may be misspecified for nonlinear outcome
models.

An interesting feature of our approach is that two different estimators of the propensity
score are used when estimating μ0 and μ1. Similar ideas have been involved in several re-
lated methods (e.g., Vermeulen and Vansteelandt (2015); Chan, Yam and Zhang (2016)). On
one hand, the estimators γ̂ 0

RCAL and γ̂ 1
RCAL are both consistent, and hence there is no self-

contradiction at least asymptotically, when PS model (4) is correctly specified. On the other
hand, if model (4) is misspecified, the two estimators may in general have different asymp-
totic limits, which can be an advantage from the following perspective. By definition, the
augmented IPW estimators of μ1 and μ0 are obtained, depending on fitted propensity scores
within the treated group and untreated groups separately, that is, {π(Xi;γ 1) : Ti = 1} and
{π(Xi;γ 0) : Ti = 0}. In the presence of model misspecification, allowing different γ 1 and
γ 0 can be helpful in finding suitable approximations of the two sets of propensity scores,
without being constrained by the then false assumption that they are determined by the same
coefficient vector γ 1 = γ 0.

Estimation of ATT. There is a simple extension of our approach to estimation of ATT,
that is, ν1 − ν0 as defined in Section 2. The parameter ν1 = E(Y 1|T = 1) can be directly
estimated by Ẽ(T Y )/Ẽ(T ). For ν0 = E(Y 0|T = 1), our point estimator is

ν̂0(
m̂0

RWL, π̂0
RCAL

) = Ẽ
{
ϕν0

(
Y,T ,X; m̂0

RWL, π̂0
RCAL

)}
/Ẽ(T ),

where π̂0
RCAL(X) and m̂0

RWL(X) are the same fitted values as used in the estimator
μ̂0(m̂0

RWL, π̂0
RCAL) for μ0, and ϕν0(·; m̂0, π̂) is defined as

ϕν0(Y,T ,X; m̂0, π̂) = (1 − T )π̂(X)

1 − π̂(X)
Y −

{
1 − T

1 − π̂(X)
− 1

}
m̂0(X).

The function ϕν0(·; m̂0, π̂) can be derived, by substituting fitted values (m̂0, π̂) for the true
values (m∗

0, π
∗) in the efficient influence function of ν0 under a nonparametric model (Hahn

(1998); Shu and Tan (2018)). The estimator Ẽ{ϕν0(Y,T ,X; m̂0, π̂)} is doubly robust: it re-
mains consistent for E(T Y 0) if either m̂0 = m∗

0 or π̂ = π∗. In addition, by straightforward
calculation, the function ϕν0() is related to ϕ() in (7) through the simple identity:

ϕν0(Y,T ,X; m̂0, π̂) = ϕ(Y,1 − T ,X; m̂0,1 − π̂) − (1 − T )Y.(62)

As a result, ν̂0(m̂0
RWL, π̂0

RCAL) can be equivalently obtained as

ν̂0(
m̂0

RWL, π̂0
RCAL

) = [
μ̂0(

m̂0
RWL, π̂0

RCAL
) − Ẽ

{
(1 − T )Y

}]
/Ẽ(T )

= Ẽ
{
T m̂0

RWL(X)
}
/Ẽ(T ),

where the second step follows from a similar equation for μ̂0(m̂0
RWL, π̂0

RCAL) as (19). More-
over, it can be shown using equation (62) that under similar conditions as in Propositions 1
and 3, the estimator ν̂0(m̂0

RWL, π̂0
RCAL) admits the asymptotic expansion

ν̂0(
m̂0

RWL, π̂0
RCAL

) − ν0

= Ẽ
{
ϕν0

(
Y,T ,X; m̄0

WL, π̄0
CAL

) − T ν0}
/Ẽ(T ) + op

(
n−1/2)

,
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similarly as (61) for μ̂0(m̂0
RWL, π̂0

RCAL). From this expansion, Wald confidence intervals for
ν0 and ATT can be derived and shown to be either doubly robust with linear OR model (60)
or valid at least when PS model (4) is correctly specified.

Coupled estimating functions. We provide additional comments about the technical com-
plication and alternative approaches mentioned in Section 3.4 when using nonlinear outcome
models.

For a possibly nonlinear outcome model (51), the orthogonality conditions (23)–(24) lead
to the following estimating functions:

∂Ẽ{ϕ(Y,T ,X;α1, γ )}
∂α1 = Ẽ

[{
1 − T

π(X;γ )

}
ψ2

{
α1Tf (X)

}
f (X)

]
,(63)

∂Ẽ{ϕ(Y,T ,X;α1, γ )}
∂γ

= −Ẽ

[
T

1 − π(X;γ )

π(X;γ )

{
Y − m1(

X;α1)}
f (X)

]
,(64)

where ψ2(·) denotes the derivative of ψ(·). The two vectors of functions, (63) and (64), are
intrinsically coupled in (α1, γ ), each depending on both γ and α1, unless outcome model (51)
is linear, and hence the dependency of (63) on α1 vanishes. Such joint dependency presents
both computational and statistical obstacles. In low-dimensional settings, estimating equa-
tions can be defined by setting (63)–(64) to zero (Kim and Haziza (2014); Vermeulen and
Vansteelandt (2015)). But the pair of equations need to be solved simultaneously in (α1, γ )

instead of sequentially. For nonlinear estimating equations, there may be various difficul-
ties in computation and asymptotic theory, for example, related to multiple solutions (Small,
Wang and Yang (2000)). In high-dimensional settings, with (α1, γ ) in both (63) and (64), it
seems impossible to sequentially define loss functions and regularized M-estimators in γ and
then α1 (or vice versa) as in the case of linear outcome models. It is interesting to investigate
other regularization methods.

Another worthwhile strategy is to modify one of estimating functions (63)–(64) and de-
rive model-assisted (not doubly robust) confidence intervals. The development in Section 3.4
involves replacing (63) by (31) but retaining (64), which lead to the estimators γ̂ 1

RCAL and
α̂1

RWL based on the loss functions �CAL(γ ) and �WL(α1;γ ). The resulting confidence inter-
vals are PS based, OR assisted, that is, being valid if PS model (4) is correctly specified but
OR model (51) may be misspecified. Alternatively, it is possible to develop an OR based, PS
assisted approach which retains (63), but replaces (64) by score functions in OR model (51).
This approach leads to the regularized maximum likelihood estimator α̂1

RML in conjunction
with a regularized estimator of γ based on a weighted calibration loss,

(65) �WL
(
γ ; α̂1

RML
) = Ẽ

[
ψ2

{
α̂1T

RMLf (X)
}{

T e−γ Tf (X) + (1 − T )γ Tf (X)
}]

.

The gradient of (65) in γ is (63), with α1 = α̂1
RML. Similar results can be established as

in Section 3.4, to provide valid confidence intervals for μ1 if OR model (51) is correctly
specified but PS model (4) may be misspecified. This work can be pursued elsewhere.

4. Simulation studies. We conducted two simulation studies to compare inferences us-
ing μ̂1(m̂1

RML, π̂1
RML), without or with post-Lasso refitting, and μ̂1(m̂1

RWL, π̂1
RCAL). The de-

sign of the first study is modified and extended from Kang and Schafer (2007) to high-
dimensional, sparse settings. Both continuous and binary outcomes are considered. The re-
sults are presented in the preprint Tan (2018), and similar conclusions can be drawn as dis-
cussed below. The second study presented here involves a simpler design for covariates and
model misspecification with continuous outcomes, but provides results with post-Lasso refit-
ting and larger ratios p/n.
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4.1. Implementation details. Both the regularized calibrated and maximum likelihood
methods are implemented in the R package RCAL (Tan (2019)). The penalized loss function
(3) or (6) for computing α̂1

RML or γ̂ 1
RML or (11), (13) or (52) for computing α̂1

RWL or γ̂ 1
RCAL

is minimized for a fixed tuning parameter λ, using algorithms similar to those in Friedman,
Hastie and Tibshirani (2010), but with the coordinate descent method replaced by an active
set method as in Osborne, Presnell and Turlach (2000) for solving each Lasso penalized least
squares problem. In addition, the penalized loss (11) for computing γ̂ 1

RCAL is minimized using
the algorithm in Tan (2017), where a nontrivial Fisher scoring step is involved for quadratic
approximation.

The tuning parameter λ is determined using 5-fold cross validation based on the corre-
sponding loss function as follows. For k = 1, . . . ,5, let Ik be a random subsample of size
n/5 from {1,2, . . . , n}. For a loss function �(γ ), either �ML(γ ) in (5) or �CAL(γ ) in (12),
denote by �(γ ;I) the loss function obtained when the sample average Ẽ(·) is computed
over only the subsample I . The 5-fold cross-validation criterion is defined as CV5(λ) =
(1/5)

∑5
k=1 �(γ̂

(k)
λ ;Ik)„ where γ̂

(k)
λ is a minimizer of the penalized loss �(γ ;Ic

k ) + λ‖γ1:p‖1
over the subsample Ic

k of size 4n/5, that is, the complement to Ik . Then λ is selected by min-
imizing CV5(λ) over the discrete set {λ∗/2j : j = 0,1, . . . ,10}, where for π̂0 = Ẽ(T ), the
value λ∗ is computed as either λ∗ = maxj=1,...,p |Ẽ{(T − π̂0)fj (X)}| when the likelihood
loss (5) is used, or λ∗ = maxj=1,...,p |Ẽ{(T /π̂0 − 1)fj (X)}| when the calibration loss (12) is
used. It can be shown that in either case, the penalized loss �(γ ) + λ‖γ1:p‖1 over the original
sample has a minimum at γ1:p = 0 for all λ ≥ λ∗.

For computing α̂1
RML or α̂1

RWL, cross validation is conducted similarly as above using the
loss function �ML(α1) in (2) or �WL(α1; γ̂ 1

RCAL) in (53). In the latter case, γ̂ 1
RCAL is deter-

mined separately and then fixed during cross validation for computing α̂1
RWL.

4.2. Simulation setup and results. Let X = (X1, . . . ,Xp) be multivariate normal with
means 0 and covariances cov(Xj ,Xk) = 2−|j−k| for 1 ≤ j, k ≤ p. In addition, let x

†
j be

Xj + {(Xj + 1)+}2 standardized with mean 0 and variance 1 for j = 1, . . . ,4. Consider the
following data-generating configurations:

(C1) Generate T given X from a Bernoulli distribution with P(T = 1|X) = {1 +
exp(−1 − X1 − 0.5X2 − 0.25X3 − 0.125X4)}−1 and, independently, generate Y 1 given X

from a Normal distribution with variance 1 and mean E(Y 1|X) = X1 + 0.5X2 + 0.25X3 +
0.125X4.

(C2) Generate T give X as in (C1) but, independently, generate Y 1 given X from a Normal
distribution with variance 1 and mean E(Y 1|X) = X

†
1 + 0.5X

†
2 + 0.25X

†
3 + 0.125X

†
4.

(C3) Generate Y 1 given X as in (C1) but, independently, generate T given X from
a Bernoulli distribution with P(T = 1|X) = {1 + exp(−1 − X

†
1 − 0.5X

†
2 − 0.25X

†
3 −

0.125X
†
4)}−1.

As in Section 2, the observed data consist of independent and identically distributed ob-
servations {(TiYi, Ti,Xi) : i = 1, . . . , n}. Consider logistic propensity score model (4) and
linear outcome model (9), both with fj (X) = Xj for j = 1, . . . , p. Then the two models can
be classified as follows, depending on the data configuration above:

(C1) PS and OR models both correctly specified;
(C2) PS model correctly specified, but OR model misspecified;
(C3) PS model misspecified, but OR model correctly specified.

See the Supplement for boxplots of Xj within {T = 1} and {T = 0} and scatterplots of Y

against Xj within {T = 1} for j = 1, . . . ,4. Partly because X
†
j is a monotone function of Xj ,



834 Z. TAN

TABLE 1
Summary of results with linear outcome models

(C1) cor PS, cor OR (C2) cor PS, mis OR (C3) mis PS, cor OR

RML RML2 RCAL RML RML2 RCAL RML RML2 RCAL

n = 800 and p = 200
Bias 0.019 0.002 0.026 −0.038 −0.009 0.012 0.010 0.002 0.016√

Var 0.070 0.079 0.070 0.072 0.092 0.071 0.070 0.076 0.070√
EVar 0.068 0.076 0.068 0.072 0.094 0.069 0.069 0.075 0.068

Cov90 0.864 0.880 0.854 0.859 0.906 0.889 0.875 0.886 0.871
Cov95 0.922 0.947 0.914 0.914 0.950 0.938 0.941 0.950 0.942

n = 800 and p = 1000
Bias 0.031 −0.002 0.033 −0.038 −0.001 0.015 0.026 0.009 0.028√

Var 0.068 0.109 0.070 0.070 0.394 0.071 0.069 0.092 0.070√
EVar 0.067 0.112 0.067 0.070 0.388 0.068 0.068 0.089 0.068

Cov90 0.851 0.911 0.836 0.842 0.896 0.877 0.867 0.892 0.854
Cov95 0.922 0.949 0.915 0.912 0.944 0.929 0.924 0.933 0.923

Note: RML denotes μ̂1(m̂1
RML, π̂1

RML), and RML2 denotes the variant with m̂1
RML and π̂1

RML replaced by the
fitted values obtained by refitting OR and PS models only including the variables selected from the corresponding
Lasso estimation. RCAL denotes μ̂1(m̂1

RWL, π̂1
RCAL). Bias and Var are the Monte Carlo bias and variance of the

points estimates. EVar is the mean of the variance estimates, and hence
√

EVar also measures the L2-average
of lengths of confidence intervals. Cov90 or Cov95 is the coverage proportion of the 90% or 95% confidence
intervals.

the misspecified OR model in (C1) or PS model in (C2) appears difficult to detect by standard
model diagnosis.

For n = 800 and p = 200 or 1000, Table 1 summarizes the results for estimation of μ1,
based on 1000 repeated simulations. The methods RML and RCAL perform similarly to each
other in terms of bias, variance and coverage in the cases (C1) and (C3). But RCAL leads to
noticeably smaller absolute biases and better coverage than RML in the case (C2), correct PS
and misspecified OR models. The post-Lasso refitting method RML2 yields coverage propor-
tions closer to the nominal probabilities than RCAL, but consistently and, in the case (C2),
substantially higher variances and wider confidence intervals. These properties can also be
seen from the QQ plots of the estimates and t-statistics in the Supplement. See the Supple-
ment for additional results and discussion including the oracle estimators (using submodels
with only the covariates X1, . . . ,X4).

5. Empirical application. We provide an application to a medical study in Connors
et al. (1996) on the effects of right heart catheterization (RHC). The study included n = 5735
critically ill patients admitted to the intensive care units of 5 medical centers. For each patient,
the data consist of treatment status T (= 1 if RHC was used within 24 hours of admission
and 0 otherwise), health outcome Y (survival time up to 30 days) and a list of 75 covariates X

specified by medical specialists in critical care. For previous analyses, propensity score and
outcome regression models were employed either with main effects only (Hirano and Imbens
(2002); Vermeulen and Vansteelandt (2015)) or with interaction terms manually added (Tan
(2006)).

To explore dependency beyond main effects, we consider a logistic propensity score model
(4) and a logistic outcome model (51) for 30-day survival status 1{Y > 30}, with the vector
f (X) including all main effects and two-way interactions of X except those with the fractions
of nonzero values less than 46 (i.e., 0.8% of the sample size 5735). The dimension of f (X)

is p = 1855, excluding the constant. All variables in f (X) are standardized with sample
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TABLE 2
Estimates of 30-day survival probabilities and ATE

IPW Augmented IPW

RML RML2 RCAL RML RML2 RCAL

μ1 0.636±0.026 0.660±0.049 0.634±0.023 0.636±0.021 0.646±0.035 0.635±0.021
μ0 0.690±0.017 0.691±0.019 0.687±0.017 0.691±0.016 0.693±0.018 0.688±0.016
ATE −0.054±0.031 −0.031±0.053 −0.053±0.029 −0.055±0.025 −0.047±0.039 −0.053±0.025

Note: Estimate ±2 × standard error, including nominal standard errors for IPW.

means 0 and variances 1. We apply the estimators μ̂1(m̂1
RWL, π̂1

RCAL) and μ̂0(m̂0
RWL, π̂0

RCAL)

using regularized calibrated (RCAL) estimation and the corresponding estimators such as
μ̂1(m̂1

RML, π̂RML) using regularized maximum likelihood (RML) estimation, similarly as in
the simulation study. The Lasso tuning parameter λ is selected by 5-fold cross validation over
a discrete set {λ∗/2j/4 : j = 0,1, . . . ,24}, where λ∗ is the value leading to a zero solution
γ1 = · · · = γp = 0. We also compute the (ratio) IPW estimators, such as μ̂1

rIPW, along with
nominal standard errors obtained by ignoring data-dependency of the fitted propensity scores.

Table 2 shows various estimates of survival probabilities and ATE. The IPW estimates
from RCAL estimation of propensity scores have noticeably smaller nominal standard errors
than RML estimation, for example, with the relative efficiency (0.026/0.023)2 = 1.28 for
estimation of μ1. This improvement can also be seen from Figure S7 in the Supplementary
Material, where the RCAL inverse probability weights are much less variable than RML
weights. See Tan (2017) for additional results on covariate balance and parameter sparsity
from RML and RCAL estimation of propensity scores.

The augmented IPW estimates and confidence intervals are similar to each other from
RCAL and RML estimation. The estimate of μ1 from RML with post-Lasso refitting appears
problematic with a large standard error. However, the validity of RML confidence intervals
depends on both PS and OR models being correctly specified, whereas that of RCAL con-
fidence intervals holds even when the OR model is misspecified. While assessment of this
difference is difficult with real data, Figure S7 shows that the sample influence functions for
ATE using RCAL estimation appears to be more normally distributed especially in the tails
than RML estimation.

Finally, the augmented IPW estimates here are smaller in absolute values, and also
with smaller standard errors, than previous estimates based on main-effect models, about
−0.060 ± 2 × 0.015 (Vermeulen and Vansteelandt (2015)). The reduction in standard er-
rors might be explained by the well-known property that an augmented IPW estimator has a
smaller asymptotic variance when obtained using a larger (correct) propensity score model.
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